习题五

合集下载

习题五

习题五

习题五 大数定律与中心极限定理一、填空题1.设随机变量~[0,1]X U ,由切比雪夫不等式可得(12P X -≥≤ 0.25 ; 2.设()1,()4,E X D X ==则由契比雪夫不等式有(57)P X -<<=98; 3.设12,,...,,...n X X X 是相互独立的随机变量序列,且2(),()0i i E X D X μσ==≠(1,2,...)i =,则对10,lim ()ni n i P X n εμε→∞=∀>-≥=∑ 0 ;4.设随机变量,X Y ,已知()2,()2,()1,()4,0.5,E X E Y D X D Y ρ=-====- 则由契比雪夫不等式有(6)P X Y +≥≤ 1/12 ;5.已知正常男性成人血液中,每毫升白细胞数平均是7300,标准差是700。

利用契比雪夫不等式估计每毫升血液中的白细胞数在5200至9400之间的概率p =98; 6.设n ξ是n 重贝努里试验中事件A 出现的次数,p 为A 在每次试验中出现的概率,则对0,lim ()nn P p nξεε→∞>-≥= 0 ;7.假设某一年龄女童的平均身高为130厘米,标准差是8厘米。

现在从该年 龄段的女童中随机地选取五名儿童测其身高,估计它们的平均身高在120至140 厘米的概率为259改; 8.设12,,...,,...n X X X 是相互独立的随机变量序列,且都在[-1,1]服从均匀分布,则1lim (ni n i P X →∞=≤=∑0.5改;二、选择题1.设随机变量X 的方差()D X 存在,0a >,则()(1)X E X P a->≤( C )A .()D X B. 1 C.2()D X aD. 2()a D X . 2. 设(),()E X D X 都存在,则对于任意实数,()a b a b >,可以用契比雪夫不等式估计出概率( D ).A .()P a X b << B. (())P a X E X b <-<C. ()P a X a <<D. ()P X b a ≥-3. 设随机变量2~(,)X N μσ,随σ的增大()P X μσ-<( C )A .单调增大 B. 单调减小 C. 保持不变 D. 增减不变. 4.设随机变量X 的方差存在,并且满足不等式2(()3)9P X E X -≥≤,则一定有( D )A .()2D X = B. 7(()3)9P X E X -<<C. ()2D X ≠D. 7(()3)9P X E X -<≥5.设X 为连续型随机变量,且方差存在,则对任意常数C 和0ε>,必有( C )A .()E X CP X C εε--≥=B. ()E X CP X C εε--≥≥C. ()E X CP X C εε--≥≤D. 2()E X CP X C εε--≥≤6. 已知129,,...,X X X 是独立同分布的随机变量序列,且()1,()1,i i E X D X ==则对0,ε∀>下列式子成立的是( B 改 )A .921(1)1i i P X εε=-<≥-∑ B .9211(1)19i i P X εε-=-<≥-∑C .921(1)1i i P X εε-=-<≥-∑ D .9211(1)19i i P X εε-=-<≥-∑D 改291911)191(-=-≥<-∑εεi i X P7.已知121000,,...,X X X 是独立同分布的随机变量,且~(1,)(1,...,1000)i X B p i =则下列不正确的是( C )A .1000111000i i X p =≈∑ B .10001~(1000,)i i X B p =∑ C.10001()()()i i P a X b b a φφ=<<≈-∑D.10001()i i P a X b φφ=<<≈-∑8.设 12,,...,n X X X 相互独立,12,...,n n S X X X =+++,则根据列维——林德伯格中心极限定理,当 n 充分大时,n S 近似服从正态分布,只要12,,...,n X X X ( B )A .有相同的数学期望 B. 有相同分布C. 服从同一指数分布D. 服从同一离散型分布.三、解答题1.每次射击中,命中目标的炮弹数的均值为2,方差为1.5 ,求在100次 射击中有180到达220发炮弹命中目标的概率. 解:设X 为在100次射击中炮弹命中目标的次数 由林德伯格—列维定理知)1,0(~5.11002100N X ⨯⨯-)5.110021002205.110021005.11002100180()220180(⨯⨯-<⨯⨯-<⨯⨯-=<<X P X P )63.15.1100210063.1(<⨯⨯-<-=X P 1)63.1(2)63.1()63.1(-Φ=-Φ-Φ=0.89682.由100个相互独立起作用的部件组成的一个系统在运行过程中,每个部件 能正常工作的概率为90% .为了使整个系统能正常运行,至少必须有85%的部件正常工作,求整个系统能正常运行的概率. 解:设X 为正常工作的部件数 由德莫佛-拉普拉斯中心极限定理知)85(≥X P )1.09.01009.0100851.09.01009.0100(⨯⨯⨯-≥⨯⨯⨯-=X P -=1)1.09.01009.0100851.09.01009.0100(⨯⨯⨯-≤⨯⨯⨯-X P )35(1-Φ-=)35(Φ==0.95153.设有 30 个同类型的某电子器件1230,,...,X X X ,若(1,...,30)i X i =的寿命服从参数为0.1λ=的指数分布,令T 为 30 个器件正常使用的总计时间,求(350)P T >解:由林德伯格—列维定理知(350)P T >=)10030300350100301030(⨯->⨯⨯-T P =)30/53010300(1≤--T P =)30/5(1Φ-=0.18144.在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且同服从正态分布2(,0.2)N μ,若以n X 表示n 次称量结果的平均值,问n 至少取多大,使得(0.1)0.5n P X μ-≥<.解:由林德伯格—列维定理知(0.1)0.5n P X μ-≥< 5.0)/2.01.0/2.0(___<≥-nnX P n μ5.0)/2.01.0/2.0(1___<≤--nnX P n μ[])/2.01.0()/2.01.0(1nn -Φ-Φ-=)/21(22n Φ-5.0< 2≥n5.某单位设置一电话总机,共有 200 门电话分机,每门电话分机有 5%的时间要用外线通话,假设各门分机是否使用外线通话是相互独立的,问总机至少要配置多少条外线,才能以90%的概率保证每门分机要使用外线时,有外线可供使用. 解:用X 表示200个分机中同时需要使用外线的台数。

经济学原理习题五

经济学原理习题五

1.上个月咖啡的价格大幅度上升,而卖出的数量仍然不变。

下面五个人提出了各自的解释:谁讲的可能是正确的?A.Leonard:需求增加了,但供给完全无弹性。

B.Sheldon:需求增加了,但它是完全无弹性的。

C.Penny:需求增加了,但供给同时减少了。

D.Howard:供给减少了,但需求是单位弹性。

E.Raj:供给减少了,但需求是完全无弹性的。

正确答案: ACE2.全世界范围内的干旱会增加农民通过出售粮食得到的总收入A.正确B.错误正确答案: A3.但如果只有堪萨斯州出现干旱,堪萨斯州农民得到的总收入就会减少A.正确B.错误正确答案:A4.青少年的需求价格弹性大于成年人。

