复合材料共混改性的增韧机理研究

复合材料共混改性的增韧机理研究
复合材料共混改性的增韧机理研究

复合材料界面与设计

先进聚合物复合材料界面设计与表征进展 姓名:卢刚班级:材研1005 学号:104972100244 摘要:本文简述了界面的形成与作用机理,着重介绍了聚合物基复合材料界面改进的几种方法。 关键词:聚合物;复合材料;界面 Abstract:This paper briefly describes the formation of the interface and the mechanism of action,mainly introduces some methods about the UI improvement of the polymer-based composites. 1引言 聚合物基复合材料是由纤维和基体结合为一个整体,使复合材料具备了原组成材料所没有的性能,并且由于界面的存在,纤维和基体所发挥的作用,是各自独立而又相互存在的。 界面是复合材料组成的重要组成成分,它的结构与性能,以及粘合强度等因素,直接关系到复合材料的性能。所以,复合材料界面问题的研究有着十分重要的意义。 现代科学的发展为复合材料界面的分析表征提供了强有力的手段。扫描电镜、红外光谱、紫外光谱、光电子能谱、动态力学分析、原子粒显微镜等,在复合材料界面分析表征中得到充分利用,为揭示界面的本质、丰富界面的理论做出了重要贡献。 2界面的形成与作用机理 2.1界面的形成 复合材料体系对界面要求各不相同,它们的成形加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为两个阶段:第一阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程。在复合材料的制备过程中,要求组份间能牢固的结合,并有足够的强度。要实现这一点,必须要使材料在界面上形成能量最低结合,通常都存在一个液态对固体的相互浸润。所谓浸润,即把不同的液滴放到不同的液态表面上,有时液滴会立即铺展开来,遮盖固体的表面,这一现象称为“浸润”。

复合材料的界面改性

界面及界面改性方法 界面结合强度低,则增强纤维与基体很容易分离,在材料的断面可观察到脱粘、纤维拔出、纤维应力松弛等现象,起不到增强作用;但界面结合强度太高,则增强纤维与基体之间应力无法松弛,形成脆性断裂。 在研究和设计界面时,不应只追求界面粘结而应考虑到最优化和最佳综合性能。 1、聚合物基复合材料界面 界面结合有机械粘接与润湿吸附、化学键结合等。 大多数界面为物理粘结,结合强度较低,结合力主要来自如色散力、偶极力、氢键等物理粘结力。 偶联剂与纤维的结合(化学反应或氢键)也不稳定,可能被环境(水、化学介质等)破坏。一般在较低温度下使用,其界面可保持相对稳定。增强剂本身一般不与基体材料反应。 聚合物基复合材料界面改性原则: 1)在聚合物基复合材料的设计中,首先应考虑如何改善增强材料与基体间的浸润性。一般可采取延长浸渍时间,增大体系压力、降低熔体粘度以及改变增强体织物结构等措施。2)适度的界面结合强度 3)减少复合材料中产生的残余应力 4)调节界面内应力和减缓应力集中 聚合物基体复合材料改性方法 1、颗粒增强体在热塑性聚合物基体加入两性相溶剂(增容剂),则能使液晶微纤与基体间形成结合良好的界面 2、纤维增强体复合材料界面改善 a)纤维表面偶联剂 b)涂覆界面层 c)增强体表面改性 2、金属基复合材料界面 金属基体在高温下容易与增强体发生不同程度的界面反应,金属基体多为合金材料,在冷却凝固热处理过程中还会发生元素偏聚、扩散、固溶、相变等。 金属基复合材料界面结合方式有化学结合、物理结合、扩散结合、机械结合。总的来讲,金属基体复合材料界面以化学结合为主,有时也会出现几种界面结合方式共存。 金属基体复合材料的界面有3种类型:第一类界面平整、组分纯净,无中间相。第二类界面不平直,由原始组分构成的凸凹的溶解扩散型界面。第三类界面中含有尺寸在亚微米级的界面反应物。多数金属基复合材料在制备过程中发生不同程度的界面反应。 金属基复合材料的界面控制研究方法: 1)对增强材料进行表面涂层处理在增强材料组元上预先涂层以改善增强材料与基体的浸润性,同时涂层还应起到防止发生反应的阻挡层作用。 2)选择金属元素改变基体的合金成分,造成某一元素在界面上富集形成阻挡层来控制界面反应。尽量避免选择易参与界面反应生成脆硬界面相、造成强界面结合的合金元素 3)优化制备工艺和参数金属基体复合材料界面反应程度主要取决于制备方法和工艺参数,因此优化制备工艺和严格控制工艺参数是优化界面结构和控制界面反应的有效途径。 3、陶瓷基复合材料的界面 陶瓷基体复合材料指基体为陶瓷材料的复合材料。增强体包括金属和陶瓷材料。界面结合方式与金属基体复合材料基本相同,有化学结合、物理结合、机械结合和扩散结合,其中以化学结合为主,有时几种结合方式同时存在。 陶瓷基体复合材料界面控制方法

