第九章 大跨屋盖结构
(完整版)第九章大跨屋盖结构
4、在抗震设防烈度为7度的地区,可不进行网架结构 水平抗震验算;
在抗震设防烈度为8度的地区,对于周边支承的中小跨 度网架可不进行水平抗震验算;
在抗震设防烈度为9度的地区,对各种网架结构均应进 行水平抗震验算。
旧金山金门大桥
塔高227米,每根钢索重6412公吨,由 27000根钢丝绞成,重2.45万吨 。
这种悬吊结 构体系,在 国内尚属罕 见,在境外 也只有德国 宝马汽车大 厦、香港汇 丰银行等极 少个案。
广东省博物馆新馆采用巨型桁架悬吊结构体系,在中部沿边长67.5米的方 形四周布置钢骨混凝土剪力墙,在剪力墙上端设置8榀跨度为67.5米且两 端各悬挑23米、高6.5米的大型空间钢桁架,沿悬臂桁架外端设4榀封口桁 架,再在封口桁架下伸边长6米的箱型钢吊杆,悬吊3~4层楼面体系。
一般情况的选型可遵循下列原则: ①平面形状为矩形的周边支承网架,当其长边/短边
小于或等于1.5时,宜选用: A、正放或斜放四角锥网架; B、棋盘形四角锥网架; C、正放抽空四角锥网架; D、两向正交斜放或正放网架。 E、对中小跨度,也可选用星形四角锥网架和蜂窝形
三角锥网架。 ②平面形状为矩形的周边支承网架,当其边长比(长
④平面形状为圆形、正六边形及接近正六边形且为周边 支承网架,可选用三向网架,三角锥网架或抽空三角 锥网架。对中小跨度也可选用蜂窝形三角锥网架。
中船9院设计的大 连造船新厂钢配 中心
四、网架结构的支承
网架的支承方式有周边支承、点支承、周边支承与点 支承相结合,两边和三边支承等。
(1)周边支承:网架四周全部或部分边界节点设置支座, 支座可支承在柱顶或圈梁上,网架受力类似于四边 支承板,是常用的支承方式。为了减小弯矩,也可 将周边支座略为缩进,接近于点支承。
屋盖结构体系
屋盖结构体系Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第九章单层厂房钢结构§9-4屋盖结构体系9.4.1钢屋盖结构的形式、组成及布置钢屋盖结构通常由屋面、檩条、屋架、托架和天窗架等构件组成。
根据屋面材料和屋面结构布置情况的不同,可屋盖结构体系和有檩屋盖结构体系。
一、无檩屋盖结构体系无檩屋盖结构体系(图9.1.1,a)中屋面板通常采用钢筋混凝土大型屋面板、钢筋加气混凝土板等。
屋架的间距应的长度配合一致,通常为6m。
这种屋面板上一般采用卷材防水屋面,通常适用于较小屋面坡度,常用坡度为1:8~此常采用梯形屋架做为主要承重构件。
?无檩体系屋盖屋面构件的种类和数量少,构造简单,安装方便,施工速度快,且屋盖刚度大,整体性能好;但屋大,常要增大屋架杆件和下部结构的截面,对抗震也不利。
二、有檩屋盖结构体系有檩屋盖结构体系(图)常用于轻型屋面材料的情况。
如压型钢板、压型铝合金板、石棉瓦、瓦楞铁皮等。
屋架为6m;当柱距大于或等于12m时,则用托架支承中间屋架,一般适用于较陡的屋面坡度以便排水,常用坡度为1因此常采用三角形屋架做为主要承重构件。
当采用较好的防水措施用压型钢板做屋面时,屋面坡度也可做到1:12或时也可用H型钢梁做为主要承重构件。
有檩体系屋盖可供选用的屋面材料种类较多,屋架间距和屋面布置较灵活,自重轻,用料省,运输和安装较轻便的种类和数量多,构造较复杂。
在选用屋盖结构体系时,应全面考虑房屋的使用要求、受力特点、材料供应情况以及输条件等,以确定最佳方案。
三、天窗架形式四、托架形式当钢屋盖以平面桁架作为主要承重构件时,各个平面桁架(屋架)要用各种支撑及纵向杆件(系杆)连成一个空变的整体结构,才能承受荷载。
这些支撑及系杆统称为屋盖支撑。
它由上弦横向水平支撑、下弦横向水平支撑、下弦支撑、垂直支撑及系杆组成(图9.4.3)。
下面分别介绍各类支撑及系杆的位置、组成、形式及计算和构造。
大跨度建筑屋顶
1.1大跨度建筑屋顶的结构类型与特点
1.大跨度钢结构、膜 结构、索结构、复合材料结构等。 按照结构的空间布置形式分类:平面结构和空间结构,平面结构包 括桁架结构、刚架结构、拱结构等,空间结构包括网架结构、壳体结 构、膜结构、悬索结构、气囊结构等。 按照力的改向以及传递的特有机制进行分类:形态作用结构体系 (包括悬索结构、帐篷结构、气囊结构、拱结构),向量作用结构体 系(包括平面桁架、刚架结构、空间桁架等),截面作用结构体系 (包括梁结构、框架结构、板结构等),面作用结构体系(包括折板 结构、薄壳结构等)。
4
大跨度建筑屋顶
(3)拱结构
拱是受轴向压力为主的结构型式,此结构是抗压材料理想的型式。
分类:
