05-06第二学期线性代数试卷及答案

合集下载

线性代数试题及详细答案

线性代数试题及详细答案

线性代数试题及详细答案线性代数试题及详细答案————————————————————————————————作者:————————————————————————————————日期:线性代数(试卷一)一、填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。

2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。

4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。

6. 设A 为三阶可逆阵,=-1230120011A,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。

10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分)1. 向量组r ααα,,,21Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A(A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。

线性代数第五版课后习题答案详细课件

线性代数第五版课后习题答案详细课件

81
可编辑课件PPT
82
可编辑课件PPT
83
可编辑课件PPT
84
可编辑课件PPT
85
可编辑课件PPT
86
可编辑课件PPT
87
可编辑课件PPT
88
可编辑课件PPT
89
第三章
可编辑课件PPT
返回
90
可编辑课件PPT
91
可编辑课件PPT
92
可编辑课件PPT
93
可编辑课件PPT
94
可编辑课件PPT
95
可编辑课件PPT
96
可编辑课件PPT
97
可编辑课件PPT
98
可编辑课件PPT
99
可编辑课件PPT
100
可编辑课件PPT
101
可编辑课件PPT
102
可编辑课件PPT
103
可编辑课件PPT
104
可编辑课件PPT
105
可编辑课件PPT
106
可编辑课件PPT
107
40
可编辑课件PPT
41
可编辑课件PPT
42
可编辑课件PPT
43
可编辑课件PPT
44
可编辑课件PPT
45
可编辑课件PPT
46
可编辑课件PPT
47
第二章
可编辑课件PPT
返回
48
可编辑课件PPT
49
可编辑课件PPT
50
可编辑课件PPT
51
可编辑课件PPT
52
可编辑课件PPT
53
线性代数(同济五版)
可编辑课件PPT
1
第一章

最全线性代数习题及参考答案

最全线性代数习题及参考答案

第一章:一、填空题:1、若a a D ij n ==||,则=-=||ij a D ;解:a a a a a D aa a a a D n nnn nnnn nn )1(11111111-=----=∴==2、设321,,x x x 是方程03=++q px x 的三个根,则行列式132213321x x x x x x x x x = ; 解:方程023=+++d cx bx ax 的三个根与系数之间的关系为:a d x x x a c x x x x x x ab x x x ///321133221321-==++-=++所以方程03=++q px x 的三个根与系数之间的关系为:q x x x p x x x x x x x x x -==++=++3211332213210033)(3321221321333231132213321=--++-=-++=x x x q x x x p x x x x x x x x x x x x x x x3、行列式1000000019980001997002001000= ;解:原式按第1999行展开:原式=!19981998199721)1(0001998001997002001000219981999-=⨯⨯⨯-=+++4、四阶行列式4433221100000a b a b b a b a = ; 解:原式按第一行展开:原式=))(()()(000004141323243243214324321433221433221b b a a b b a a b b b b a a b a b b a a a a b a b b a b a a b b a a --=---=-5、设四阶行列式cdb a a cbda dbcd c ba D =4,则44342414A A A A +++= ;解:44342414A A A A +++是D 4第4列的代数余子式,44342414A A A A +++=0111111111111==d a c d d c c a bd b a c bdd b c c ba6、在五阶行列式中3524415312a a a a a 的符号为 ;解:n 阶行列式可写成∑-=n np p p ta a aD 2211)1(,其中t 为p 1p 2…p n 的逆序数所以五阶行列式中3524415312a a a a a 的符号为5341352412a a a a a 的符号,为1)1()1(5)3,1,5,4,2(-=-=-t7、在函数xx x xxx f 21112)(---=中3x 的系数是 ; 解:根据行列式结构,可知3x 须由a 11=2x ,a 33=x 和第二行的一个元素构成,但此时第三个元素只能取a 22(行、列数均不可重复),所以此式为3332211)3,2,1(2)1(x a a a t -=-,系数为-2。

2005级线性代数考试试题及答案

2005级线性代数考试试题及答案

2005级线性代数考试试题院系_____________________;学号__________________;姓名___________________一、单项选择题(每小题2分,共40分)。