A.正确B.错误正确答案: A5.当政府设置限制性价格下限时,它会引起A.供给曲线向左移动B.需求曲线向右移动C.物品短缺D.物品过剩正确答案:D6.在有限制性价格上限的市场上,价格上限上升会_供给量,需求量,并减少_。

A.增加,减少,过剩B.减少,增加,过剩C.增加,减少,短缺D.减小,增加,短缺正确答案: C7.有约束的()引起短缺。

A.价格上限B.价格下限正确答案: A8.最近的研究发现,飞盘的需求与供给表如下a.飞盘的均衡价格是[填空1]美元,均衡数量是[填空2]百万个。

b.飞盘制造厂说服了政府相信,飞盘的生产增进了科学家对空气动力学的了解,因此对于国家安全是很重要的。

关注此事的国会投票通过了实行比均衡价格高2美元的价格下限。

新的市场价格是[填空3]美元,可以卖出[填空4]百万个飞盘。

c.愤怒的大学生在华盛顿游行并要求飞盘降价。

国会投票通过取消了价格下限,并将以前的价格下限降低1美元作为价格上限。

新的市场价格是[填空5]美元?可以卖出[填空6]百万个飞盘。

正确答案:8;6;10;2;8;69.一个市场的供给与需求分别为Q S=2P, Q D=300-Pa.解出均衡价格[填空1]和均衡数量[填空2]。

b.如果政府实行90美元的价格上限,价格是[填空3]、供给量是[填空4]需求量是[填空5]。

习题五

习题五

习题五A 组1. 设n X 是n 次重复独立试验中事件A 出现的次数,p 是A 在一次试验中出现的概率,并且1q p =-,试利用中心极限定理,对任意区间[,]a b,则lim {}n P a b →∞<<= ()()b a Φ-Φ 。

2.设随机变量序列1,,n X X ,…服从参数为λ的泊松分布,且相互独立,则lim }nin Xn P x λ→∞-<∑= ()x Φ 。

3.如果k X 服从参数为2的指数分布,则当n →∞时,211n n i i Y X n ==∑依概率收敛于12。

4. 假定某电视节目在某城市的收视率为15%,在一次收视率调查中,从该城市的居民中随机抽取5000户,并以收视频率作为收视率,试求两者之差小于1%的概率。

进一步问,为使节目收视频率与收视率之差小于1%的概率达到99%,则至少要抽多少户? 解:(1)5000n =,设1,i i i X ⎧=⎨⎩第户收视了该节目第户没有收视该节目0,, 1,2,,500i = 则所求概率为:500011{|0.15|0.01}212(1.98)15000i i P X =⎛-<=Φ-=Φ- ⎝∑ 20.976210.9524=⨯-= (2)问题等价于11{|0.15|0.01}0.99ni i P X n =-<=∑,求n即20.10.995⎛Φ-= ⎝0.995 2.58⎛Φ=⇒= ⎝ 22580.150.858487n =⨯⨯=5. 某车间有同型号的机床200台,在某段时间内每台机车开动的概率为0.7,假定各机床开关是相互独立的,开动时每台机车要消耗电能15个单位,问电站最少要供应这个车间多少个单位电能,才能以95%的概率保证不致因供电不足而影响生产?解:设X 表示200台机床中同时开动的机床数,则~(200,0.7)X B ,140,42EX DX ==, X 台机床同时开动需要消耗15X 个单位电能,设供电数为a 个单位,则140140{015}{0}0.9515a a a P X a P X ⎛⎫⎛⎫-- ⎪ ⎪≤≤=≤≤≈Φ-Φ≈Φ≥⎝⎭⎝⎭1401.65a-=, 则2260a =。

习题5

习题5
{
cout.fill('*');
cout.width(10);
cout<<setiosflags(ios::left)<<123.45<<endl;
}
A. ****123.45B. **123.45**C. 123.45****D. ***123.45*
10、运行以下程序,若输入This is a book..<回车>,则程序的输出结果是(A)。
12、下列打开文件的表达式中,(C)是错误的。
A. ofstream ofile; ofile.open("abc.txt",ios::binary);
B. fstream iofile; iofile.open("abc.txt",ios::ate);
C. ifstream ifile("abc.txt");
5、进行文件操作时需要包含stdio.h文件。错
6、在C++中,打开一个文件就是将这个文件与一个流建立关联,关闭一个文件就是取消这种关联。对
7、控制格式输入/输出操作符中,setfill()是设置填充字符的。对
8、在ios中提供控制格式的标志位中,oct是转换为八进制形式的标志位。对
9、C++中的输入/输出是以字节流的形式实现的。对
14、以下不能正确创建输出文件对象并使其与磁盘文件相关联的语句是(D)。
A. ofstream myfile; myfile.open("d:ofile.txt");
B. ofstream *myfile=new ofstream; myfile->open("d:ofile.txt");

习题(五)金融投资 7

习题(五)金融投资 7
=5×3.2743+53×0.4762=41.61(元)
B的股票价值=[2×(1+4%)]/(14%-4%)=20(元)
计算A、B公司股票目前市价:
A的每股盈余=800/100=8(元/股)
A的每股市价=5×8=40(元)
B的每股盈余=400/100=4(元/股)
B的每股市价=5×4=20(元)
因为A、B公司股票价值均高于其市价,因此,应该购买。
2.假设某种股票的贝他系数是0.5,则它的风险程度是市场平均风险的一半。( )
3.当票面利率大于市场利率时,债券发行时的价格大于债券的面值。( )
4.债券的价格会随着市场利率的变化而变化。当市场利率上升时,债券价格下降;当市场利率下降时,债券价格会上升。( )
5.证券投资是购买金融资产,这些资金转移到企业手中后再投入生产活动,因此,又称作间接投资。( )
要求:
(1)计算股票价值,并判断A、B两公司股票是否值得购买;
(2)若投资购买两种股票各100股,该投资组合的预期报酬率为多少?该投资组合的风险如何?
《财务管理》习题五参考答案
一、1 C2 C3 A4 B5 C6 B 7 D 8 B9 A10 A
二、1 ABCD2 BC3 AC4 ACD 5 ABCDE 6 ABCD7 BCD 8 ABC 9 ABCD 10 ABC
6.浮动利率债券是根据()定期调整的中、长期债券。
A.票面利率B.市场利率C.同业拆放利率D.保值贴补率
7.无法在短期内以合理价格来卖掉资产的风险为()。
A.再投资风险B.违约风险C.利率变动风险D.变现力风险
8.投资人在进行股票评价时主要使用()。
A.开盘价B.收盘价C.最高价D.最低价