按照铰的设置方式-------三铰拱、两铰拱和无铰拱, 按照截面形式--------等截面拱和变截面拱, 按照构件形式-------实心拱和格构拱, 按照结构材料-------混凝土拱、钢拱、砌体拱、木拱、胶合木拱等。 ➢拱的轴线形状越接近恒荷载条件下的理想压力曲线,就越能取得 经济的效果。 ➢拱结构所用材料有金属、钢筋混凝土、木、砖、石等。
优点——按其自身重量与跨度的比值而言,拱结构是跨越空间最
经济的结构体系之一。
5
大跨度建筑屋顶
(4)网架结构
平板网架结构可以看做是格构化的板,结构所用材料一 般为钢材,也可用木材。 分类: 按网格组成-------交叉桁架体系、三角锥体系、四角锥体系、 六角锥网架、蛛网式网架、折板型网架、组合网架、斜拉网 架等。 按弦杆层数-------双层网架、三(多)层网架。 按网格构成方式-------交叉桁架体系、角锥体系、其它体系: 蛛网式网架,折板型网架、组合网架、斜拉网架等。 优点——网架结构平面形状灵活、结构自重轻、结构高度小、 耗材省、空间刚度大、稳定性强、抗震性能优越,且杆件与 节点比较规格化,利于工业化制作,安装方便。
大跨建筑结构大跨平面结构10123-PPT精品
(5)檩条采用冷弯薄壁型钢,截面一般为C型钢 或Z型钢(坡度较大时,可以做到主轴与地面平 行)。檩条壁厚一般1.5 ~ 3.0mm,1.5mm为规范规 定的下限。
新修定的国家标准《冷弯薄壁型钢结构技术规 范》GB50018-2019 已,我国目前已能 生产12.5mm厚的冷弯薄壁型钢。
的框架结构。它的优点是制作简单、便于运输,还 能降低房屋高度。实腹框架常设计成铰接柱脚。
由于框架支座弯矩的卸载作用使实腹框架的横 梁高度不大,可取跨度的1/30~1/40。
在我国得到大力发展的轻型门式刚架结构,是 实腹式框架结构体系的一种,其特点是屋盖及墙体 均采用压型钢板,结构主要承受自身的重量。
有效宽度法假定腹杆轴力N通过连接件在节点板
内按照应力扩散角度传至连接件端部与N 相垂直的 一定宽度范围内,称为有效宽度be 。
假定be范围内的节点板应力达
到 fu , 并 令 be·t·fu=Nu( 节 点 板 破 坏 时的腹杆轴力),按此法拟合的结 果,当应力扩散角=270时精度最 高,计算值与试验值的比值平均 为 98.9% ; 当 =300 时 , 比 值 为 106.8%,考虑到国外多数国家对 应力扩散角均取为300,为与国际 接轨且误差较小,建议取=300。
2 框架结构体系
与梁式结构体系相比,框架式体系比较经济, 且横梁高度可以取得比梁式结构的高度小,刚度 也较大,常用于工业建筑。
框架柱柱脚可以作成铰接,也可以作成刚接。 无铰框架刚度更好,用钢量省、便于安装,但这 种框架对温度作用比较敏感,对基础及地基的要 求较高。
主要有实腹式和格构式两大类。
(1)实腹式框架结构体系 实腹式框架适用于跨度不太大(L=18~60m)
大跨建筑结构ppt课件
(2)H型钢重型桁架
桁架节点铰接是一种近似,条件是杆件较细长, 以H型钢作弦杆或腹杆的重型桁架,设计时应注意 节点的次应力,或按刚接节点设计,对重要的节点 还应进行有限元分析。
23
(3)钢管桁架(圆管或矩形管)
钢管桁架节点受力复杂,原88规范只有直接焊 接的平面桁架式圆管结构的条文。近几年同济大学 对圆钢管空间桁架节点作了一些试验和分析;哈工 大对直接焊接的方管桁架结构(主管为方管,支管 为方管或圆管)的节点作了一些试验和分析,《钢 结构设计规范》修订时,其成果已部分纳入。
8
平面承重的大跨度钢结构
1 梁式结构体系
梁式结构体系一般采用简支桁架的形式,桁架
的优点是制作与安装都比较简单,其上、下弦及腹
杆仅承受拉力或压力,对支座也没有横推力。
适用跨度:4060m,更大的跨度由于耗钢量
过大而不经济。
重点是支撑系统的布置,对保证整个结构体
系
的整体刚度是非常重要的。
9
大跨度梁式结构的外形及腹杆体系,决定于跨 度、屋面型式及吊天棚结构的形式,常用的有梯形 和拱形桁架。按重量最优确定的桁架的高跨比一般 为1/6~1/8。
12
上海浦东国际机场
13
上海浦东国际机场候机楼屋架梁跨度83m, 跨中高度超过11m,单榀屋架梁重55吨。
为了增加屋架结构的刚度,同时为保证屋架梁 在风吸力作用下始终处于受拉状态,下弦布置了 一根预应力钢索,对下弦施加足够的预应力。
14
15
(1)角钢(或T型)桁架
一般用节点板连接,过去采用的方法是按桁架 弦杆或腹杆的最大内力选择节点板厚,当受力较复 杂时不可靠。国外有些规范(如美国AISC规范)规 定需进行计算。
21
3_2 大跨屋盖结构
网格尺寸确定原则
网架的网格尺寸与高度关系密切,斜腹杆与弦 杆夹角应控制在400-550之间为宜。如夹角过小, 节点构造困难。 网格尺寸要与屋面材料相适应,网架上直接铺 设钢筋混凝土板时,网格尺寸不宜过大,一般 不超过3m,否则安装困难。当屋面采用有檩体 系时,檩条长度一般不超过6m。 对周边支承的各类网架高度及网格尺寸可按表 3-1选用。