1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=6 35 24 1C ,6 5 43 2 1B ,4 32 1A ,则下列矩阵运算无意义的是 【 】A . BAC B. ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2–E =0,其中E 是n 阶单位矩阵,则必有【 】A. A=A -1B.A=-EC. A=ED. det(A)=1 3.设A 为3阶方阵,且行列式det(A)=21,则det(-2A)= 【 】 A.4 B.-4 C.-1 D.14.设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它两个行向量的线性组合D. 任意一个行向量都是其它两个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 3121,,a a a a +6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是 【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】A.03221= b b a aB.02121≠ b b a a C. 332211b a b a b a == D.02131= b b a a9.方程组⎪⎩⎪⎨⎧=++=++=++ax x x x x x x x x 32132132123 3 12 12 有解的充分必要的条件是【 】A. a=-3B. a=-2C. a=3D. a=210. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1+η3,η1+η2+η3 11. 已知非齐次线性方程组的系数行列式为0,则 【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量 13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni i n aa a a C. },,2,1,|),,,{(21n i z a a a a i n =∈ D. }1|),,,{(121∑==n i inaa a a14. F 3的两个子空间V 1={(x 1,x 2,x 3)|2x 1-x 2+x 3=0}, V 2={(x 1,x 2,x 3)|x 1+x 3=0}, 则子空间V 1 V 2的维数为【 】A. 二维B. 一维C. 三维D. 零维15. 设M n (R)是R 上全体n 阶矩阵的集合,定义)(,det )(R M A A A n ∈=σ,则σ是M n (R)到R 的 【 】A. 一一映射B. 满射C. 一一对应D. 既不是满射又不是一一对应15. 令),,(321x x x =ξ是R 3的任意向量,则下列映射中是R 3的线性变换的是 【 】A.0,)(≠+=ααξξσ B. )0,,2()(32321x x x x x +++=ξτC. ),,()(32221x x x p =ξ D. )0,cos ,(cos )(21x x w =ξ 17.下列矩阵中为正交矩阵的是 【 】A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1- 1 01 1 00 0 1 B. ⎥⎦⎤⎢⎣⎡1- 22 151C. ⎥⎦⎤⎢⎣⎡1 01- 1D. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2 2 12- 1 21 2- 23118.若2阶方阵A 相似于矩阵⎥⎦⎤⎢⎣⎡=3- 20 1B ,E 为2阶单位矩阵,则方阵E –A 必相似于矩阵【 】A. ⎥⎦⎤⎢⎣⎡4 10 1B. ⎥⎦⎤⎢⎣⎡4- 1 0 1-C. ⎥⎦⎤⎢⎣⎡4 2-0 0D. ⎥⎦⎤⎢⎣⎡4- 2-0 1-19.二次型32212132122),,(x x x x x x x x f ++=的秩等于【 】A .0 B.1 C.2 D.320.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。

浙江大学大二数学专业《线性代数》考试B卷及答案

浙江大学大二数学专业《线性代数》考试B卷及答案

《线性代数》试卷(B )考试时间: 类型:闭卷 时间:120分钟 总分:100分 专业:一、填空题(共10空,每空2分,共20分)1、=--b a b a 10210;()=⎪⎪⎪⎭⎫ ⎝⎛3,2,1321 。

2、向量α线性相关的充分必要条件是 。

3、设A 为3阶方阵,2=A ,则A A 31-= 。

4、向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+321,211,111a 的秩为2,则=a 。

5、已知3阶方阵A 的特征值为2,1,2-,则方阵A E +的特征值是 、 、 。

6、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x A 10130002与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ200020004相似,则=x 。

7、设32212221321424),,(x x x x x x x x x f -++-=,则二次型矩阵为 。

二、选择题 (共5题,每题2分,共10分)1、下列选项是五阶行列式()ij a D det =的项,其中带负号的项是( ) A 、5143352412a a a a a B 、5445332112a a a a a C 、5143322415a a a a a D 、5144352213a a a a a2、设B A 、为n 阶可逆方阵,则下列结论成立的是( )。

A 、B A B A +=+ B 、BA AB =C 、BA AB =D 、111)(---+=+B A B A3、已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11a α,且αA 与α线性相关,则=a ( )。

A 、1-B 、1C 、 2D 、34、已知向量组B 可以由向量组A 线性表示,则)(A R 与 )(B R 的关系是( )。

A 、)()(B R A R ≥ B 、)()(B R A R ≤ C 、)()(B R A R = D 、)()(B R A R >5、若向量组m ααα,,,21⋅⋅⋅的秩为r ,则( )A 、向量组中任意少于r 个向量的部分组线性无关B 、必有m r <C 、向量组中任意1+r 个向量线性相关D 、 向量组中任意r 个向量线性无关 三、判断题(共5题,每题2分,共10分)1、设A 为n 阶方阵,若O ≠A ,则0≠A 。

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。

(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。

二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。

9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。

(完整版)线性代数测试试卷及答案

(完整版)线性代数测试试卷及答案

线性代数(A 卷)一﹑选择题(每小题3分,共15分)1。

设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A )AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D )A B B A +=+2。

如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C ) n s - (D) 以上答案都不正确 3。

如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4。

设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么( )(A) 2331A ⎛⎫=⎪-⎝⎭ (B) 2241A ⎛⎫= ⎪-⎝⎭ (C) 2121A ⎛⎫= ⎪-⎝⎭(D) 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则( ) (A ) A 的行向量组和列向量组均线性相关 (B )A 的行向量组线性相关,列向量组线性无关 (C ) A 的行向量组和列向量组均线性无关 (D )A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分)1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2。