聚氯乙稀共混改性综述

聚氯乙稀共混改性综述 2008-11-30 01:22:41| 分类:高分子化学| 标签:聚氯乙烯共混改性丁腈橡胶|字号大中小订阅 衡阳师范学院湖南衡阳(421008) 摘要:本文就近年来国内外聚氯乙烯(PVC)共混改性的研究状况进行综述和总结,并简要阐述了高聚物共混改性的原理,并且介绍了PVC的一些共混高聚物以及其性能特点。 关键词: 聚氯乙烯共混改性丁腈橡胶 前言 聚氯乙烯(PVC) 树脂是一种常用的高分子合成材料。自1936 年工业化以后,其年产量日益增加, 目前,全世界PVC产量仅次于聚乙烯(PE),位居世界第二。据预测,其需求量以及生产规模还将继续扩大[1,2]。聚氯乙烯(PVC)是一种性能优良、用途广泛而价格又较为低廉的通用塑料,有良好的耐化学性、绝缘性、透光性、耐腐蚀、耐磨损、价格低廉、材料来源广泛等优点而得以广泛应用[3]。加入增塑剂可制得柔软耐曲折聚氯乙烯制品。广泛用于制作各种管材、异型材、板材和薄膜。PVC的最大缺陷是热稳定性差,在100℃即开始分解并放出氯化氢,当温度超过150℃后分解更加迅速。PVC的Tg为87℃左右,熔融温度约为210℃,加工成型一般要求在熔融状态下进行,聚氯乙烯因受热分解,给加工造成困难。聚氯乙烯分解后放出氯化氢,使主链产生双键。双键属于不稳定结构,可进一步分解或交联,使聚氯乙烯力学性

能下降。同时还伴有颜色变化,严重影响产品质量。聚氯乙烯韧性差,受冲击后脆裂,缺口冲击强度只有2.2kJ/m2,影响使用性能。聚氯乙烯耐低温性差,硬质聚氯乙烯使用温度一般不得低于-15℃,软质聚氯乙烯也只有-30℃。超过使用极限温度,聚氯乙烯制品迅速变硬变脆,以致无法使用。因其耐热性、热稳定性、缺口冲击性、加工性较差且易断裂,[4,5]因此,近年来.有关学者开展了大量的改性方面的研究工作,PVC的改性方法主要有化学接枝、共聚法和物理共混法等。物理改性法即通过机械方法将溶液或乳液等进行混合改性。由于其方法简单,且效果较好的优点,因此人们对其进行了大量的研究。本文对目前 PVC共混改性的研究进展作综述。 1、PVC/NBR共混体系 NBR是丙烯腈(AN)与丁二烯的无规共聚物,通常作为耐油橡胶使用。NBR是一种极性聚合物,与PVC极性相似,其极性随NBR中AN 的增多而加强,与PVC的相容性也相应提高。采用动态硫化技术制备的NBR/PVC热塑性弹性体(TPE)具有硬度低、弹性高、永久变形小、高温下耐油、耐老化、耐臭氧、耐化学药品等优点。彭建岗[6]等采用动态硫化法制备了具有阻燃、抗静电性能的TPE,发现橡塑共混比、导电炭黑、阻燃剂、硫化剂用量都对弹性体的性能有较大影响,返炼对弹性体性能影响不大。他们发现最佳配方组成为:NBR60份,PVC40份,炭黑30份,氢氧化铝40份,硫磺1.3份。王炼石等[7]用交联包覆法制备出粉末NBR(PNBR),并研究了其性质及用量对PVC/PNBR体系

高性能基体树脂 复合材料增韧新途径

高性能基体树脂和复合材料增韧新途径前言:材料复合化是新材料技术的重要发展趋势之一。所谓高性能复合材料,是指具有高比模量、高比强度、优异的耐高温性能及多功能的复合材料。高性能复合材料主要以高性能纤维为增强体的复合材料为主,基体树脂作为高性能复合材料的重要组成部分,其性能及成本对高性能复合材料的设计、制备、性能、加工具有重要意义。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。高性能热固性树脂是目前使用最广泛的先进复合材料基体,其复合材料具有优异的力学性能,可在恶劣的环境下长期使用。环氧树脂是聚合物基复合材料中应用最广泛的基体树脂之一。EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点。但环氧树脂固化后交联密度高,呈三维网状结构,存在内应力、质脆、耐疲劳性、耐热性、耐冲击性差等不足,以及剥离强度、开裂应变低和耐湿热性差等缺点,加之表面能高,在很大程度上限制了它在某些高技术领域的应用。因此,对环氧树脂的增韧研究一直是人们改性环氧树脂的重要研究课题之一。 一、高性能基体树脂及其复合 1. 高性能基体树脂 材料是先进科技发展的重要物质基础,以高科技含量的航空航天领域为例,新型航空、航天飞行器的诞生往往建立在先进新材料研制的基础上,航空、航天飞行器性能的突破很大程度上受到材料发展水平的制约[1]。高性能树脂基复合材料以其轻质、高比强、高比模、高耐温和极强的材料一性能可设计性而成为发展中的高技术材料之一,其在航空、航天工业中的应用也显示出了独特的优势和潜力,是航空、航天材料技术进步的重要标志。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。 典型的高性能热塑性树脂包括热塑性聚酰亚胺、聚酰胺、聚醚砜、液晶聚酯、聚醚醚酮等。由于高性能热塑性树脂一般具有高的熔点和熔体黏度,作为复合材料基体使用时成型工艺性差,高温使用时易发生蠕变,极大地限制了其作为复合材料基体树脂的使用[2]。