运动场看台
图3.10正放抽空四角锥网架
特点:将正放四角锥 网架适当抽掉一些 腹杆和下弦杆。
特点: 保持正放四角锥网架 周边四角锥不变,中 间四角锥间隔抽空, 下弦杆呈正交斜放, 上弦杆呈正交正放。 克服了斜放四角锥网 架屋面板类型多,屋 面组织排水较困难的 缺点。 图3.11 棋盘形四角锥网架
特点: 上弦网格呈正交斜放, 下弦网格为正交正放。 网架上弦杆短,下弦 杆长,受力合理。 适用于中小跨度周边 支承,或周边支承与 点支承相结合的矩形 平面。
图 3.12 斜放四角锥网架
图3.13 星形四角锥网架 星形网架上弦杆比下弦杆短,受力合理。竖杆受压, 内力等于节点荷载。星形网架一般用于中小跨度周 边支承情况。
四角锥体系网架
三角锥体系网架
水平斜撑杆
选用原则:在矩 形建筑平面中, 网架的弦杆垂直 于及平行于边界。 图3.4两向正交正放网架
水平斜撑杆
水平斜撑杆
图3.5 周边支承网架水平斜撑布置方式之一
图3.6 两向正交斜放网架 两向正交斜放 短桁架对长桁架有嵌固作用,受 力有利角部产生拔力,常取无角部形式。 两向斜交斜放 适用于两个方向网格尺寸不同的 情形受力性能欠佳,节点构造较复杂
当W>0网架为几何可变体系; W=0网架无多余杆件,如杆件布置合理,为静 定结构; W<0网架有多余杆件,如杆件布置合理,为超 静定结构。
大跨度房屋结构
大跨度房屋结构摘要:随着经济的发展,大跨度结构在公共建筑中的应用越来越广泛。
关键词:大跨度;实腹式框架;格构式框架Abstract: with the development of economy, big span structure in the public buildings used more widely.Keywords: big span; Solid-web framework; Of lattice frame大跨度房屋结构常用于公共建筑。
公共建筑如大会堂,影剧院,展览馆,音乐厅,体育馆,加盖体育场,市场,火车站,航空港等,受使用要求和建筑造型要求所制约,具有大的跨度。
它们是为了满足人类社会文化生活不断丰富的需求而产生的。
大跨度房屋结构也用于工业建筑。
特别是航空工业和造船工业中,更多地采用大跨度结构如飞机制造厂的总装配车间,飞机库,造船厂的船体结构车间等等。
这些建筑采用大跨度结构是受装配机器(如船舶,飞机)的大型尺寸或工艺过程要求所决定的。
大跨度建筑物的用途,其使用条件以及对其建筑造型方面要求的差异性,决定了采用结构方案的多样性------梁式的,框架式的,拱式的,空间式的以及悬挂-悬索式的。
梁氏及框架式体系,较常用于矩形平面的大跨建筑无盖;拱式体系具有建筑造型方面的优点,跨度在80m和更大时,这种体系比较经济;呈网格或实腹薄壳及褶板,平板网架结构,穹顶或篷盖状的空间体系,用钢量最为经济,多用于圆形或矩形的房屋平面。
悬挂结构体系中主要承重构件是用高强材料制作的受拉索缆(钢绞线,高强钢丝束等),轻巧是它的最大优点。
这种结构体系制造和安装都比较简单。
大跨度屋盖主要具有矩形平面。
但是公共建筑如影剧院,音乐厅,体育馆,展览馆等,除了矩形平面,也可能具有圆形或椭圆形平面。
采用普通矩形以外的平面,使屋盖结构的构成复杂化,这不便于使用定型结构构件。
大跨建筑物一般不属于大量建设项目,其建筑及结构方案极具个性,当然,这也在一定程度上限制了结构的定型化及工业化。
大跨屋盖结构
度好,适用于平面多边形的大众跨度建筑。 (2) 抽空三角锥网架 保持三角锥网架的上弦网格不变,按一定规律抽去部分腹杆和下弦杆,可得到抽空三
角锥网架。例如如图 3-15 所示的抽杆方法是沿网架周边一圈的网格不抽杆,内部从第二圈 开始沿三个方向每间隔一个网格抽掉部分杆,则下弦网格成为多边形的组合。抽杆后,网 架空间刚度受到削弱。下弦杆数量减少,内力较大。抽空三角锥网架适用于平面为多边形 的中小跨度建筑。
3.2 网架的形式
网架按弦杆层数不同可分为双层网架和三层网架。双层网架是出上弦、下弦和腹杆组 成的空间结构(图 3-1),是最常用的网架形式。三层网架是由上弦、中弦、下弦、上腹杆和 下腹杆组成的空间结构(图 3-2),其特点是增加网架高度,减小弦杆内力,减小网格尺寸和 腹杆长度。当网架跨度较大时,三层网架用钢量比双层网架用钢量省。但由于节点和杆件 数量增多,尤其是中层节点所连杆件较多,使构造复杂,造价有所提高。