(第5章操作系统的资源管理)习题五答案

(第5章操作系统的资源管理)习题五答案

(第5章操作系统的资源管理)习题五答案习题五参考答案(P132)5-1什么是虚拟资源?对主存储器⽽⾔,⽤户使⽤的虚拟资源是什么?答:虚拟资源是⽤户使⽤的逻辑资源,是操作系统将物理资源改造后,呈现给⽤户的可供使⽤的资源。

对主存储器⽽⾔,⽤户使⽤的虚拟资源是虚拟存储器。

提供给⽤户使⽤虚拟存储器的⼿段是逻辑地址空间,⽤户在编程时使⽤的是逻辑地址,空间⼤⼩不受限制(也就是说逻辑地址空间可以⽐物理地址空间⼩也可以⽐物理地址空间⼤)。

5-2常⽤的资源分配策略有哪两种?在每⼀种策略中,资源请求队列的排序原则是什么?答:常⽤的资源分配策略有先来先服务策略和优先调度策略。

在先来先服务策略中资源请求队列的排序原则是按照提出请求的先后次序排序;在优先调度策略中资源请求队列的排序原则是按照提出请求的紧迫程度(即优先级)从⾼到底排序。

5-3什么是移臂调度?什么是旋转调度?答:移臂调度是指在满⾜⼀个磁盘请求时,总是选取与当前移臂前进⽅向上最近的那个请求,使移臂距离最短。

旋转调度是指在满⾜⼀个磁盘请求时,总是选取与当前读写磁头旋转⽅向上最近的那个请求,使旋转圈数最少。

5-4什么是死锁?试举例说明。

答:⼀组进程中,每个进程都⽆限等待被该组进程中另⼀进程所占有的资源,因⽽永远⽆法得到资源,这种现象称为进程死锁,这⼀组进程就称为死锁进程。

设某系统拥有⼀台输⼊机和⼀台打印机,并为进程P1和P2所共享。

在t1时刻,进程P1和P2分别占⽤了输⼊机和打印机。

在t2(t2 > t1)时刻,进程P1请求打印机,P1将被阻塞,进⼊等待打印机的等待队列中,等待P2释放打印机。

在t3(t3 > t2)时刻,进程P2请求输⼊机,P2将被阻塞,进⼊等待输⼊机的等待队列中,等待P1释放输⼊机。

此时,P1和P2进⼊了永久的互等状态,即P1和P2成为死锁进程,出现了死锁现象。

5-5产⽣死锁的原因是什么?产⽣死锁的必要条件是什么?答:产⽣死锁的原因主要有:(1)竞争有限的系统资源。

习题5答案

习题5答案

第五章选择结构程序设计5.1 选择题【题5.1】逻辑运算符两侧运算对象的数据类型 D 。

A)只能是0或1B)只能是0或非0正数C)只能是整型或字符型数据D)可以是任何类型的数据【题5.2】以下关于运算符优先顺序的描述中正确的是 C 。

A)关系运算符<算术运算符<赋值运算符<逻辑与运算符B)逻辑与运算符<关系运算符<算术运算符<赋值运算符C)赋值运算符<逻辑与运算符<关系运算符<算术运算符D)算术运算符<关系运算符<赋值运算符<逻辑与运算符【题5.3】下列运算符中优先级最高的是 B 。

A)< B)+ C)&& D)!=【题5.4】能正确表示“当x的取值在[1,10]和[200,210]范围内为真,否则为假”的表达式是 C 。

A)(x>=1)&&(x<=10)&&(x>=200)&&(x<=210)B)(x>=1)||(x<=10)||(x>=200)||(x<=210)C)(x>=1)&&(x<=10)||(x>=200)&&(x<=210)D)(x>=1)||(x<=10)&&(x>=200)||(x<=210)【题5.5////////Xa b cA)(x<=a)&&(x>=b)&&(x<=c)B)(x<=a)||(b<=x<=c)C)(x<=a)||(x>=b)&&(x<=c)D)(x<=a)&&(b<=x<=c)【题5.6】判断char型变量ch是否为大写字母的正确表达式是 C 。

排队论习题五

排队论习题五

习题五[5-1] 设某地铁站口顾客流是泊松流,每小时平均有120人乘车,求在1分钟内无人乘车,有1、2、3、4人乘车的概率,1分钟内有超过1人乘车的概率。

[5-2] 设货车按泊松流到达车站,平均每天到达2辆,装卸货物时间服从负指数分布,平均每天可装卸3车。

求每辆货车在车站平均停留时间,平均有多少车在排队等待装卸。

[5-3] 设某个售票点只有一个窗口,顾客到达服从泊松分布,平均每分钟到达1人,窗口售票时间服从负指数分布,平均每分钟可服务2人。

求系统平稳状态下的平均队长、平均等待队长、平均等待时间、顾客逗留时间、顾客不等待的概率以及等待队长超过5人时的概率。

[5-4] 某超市的顾客按泊松流到达,平均每小时12人,收款台收费时间服从负指数分布,平均每位顾客需要4分钟。

求该超市的效益指标。

[5-5] 设某产品是生产过程中需要的,若进货过多,会造成保管费增加,若存货不足会影响生产,因此需要找到合理的库存量S ,使得库存费用与缺货损失的总和最小。

设对这种产品的需求量是泊松分布,参数为λ,生产这种产品的时间服从负指数分布,参数为μ。

库存一件该产品单位时间费用为C ,缺少一个该产品造成损失H ,求最优库存S 。

[5-6] 设某单位需要购置计算机,一种方案是购置一台大型计算机,一种方案是购置n 台微型计算机,每台微型计算机是大型计算机处理能力的1/n 。

设要求上机的题目是参数为λ的泊松流,大型与微型计算机计算题目时间是服从负指数分布,大型计算机的参数为μ,试从平均逗留时间、平均等待时间分析,选择哪种方案合适。

[5-7] 设某信访部门的接待人员每天工作10小时,来访人员的到来和接待时间都是随机的,每天平均有90人到来,接待的平均速率为10人/小时。

求排队等待的平均人数,等待接待的人多于2人的概率,若要使等待的人平均为2人,接待的速率应提高多少?[5-8] 设[0,t )内到达的顾客服从泊松分布,参数为λ。

只有单个服务员、服务时间为负指数分布,平均服务时间为1/μ。

习题五:机械夹具设计

习题五:机械夹具设计


32.设计车床夹具时应按过渡盘凸缘确定专用夹具的止口尺寸,过渡盘止口的凸
缘与大端面可以由用户根据需要
加工。
33.夹具尺寸公差一般取相应尺寸公差的

二、单项选择:
1.既要完成在其上定位并夹紧,还承担沿自动线输送工件的任务的夹具是( )
2
A、能用夹具 B、专用可调夹具
C、随行夹具
D、组合夹具
2.在夹具上确定夹具和刀具相对位置的是(
A、 a=φ1+φ2 B、 a>φ1+φ2 C、 a<φ1+φ2 D、 a≥φ1+φ2
15.在组合机床上的机动夹紧装置多采用(