木塑复合材料界面改性

木塑复合材料界面改性 摘要:介绍了聚丙烯、聚乙烯、聚氯乙烯、聚苯乙烯制备的木塑复合材料界面改性的研究进展,阐述了界面改性对木塑复合材料性能的影响,并对木塑复合材料的应用前景进行了展望。 木塑复合材料是近年来兴起的环保型复合材料,由聚合物基体和木纤维(木粉、竹粉、稻壳、秸秆等)按一定比例加工而成。制备木塑复合材料的聚合物基体有热固性聚合物和热塑性聚合物,而热塑性聚合物可回收利用、连续生产,是制备木塑复合材料的主要聚合物基体。常用的热塑性聚合物有聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)等。由于热塑性木塑复合材料中木纤维的填充量较高,聚合物基体与木纤维之间的界面相容性较差,影响了木塑复合材料的力学性能;此外,氢键的作用也导致木纤维之间的作用力增强,从而影响木纤维在聚合物基体中的分散。因此如何改善聚合物基体与木纤维之间的界面相容性是制备性能优良的木塑复合材料的关键。木塑复合材料的界面改性主要通过改性木纤维或添加界面改性剂的方法进行。木纤维的改性包括物理改性和化学改性。物理改性(如干燥、交联)的主要作用是增强纤维素表面与聚合物基体的啮合;化学改性主要是将纤维素表面的羟基反应掉,形成化学键,如将木纤维表面的羟基进行乙酰化以降低木纤维的表面活化能,或利用相容剂的羧基或酰基与纤维素中的羟基发生酯化反应[1],如马来酸酐接枝PP(PP-g-MAH)、异氰酸酯、氯化苯甲酰等。从改性效果来看,化学改性方法明显优于物理改性方法。添加界面改性剂改善木塑复合材料界面相容性是使用较多的方法。界面改性剂通常一端含有极性基团,另一端含有非极性基团。极性基团能与木纤维的极性部分亲和,而非极性基团则和极性较弱的聚合物基体亲和。界面改性剂主要是起桥梁的作用,通过降低两相间的界面能,促进木纤维在树脂相中的分散,降低木纤维之间的凝聚力,提高聚合物基体的分散能力;并且加强了高分子链与木纤维间的机械缠结以增强两者的界面亲和力,从而提高复合材料的力学性能。常用的界面改性剂有马来酸酐接枝聚烯烃、硅烷偶联剂、钛酸酯、铝酸酯等[2]。木塑复合材料的界面改性方法多种多样。木纤维的改性或界面改性剂的合成可以在加工木塑复合材料之前独立进行,也可以在加工过程中原位进行,从工业化生产的角度来看,越简单的界面改性方法越有利于降低成本和推广应用。 1热塑性木塑复合材料界面改性的研究进展 1.1PP基木塑复合材料的界面改性 PP是常用的制备木塑复合材料的聚合物之一,但它是非极性聚合物,与木纤维的界面相容性较差。PP-g-MAH是常见的PP基木塑复合材料的界面改性剂[3-5],因为马来酸酐价格便宜,界面改性效果良好,而且PP-g-MAH可采用反应性挤出,生产效率高。PP-g-MAH能降低木纤维的表面自由能并降低纤维之间的吸附力,增强聚合物基体的渗透能力,改善纤维的分散和取向,通过机械啮合提高界面黏合力。PP-g-MAH与木纤维表面的羟基在碱性催化剂作用下能发生酯化反应,在聚合物与木纤维之间形成桥梁,从而提高界面黏合力[6]。此外,采用马来酸酐对木纤维进行接枝改性也是改善木塑复合材料界面相容性的重要方法。Nenkova等[7]在含有10%马来酸酐的丙酮溶液中采用过氧化二苯甲酰(BPO)和过氧化二异丙苯(DCP)引发马来酸酐对木纤维进行表面改性,木纤维和马来酸酐发生化学反应,增加了界面黏合力,制得的PP基木塑复合材料的力学性能有了较大的提高。Demir等[8]分别采用3-氨基丙基三乙氧基硅烷(AS)、三甲氧基甲硅烷基丙硫醇(MS)和PP-g-MAH作为PP/丝瓜纤维复合材料的界面改性剂,改善了聚合物与丝瓜纤维的相容性,提高了其力学性能和抗吸湿性。AS和MS改性后的复合材料界面黏合力增强,其中MS改性的复合材料力学性能较高。近年来也有研究者采用固相接枝法[9]或熔融接枝法[10]开发出多种单体的PP接枝共聚物,其具有接枝率高、界面改性效果好等优点,是木塑复合材料优良的界面改性剂。