(4) 斜放四角锥网架 将正放四角锥上弦杆相对于边界转动 45°放置,则得到斜放四角锥网架。上弦网格呈 正交斜放,下弦网格为正交正放。网架上弦杆短,下弦杆长,受力合理。下弦节点连接 8 根杆,上弦节点只连 6 根杆。适用于中小跨度周边支承,或周边支承与点支承相结合的矩 形平面。 (5) 星形四角锥网架 星形四角锥网架的组成单元似一星体。将四角锥地面的四根杆用位于对角线上的十字 交叉杆代替,并在中心加设竖杆,即组成星形四角锥。十字交叉杆与边界成 45°角,构成 网架上弦,呈正交斜放。下弦杆呈正交正放。腹杆与上弦杆在同一竖向平面内,星形网架 上弦杆比下弦杆短,受力合理。竖杆受压,内力等于节点荷载。当网架高度等于上弦杆长 度时,上弦杆与竖杆等长,斜腹杆与下弦杆等长。星形网架一般用于中小跨度周边支承情 况。 3.2.2.3 三角锥体系网架 三角锥体系网架的基本单元是锥底为正三角形的倒置三角锥。锥底三条边为网架上弦 杆,棱边为网架的腹杆,连接锥顶的杆件为网架下弦杆。三角锥网架主要有三种形式。 (1) 三角锥网架 三角锥网架上下弦平面均为正三角形网格,上下弦节点各连 90 根杆件。当网架高度为
第九章 大跨度建筑结构
• 使用环境需要 • 屋架结构的跨度
4.桁架结构的布置 •桁架跨度:3m为模数
•桁架间距:6m、7.5m、9m、12m
三. 拱结构
拱结构
1. 受力特点和水平推力的处理方式
杆件为压弯构件,产生水平推力 H=M/f
• 拱轴形式的选择: • 合理的拱轴线,只有轴力,没有弯矩 • 均布荷载:二次抛物线
辐射形布置: 内环受拉、外环受压
网状布置:
双层悬索体系
特点:
稳定性好,整体刚度大,反向曲率的索系可以承
受不同方向的 荷载作用。 适宜采用轻屋面,如铁皮、铝板、石棉板等屋面 材料和轻质高效的保温材料,以减轻屋盖自重、 节约材料、降低造价。
分类:单曲面、双曲面、 1.单曲面双层拉索体系
常用于矩形平面的单跨或多跨建筑
短向跨度L=30~60m时,取(1/12~1/16)L 短向跨度L>60m时,
取(1/14~1/20)L
腹杆布置
交叉桁架体系:腹杆倾角40~55度 角锥网架:腹杆倾角60度 大跨度网架:再分式腹杆
4. 平板网架的支承方式
周边支承于柱 每个结点都设置柱 周边不设置边桁架 用钢量省
适用范围:大跨 度和中等跨度
横隔:6 ~ 12m
球壳
f < 1/5 L1
L2/L1 < 2
t ~1/600R 且 > 40mm
五. 折板结构
巴黎,联合国教科文组织会议厅(1953~1958)
六. 网架结构
1. 网架结构的特点、优点与适用范围
• 特点:平面桁架相互交叉结合而成 • 优点: • 多向受力的空间结构,跨度大 • 刚度大,稳定性好
气压式薄膜
气承式
大跨度建筑屋盖结构
施工过程管理
总结词
施工过程管理是确保大跨度建筑屋盖 结构施工顺利进行的重要保障。
详细描述
建立完善的施工管理体系,明确各岗 位的职责和要求,加强施工现场的协 调与监控,确保施工进度、质量和安 全等目标的实现。
施工质量控制
总结词
施工质量控制是确保大跨度建筑屋盖结构施工质量符合设计要求的重要环节。
详细描述
大跨度建筑屋盖结构
• 引言 • 大跨度建筑屋盖结构类型 • 大跨度建筑屋盖结构设计 • 大跨度建筑屋盖结构施工 • 大跨度建筑屋盖结构应用案例 • 大跨度建筑屋盖结构发展趋势与挑战
01
引言
主题简介
01
大跨度建筑屋盖结构是指跨越较 大空间、采用特殊结构形式的建 筑屋盖,通常用于大型场馆、会 展中心、机场等公共建筑。
施工监控与健康监测
通过实时监测和数据分析,对施工过程进行精确控制,确保结构的 安全性和稳定性。
预制构件与装配式施工
采用预制构件和装配式施工方法,提高施工效率,减少现场作业量, 降低安全风险。
绿色建筑与可持续发展
节能设计
01
通过合理的建筑布局、采光和通风设计,降低建筑能耗,提高
能源利用效率。
可再生能源利用
建立完善的施工质量管理体系,加强材料质量检测、施工过程监控和验收管理,确保各道工序的施工 质量符合设计要求和规范标准。同时,加强质量问题的处理和预防措施,避免质量事故的发生。
05
大跨度建筑屋盖结构应用案例
体育场馆屋盖结构
体育场馆作为大型公共建筑,其屋盖结构需要满足大跨度、大荷载和高使用频率的要求。常见的体育场馆屋盖结构形式包括 悬索结构、网架结构和张弦梁结构等。这些结构形式能够提供较大的空间跨度和承载能力,同时保证结构的稳定性和安全性 。
大跨度建筑构造(史上最全面)
五、折板结构及其造型
❖ 类型
——断面 ——外形
折 板 结 构 及 其 造 型
折 板 结 构 及 其 造 型
六、薄壳结构及其造型
❖ 特点 ❖ 结构类型
n 类型 薄壳结构及其造型
筒壳、球壳、扁壳、鞍形壳
1、受力特点及适用范围
❖ 受力特点 :
❖ 用混凝土等刚性材料以各种曲面形式构成的薄板结构
❖ 特点 ❖ 结构类型