3
A.手动夹紧
B.气动夹紧 C.液压夹紧
D.电动夹紧
16. 改善夹具的结构,采用快速夹紧装置可以减少( )
A、基本时间 B、辅助时间 C 、 服务时间
D、 休息时间
17.主要适合于小批生产时用钻头钻孔的钻套是( )
5.钻床夹具分哪些类型?各类钻模有何特点?钻模板的形式有几种?哪种的工
作精度最高?
6
6.铣床夹具分哪些类型?铣床夹具与工作台的联接方式有哪几种?决定夹具 U 型耳座尺寸的原始依据是什么? 7.车床夹具分哪些类型?各有何特点?车床夹具与车床主轴的联接方式有哪几 种?各有何优点?应从哪几方面考虑车夹具的使用安全问题? 五、计算题:
0
要求外,还须保证两孔的连心线通过ф60 -0.1mm 的轴线,其偏移量公差为 0.08mm。现可采用如图三种方案,若定位误差不得大于加工允差的 1/2,试问这
三种定位方案是否可行(α=90°)?
定位基准
定位方案
b)
c)
d)
孔 O1

习题5-处理器总线时序与系统总线

习题5-处理器总线时序与系统总线

习题五 处理器总线时序与系统总线主要内容:处理器总线时序与系统总线。

8086/8088CPU 外部引脚信号;8086/8088系统组成和总线时序。

5.1 8086/8088 CPU 有40条引脚,请按功能对它们进行分类?【答】 按功能可分为:地址总线:AD0~AD15,A16~A19,ALE,BHE;数据总线:AD0~AD15,DEN,DT/R;控制总线:M/IO,WR,RD,HOLD,HLDA,INTR,INTA,READY,RESET.5.2 8086/8088 有两种工作方式,它们是通过什么方法来实现?在最大方式下其控制信号怎样产生?【答】MN/MX 引脚接至电源(+5V),则8086CPU 处在最小组态(模式);MN/MX 引脚接地,则8086CPU 处在最大组态(模式)。

在最大模式下,需要用外加电路来对CPU 发出的控制信号进行变换和组合,以得到对存储器和I/O 端口的读/写信号和对锁存器8282及对总线收发器8286的控制信号。

5.3 8086/8088 CPU 的地址总线有多少位?其寻址范围是多少?【答】8086/8088CPU 的地址总线均为20位,.8086/8088CPU 的寻址范围为1MB;5.4 在 8086/8088CPU 工作在最小模式时,(l )当CPU 访问存储器时,要利用哪些信号?(2)当CPU 访问外设接口时,要利用哪些信号?(3)当HOLD 有效并得到响应时,CPU 的哪些信号置高阻?【答】(1)当CPU 访问存储器时, 要利用ALE (地址锁存允许信号输出),DEN (数据允许信号),R DT /(数据收发信号),IO M /(存储器/输入输出控制信号输出),RD (读信号输出),WR (写信号输出),(高8位数据总线充许),NMI (非屏蔽中断输入引腿)。

(2) 当CPU 访问外设接口时,要利用当CPU 访问存储器时,ALE(地址锁存允许信号输出),(数据允许信号)R DT /(数据收发信号),IO M /(存储器/输入输出控制信号输出),RD (读信号输出),WR 写信号输出,高8位数据总线充许,INTA (中断响应信号输出)。

数据结构习题五(答案)

数据结构习题五(答案)

数据结构习题(5)学号________ 姓名_______ 课堂号(___________)1.选择题1)对N个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为( A )A.(N+1)/2 B. N/2 C. N D. [(1+N)*N ]/22)下面关于二分查找的叙述正确的是 ( D )A. 表必须有序,表可以顺序方式存储,也可以链表方式存储B. 表必须有序且表中数据必须是整型,实型或字符型C. 表必须有序,而且只能从小到大排列D. 表必须有序,且表只能以顺序方式存储3)折半查找的时间复杂性为(D)A. O(n2)B. O(n)C. O(nlog(n))D. O(log(n))4)概率不同的有序表,最适合的查找算法是( C )A.顺序查找B.折半查找C.静态树表查找 D.索引顺序表查找5)平均查找长度最短的查找方法是____C________。

A.折半查找 B.顺序查找 C.哈希查找 4.其他6)折半查找有序表(4,6,10,12,20,30,50,70,88,100)。

若查找表中元素58,则它将依次与表中A比较大小,查找结果是失败。

A.20,70,30,50 B.30,88,70,50 C.20,50 D.30,88,507)当采用分快查找时,数据的组织方式为 ( B )A.数据分成若干块,每块内数据有序B.数据分成若干块,每块内数据不必有序,但块间必须有序,每块内最大(或最小)的数据组成索引块C. 数据分成若干块,每块内数据有序,每块内最大(或最小)的数据组成索引块D. 数据分成若干块,每块(除最后一块外)中数据个数需相同8)分别以下列序列构造二叉排序树,与用其它三个序列所构造的结果不同的是( C )A.(100,80, 90, 60, 120,110,130) B.(100,120,110,130,80, 60, 90)C.(100,60, 80, 90, 120,110,130)D. (100,80, 60, 90, 120,130,110)9)设有一组记录的关键字为{19,14,23,1,68,20,84,27,55,11,10,79},用链地址法构造散列表,散列函数为H(key)=key MOD 13,散列地址为1的链中有( D )个记录。

习题5-答案

习题5-答案

武夷学院课程作业(11 级生物工程专业2011~2012学年度第一学期)课程名称《生物化学》习题五核酸化学一、填空题1.核酸可分为脱氧核糖核苷酸和核糖核苷酸两大类。