聚氯乙烯的阻燃改性研究及应用

目录 1PVC 的组成结构 (3) 2PVC 改性方法 (4) 3PVC 改性的性能指标 (5) 3.1着色性 (5) 3.2迁移性 (5) 3.3耐候性 (6) 3.4稳定性 (6) 3.5电性能 (7) 4 阻燃PVC 的概述 (8) 4.1阻燃PVC的发展 (8) 4.2阻燃PVC 结构与特点 (8) 4.3阻燃PVC性能 (9) 4.4阻燃PVC 加工成型 (10) 4.5阻燃PVC应用 (10) 5PVC 共混阻燃改性材料研究 (12) 5.1二元共混阻燃材料 (12) 5.1.1 PVC/CPE (12) 5.1.2 PVC/CPVC (12) 5.1.3PVC/NBR (13) 5.1.4PVC/EVA (14) 5.2三元共混阻燃材料 (15) 6 结语 (16)

聚氯乙烯的阻燃改性研究及应用 摘要:PVC材料具有成本低、易加工、韧性好等优点, 被广泛使用在建筑中。但由于PVC材料在户外使用过程会受到紫外线照射而发生老化, 所以PVC材料的加工过程会添加一些增塑剂等助剂, 导致材料的阻燃性能降低, 而无法满足建筑材料防火阻燃等级的要求。因此通过添加阻燃剂来改善材料PVC的阻燃性就显得十分重要。 本文首先介绍了PVC的主要结构其碳原子为SP3杂化,其次介绍了PVC的常用改性方法有:化学改性、填充改性、增强改性、共混改性以及纳米复合改性,引申出了PVC的 阻燃改性的研究,其中阻燃PVC的性能研究当中研究了不同温度下阻燃PVC的形态以及性能趋势。探究了二元共混阻燃材料与三元共混阻燃材料的区别,阐述了PVC阻燃改性 的重要性以及生活中应用在必要性。 关键词:阻燃改性PVC

聚合物基复合材料的界面研究进展

大学研究生课程论文 题目聚合物基复合材料的界面研究进展成绩 专业材料工程 课程名称、代码1512011080405 年级 姓名学号 时间年月 任课教师

聚合物基复合材料的界面研究进展 【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。 【关键词】聚合物;复合材料;综述;增强 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。 复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。 2 无机刚性粒子增强聚合物基复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。 在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低

无机刚性粒子增韧机理

无机刚性粒子增韧机理 刚性粒子增韧技术是制备兼具高刚性和高韧性的聚合物复合体系的有效手段 ,不仅具有重要的理论研究价值 ,而且具有广阔的应用前景和商业价值。 刚性粒子增韧聚合物的实现来源于两方面的贡献 其一是刚性粒子的引入所导致的局部应力状态的改变。通过脱粘、空化、三维应力约束的解除 ,为基体的剪切屈服提供应力条件。 其二是刚性粒子对基体的结晶行为产生影响 ,使晶粒尺寸变小 ,完善程度降低 ,甚至在界面附近形成择优取向的滑移阻力较小的结晶层 ,从而促进基体发生屈服变形。 基于大量的研究结果:最佳的增韧效果是适当的界面粘结强度 ,足够高的填料含量 ,基体较低的结晶度和屈服应力等因素所决定的。 有也有人理解: (a)聚合物受力变形时,刚性无机粒子的存在产生应力集中效应,引发其周围的基体屈服〔空穴、银纹、剪切带〕,这种基体的屈服将吸收大量变形功,产生增靭作用; (b)刚性无机粒子的存在能阻碍裂纹的扩展或钝化、终止裂纹。刚性无机粒子阻碍裂纹扩展的原因是普遍所接受的钉扎效应,即无论是裂纹遇到无机粒子时的钉扎攀越,还是钉扎-裂纹二次引发效应,都将使裂纹扩展的阻力增大,消耗变形功。 而无机粒子钝化或终止裂纹的原因是两相界面的部分受力脱黏形成空穴,从而使裂纹钝化而不致发展成破坏性开裂。众多的研究结果表明,只有超细的分散良好的无机填料才能对塑料基体进行有效的增韧。 如果还是不好理解,就当成炭黑能增韧增强橡胶就可以了。当然碳酸钙和这个效果差一些,到底差多少就和各家的技术有关了。 南京塑泰无机刚性粒子增韧母改性PPJ340性能 序号 1 2 3 4 母料品种及用量/ % 0 10 20 30 悬臂梁缺口冲击强度/(kJ/m2) 10.5 53.7 58.3 65.1 简支梁缺口冲击强度/(kJ/m2) 16.9 18.8 21.6 23.3 注:材料组份经简单混合后直接注射制样,模具温度50~60℃,PPJ340为扬子石化产共聚PP注塑料----当然其它PP以及聚乙烯都是可以的,上面只是以J340为例测试的数据。