悬索结构及其造型
❖ 特点
分工明确——索网:钢索,只受力 ——边缘构件:梁、桁架、拱等 ——支承结构
造型新颖、跨度大、施工简便
❖ 1、受力特点及适用范围 ❖ 受力特点 : ❖ 由索网、边缘构件、下部支撑结构三部分组成 ❖ 只承受轴向拉力,既无弯距也无剪力 ❖ 索网的边缘构件是索网的支座,索网通过锚固件与固定在边
万神庙
穹顶直径达43.3米。顶 端高度也是43.3米。它中央 开一个直径8.9米的圆洞。结 构为混凝土浇筑,为了减轻 自重,厚墙上开有壁龛,龛 上有暗券承重,龛内置放神 像。神像外部造形简洁,内 部空间在圆形洞口射入的光 线映影之下宠伟壮观,富有 神秘感。
上海体育馆
是国内大型的体育馆之一,一九七五年建 成使用。主馆呈圆形,高33米,屋顶网架 跨度直径110米,可容纳观众18000人。
二、刚架结构及其造型
三、桁架结构及其造型
❖ 特点 ❖ 结构类型 ❖ 造型
v桁架由以铰接三角形为单元 (空腹桁架是刚接四边形)、不承受垂直于杆轴的荷 载的杆件组成的格构体系
空腹桁架:桁架通常由上下弦杆和腹杆组成,普通桁架(称之为实腹桁架)的腹 杆由斜腹杆和(竖)直腹杆组成,但往往建筑师不希望出现斜腹杆影响其造型 和采光,那么去掉斜腹杆以后剩下由直腹杆和上下弦杆组成的桁架即为空腹桁 架。
大跨度双层网壳屋盖结构的设计
大跨度双层网壳屋盖结构的设计前言:大跨度的双层网壳由于其整体性好,覆盖空间大,耗钢量省、施工方便等优点,越来越多的作为工业建筑、体育馆、会馆等结构的屋盖结构。
这类结构为空间多自由度铰接体系,具有杆件多、节点多,动力性能极为复杂等特点。
本文通过一个工程实例,分析了该类结构体系的主要静力和动力特性,对在设计中起控制作用的水平和竖向地震作用进行了较详细和全面分析和研究。
最后,对必不可少的抗震构造措施进行简要介绍。
【关键词】双层网壳;支承体系;竖向地震;抗震性能;抗震构造工程概况某水泥厂石灰石均化库的屋面圆形楼盖的直径为102.00m,球型壳体球径为58.07m,矢高30.30m,楼盖支座高度5.52m;屋面楼盖的结构形式采用双层球面网壳,网格采用正交四角锥系,肋环型布置,环向数为,径向为,支座数为32个。
网壳厚度为m。
竖向支承系统由钢筋混凝土柱和混凝土环梁组成。
结构分析和设计分析模型:本工程利用Autodesk公司的AutoCAD软件建模,采用北京建研院pkpm系列工程设计软件的PMSAP软件进行计算分析。
网架的杆件采用空间铰支杆单元来模拟。
网壳支座节点与混凝土柱采用固定铰支座。
荷载作用:荷载工况主要包括恒荷载、活荷载、风荷载、地震作用和温度作用,各项荷载的取值如下:1)恒荷载(DL):杆件自重由程序自动计算。
屋面板自重0.25为kn/m2,按照屋面板的面积折算为集中力作用于网壳上弦的节点上。
2)活荷载(LL):屋面检修活载:0. 50 kn/m2,积灰荷载:0.50 kn/m2,雪荷载0.625 kn/m2。
取三项活载中最大的雪荷载进行设计。
按照屋面板的水平投影面积折算为集中力作用于网壳上弦的节点上。
3)风荷载(WL):场地的基本分压为0.563kn/m2, 地面粗糙度类别为B 类。
风荷载体型系数按照建筑结构荷载规范(GB50009-2001)(2006年版)中表7.3.1中第35款旋转壳顶中f/l=30.3/102>1/4的情况下相关公式进行计算。
大跨建筑结构(大跨平面结构)
温度伸缩缝的两种做法: a. 在搭接檩条的螺栓连接处采用长圆孔; b. 设置双柱。 此外,吊车梁与柱的连接宜采用长圆孔。
(4)刚架斜梁的坡度取决于屋面排水坡度,一 般i=1/8~1/20。
减小构件腹板厚度,一般腹板壁厚在4 ~ 10mm, (4mm是规程规定的下限),主要利用腹板截面的 屈曲后强度。
大跨度结构也用于工业建筑,如飞机制造厂的 总装配车间、飞机库、造船厂的船体结构车间等等。 这些建筑采用大跨结构是受装配机器(如船舶、飞 机)的大型尺寸或工艺过程要求所决定的。
展览馆
日本大分体育公园综合竞技场
伦敦千年穹顶
大跨度结构的跨度没有统一的衡量标准,国家 标准《钢结构设计规范》、《网架结构设计与施工 规程》将60m以上定义为大跨度结构,计算和构造 均有特殊规定。我国目前最大跨度做到340m,以 钢索和膜材做成的索膜结构最大已做到320m。
88规范后的90年代,重庆钢铁设计研究院会同云 南省建筑设计院作了一系列双角钢杆件桁架节点板 的试验,其中受拉试件16个,受压试件8个。从而总 结出用撕裂面法推导出来的公式。
由于桁架节点板的外形往往不规则,同时,一些 受动力荷载的桁架还需要计算节点板的疲劳,用撕 裂面法推导出来的公式计算比较麻烦。故参照国外 多数国家的经验,规范建议对桁架节点板也可采用 有效宽度法进行承载力计算。