2.核酸完全水解的产物是戊糖、碱基和磷酸。

3.体内的嘌呤碱主要有 A 和G ,嘧啶碱主要有 C 、T 和U 。

某些RNA 分子中还含有微量的其它碱基,称为稀有碱基。

4.嘌呤环上第9 位氮原子与戊糖的第1 位碳原子相连形成糖苷键,通过这种键相连而形成的化合物叫嘌呤核苷。

5.嘧啶环上第 1 位氮原子与戊糖的第1 位碳原子相连形成糖苷键,通过这种键相连而形成的化合物叫嘧啶核苷。

6.核酸的基本组成单位是单核苷酸,它们之间是通过3’,5’-磷酸二酯键键相连的。

7.DNA双螺旋的两股链的顺序是反向平行、互补的关系。

8.DNA二级结构的重要特点是形成双螺旋结构,此结构的外部结构是由磷酸和戊糖(脱氧核糖)形成骨架,内部是由碱基通过氢键相连而成的碱基对平面。

9.由于含氮碱基具有共轭双键,所以核苷酸或核酸在260 nm处有最大紫外吸收值。

10.DNA分子双螺旋结构中A-T之间有 2 个氢键,而C-G之间有3 个氢键。

11.RNA主要分为tRNA ,rRNA 和mRNA 三类。

12.tRNA的二级结构是三叶草型,三级结构是倒L型。

tRNA的二级结构中反密码环环识别密码子,携带氨基酸的部位是氨基酸接受臂(3'端CCA—OH)。

13.在含DNA和RNA的试管中加入稀的NaOH溶液,室温放置24小时后,DNA 被水解了。

14.DNA热变性260nm紫外吸收显著升高,称为增色效应;吸光度增幅中点所对应的温度叫做解链温度,用符号T m表示;其值的大小与DNA中G+C 碱基对含量呈正相关。

15.提纯的结核分枝杆菌DNA,其腺嘌呤含量为15.1%,则鸟嘌呤、胞嘧啶、胸腺嘧啶的含量依次是34.9 %、34.9 %、15.1 % 。

16.大肠杆菌DNA分子量2.78×109,设核苷酸残基的平均分子量为309,该DNA含有 4.5⨯105 nm 圈螺旋,其长度为 1.53⨯106nm 。

中文版教材习题五答案

中文版教材习题五答案


z
*

30 199
30
(2)分离点为: d 0.4 ,分离角为: (2k 1)
l
2
起始角: p4 268 , p5 268
与虚轴的交点:
K1*

0 0
K2,3*

1.034 73.04
K4*,5165.553104
K(3s 1)
s(2s 1) K(3s 1)
闭环特征方程: 2s 2 (1 3K)s K 0
闭环特征根: s1,2 (1 3K)
(1 3K)2 8K (1 3K) 9K 2 2K 1

4
4

K=0
时,特征根
s1

0, s2


1 2
(1 3K ) (3K 1)2 8
(1)
G(s)

K s(s 1)2
(2)
G(s)

K(s s(s2 4s
4) 29)
(3) G(s)
K
s(s 2 4s 8)
试概略画出闭环系统根轨迹图。 5-4 参考答案:
(a) G(s)H (s) K s(s 1)2
(4) G(s) K (s 5)(s 4) s(s 1)(s 3)
-4 -3
Im
-1
0
Re 5
44
“自动控制原理”第五章习题参考答案
5-5
已知开环传递函数为 G(s)H (s)
K s(s 4)(s2 4s 20)
,请概略画出闭环系统根轨。
5-5 参考答案:
与虚轴交点:

K

SBGX习题5解答

SBGX习题5解答

习题五 大数定律和中心极限定理习题解答(A )一、大数定律5.1 设X 是任一非负(离散型或连续型)随机变量,已知X 的数学期望存在,而 0>ε是任意实数,证明(马尔科夫[A.A.Марков,A.A.Markov])不等式:{}E XP X εε≥≤.证明 (1) 设X 是离散型随机变量,其一切可能值为}{i x ,则11{}{}{}{}1{}i iiii i x x ii x i i x P X P X x P X x x P X x E Xx P X x εεεεεεε≥≥≥≥====≤=≤==∑∑∑∑.(2) 设X 是连续型随机变量,其概率密度为)(x f ,则1{}()d d 1()d P X f x x x x E Xx f x x εεεεεεε+∞+∞+∞≥=≤≤≤⎰⎰⎰.说明 马尔可夫不等式的一种变式为:随机变量X 的)0(>r r 阶绝对原点矩||r E X 存在,则||{||}rrE X P X εε>≤.5.2假设随机变量列12,,,,n X X X ……两两独立并且同分布,i EX μ=,2i DX σ=存在,证明12,,,n X X X …的算术平均值n X 依概率收敛于(各个变量共同的)数学期望μ:11lim ni n i P X n μ→∞=-=∑.证明 易见1122111111n nn i i i i n nn i i i i EX E X EX n n DX D X DX n n n μσ====⎛⎫=== ⎪⎝⎭⎛⎫=== ⎪⎝⎭∑∑∑∑,.由切比雪夫(切比雪夫)不等式可见,对于任意ε>0,有222{||}0 ()nn DX P X n n σμεεε-≥≤=→→∞.于是,12,,,n X X X …的算术平均值n X 依概率收敛于数学期望μ.5.3 设随机变量X 服从参数为λ的泊松分布,12,,,n X X X …是独立与X 同分布随机变量,证明2211lim n i n k P X n λλ→∞=-=+∑.证明 由1X ,2X ,…,n X 独立同泊松分布,可见22212,,,n X X X …独立同分布,而且数学期望存在:222()i i i EX DX EX λλ=+=+.因此,根据辛钦大数定律,有2211lim n k n k P X n λλ→∞=-=+∑.二、中心极限定理5.4 某生产线生产的产品成箱包装,每箱的质量是随机的,假设每箱平均质量为50 kg ,标准差为5 kg ,若用最大载重量为5 t 的汽车承运,试利用中心极限定理说明每辆车最多可装多少箱,才能保证不超载的概率大于0.977.解 以i X (1,2,,)i n =…表示装运的第i 箱产品的实际重量,n 为所求箱数.由条件可以认为随机变量1X ,2X ,…,n X 独立同分布,因而总重量12n T X X X =+++…是独立同分布随机变量之和.由条件,知50,5i i EX DX σ===.因而50,5T ET n DT n σ===( kg).由于随机变量1X ,2X ,…,n X 独立同分布且数学期望和方差都存在, 故根据中心极限定理,只要n 充分大,随机变量T 就近似服从正态分布2(50,[5])N n n .由题意知所求n 应满足条件:50500050{5000}0.97755T n n P T P n n --⎧⎫≤=≤≥⎨⎬⎩⎭.由于当n 充分大时随机变量近似地)1,0(~550N nn T U -=,可见{2}0.977P U ≤≥.从而,有.21010005505000≥-=-=nn n n a n经试算:对于05.397==n a n ,;对于02.298==n a n ,;对于01.199==n a n ,.于是,应取98=n ,即最多只能装98箱.5.5 计算机有120个终端,每个终端在一小时内平均3 min 使用一次打印机.假设各终端使用打印机与否相互独立,求至少有10个终端同时使用打印机的概率α.解 由题意知,计算机有120n =个终端,而每一终端在某一时刻使用打印机的概率3600.05p ==.以X 表示同时使用的打印机终端数,则X 服从参数为(120 , 0.05)的二项分布,6(1) 5.7EX np DX np p ===-=,,标准差 2.39σ=.根据棣莫弗-拉普拉斯定理,X 近似服从正态分布(6 , 5.7)N .因此,至少有10个终端同时使用打印机的概率6106{10} 2.39 2.391(1.67)10.95250.0475X P X P αΦ--⎧⎫=≥=≥⎨⎬⎩⎭≈-≈-≈.5.6 据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机地取16只,假设它们的使用寿命相互独立,求这16只元件的寿命的总和大于1920 h 的概率.解 由条件知这种元件的寿命X 服从指数分布且100EX =(h).因此,可以认为“X 服从参数为11000.01λ==的指数分布”.设1216,,,X X X …是随机取16只元件的寿命,可以视为16个独立参数0.01λ=指数分布的随机变量.根据列维-林德伯格中心极限定理,这16只元件的寿命的总和1216++S X X X =+… 近似服从正态分布22(,16)(1600,16100)N N λλ=⨯16。