NBR增韧改性PVC

NBR增韧改性PVC

聚氯乙烯(PVC)是最早工业化、产量位居第二的通用塑料,具有耐油、耐酸碱、电气性能优良、透光性好、加工成型容易等优点。但其热稳定性欠佳,导致加工性能恶化,硬而脆,冲击强度低,耐老化性、耐寒性差。PVC共混改性的方法很多,可用的添加剂主要有聚酯树脂、PMMA、AS树脂、加工改进型ACR、NBR、CR、CPE、EVA、EVA-CO共聚物、抗冲改进型ACR、ABS、MBS、PE、PP等。NBR增韧改性PVC就是通过加入一定品种、一定用量的NBR与PVC共混,以提高PVC的冲击强度。NBR改性PVC所得共混物因具有优异的韧性、弹性、耐油性及易加工成型性而倍受青睐,在PVC改性中占据着极其重要的地位。最早人们采用NBR与PVC直接机械共混,随着NBR/PVC共混方法的深入研究,又开发出乳液共混法。本文所提到的方法都是采用机械共混法。 一、NBR增韧改性PVC的开发背景PVC是极性塑料,人们很自然首先想到用极性的NBR做为它的增韧改性剂。NBR 作为丁二烯与丙烯腈的共聚物,不仅具有耐油、耐老化及耐磨等优点,且与PVC相容性好,因而得到广泛的应用。市场上已有块状、粉状、液体NBR销售,它们各自又有普通、羧基、羟基NBR之类别,还可与各种添加剂(如改性膨润土等)制成性能各异的NBR,为PVC的增韧改性提供了非常广泛的原料选择余地。NBR/PVC两者的相容性还可由NBR中丙烯腈的含量来调节,NBR的极性随丙烯腈含量的增加而增强。当丙烯腈含量为40%

时,两者相容性最佳;当丙烯腈含量为20%左右时,它与PVC 共混物的冲击强度最高。NBR与PVC能很好地共混,引入动态硫化技术,利用开炼机制成的NBR/PVC型热塑性硫化胶(TPV),经透射电镜观察,它呈现出明显的两相结构:交联的丁腈橡胶分散相分散于PVC连续相中。由于共混物的力学性能受硫化体系(以树脂硫化体系为宜)和加工条件影响,该共混物压缩永久变形、拉断永久变形、耐油等主要性能均优于简单机械共混物,该共混物是假塑性流体。NBR增韧改性PVC具有加工成型简单、产品性能稳定、增韧改性效果明显、原料选择范围广泛等优点,因而被大量使用。NBR改性PVC已日趋成熟,但NBR 属于不饱和橡胶,用它改性的PVC耐候性仍不理想,但通过硫化会有所改善。 二、NBR增韧改性PVC的机理采用NBR增韧改性PVC 时,由于其相容性好,NBR相易形成包覆有PVC的细胞状结构,并分散于PVC连续相中形成“海岛”结构。连续的PVC相保持材料的力学特征,分散于PVC相中的细胞状NBR相形成材料的应力集中点。当材料受到冲击时,应力集中于NBR橡胶相周围,从而诱发产生银纹和剪切带并吸收能量,银纹的发展遇到下一个橡胶粒子时而终止,从而防止银纹发展成破坏性的裂缝。细胞状橡胶相的形成,相当于扩大了NBR的作用,因而用NBR 增韧改性PVC效果明显 三、增韧改性效果的表征与测量增韧改性效果一般用冲

环氧树脂增韧途径与机理

环氧树脂增韧途径与机理 环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。 一、序言 目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性; 用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性; 通过改变交联网络的化学结构以提高网链分子的活动能力来增韧; 控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。 近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(I PN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。 随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。 采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。使用较多的有聚醚砜(P ES)、聚砜(P S F)、聚醚酰亚胺(P EI)、聚醚醚酮(PE EK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。 二、热塑性树脂增韧环氧树脂 1、热塑性树脂增韧方法 未改性的PE S对环氧的增韧效果不明显,后来实验发现两端带有活性反应基团的P ES 对环氧树脂改性效果显著。如苯酚、羟基封端的P E S可使韧性提高100%;双氨基封端、双羟基封端的P E S也是有效的改性剂;环氧基封端的PE S由于环氧基能促进相互渗透,因而也提高了双酚A型环氧树脂的韧性。以二氨基二苯砜为固化剂,P E S增韧的环氧树脂

PP共混改性配方大全精编版

PP共混改性配方大全 聚丙烯是目前用量最大的通用塑料之一,但较高的结晶度也给 PP造成低温韧性差、成型收缩率大和缺口敏感性大等缺点,在一定 程度上限制了其更广泛的应用。共混改性是PP增韧的最有效途径。 它是利用组份之间的相容性或反应共混的原理,将两种或两种以上的聚合物与助剂在一定温度下进行机械共混,最终形成一种宏观上均匀,微观上相分离的新材料。通过对PP的共混故性,可以使其综合性能 大大提高,从而和工程塑料及聚合物合金在众多应用领域里竞争。 PP共混改性使用的主要共混物物及改性效果如下表: PP 接下来就是干货满满的具体改性配方和工艺啦! 1、PP/LDPE共混改性 配方 树脂PP100;相容剂PE-g-MAH5;LDPE20;润滑剂HSt0.3; 加工工艺 将PP与PE、相容剂及助剂按配方比例混合、搅拌、挤出造粒,制成改性材料。挤出机料筒温度为:一段210℃,二段215℃,三段210℃;螺杆长径比为25:1;螺杆转速为120~160r/min。 性能 PP与PE共混,可改善PP的韧性,增大低温下落球冲击强度。按配方比例的共混材料的屈服应力13.6MPa;屈服应变率为12.3%,断裂应力为4.78MPa;断裂应变率为114.6%。