也可采用构造要求,如设置隅撑。
檩条的构造处理——加隅撑*
5 构件设计的特点
(1)斜梁轴力较大,一般按压弯构件设计,须 满足强度、整体稳定、局部稳定的要求。工字形截 面的腹板也可按考虑屈曲后强度进行设计,但最大 高厚比不宜大于250。
随着热轧H型钢在我国投产,剖分T型钢用于桁 架弦杆或腹杆的情况越来越多。T 型钢桁架的优点 是:无离缝、防腐易处理、用钢量省。
建筑结构知识讲义建筑结构大跨结构
壳体还存在一些有待研究的问题,如 开孔、稳定、振动、徐变等。
薄壳的曲面形式
壳体具有的优越受力性能,依赖其 “形”——曲面。壳体的曲面形状和 曲率变化会直接影响其应力状况,故 壳体线型是决定其受力特征的关键因 素。
拱结构由于有支座的水平推力,而且拱 的跨度越大、矢高越小,其推力也越大, 这样就需要建造抗推力结构平衡水平推 力。
推力直接传给支座(落地拱) 这种处理方法比较简单,且能提供较大的空 间。当土质较好,推力不大时,这样处理也 最为经济。
苏州:寒山寺旁的石拱桥——下津桥
运河上的石拱桥
充分利用了石材抗压的特点,经济合理,造型美观。
大跨度结构面临的问题还有声、光、 热、空调等建筑物理方面的问题及 内部结构空间的利用、能源消耗的 问题。
另外,大跨度结构对施工技术要求 较高,有些还需要专业施工单位施 工。
拱结构
拱结构的受力特点和优缺点
拱结构的受力特点: 把直杆梁变为上凸的曲杆就形成了拱, 拱结构仍然是平面结构。 拱是一种有推力的结构,它的主要内力 为轴向压力。
推力由侧面框架结构承受
根据建筑功能要求,当拱的两侧有边跨 建筑时,可以采用这种方法,使拱脚推 力传给边跨结构。但是,侧面框架的刚 度要足够大,框架顶部不能有过大的侧 移,以保证拱的正常受力,且框架柱基 底不允许出现拉应力。
拱的主要尺寸 拱的矢高f
矢高f对拱的外形影响很大,它直接影响建筑 造型和构造处理。
土坯拱
赵州桥
位于河北省赵县,建于公元590~608 年间,全长 50.82 m, 跨度L = 37.20 m,矢高f = 7.23 m (f /L = 1/5.12),桥宽10 m,是世 界上最早的敞肩式拱桥,早于欧州同类桥约1000 年。主拱上设有 四个小拱,既减轻自重,便于泄洪,又更为美观。无论在材料 利用、结构受力、艺术造型和经济上都达到了极高的成就。
大跨度建筑屋盖结构知识讲解
第四章 拱结构
第一节 拱的结构特点与优缺点
第二节 承受拱水平推力 的结构处理手法
(1)利用地基基础直接承受水平推力 (落地拱)
(2)利用侧面框架结构承受水平推力
(3)利用拉杆承受水平推力
第三节 拱结构的形式与主要尺寸
拱结构的形式
按力学结构分: 三铰拱、两铰 拱和无铰拱
双坡梁h=(1/14~1/6)l 梁腹厚度:6~10cm
第三章 桁架结构
第一节 桁架的结构特点与优缺点
受力特点
开封县温泉游泳馆
宽141米 湖南国际会展中心
湖南国际会展中心
待装配的一榀平面桁架
优点: 受力性能好(受力均匀,材料利用充分) 扩大了梁式结构的适用跨度 桁架可以用多种材料制造 桁架体型可以多样化‘ 施工方便
非预应力:适用跨度18~24米 下铉预应力:适用跨度18~36米
高跨比:h/l=1/6~1/8 常为折线形
四、平行铉屋架
优点:腹杆长短和节点构造统一,制作方便 缺点:杆件内力分布不均,不宜用于杆件内力相
差悬殊的结构
五、无斜腹杆屋架
结构造型简单,制作方便,适用于有较大吊重的 建筑
常用跨度:15、18、24、30
车起重量不能过大
广泛用于工业厂房和体育馆等
第二节 门式刚架的类型与构造
类型
1.从连接方式分:无铰刚架、两铰刚架、三铰刚架
无铰刚架:超静定刚架,结构刚度大,但地基有不均匀 沉降时,将使结构产生附加内应力
有铰刚架:静定刚架,地基有不均匀沉降时,对结构不 会产生附加内应力,但跨度大时,刚度较差,一般用于 小跨度(12m)和基础较差的情况
第二节 桁架的外形与内力的关系
第二节 桁架的外形与内力的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中船9院设计的大 连造船新厂钢配 中心
四、网架结构的支承 网架的支承方式有周边支承、点支承、周边支承与点 支承相结合,两边和三边支承等。 (1)周边支承:网架四周全部或部分边界节点设置支座, 支座可支承在柱顶或圈梁上,网架受力类似于四边 支承板,是常用的支承方式。为了减小弯矩,也可 将周边支座略为缩进,接近于点支承。
通过角支点:对四角 支座产生较大的拉力; 避开角支点:角部拉 力可由两个支座分担。
由角部两个柱子共同承担,避免拉力集中。 适用范围: 任意尺寸的矩形建筑平面; 中等跨度:30~60米; 大跨度:60米以上。