习题五_高等教育-习题试题

习题五_高等教育-习题试题

习题五一、填空题:1.假设检验中,若检验统计量的计算值恰等于某显著水平下的临界值,则应归属于 区域。

2.显著性水平是指检验中 的概率,它来源于 。

3.若不足半数的电视节目观众大于30岁,则陈述假设为H 0:;H 1: 。

4.若超过半数的电视节目观众大于30岁,则陈述假设为H 0:;H 1: 。

5.在第3题中,若在5%显著性水平下检验,决策规则可陈述为,否定H 0; 不否定H 0。

6.某纪念币制造商希望确定这些纪念币含金量的比例是否已经改变了。

他的广告宣称纯金含量为80%,他甘愿为错误地决定含量已经变化而冒0.01的风险。

假设抽取625个纪念币为随机样本,则检验的决策规则为 ,否定H 0; ,不否定H 0。

7.依选择题第9题陈述的有关资料,若从样本得出的平均有效治疗期限为35小时(取α=0.1),则统计决策 。

8.去年,某批发商店发现每张发票的销售额为60元,标准差为20元。

今随机地抽出400张发票作样本来检验假设:每张发票的平均销售额没有变化,假设α不变,若置信区间58.72<x <61.28为检验的接受区域。

则检验所用的显著性水平为 ;当μ=61元时,其检验功效1-β为 。

9.针对总体比例的估计和检验,一般都是针对大样本,原因是 。

10.若总体X 1~N(μ1,21σ),X 2~N(μ2,22σ),且X 1,X 2相互独立,检验H 0:μ1=μ2,若两样本容量均小于30应选用 检验,相应的统计量 = ,临界值应为 。