2、PP/HDPE共混改性 配方 树脂PP57.35;抗氧剂10760.2;HDPE40;PEPQ0.2;交联剂叔丁基过氧基异丙苯0.15;加工助剂硬脂酸镁0.1;填充剂硅灰石2; 加工工艺 在常温常压下,将各组分按配方比例在高速混合机中混合10min,然后采用双螺杆挤出机进行熔融共混,挤出造粒。挤出温度150-220℃,螺杆转速为300r/min,经切粒、干燥工序制得PP/HDPE共混改性材料。 性能 拉伸强度34.8MPa,悬臂梁冲击强度49.3J/m。该材料表面消光效果良好,可用于包装、日用品和建筑材料等领域。 3、PP/LLDPE共混改性 配方 树脂PP(EPF30R)60-70;钛酸酯偶联剂(ND2-311)适量;LLDPE15-20;抗氧剂增韧剂POE(8150)5~10;光稳定剂适量;填充剂滑石粉(平均粒径12μm)10~15; 加工工艺 等高速混合机预热至110℃,加入一定量的无机填料,低速搅拌15min后,分三次加入填料质量分数为2%的偶联剂,每次加入偶联剂后,高速搅拌5min,然后放出填料备用。按配方比例准确称取PP、PE、POE、填料和其他助剂,混合后加入双螺杆挤出机料斗中,挤出

陶瓷基复合材料增韧机制的研究现状及展望

陶瓷基复合材料增韧机制的研究现状及展望 现代陶瓷材料具有耐高温、硬度高、耐磨损、耐腐蚀及相对密度轻等许多优良的性能。但它同时也具有致命的弱点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。因此,陶瓷材料的强韧化问题便成了研究的一个重点问题。陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面需要吸收表面能以外,几乎没有其他吸收能量的机制,这就是陶瓷脆性的本质原因。人们经过多年努力,已探索出若干韧化陶瓷的途径包括纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷等。这些增韧方法的实施,使陶瓷材料的韧性得到了较大的提高,使陶瓷材料在高温结构材料领域显示出较强劲的竞争潜力。 一陶瓷基复合材料增韧技术 1、纤维增韧 为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。任何固体材料在载荷作用下(静态或冲击),吸收能量的方式无非是两种:材料变形和形成新的表面。对于脆性集体和纤维来说,允许变形吸收的断裂能也很少。为了提高这类材料的吸能,只能增加断裂表面,即增加裂纹的扩展路径。 纤维的引入不仅提高了陶瓷材料的韧性,更重要的是使陶瓷材料断裂行为发生了根本性变化,由原来的脆性断裂变成了非脆性断裂。纤维增强陶瓷基复合材料的增韧剂之包括基体预压缩应力、裂纹扩展受阻、纤维拔出、纤维桥联、裂纹偏转、相变增韧等。 能用于增强陶瓷基复合材料的纤维种类较多,包括氧化铝系列(包括莫来石)、碳化硅系列、氮化硅系列、碳纤维等,除了上述系列纤维外,目前正在开发的还有BN、TiC、B 4 C等复相纤维。韩桂芳等用浆疗法结合真空浸渗工艺。制备了二维石英纤 维增强多孔Si 3N 4 ·2SiO 2 基复合材料,增加浸渗次数虽不能有效提高复合材料强度, 但却使裂纹偏转因子变小,断裂模式由韧性断裂向脆性断裂转变,断口形貌由纤维成束拔出变成多级拔出。尹洪峰等利用LPCVI技术制备了三维连续纤维增韧碳化硅基复合材料,实验表明复合材料界面相厚度为119mm时,体积密度为2101~2105g/cm3时,用碳纤维T300增韧后的复合材料的弯曲强度为459MPa,断裂韧性为2010MPa/m1/2,断裂功为25170J/m2.国外学者也研究了纤维增强陶瓷材料,并显著的提高了其断裂韧性。 纤维拔出是纤维复合材料的主要增韧机制,通过纤维拔出过程的摩擦耗能,使复合材料的断裂功增大,纤维拔出过程的耗能取决于纤维拔出长度和脱粘面的滑移阻力,滑移阻力过大,纤维拔出长度较短,增韧效果不好,如果滑移阻力过小,尽管纤维拔出长度较长,但摩擦做功较小,增韧效果也不好,反而强度较低。因此,在构组纤维增韧陶瓷基复合材料时,应该考虑:纤维的强度和模量高于基体,同时要求纤维强度具有一定的Weibull分布;纤维与基体之间具有良好的化学相容性和物理性能匹配;界面结合强度适中,既能保证载荷传递,又能在裂纹扩展中适当解离,又能有较长的纤维拔出,达到理想的增韧效果。 2、晶须增韧 陶瓷晶须是具有一定长径比且缺陷很少的陶瓷小单晶,因而具有很高的强度,是一种非常理想的陶瓷基复合材料的增韧增强体。陶瓷晶须目前常用的有SiC晶须, Si 3N 4 晶须和Al 2 O 3 晶须。基体常用的有ZrO 2 ,Si 3 N 4 ,SiO 2 ,Al 2 O 3 和莫来石等。黄政人等采 用30﹪(体积分数)SiC晶须增强莫来石,在SPS烧结条件下材料强度比热压高10﹪