设100210341A -⎛⎫⎪=- ⎪⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5。

设A 为正交矩阵,则A = ;6。

设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7。

线性代数第二章综合练习题和答案

线性代数第二章综合练习题和答案

T T Ax b 有 两 个 解 为 : 1,2,3 , 1,0,1 。 则 其 导 出 组 一 定 有 一 个 解 :
1 , 2 , 3 线性相关,则 1 , 2 , 3, 4 必然 __________.
1 1, 2, 1T , 1 0, 1, T , 3 1, , 0T 线性相关.则 =______________.
)
(D)以上都不对 )
3.设 A, B, C 都是 n 阶矩阵,如果从 AB AC 必能推出 B C ,则 A 满足条件( (A) A 0 ; (B) A 0 ; (C) A 0 ; ) (B) 当 m n 时仅有零解; (D) 当 m n 时仅有零解. ) (D) A 0 .
(B) 必定没有解 ; (D) 以上都不对
12 1 1 2 (D) ; 3 2 2 2
(A)必有唯一解 ; (C)必有无穷多解 ;
17.设 1 , 2 , 3 线性无关,则下列向量组( A) 1 2 , 2 , 3 ;
线性方程组 A x B 的解为
1 1 2 20. 设 A 2 0 4 ,若 3 阶非零方阵 B ,满足 AB O ,则 t 3 2 t
21. 设 n 阶矩阵 A 的各行元素之和均为零,且 r A n 1 ,则线性方程组 AX O 的通解为 22. 设 非 齐 次 线 性 方 程 组 ______________. 23. 若向量组 24. 向量组
)线性相关。
B) 1 2 , 2 3 , 3 ;
C) 1 2 , 2 3 , 3 1 ; D) 1 2 3 , 1 2 3 , 1 2 。 18.设 R 3 中, 1 , 2 , 3 线性无关,则下列结论(

线性代数试卷及其答案

线性代数试卷及其答案

试卷一一、判断题。

在每小题后面的小括号内打“√”号或“×”号1.任何实对称矩阵都可以表成一系列初等矩阵的乘积。

( ) 2.方阵A 与其转置阵 T A 有相同的特征值,因此有相同的特征向量。

( ) 3.设ij A 为n 阶行列式||ij a D =中元素ij a 的代数余子式,若ij ij A a -=),,2,1,(n j i =,则0≠D 。

( )4.若r ηηη,,,21 为线性方程组0=AX 的基础解系,则与r ηηη,,,21 等价的向量组也为此方程组的基础解系。

( ) 5. 设c b a ,,是互不相等的数,则向量组),,,1(32a a a ,),,,1(32b b b ,),,,1(32c c c是线性无关的。

( )二、单项选择题1. 设n 阶方阵C B A ,, 满足关系式E ABC =,则 成立。

A. E ACB =; B. E CBA =; C. E BAC =; D. E BCA =.2. 设n 维向量)(,,,21n m m <ααα 线性无关,则n 维向量m βββ,,,21 线性无关的充要条件为 。

A. 向量组m ααα,,,21 可由向量组m βββ,,,21 线性表示;B. 向量组m βββ,,,21 可由向量组m ααα,,,21 线性表示;C. 向量组m ααα,,,21 与向量组m βββ,,,21 等价;D. 矩阵=A (m ααα,,,21 )与矩阵=B (m βββ,,,21 )等价。

3.设非齐次线性方程组b AX =的两个不同解为21,ββ,它的导出组的一个基础解系为21,αα,则线性方程组b AX =的通解X = (其中21,k k 为任意常数)。

A. )(21)(2121211ββααα-+++k k ;B. )(21)(2121211ββααα++-+k k ;C. )(21)(2121211ββββα-+++k k ;D. )(21)(2121211ββββα++-+k k .4. 设B A ,均为)2(≥n n 阶方阵,则必有 。

线性代数期末考试试卷+答案

线性代数期末考试试卷+答案

×××大学线性代数期末考试题、填空题(将正确答案填在题中横线上。

每小题 2分,共10分)1 -3 1P X IX 2 X 3 =02 .若齐次线性方程组 J x 1+χx 2+x 3=0只有零解,则 扎应满足X 1亠 X 2亠 X 3= 05. n 阶方阵 A 满足 A 2-3A-E = 0 ,贝U A J = _____________________ 。

、判断正误(正确的在括号内填“√”,错误的在括号内填“X” 。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则D 0。

()2. 零向量一定可以表示成任意一组向量的线性组合。

()3. 向量组a 1, a 2,…,a m中,如果a 1与a m对应的分量成比例,则向量组 a 1, a 2,…,a s线性相关。

■为可逆矩阵A 的特征值,贝U A J 的特征值为’。

()若三、单项选择题(每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题1.设A 为n 阶矩阵,且A = 2 ,则I AA T =( )。