11.设一总体容量1000,从中随机地抽取容量为150的样本,若总体方差未知,则检验H 0:μ=μ0时应选用 检验,相应的统计量 = ,临界值应为 。

12.某工业的日工资是正态分布,其平均值是13.20元,标准差为2.5元。

如果此工业的一个公司雇佣了40个工人平均付每人12.20元,则此公司被责备为付了低工资(显著性水平为1%)。

做出这一结论的理由是 。

13.要比较两制造过程。

第1过程取大小为100的样本,得100=x ,15=σ。

《概率论与数理统计》习题五答案

《概率论与数理统计》习题五答案

《概率论与数理统计》习题及答案习题五1.一颗骰子连续掷4次,点数总和记为X .估计P {10<X <18}.【解】设i X 表每次掷的点数,则41i i X X==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯= 从而 22291735()()[()].6212i i i D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 又X 1,X 2,X 3,X 4独立同分布.从而44117()()()414,2i i i i E X E X E X =====⨯=∑∑ 44113535()()()4.123i i i i D X D X D X =====⨯=∑∑ 所以 235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈ 2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形.而至少要生产n 件,则i =1,2,…,n ,且X 1,X 2,…,X n 独立同分布,p =P {X i =1}=0.8.现要求n ,使得1{0.760.84}0.9.n i i X P n =≤≤≥∑即0.80.9ni X n P -≤≤≥∑ 由中心极限定理得0.840.80.760.80.9,0.160.16n n n n n n --⎛⎫⎛⎫Φ-Φ≥ ⎪ ⎪⎝⎭⎝⎭ 整理得0.95,10n ⎛⎫Φ≥ ⎪ ⎪⎝⎭查表 1.64,10n ≥ n ≥268.96, 故取n =269.3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),()140,()42,E X D X ==1400.95{0}().42m P X m P X m -⎛⎫=≤≤=≤=Φ ⎪⎝⎭查表知 140 1.64,42m -= ,m =151. 所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V =∑=201k k V,求P {V >105}的近似值.【解】易知:E (V k )=5,D (V k )=10012,k =1,2,…,20 由中心极限定理知,随机变量201205~(0,1).10010020201212k k V Z N =-⨯==⨯⨯∑近似的 于是105205{105}1010020201212P V P ⎧⎫⎪⎪-⨯⎪>=>⎨⎬⎪⎪⨯⎪⎪⎩⎭1000.3871(0.387)0.348,102012V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⎭即有 P {V >105}≈0.3485. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?【解】设100根中有X 根短于3m ,则X ~B (100,0.2)从而{30}1{30}11000.20.8P X P X ≥=-<≈-Φ⨯⨯ 1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少?(2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩第人治愈其他令1001.ii X X ==∑ (1) X ~B (100,0.8),1001{75}1{75}11000.80.2i i P X P X =>=-≤≈-Φ⨯⨯∑1( 1.25)(1.25)0.8944.=-Φ-=Φ=(2) X ~B (100,0.7), 1001{75}1{75}11000.70.3i i P X P X =>=-≤≈-Φ⨯⨯∑1(1(1.09)0.1379.21=-Φ=-Φ= 7. 用Laplace 中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则 p =0.05,n =1000,X ~B (1000,0.05),E (X )=50,D (X )=47.5.故130{20} 6.895 6.89547.547.5P X ϕ⎛⎫===- ⎪⎝⎭6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率. 【解】11()10,0.1i E T λ=== 21()100,i D T λ== ()1030300,E T =⨯= ()3000.D T =故{350}111(0.913)0.1814.P T >≈-Φ=-Φ=-Φ= 9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时).【解】设至少需n 件才够用.则E (T i )=10,D (T i )=100,E (T )=10n ,D (T )=100n .从而1{3068}0.95,n i i P T =≥⨯=∑即0.05.≈Φ 故0.95, 1.64272.n =Φ=≈所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.(1) 求参加会议的家长数X 超过450的概率?(2) 求有1名家长来参加会议的学生数不多于340的概率.易知E (X i =1.1),D (X i )=0.19,i =1,2, (400)而400i i X X=∑,由中心极限定理得400400 1.1~(0,1).i X N -⨯=∑近似地 于是{450}1{450}1P X P X >=-≤≈-Φ1(1.147)0.1357.=-Φ=(2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8)由拉普拉斯中心极限定理得3404000.8{340(2.5)0.9938.4000.80.2P Y -⨯⎛⎫≤≈Φ=Φ= ⎪⨯⨯⎝⎭11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?【解】用X 表10000个婴儿中男孩的个数,则X ~B (10000,0.515)要求女孩个数不少于男孩个数的概率,即求P {X ≤5000}. 由中心极限定理有5000100000.515{5000}(3)1(3)0.00135.100000.5150.485P X -⨯⎛⎫≤≈Φ=Φ-=-Φ= ⎪⨯⨯⎝⎭12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入?(2)至多有多少人能够进入?【解】用X i 表第i 个人能够按时进入掩蔽体(i =1,2,…,1000).令 S n =X 1+X 2+…+X 1000.(1) 设至少有m 人能够进入掩蔽体,要求P {m ≤S n ≤1000}≥0.95,事件90010000.9{}.10000.90.190n n S m m S --⨯⎛⎫≤=≤ ⎪⨯⨯⎝⎭ 由中心极限定理知:10000.9{}1{}10.95.10000.90.1n n m P m S P S m -⨯⎛⎫≤=-<≈-Φ≥ ⎪⨯⨯⎝⎭从而 9000.05,90m -⎛⎫Φ≤ ⎪⎝⎭ 故900 1.65,90m -=- 所以 m =900-15.65=884.35≈884人(2) 设至多有M 人能进入掩蔽体,要求P {0≤S n ≤M }≥0.95.{}0.95.90n P S M ≤≈Φ= 90M =900+15.65=915.65≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求:(1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大?【解】设X 为在一年中参加保险者的死亡人数,则X ~B (10000,0.006).(1) 公司没有利润当且仅当“1000X =10000×12”即“X =120”.于是所求概率为1120100000.006{120}100000.0060.994100000.0060.994P X ϕ-⨯⎛⎫=≈ ⎪⨯⨯⨯⨯⎝⎭21(60/59.64)230.181116011e 59.6459.64259.640.0517e 0ϕπ--⎛⎫== ⎪⎝⎭=⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X ≤60”于是所求概率为{060}100000.0060.994100000.0060.994P X ≤≤≈Φ-Φ⨯⨯⨯⨯ (0)0.5.59.64⎛=Φ-Φ≈ ⎝ 14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考)【解】令Z =X -Y ,有()0,()()()()2()() 3.E Z D Z D X Y D X D Y D X D Y ρ==-=+-=所以 2()31{|()|6}{||6}.63612D X Y P ZE Z P X Y --≥=-≥≤== 15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数.(1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是0.2,因此,X ~B (100,0.2),故X 的概率分布是100100{}C 0.20.8,1,2,,100.k k k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得{1430}1000.20.81000.20.8P X ≤≤≈Φ-Φ⨯⨯⨯⨯ (2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.【解】设X i (i =1,2,…,n )是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X 1,X 2,…,X n 视为独立同分布的随机变量,而n 箱的总重量T n =X 1+X 2+…+X n 是独立同分布随机变量之和,由条件知:()50,i E X = 5,=()50,n E T n = =依中心极限定理,当n ~(0,1)N 近似地,故箱数n 取决于条件{5000}n P T P ≤=≤0.977(2).≈Φ>=Φ 2>解出n <98.0199,即最多可装98箱.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2.1 在题图5.2.1所示电路中,设S V U =6,i sin V u t ω=12二极管均为理想二极管(忽略正向导通压降),试分别画出输出电压o u 的波形。

题图5.2.1题图5.2.1A解 在题图5.2.1(a)所示电路中,i S V u U >=6时,D 导通,o S V u U ==6;当i u ≤S V U =6时,D 截止,o i u u =。

o u 波形如题图5.2.1A(b)所示。

在题图5.2.1(b)所示电路中,i u ≥V6S =U 时,D 截止,i o u u =;当i u <V6S =U 时,D导通,V6S o ==U u 。

o u 波形如题图5.2.1A(c)所示。

在题图5.2.1(c)所示电路中,i u ≥V 6S =U 时,D 截止,V 6S o ==U u ;当i u <V6S =U 时,D 导通,i o u u =。

o u 波形如题图5.2.1A(b)所示。

在题图5.2.1(d)所示电路中,V6S i =>U u 时,D 导通,i o u u =;当i u ≤V6S =U 时,D截止,V6S o ==U u 。

o u 波形如题图5.2.1A(c)所示。

5.2.2 在题图5.2.2所示电路中,已知1L R R =,二极管的正向压降可忽略不计,S 5V U =,i 8V U =,求o U 的值。

解 先设二极管D 截止,因为1L R R =,则L R 上的电压为4V ,故D 处于正向偏置导通,所以,O S 5V U U ==。

题图5.2.2 题图5.2.35.2.3 由理想二极管组成的电路如题图5.2.3所示,试确定各电路的输出电压U o 。

解 (a) 由于二极管D 2所加正向电压最高,故其优先导通,当D 2导通后,输出电压被钳制在0V ,D 2、D 3均处于反向偏置而截止。

U o = 0 V(b) 由于二极管D 2所加正向电压最高,故其优先导通,当D 2导通后,输出电压被钳制在−6V ,1D 、D 3均处于反向偏置而截止。

U o =-6 V5.3.1 有两个稳压管Z1D 和Z2D ,其稳定电压分别为4.5 V 和8.5 V ,正向压降都是0.5 V 。

如果要得到0.5 V 、4 V 、5 V 、9 V 和13 V 几种稳定电压,这两个稳压二极管(还有限流电阻)应该如何连接?画出各个电路。

解 各电路图如题图5.3.1A(a)、(b)、(c)、(d)、(e)所示。

题图5.3.1A5.3.2 在题图5.3.2所示电路中,I 24V U =,L 100R R ==Ω,稳压二极管Z D 的稳定电压Z 8V U =,最大稳定电流ZM 50mA I =。

试求通过稳压二极管的电流Z I 是否超过ZM I ?如果超过,怎么才能使其不超过?解 Z I =IZ Z L2488()80500.10.1ZM U U U A mA I mA RR ---=-=>= 所以稳压管通过的电流Z I 超过了ZM I 。