碳纤维表面改性及其在尼龙复合材料中的应用研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第47卷,第7期2019年7月 V ol.47,No.7Jul. 2019 141 doi:10.3969/j.issn.1001-3539.2019.07.026 碳纤维表面改性及其在尼龙复合材料中的应用研究进展 张顶顶1,张福华1,杨吉祥1,李晓峰1,李彦希2,曾骥1 (1.上海海事大学海洋科学与工程学院,上海 201306; 2.浙江四兄绳业有限公司,浙江台州 317016) 摘要:对近几年碳纤维(CF)表面改性及其在CF 增强尼龙(CFRPA)复合材料中的应用研究情况进行了综述,将CF 表面改性方法划分为干法改性、湿法改性和纳米材料多尺度改性三大类。其中干法改性包括气相氧化法、等离子体氧化法和辐照处理;湿法改性包括液相氧化法、阳极电解氧化法和上浆处理法;纳米材料多尺度改性包括石墨烯、碳纳米管等纳米材料改性。比较了各种表面改性方法的优缺点,并对CFRPA 复合材料中CF 表面改性技术的发展进行了展望。 关键词: 碳纤维;尼龙;复合材料;界面结合;表面改性中图分类号:TQ327.3 文献标识码:A 文章编号:1001-3539(2019)07-0141-06 Research Progress on Surface Modification of Carbon Fiber and Its Application in Polyamide Composites Zhang Dingding 1, Zhang Fuhua 1, Yang Jixiang 1, Li Xiaofeng 1, Li Yanxi 2, Zeng Ji 1 (1. College of Ocean Science and Engineering , Shanghai Maritime University , Shanghai 201306, China ; 2. Zhejiang Four Brothers Rope Co. Ltd., Taizhou 317016, China) Abstract :Research situations of surface modification of carbon fiber (CF) and its application in CF reinforced polyamide (CFRPA) composites in recent years were reviewed. Accordingly ,the surface modi ?cation of CF can be classi ?ed into dry modi ?ca-tion methods ,wet modi ?cation methods and nanomaterials multi-scale modi ?cation methods. The dry modi ?cation methods include gas phase oxidation ,plasma oxidation and irradiation treatment ,the wet modi ?cation methods include liquid phase oxidation ,anodic electrolytic oxidation and sizing treatment , the nanomaterials multi-scale modi ?cation methods include graphene modi ?cation and carbon nanotube modi ?cation. The advantages and disadvantages of various surface modi ?cation methods were compared ,and the development of CF surface modi ?cation technology in CFRPA composites was prospected. Keywords :carbon ?ber ;polyamide ;composite ;interfacial bonding ;surface modi ?cation 碳纤维(CF)增强热塑性树脂复合材料具有轻质高强,耐腐蚀和出色的热稳定性等优点,已广泛应用于航空航天、汽车、建筑等行业[1–6]。尼龙(PA)作为一类典型的热塑性树脂与CF 形成的复合材料具有优异的综合性能。CF 增强PA (CFRPA)复合材料与热固性复合材料相比具有可回收性、易于加工、成型时间短、抗冲击性好等优点[7–9]。CFRPA 复合材料的力学性能首先取决于CF 和PA 树脂基体自身性质。同时,纤维与基体之间的界面粘结性很大程度上决定了复合材料的最终力学性能。 然而,未经任何处理CF 表面是非极性的[10–11],表面活性官能团极少、化学惰性较强,但PA 树脂基体因含有大量的 酰胺键通常表现为极性,造成了CF 与PA 树脂基体之间浸润性较差,界面粘结力较弱,限制了CFRPA 复合材料在更多领域的应用。因此,要想扩大CFRPA 复合材料应用范围,获得力学性能更为优异的CFRPA 复合材料就必须对CF 表面进行改性。通过对CF 表面改性可以有效增大CF 表面的粗糙度,同时在其表面引进大量的活性官能团,改善纤维与基体之间的浸润性,进而提高纤维表面与基体之间的机械嵌锁力和化学键合力,使得所受应力在纤维与基体界面之间得到有效传递。 基于PA 复合材料的CF 表面改性方法可以分为以下三大类:干法改性、湿法改性和纳米材料多尺度改性。干法 基金项目:上海市自然科学基金项目(15ZR1420500) 通讯作者:张福华,博士,副教授,主要从事复合材料应用基础研究 E-mail :fhzhang@https://www.360docs.net/doc/6111300128.html, 收稿日期:2019-03-12 引用格式:张顶顶,张福华,杨吉祥,等.碳纤维表面改性及其在尼龙复合材料中的应用研究进展[J].工程塑料应用,2019,47(7):141–146. Zhang Dingding ,Zhang Fuhua ,Yang Jixiang ,et al. Research progress on surface modification of carbon fiber and its application in polyamide composites[J]. Engineering Plastics Application ,2019,47(7):141–146.