(3)三向网架 概念:由三个方向平面桁架按60º 角相互交叉而成,上 下弦平面内的网格均匀, 但汇交于一个节点的杆件最多可达13根; ②节点构造较复杂,宜采用钢管杆件及焊接空心球节点; ③三向网架适用于大跨度 (L>60m)的多边形及圆形平 面。用于中小跨度(L60m) 时,不够经济。
(2)抽空三角锥网架 概念:保持三角锥网架的上弦网格不变,按一定规律抽去部分 腹杆和下弦杆即可。 抽杆的方法是沿网架周边一圈的网格不抽杆,内部从第 二圈开始沿三个方向每间隔一个网格抽掉部分杆,则下弦网 格成为多边形的组合。 特点: ①抽杆后,网架空间刚度受到削弱。 下弦杆数量减少,内力较大。 ②适用于平面为多边形的中小跨度 建筑。
厦门国际会展中心
厦门国际会展中心
81×81米有柱展厅,屋盖采用双向空间钢桁架结构。桁架下弦 标高为10.55米,桁架高度H=4.0米,钢桁架沿纵向间距为27米, 沿横向间距为9米,均支承在钢筋砼柱柱顶,由于该区屋面为屋 顶花园,屋面活荷载按8.0KN/m2设计,故屋盖承重结构选用钢桁 架,并且正交桁架高度相等,弦杆为刚接,在纵向垂直支撑、系杆 的保证作用下形成空间桁架结构体系。
五、网架高度及网格尺寸 ⑴网架高度:与屋面荷载、跨 度、平面形状、支承条件及 设备管道等因素有关。 下列情况时,网架高度大些: A、屋面荷载较大、跨度较大时; B、狭长平面时,单向传力明显 时; C、点支承网架; D、网架中有穿行管道时。
⑵网格尺寸:与网架高度关系密切。 A、斜腹杆与弦杆夹角在40°~55°之间为宜; B、网格尺寸要与屋面材料相适应,直接铺设钢筋混凝 土板时尺寸不宜大于3m。 C、若采用有檩体系时,檩条长度一般不超过6m。 对周边支承的各类网架高度及网格尺寸按下表选用。
(2)两向正交斜放网架 概念:两个方向的平面桁架垂直相交。用于矩形建筑 平面时,两向桁架与边界夹角为45º 。 特点:①有可靠边界时,体系是几何不变的; ②各榀桁架的跨度长短不等,靠近角部的桁架跨度小, 对与它垂直的长桁架起支承作用,减小了长桁架跨 中弯矩,长桁两端要产生负弯矩和支座拉力。 ③周边支承时,有长桁架通过角支点和避开角支点两 种布置;
(3)平面尺寸很大的建筑物,除在网架周边设置支承外, 可在内部增设中间支承,以减小网架杆件内力及挠 度。
(4)在工业厂房的扩建端、飞机库、船体车间、剧院舞 台口等不允许在网架的一边或两边设柱子时,需将网 架设计成三边支承一边自由或两边支承两边自由的形 式。对这种网架应采取设置边桁架,局部加大杆件截 面或局部三层网架等措施加强其开口边的刚度。
香港沙田马场
张拉整体式结构
张拉整体式结构
图2 张拉整体结构
§3.2 网架的形式
按层数分: ⑴双层网架:由上弦、下弦、腹杆组成的空间结构; ⑵三层网架:由上弦、中弦、下弦、上腹杆、下腹杆、 组成的空间结构。
三层网架的特点: 优点:高度大、弦杆内力小、网格尺寸小、腹杆长度 小、较大跨度时用钢量较双层省。 缺点:节点和杆件 数量多、中层节点 所连杆件多、构造 复杂、造价有所提 高。
六、网架的挠度要求及屋面排水坡度 (1) 容许挠度:用作屋盖:L2/250; 用作楼面:L2/300。 (2) 屋面排水坡度一般为3%一5%,找坡办法: (a)上弦节点设不等长的小立柱,立柱要注意稳定性; (b)对网架起拱; (c)采用变高度网架; (d)有起拱要求的网架,其拱应可取不大于短向跨度的 1/300。
第九章
大跨度屋盖结构
§3.1 结构形式
大跨结构按几何形状、组成方法、结构材料及受 力特点的不同可分为: ⑴平面结构体系:梁式结构(平面、空间桁架)、 平面刚架、拱式结构。 ⑵空间结构体系:平板网架结构、网壳结构、悬 索结构、斜拉结构、张拉整体结构等。
空间桁架:
门式刚架结构
拱 结 构
平板网架
4、在抗震设防烈度为7度的地区,可不进行网架结构 水平抗震验算; 在抗震设防烈度为8度的地区,对于周边支承的中小跨 度网架可不进行水平抗震验算; 在抗震设防烈度为9度的地区,对各种网架结构均应进 行水平抗震验算。 5、网架结构符合下列条件之一者,可不考虑由于温度 变化而引起的内力: (a)支座节点的构造允许网架侧移,且侧移值不小于计 算值; (b)周边支承的网架,当网架验算方向跨度小于40m, 且支承结构为独立柱或砖壁柱; (c)在单位力作用下,柱顶位移大于或等于计算值。
(3)蜂窝形三角锥网架 上弦网格为三角形和六边形,下弦网格为六边形。腹 杆与下弦杆位于同一竖向平面内。节点、杆件数量 都较少,适用于周边支承,中小跨度屋盖。 蜂窝形三角锥网架本身是几何可变的,借助于支座水 平约束来保证其几何不变。