可以通过增大限流电阻R 的办法减小Z I 。

通过分析可知,当L R 100=Ω,R ≥123ΩR ≥123Ω时,可保证Z I ≤ZM I 。

可取Ω=130R 。

5.3.3 在题图5.3.2所示电路中,Ω==500L R R ,稳压二极管Z D 的稳定电压V 10Z =U ,稳定电流mA 5Z =I ,最大稳定电流mA 30ZM =I 。

试分析I U 在什么范围变化电路能正常工作? 解 当输入电压达到上限Imax U 时,应保证流过稳压二极管中的电流不超过ZM I 。

因此LZZ Imax Z R U R U U I --=≤mA 30ZM =I即5.0105.010Imax --U ≤m A 30, Imax U ≤V 35 当输入电压下降到Imin U 时,流过稳压二极管中的电流不应小于Z I 。

因此LZZ Imin Z R U R U U I --=≥mA 5Z =I 即5.0105.010Imin --U ≥m A 5, Imax U ≥ 2.5V 2 所以,I U 在22.5~35V 之间变化,电路能正常工作。

5.4.1 在一放大电路中,测得某晶体管3个电极的电位分别为−6V 、−3.4V 、−3.2V ,试判断该晶体管是NPN 型还是PNP 型,锗管还是硅管? 并确定3个电极对应的管脚。

解 晶体管工作在放大状态时,V 3.0~2.0B E =U (锗管),V 7.0~6.0B E =U (硅管)由此可见,−3.4V 与−3.2V 之间的电压为0.2V ,所以该晶体管为锗管;不管NPN 管还是PNP 管,基极电位总是居中的,因此−3.4V 的电极为基极,−3.2V 的电极为发射极,−6V 的电极为集电极;因为集电极的电位最低,所以该晶体管为PNP 管。

5.4.2 如何用万用表(模拟型)判断出一个晶体管是NPN 型还是PNP 型?如何判断出管子的3个管脚?又如何通过实验来区别是锗管还是硅管?解 用万用电表测电阻的R×lk 档依次测量三个脚之间的正、反向电阻,若某一管脚对另两只管脚之间的正向和反向电阻分别相等,则该管脚便是基极B 。

若将电表红笔(电表正极,表内电源负极)接触基极,黑笔接触另两个管脚,测得均为正向电阻,则该管是PNP 型。

若将电表黑笔接触基极,红笔接触另两只脚,测得均为正向电阻,则该管便是NPN 型。

找出基极后,再用电表测量另两个管脚之间的正、反向电阻。

对于锗管,这两个电阻有明显差别;对于PNP 型锗管,测得较小电阻(正向)时黑笔所接管脚为发射极,红笔所接管脚为集电极。

对于NPN 型锗管(很少用),黑笔所接管脚为集电极,红笔所接管脚为发射极。

题图5.3.2对于硅管,发射极与集电极之间正、反向电阻都很大,没有明显差别。

可在基极上接一只100k Ω的电阻,对于NPN 型,可将该电阻另一端接在黑笔上,将三极管另两只脚在红笔和黑笔之间反复换接,测得其中一个电阻值较小时,则黑笔所接为集电极,红笔所接为发射极。

若是PNP 型,则将电阻另一端接红笔,将另两只管脚在红笔和黑笔之间反复换接,测得电阻较小时,红笔所接管脚为集电极,黑笔所接管脚为发射极。

用于判别硅管的发射极和集电极的方法也可用于判别锗管。

且100 k Ω电阻可用人体电阻代替。

判定三个管脚后,为进一步确定它是硅管还是锗管,可在B ,E 之间加正向偏置电压(通过限流电阻),测出U BE 。

若U BE ≥0.6V ,则为硅管;若U BE ≤0.3V ,则为锗管。

5.4.3 晶体管工作在放大区时,要求发射结上加正向电压,集电结上加反向电压。

试就NPN 型和PNP 型两种情况讨论:(1)C V 和B V 的电位哪个高?CB U 是正还是负? (2)B V 和E V 的电位哪个高?BE U 是正还是负?(3)C V 和E V 的电位哪个高?CE U 是正还是负?解 (1) NPN 管:C V >B V ,0CB >U ,PNP 管:C V <B V ,0CB <U ; (2) NPN 管:B V >E V ,0BE >U ,PNP 管:B V <E V ,0BE <U ;(3) NPN 管:C V >E V ,0CE >U ,PNP 管:C V <E V ,0CE <U 。

5.4.4 某晶体管的输出特性曲线如题图5.4.4所示,试求:(1)V 10CE =U 时,B I 分别从m A 4.0变到m A 8.0和从m A 6.0变到m A 8.0两种情况下的动态电流放大系数;(2)B I 等于m A 4.0和m A 8.0两种情况下的静态电流放大系数。

解 (1)C 1B 3818500.80.4I I β∆-===∆-,C 2B 3828500.80.6I I β∆-===∆- (2)C 1B 18450.4I I β===,C 2B 3847.50.8I I β===5.4.5 有两个晶体管,一个管子的150=β,20CEO =I μA ,另一个管子的50=β,1CEO=I μA ,其他参数都一样,哪个管子的性能更好一些?为什么? 解 因为CEO CBO 1I I β=+,故150=β,20CEO =I μA 的晶体管的132.0150120C B O =+=I μA ;而50=β,1CEO =I μA 的晶体管的0196.05011C B O =+=I μA 。

由于后者的CBOI 小,而且β值也在合适的范围内,故50=β,1CEO =I μA 的晶体管的性能更好一些。

5.4.6 某晶体管的极限参数mW 100CM =P ,mA 15CM =I ,V 30(BR)CEO =U ,若它的工作电压V 10CE =U ,则工作电流C I 不得超过多大?若工作电流mA 5C =I ,则工作电压不得超过多大?解 当V 10CE =U 时,由mW 100CM =P 得到CMC CE10mA P I U ==,所以工作电流C I 不得超过m A 10。

当工作电流mA 5C =I ,由mA 100CM =P ,得到V 20CC MC E ==I P U ,所以工作电压CE U 为得超过20V 。

题图5.4.4 题图5.4.75.4.7 在题图5.4.7所示电路中,已知Ω=k 10B R ,Ω=k 1C R ,V 10CC =U ,晶体管50=β,V 6.0BE =U 。

试分析在下列情况下,晶体管工作在何种工作状态?(1)V 0I =U ;(2)V 2I =U ;(3)V 3I =U 。

解 晶体管的临界饱和电流为mA 10110C CC CS ===R U I ,m A 2.05010C S B S ===βI I (1) V 0I =U 时,0B =I ,晶体管工作在截止状态。

(2) V 2I =U 时,m A 14.0106.02B B E I B =-=-=R U U I <BS I ,晶体管工作在放大状态。

(3) V 3I =U 时,m A 24.0106.03B B E I B =-=-=R U U I >BS I ,晶体管工作在饱和状态。

相关文档
最新文档