陶瓷基复合材料增强机制机理

陶瓷基复合材料增强机制、机理的研究现状及展望 陶瓷基复合材料(CMC),一般是指相变增韧、颗粒增韧陶瓷和纤维及晶须增韧陶瓷材料。这是目前备受重视的新型耐高温结构材料。本文将介绍陶瓷基复合材料这种新型复合材料的机理和研究现状及展望。 与常规材料和非陶瓷复合材料相比,陶瓷材料具有耐高温、抗腐蚀、超硬度抗氧化和抗烧结等优异性能。作为高温结构材料,尤其作为航空航天飞行器需要承受极高温度的特殊部位结构用材料具有很大的潜力。因此世界各国都把结构陶瓷看作是对未来工业革命有重大作用的高技术新材料而给以重点研究和发展并相继开展了陶瓷汽车发动机、柴油机和航空发动机等大规模高温陶瓷热机研究计划,出现了陶瓷热,然而,常规结构陶瓷还存在缺陷和问题,主要是材料的脆性,可靠性不高等,应用于现在科技领域还有许多问题急需研究解决。陶瓷基复合材料引起人们关注的重要原因就在于他可以改善陶瓷基材料的力学性能,特别是脆性,因此陶瓷基复合材料的发展和研究将成为陶瓷大规模应用计划取得成功的关键。 陶瓷基复合材料是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷。陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。 连续纤维增强复合材料是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。陶瓷材料具有熔点高、密度低、耐腐蚀、抗氧化和抗烧蚀等优异性能,被广泛用于航天航空、军事工业等特殊领域。但是陶瓷材料的脆性大、塑韧性差导致了其在使用过程中可靠性差,制约了它的应用范围。而纤维增强陶瓷基复合材料方面克服了陶瓷材料脆性断裂的缺点,另一方面保持了陶瓷本身的优点。 1.材料的选择 基体选择 用于连续纤维增强陶瓷基复合材料的基体材料有很多种, 与纤维之间的面相容性是衡量其好坏的重要指标之一, 此外还应考虑其弹性模量、挥发性、抗蠕变和抗氧化等性能。基体材料主要有以下3类: 第1类是玻璃及玻璃陶瓷基体:此类基体的优点是可以在较低温度下制备纤维( 特别是N-icalon纤维) 不会受到热损伤, 因而具有较高的强度保留率; 同时, 在制备过程中可通过基体的粘性流动来进行致密化, 增韧效果好。但其致命的缺点是

第十五章-复合材料的界面及界面优化设计

复合材料
第三部分 复合材料的增强材料
第十五章 复合材料的界面及界面优化设计
教学目的:通过本章的学习,掌握复合材料的界面及 作用,聚合物基复合材料的界面及改性方法,几种聚 合物基复合材料的形成和改善界面的途径,界面表征 的方式。 重点内容: 1、复合材料的界面及界面改性方法。 2、复合材料改善界面的途径。 难点:复合材料界面与性能的关系。 熟悉内容:复合材料界面的研究内容及方法。
1
2
主要英文词汇:
Composite material---复合材料 Composite interface---复合材料界面 Residual stress of composite interface---复合材料界面 残余应力 Reaction of composite interface---复合材料界面反应 Modification of composite interface---复合材料的界 面改性 Mechanics of composite interface---复合材料界面力学
3
Bonding strength of composite interface---复合材料界面 黏结强度 Optimum design of composite interface---复合材料界面 优化设计 Compatibility of composite interface---复合材料界面相 容性 Mechanics of composite---复合材料力学 Micromechanics of composite---复合材料细观力学
4
参考教材或资料:
1、复合材料学----周祖福 (武汉理工大学出版社,2004年) 2、现代复合材料----陈华辉 邓海金 李 明 (中国物质出版社,1998) 3、复合材料概论----王荣国 武卫莉 (哈尔滨工业大学出版社,1999) 4、复合材料--------吴人洁(天津大学出版社,2000) 5、复合材料科学与工程---倪礼忠,陈麒(科学出版社,2002) 6、复合材料及其应用—尹洪峰,任耘(陕西科学技术出版社,2003) 7、高性能复合材料学---郝元恺,肖加余 (化学工业出版社,2004) 8、新材料概论--- 谭毅, 李敬锋(冶金工业出版社,2004) 9、先进复合材料----鲁 云 朱世杰 马鸣图 (机械工业已出版社,2004) 10、复合材料--------周曦亚(化学工业出版社,2005)
5
15、复合材料的界面及界面优化设计
21世纪对材料要求多样化,复合材料开发有很大发 展,复合材料整体性能的优劣与界面结构和性能关系密 切。
15.1复合材料的界面概念
复合材料的界面是指基体与增强相之间化学成分有显 著变化的、构成彼此结合的、能起载荷传递作用的微小区 域。 复合材料的界面是一个多层结构的过渡区域,约几个 纳米到几个微米。大量事实证明,复合材料的界面 复合材料的界面实质上 界面相 是纳米级以上厚度的界面层(Interlayer)或称界面相 (Interphase)。
6
1

相关文档
最新文档