①2n②2n'③2n1④42. n 维向量组:∙1,:-2, , :■ S ( 3 < S < n )线性无关的充要条件是()。

-0 11 0 0 0 0 04. A =0 0 0 10 1 0①:'1, :'2 ,':'S 中任意两个向量都线性无关②>1,-::S 中存在一个向量不能用其余向量线性表示③:'1, -'2 ,-■ S中任一个向量都不能用其余向量线性表示1.若0 5 -12x =0,则= —23•已知矩阵A ,B ,C = (C ij )s n ,满足AC =CB ,则A 与B 分别是 _____________ 阶矩阵。

a124 .矩阵 A= a21a 22的行向量组线性31a32丿2分,共10分)11,贝U A A =A 。

(完整版)线性代数习题集带答案

(完整版)线性代数习题集带答案

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

(完整版)线性代数试题套卷及答案

(完整版)线性代数试题套卷及答案

(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设为实矩阵,则线性方程组只有零解是矩阵为正定矩阵的n m A ⨯0=Ax )(A A T(A) 充分条件; (B) 必要条件; (C) 充要条件;(D) 无关条件。

2.已知为四维列向量组,且行列式 ,32121,,,,αααββ4,,,1321-==βαααA ,则行列式1,,,2321-==βαααB =+B A (A) ;(B) ;(C) ;(D) 。

4016-3-40-3.设向量组线性无关,且可由向量组线s ααα,,, 21)2(≥s s βββ,,, 21性表示,则以下结论中不能成立的是(A) 向量组线性无关;s βββ,,, 21(B) 对任一个,向量组线性相关;j αs j ββα,,, 2(C) 存在一个,向量组线性无关;j αs j ββα,,, 2(D) 向量组与向量组等价。

s ααα,,, 21s βββ,,, 214.对于元齐次线性方程组,以下命题中,正确的是n 0=Ax (A) 若的列向量组线性无关,则有非零解;A 0=Ax (B) 若的行向量组线性无关,则有非零解;A 0=Ax (C) 若的列向量组线性相关,则有非零解;A 0=Ax (D) 若的行向量组线性相关,则有非零解。

A 0=Ax 5.设为阶非奇异矩阵,为的伴随矩阵,则A n )2(>n *A A 题 号一二三总 分总分人复分人得 分得分评卷人√√(A) ;(B) ;A A A 11||)(-*-=A A A ||)(1=*-(C) ;(D) 。

111||)(--*-=A A A 11||)(-*-=A A A 二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。

线性代数A及答案

线性代数A及答案

2005学年第2学期线性代数期末考试试卷( A 卷 )一. 填空题 (本题共有10个小题, 每小题3分)1. 设305021311121A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,则矩阵A 的秩()r A =__________. 2. 设A 为3阶方阵,行列式2A =,则3A =________.3. 设矩阵20003101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与400020002B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似,则x =_________. 4. 设A 是n 阶方阵且240A A E +-=, 则()1A E --=_________.5.()222,,2332f x y z x y z ayz =+++是正定二次型,则a 的取值范围是______.6. 若向量()1,2,0与(),,0x y 线性无关,则x 与y 的关系应为__________.7. 向量[]1,4,0,2T∂=与[]2,2,1,3Tβ=-的距离和内积分别为_________和___________.8. 设10246311A a -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,B 为3阶非零矩阵,且0AB =,则a =___________.9. 设0是矩阵10102010A a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的特征值,则a =___________. 10. 在MA TLAB 软件中,det(A ) 表示求__________.二. 选择题(本题共有5个小题, 每个小题都给出代号 (A), (B), (C), (D) 的四个结论, 其中只有一个结论是正确的。

每小题3分。

)1. 设A 是n 阶方阵,则下列4个式子中表明A 是正交矩阵的式子为( )(A) 1AA E -=(B) AA E = (C) 1TA A -=(D) 1A =±2. 已知,A B ,C 为n 阶方阵,则下列性质不正确的是( )(A) AB BA = (B) ()()AB C A BC =(C)()A B C AC BC +=+(D) ()C A B CA CB +=+3. 已知方程组Ax b =对应的齐次方程组为0Ax =,则下列命题正确的是( )(A) 若0Ax =只有零解,则Ax b =一定有唯一解。

(武汉大学数学学院)第二学期线性代数D期末试题及答案(A卷)

(武汉大学数学学院)第二学期线性代数D期末试题及答案(A卷)

0 0 1
3、设
A


1
1
1


x
为实数,试讨论
x
为何值时,矩阵
A
可与对角阵相似?(15
分)
x2 0 0
一、计算下列各题:
09
线性代数 D(即工科 36 学时)参考解答:
0
1、解:由 -1 -2 -1 =9 0,及 R(1,2 ,3) 3 ,则知1,2 ,3 即为一极大无关组。 061
1 0 1 1 0 1
而当 3