三、网架选型 跨度:按《网架结构设计与施工规程》JGJ7—91的划 分:60m以上为大跨度;中跨度为30~60m;小跨度 为30m以下。 选型一般结合: 工程的平面形状、 建筑要求、荷载、 跨度的大小、 支承情况、造价等 因素综合分析确定。
3.3 网架的计算要点
一、直接作用(荷载)和间接作用 1、网架结构的永久荷载有: ①网架自重;②屋面(或楼面)材料重力; ③吊顶材料的重力;④设备管道的重力。
双层网架自重qok (kN / m 2)估算公式: qok qw L2 / 200 L2 — 网络的短向跨度,m;
式中:qw — 除网架自重外的屋面荷载(或楼面荷载)的标准值(kN / m 2)
3、三角锥体系网架 概念:组成基本单元是锥底为正三角形的倒置三角锥。锥底三 条边为网架上弦杆,棱边为网架的腹杆,连接锥顶的杆件为 网架下弦杆。 三角锥网架主要有三种形式: (1)三角锥网架:三角锥网架上下弦平面均为正三角形网格,上 下弦节点各连9根杆件。当网架高度为网格尺寸的(2/3)0.5 倍时,上下弦杆和腹杆等长。三角锥网架受力均匀,整体性 和抗扭刚度好,适用于平面为多边形的大中跨度建筑。
(2)正放抽空四角锥网架 由正放四角锥网架适当抽掉一些腹杆和下弦杆,如每 隔一个网格抽去斜腹杆和下弦杆,使下弦网格的宽 度等于上弦网格的二倍,从而减小杆件数量,降低 了用钢量,但刚度较正放四角锥网架弱一些。在抽 空部位可设置采光或通风天窗。由于周边网格不宜 抽杆,两个方向网格数宜取奇数。
(3)棋盘形四角锥网架 在正放四角锥网架基础上,保持周边四角锥不变,中 间四角锥间隔抽空。上弦杆为正交正放,下弦杆与 边界成45º 角,为正交斜放。 特点:上弦短杆受压,下弦长杆受拉,节点汇交杆件 少;适用于小跨度周边支承情况。
二、双层网架的常用形式 1、 平面桁架系网架 特点:上、下弦长度相等,上下弦杆与腹 杆位于同一垂直平面内。一般情况下竖 杆受压,斜杆受拉。斜腹杆与弦杆夹角 宜在40°~60°之间。
(1)两向正交正放网架 ①矩形建筑平面中,网架的弦杆垂 直于及平行于边界; ②两个方向网格数宜布置成偶数, 如为奇数,桁架中部节间应做成交 叉腹杆; ③对周围支承网架宜在水平支承面 内设斜撑杆; ④对点支承网架应在支承平面内沿 主桁架的两侧设置水平斜撑杆; ⑤对周边支承者,平面尺寸越接近正方形,两向桁架杆 件内力越接近,空间作用越明显。随建筑平面边长比的 增大,短向传力作用明显增大。
一般情况的选型可遵循下列原则: ①平面形状为矩形的周边支承网架,当其长边/短边 小于或等于1.5时,宜选用: A、正放或斜放四角锥网架; B、棋盘形四角锥网架; C、正放抽空四角锥网架; D、两向正交斜放或正放网架。 E、对中小跨度,也可选用星形四角锥网架和蜂窝形 三角锥网架。 ②平面形状为矩形的周边支承网架,当其边长比(长 边/短边)大于1.5时,宜选用: A、两向正交正放网架; B、正放四角锥网架; C、正放抽空四角锥网架。 D、当边长比不大于2时,也可用斜放四角锥网架。
一、网架结构的几何不变性分析 网架结构几何不变的必要条件是
W 3J m r 0
J—网架的节点数; m—网架的杆件数; r—支座约束链杆数, r≥6; W>0网架为几何不变体系; W=0网架无多余杆件,如杆件布置合理,为静定结构 W>0网架有多余杆件,如杆件布置合理,为超静定结 构
网架结构几何不变的充分条件一般可通过对结构 的总刚度矩阵来判断。 满足下列条件之一者,该刚架结构为几何可变体系: ⑴引入边界条件后,总刚度[K]中对角线上出现零元 素,则与之对应的节点为几何可变; ⑵引入边界条件后,总刚度矩阵行列式K=0,该矩阵 奇异,结构为几何可变。
2、四角锥体系网架 概念:由若干倒置的四角锥按一定规律组成。网架 上下弦平面均为方形网格,下弦节点均在上弦网 格形心的投影线上,与上弦网格四个节点用斜腹 杆相连。
(1)正放四角锥网架 ①建筑平面为矩形时,其上、下弦杆均与边界平行或垂直; ②上下弦节点各连接8根杆件,构造较统一; ③若网格两个方向尺寸相等且腹杆与下弦平面夹角为45º ,上下 弦杆和腹杆长度均相等; ④间刚度较好,但杆件数量较多,用钢量大; ⑤适用于接近方形的中小跨度,宜采用周边支承。
网壳结构
旧金山金门大桥
塔高227米,每根钢索重6412公吨,由 27000根钢丝绞成,重2.45万吨 。
这种悬吊结 构体系,在 国内尚属罕 见,在境外 也只有德国 宝马汽车大 厦、香港汇 丰银行等极 少个案。
广东省博物馆新馆采用巨型桁架悬吊结构体系,在中部沿边长67.5米的方 形四周布置钢骨混凝土剪力墙,在剪力墙上端设置8榀跨度为67.5米且两 端各悬挑23米、高6.5米的大型空间钢桁架,沿悬臂桁架外端设4榀封口桁 架,再在封口桁架下伸边长6米的箱型钢吊杆,悬吊3~4层楼面体系。