1 时,由
A

E



1
2
1

1
2
1 , R A E 2 ,
1 0 1 0 0 0
1
则由

1
0 2
1 1




x1 x2



0
恰给出
A
的一个特征向量。
0 0 0 x3
用 1 乘以(*)式,然后与(**)式相减得
k3(3 1 )3 o ,
注意 3 1 0 ,有 k3 0 。再由(*)式得 k11 k22 o ,由于1 和2 线性无关,则 k1 k2 0 ,

于是
即1,2 ,3 线性无关。 0
k1 k2 k3 0 , 1
武汉大学数学与统计学院
2005-2006 学年第二学期《线性代数》 (A 卷)
学院
专业
学号
姓名
注:1.本试题供线性代数 D(即工科 36 学时)使用;
2.所有答题均须有详细过程,内容必须写在答题纸上,凡写在其它地方一律无效。

经济数学《线性代数》习题参考答案[终稿]

经济数学《线性代数》习题参考答案[终稿]

经管类《微积分(下)与线性代数》习题参考答案第六章 多元函数微积分学习题一 一、1、y x 32-;2、},0,0|),{(2y x y x y x ≥≥≥;3、1,2;4、⎪⎪⎭⎫ ⎝⎛++++xy xy xy xy x 1)1ln()1(,12)1(-+x xy x ; 5、22812y x -,22812x y -,xy 16-.二、1.D ; 2.D ;3.A ;4.B三、1.(1)y x x z ln 1+=∂∂,)ln (1y x y y z +=∂∂;(2)xy e y x y x y x x z 22232)(2++-=∂∂, xye y x y xy x y z 22223)(2+-+=∂∂2.12222222222222222223.z xy z xyx x y y x y z y x x y x y ∂∂==-∂+∂+∂-=∂∂+()()()4.(1)dy xy x xy dx xy y y x dz )]cos(2[)]cos(2[2++++=(2))(1zdz ydy xdx udu ++=(3)xdzyx xdy zx dx yzx du yz yz yz ln ln 1++=-5.dydx 3231+习题二一、1、)()(y x f xy y x yf +'++,)()()()(y x f xy y x f y x y x f +''++'+++;2、211f y f '+',22f y x '-;3、dy f f dx f f ⎪⎪⎭⎫ ⎝⎛+''-''-12121; 4、y x yx -+;5、x y z z z -ln ln ,yyz xy z ln 2-二、 1、C ; 2、A ; 3、C ; 4、C ; 5、A三、1、⎪⎪⎭⎫ ⎝⎛+-+=∂∂)ln(112222222y x x y x x y x z ,⎪⎪⎭⎫ ⎝⎛+++=∂∂)ln(222222y x y x y x y y z2、321f yz f y f x u '+'+'=∂∂,32f xz f x yu'+'=∂∂,3f xy z u '=∂∂4、dy dx dz --=5、(1)极小值:2)1,1(=f ;(2)0>a 时,有极大值:273,33a a a f =⎪⎭⎫ ⎝⎛;0<a 时,有极小值:273,33aa a f =⎪⎭⎫ ⎝⎛6、极大值:1)1,1(=f7、(1)25.1,75.0==y x ; (2)5.1,0==y x习题三一、1.()2ab a b +; 2.⎰⎰x x dy y x f dx 2),(10; 3.)1(214--e ; 4.⎰⎰θππθsec 2034)(rdr r f d ;5.π3二、1、D ;2、B ;3、D ;4、C三、1、556; 2、121+e ; 3、21532; 4、49; 5、2643π; 6、31; 7、π3第八章 无穷级数 习题一 一、判断题1、√;2、×;3、√;4、×;5、√;6、×二、填空题1、0;2、1>p 且p 为常数;3、1>p ,10≤<p ,0≤p ;4、 ,2,1,1=≥+n u u n n 且0lim =∞→n n u三、选择题 1、(C ); 2、(A ); 3、(C ); 4、(A ); 5、(C )四、1、收敛; 2、发散;、收敛; 、收敛;、收敛; 、收敛五、1、发散; 2、条件收敛 3、绝对收敛; 4、条件收敛六、当10≤<a 时,发散;当1>a 时,收敛. 习题二 一、判断题1、×;2、√;3、√;4、×;5、√ 二、填空题1、0=R ;2、),(,+∞-∞+∞=R ;3、)1,1(-,)1ln(x --;4、22,2)1(1)1(2ln 011≤<-⋅+-+∑∞=++x x n n n n n;5、60,)3(31)1(01<<-⎪⎭⎫ ⎝⎛-∑∞=+x x n nn n三、选择题1、(D );2、(B );3、(B );4、(A );5、(B );6、(C )四、1、)3,3[-;2、)3,1[;3、]1,1[-五、1、)1,1(,)1(1)(2-∈-=x x x s ;2、)1,1(,)]1ln()1[ln(21)(-∈--+=x x x x s ;3ln 21六、)1,1(,)1(2131)(01-∈⎪⎭⎫⎝⎛-+=∑∞=+x x x f nn n n第九章 微分方程初步习题一 一、判断题1、×;2、√;3、√;4、×;5、×二、填空题1、2)(ln 21)(x x f =; 2、x cxe y -=; 3、x y 2=; 4、x x x y 91ln 31-=;5、Ct x +=)(ln ϕ三、1、C y x =⋅tan tan ; 2、C e e y x =-⋅+)1()1(四、22sec )1(=⋅+y e x五、1、)ln(2122Cx xy =⋅; 2、15325=-y x y六、1、)(sin C x ey x+=-; 2、)cos 1(1x y --=ππ; 3、322Cy y x +=七、xx e e x f 2323)(-=八、)1,1[,)1ln()(1-∈--=∑∞=x x e x f x n n习题二一、选择题 1、(C ); 2、(B ); 3、(D ); 4、(C ); 5、(A ); 6、(C )二、1、x x e C e C y 221-+=;2、x C x C y sin cos 21+=;3、xx e e y -+-=4三、x e x x L 273)(-+-=四、(1)20005.0-=W dt dW;(2)t e W 05.010004000+=五、)sin (cos 21)(x e x x x ++=ϕ六、1)(21)(++=-x x e e x s七、uu f ln )(=八、)14()(242+=t e t f t ππ《线性代数》习题参考答案习题一一、填空题1. 8k ; 2.8; 3.12 ; 4.)1)(1(++cd ab .二、计算题1. 55b a +; 2.1211)1(-+-n n a a na 3.1)]()1([---+n a x a n x ;4.1)2]()2([---+n a x a n x ; 5.6习题二一、填空题1.21; 2.E ; 3.)(21E A -,)3(41E A --; 4.⎪⎪⎭⎫⎝⎛--0011A B ;5.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----8500320000520021; 6.⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a 11121; 7.4.二、选择题1.③;2.③;3.②;4.③;5.②;6.①;7.③;8.②.三、计算题1.⎪⎪⎪⎭⎫ ⎝⎛201030102; 2.-16; 3.3)(=A R ; 4.⎪⎪⎪⎭⎫⎝⎛---011101110;5.(1)1=k ;(2)2-=k ;(3)1≠k 且2-≠k .习题三一.填空题1.)()(.b A R A R =; 2.0=A ; 3.1.≠λ且2-≠λ; 4.0.4321=+++a a a a .二、选择题 1.④; 2.①; 3.④;4.④三、1-=k 时,有非零解;c c x x x ,111321⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛不为零的任意实数.四、(1)2,1-≠λ ; (2)2-=λ; (3)1=λ.五、当1≠a 且0≠b 时,有唯一解;当1=a 且2/1≠b 或0=b 时,无解;当1=a 且21=b 时,有无穷多解,其解为:⎪⎩⎪⎨⎧==-=c x x cx 32122 (c 为任意常数)习题四一、填空题1.5=t ; 2.至少有一个向量; 3321,,.ααα ;42.≤r ;5ts r -=.二、选择题1.④; 2.③; 3.③; 4.③; 5.②三、321,,ααα为极大无关组,323214,3ααααααα+-=-+=四、(1)3-=λ;(2)0≠λ且3-≠λ;(3)0=λ,3221121)(αααβc c c c +++-=五、⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54326543c x ;(c 为任意常数)六、⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛608301214321c x x x x (c 为任意常数)习题五一、填空题1.1或-1 ;2.E ;3.18 ;4.121==λλ,213-=λ;5.125 ; 6.4=λ二、选择题1.②; 2.③; 3.④; 4.②; 5.②三、6||=A四、0,3,1=-=-=b a λ五、2,0-==y x ;⎪⎪⎪⎭⎫⎝⎛--=111012100P六、⎪⎪⎪⎭⎫⎝⎛----=412212111A七、当3=x 时,A 可对角化.。

线性代数试题套卷及答案

线性代数试题套卷及答案

(线性代数)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1 •设A m .n为实矩阵,则线性方程组Ax = 0只有零解是矩阵(A T A)为正定矩阵的______________(A)充分条件;(B)必要条件;(C)充要条件;(D)无关条件。

2 •已知P1,卩2, %, °2 , °3为四维列向量组,且行列式 A H S S'SEJ M Y,B = % ,c(2,。

3, P2 = T,则行列式 A + B = __________(A) 40; (B) -16 ;(C) -3; (D) -40。

3 •设向量组:1,:2,,s ( S_2)线性无关,且可由向量组-1,- 2,…,,s线性表示,则以下结论中不能成立的是______________(A) 向量组':1,2,…,-S线性无关;(B) 对任一个:■ j,向量组:■ j,2,…,飞线性相关;(C) 存在一个:■ j,向量组:j,,2,…,-S线性无关;(D) 向量组:1,2,…,-S与向量组-1,,2,…,s等价。

—1 ••—1 (A) (A ) =| A| A;1 (B) (A ) =|A| A ;对于n元齐次线性方程组Ax = 0,以下命题中,正确的是(A) 若A的列向量组线性无关,则Ax二0有非零解;(B) 若A的行向量组线性无关,则Ax =0有非零解;(C) 若A的列向量组线性相关,则Ax二0有非零解;(D) 若A的行向量组线性相关,则Ax二0有非零解。

设A为n阶非奇异矩阵(n・2),-州A为A的伴随矩阵,则(1)试说明矩阵A 能相似于对角阵; (2)求可逆矩阵P ,使P AP 为对角阵,(C) (A-f =| A I 」A J (D) (A~y =| A| A J 。

二、填空题(本大题共 5小题,每小题 5分,共25 分)广2 —1 2、6.列向量a =1是矩阵A =5 a 37-1 b -2,请在每小题的空格中填上正确答案。

《线性代数、概率统计》期末考试试卷及详细答案 二

《线性代数、概率统计》期末考试试卷及详细答案  二

《线性代数、概率论》期末考试试卷答案一、选择题(每小题后均有代号分别为A, B, C, D的被选项, 其中只有一项是正确的, 将正确一项的代号填在横线上,每小题2分,共40分):1.行列式G的某一行中所有元素都乘以同一个数k得行列式H,则------------C-------------;(A) G=H ;(B) G= 0 ;(C) H=kG ;(D) G=kH 。

2.在行列式G中,A ij是元素a ij的代数余子式,则a1j A1k+ a2j A2k+…+a nj A nk--------D------;(A) ≠G (j=k=1,2,…,n时) ;(B) =G(j, k=1,2,…,n; j≠k时) ;(C) =0 (j=k=1,2,…,n时) ;(D) =0(j, k=1,2,…,n ;j≠k时) 。

3.若G,H都是n⨯ n可逆矩阵,则----------B------------;(A) (G+H)-1=H-1+G-1;(B) (GH)-1=H-1G-1;(C) (G+H)-1=G-1+H-1;(D) (GH)-1=G-1H-1。

4.若A是n⨯ n可逆矩阵,A*是A的伴随矩阵, 则--------A----------;(A) |A*|=|A|n-1;(B) |A*|=|A|n ;(C) |A*|=|A|n+1;(D) |A*|=|A|。

5.设向量组α1, α2,…,αr (r>2)线性相关, 向量β与α1维数相同,则------------C----------- (A) α1, α2,…,αr-1 线性相关;(B) α1, α2,…,αr-1 线性无关;(C) α1, α2,…,αr ,β线性相关;(D) α1, α2,…,αr ,β线性无关。

6.设η1, η2, η3是5元齐次线性方程组AX=0的一组基础解系, 则在下列中错误的是D-------------------(A) η1, η2, η3线性无关;(B) X=η1+η2+ η3是AX=0的解向量;(C) A的秩R(A)=2;(D) η1, η2, η3是正交向量组。

线性代数期末考试试卷+答案

线性代数期末考试试卷+答案

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫ ⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0100100000010010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 s n )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示 ④ s ααα,,, 21中不含零向量3. 下列命题中正确的是( )。

① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005~2006学年第二学期《线性代数》试卷一、填空题(每小题3分,共15分)的通解为,则),,,(,),,,(的两个解向量,其中是、,)(阶方阵,且为已知为的特征值,的特征值为则,,的特征值分别为设三阶方阵关线性,,),则,,(),,,(,),,(设则,均可逆,则,其中设b Ax b Ax A R A A A ,A A A A A A A A A ='=-'=+==-=--===⎪⎪⎪⎭⎫⎝⎛-==⎪⎪⎭⎫ ⎝⎛=--310120113453214130221111330021094220012121212132132112121αααααααααααα....,.*二、选择题(每小题3分,共15分)均可逆、可逆,则若)也可逆可逆,则若)也可逆均可逆,则、若)也可逆均可逆,则、若))(阶方阵,下列正确的是均为、若),,()),,()),,()),,())(的线性组合,则、是),,,()、,,(已知)))))(阶方阵,则为设B A B A D B A B A C AB B A B B A B A A n B A D C B A AD A C AB AA A A +-++--===--=-...301001141300210000122222231212133βααβαα),min()(0.4n m A R D mn C nm B nA R A Ax n m A ≤<=<=⨯))))())(时有非零解满足条件矩阵,则为设一定正交向量必线性无关,但不属于不同特征值的特征)成对角矩阵;,使存在正交矩阵)个不同的特征值;一定有);它的特征值一定为正数))(以下结论正确的是阶实对称矩阵对于D AT T T C n B A A n '.5三、计算题(共60分)分)(,求),(),(已知分)(,求满足,矩阵设矩阵分)(求行列式631211321361010201012612.....n A A X X A I AX X A xyyyy x y y y y x y y y y x D βαβα'===+=+⎪⎪⎪⎭⎫⎝⎛==分)(型为负定二次型?满足什么条件时,二次)型为正定二次型?满足什么条件时,二次)问已知二次型分)(为对角阵,其中使求一个正交矩阵分)(。

解,有解时求出全部解取何值时有解,何时无当对于非齐次线性方程组分)(关组。

该向量组的一个极大无)的秩和,,,(),,,,(),,,,(求向量组1021222712204010402614222256313150111253432312123222132112321321321321t t x x x x x x tx tx tx x x x f A AP P P x x x x x x x x x ,),,(....-++++=⎪⎪⎪⎭⎫⎝⎛==⎪⎩⎪⎨⎧=-+=+-=----=-=--=-Λλλλααα四、证明题(10分).r r r r 的秩为,,,,,证明向量组的秩为,,已知αααααααααααα++++++ 21321211212005~2006学年第二学期《线性代数》试卷答案一、填空题(每小题3分,共15分)R k k x R k k x R k k x A A ∈⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=∈⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=∈⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--31012121210310125212113101102121594131211433620011211或或,关相,.,,,,.......二、选择题(每小题3分,共15分)1. C2. A3. B4. A5. C三、计算题(共60分)分)(分分)解:(分分可逆,所以,则显然分))()得(分)解:由(分分)解:(个个6123332123121133121132134363620103010230262630010010010013111133333611111223⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛='='''='''=⎪⎪⎪⎭⎫⎝⎛=+=-≠-+-=-=-+=+-+=---+=+=++++=----n n n n n n A I A X I A I A I A I A I A X I A X A I AX y x y x yx y x yx y x xyyy x y y y x y y y y x x yyyx y x y y x y y x yx y y y yx D βαβαβαβαβαβαβα)()()())((.(.))(()()(.分:所以此方程组的通解为分多组解,此时,则此时方程组有无穷时,当分:所以此方程组的通解为分分多组解,此时,则此时方程组有无穷时,当分,则此时方程组无解;即,,时,或当分分)解:(分关组。

均为该向量组的极大无、或、或、分,的秩为,,向量组分分)解:(1411102200002110210100002110421100006330421112000133021111322101110019000001101101000003301211120001330211732162321512000133021112330133021121112121121456524000000120351816051001224035111310231535135110231511364222222323121321 Rk k x A R b A R Rk k x A R b A R A R b A R A R b A R b A A ∈⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎭⎫ ⎝⎛-+---<==-=∈⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎭⎫ ⎝⎛-+---<===>==-≠≠∴⎪⎪⎪⎪⎭⎫ ⎝⎛-+---→⎪⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----=∴⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=,))(()()()|(,))(()()()|()()|()()|())(()()()()|(..λλλλλλλλλλλλλλλλλλλλλλλλλααααααααα分使正交矩阵分正交、、分时的特征向量为:所以得对应时,当分时的特征向量为:所以得对应时,当分时的特征向量为:所以得对应时,当分,,的特征值为令分分)解:(12612220220102202210101210101012191016000010101404050404667010100010000110400040115101200001010140403040422361202216204010421261333222111321321333222111321 ⎪⎪⎪⎭⎫⎝⎛-==⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛-==∴≠≠⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---=-=⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-=⎪⎪⎪⎭⎫ ⎝⎛-=-=⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=+-===-=⇒=-+--=---=--ΛAP P P e e e I A I A I A A I A I A ξξξξξξξξξλλλξλλξλλξλλλλλλλλλλλλλ,,))()((.分要使二次型为负定,则分要使二次型为正定,则分为:的各阶顺序主子式分别分则矩阵为分)解:二次型对应的(10101201027201201014121111111112111111107232212322123221 -<⇒⎪⎩⎪⎨⎧<+-=>-=<=>⇒⎪⎩⎪⎨⎧>+-=>-=>=+-=--==-===⎪⎪⎪⎭⎫ ⎝⎛--=t t t A t A t A t t t A t A t A t t t t tA A t tt A t A A t t t A ))(()))(()))((,.四、证明题(10分)分的秩为,,,,所以向量组的秩为,,又分等价,,,,,与向量组,,所以向量组分可逆,矩阵分证明:1086111111011111114111111213212112121321211212121211rrr r r r r r ααααααααααααααααααααααααααααααααα++++++++++++⎪⎪⎪⎪⎪⎭⎫⎝⎛∴≠=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++,。

相关文档
最新文档