实验一算术逻辑运算实验
计算机组成原理实验(接线、实验步骤)
计算机组成原理实验(接线、实验步骤)实验⼀运算器[实验⽬的]1.掌握算术逻辑运算加、减、乘、与的⼯作原理;2.熟悉简单运算器的数据传送通路;3.验证实验台运算器的8位加、减、与、直通功能;4.验证实验台4位乘4位功能。
[接线]功能开关:DB=0 DZ=0 DP=1 IR/DBUS=DBUS接线:LRW:GND(接地)IAR-BUS# 、M1、M2、RS-BUS#:接+5V控制开关:K0:SW-BUS# K1:ALU-BUSK2:S0 K3:S1 K4:S2K5:LDDR1 K6:LDDR2[实验步骤]⼀、(81)H与(82)H运算1.K0=0:SW开关与数据总线接通K1=0:ALU输出与数据总线断开2.开电源,按CLR#复位3.置数(81)H:在SW7—SW0输⼊10000001→LDDR2=1,LDDR1=0→按QD:数据送DR2置数(82)H:在SW7—SW0输⼊10000010→LDDR2=0,LDDR1=1→按QD:数据送DR1 4.K0=1:SW开关与数据总线断开K1=1:ALU输出与数据总线接通5. S2S1S0=010:运算器做加法(观察结果在显⽰灯的显⽰与进位结果C的显⽰)6.改变S2S1S0的值,对同⼀组数做不同的运算,观察显⽰灯的结果。
⼆、乘法、减法、直通等运算1.K0K1=002.按CLR#复位3.分别给DR1和DR2置数4.K0K1=115. S2S1S0取不同的值,执⾏不同的运算[思考]M1、M2控制信号的作⽤是什么?运算器运算类型选择表选择操作S2 S1 S00 0 0 A&B0 0 1 A&A(直通)0 1 0 A+B0 1 1 A-B1 0 0 A(低位)ΧB(低位)完成以下表格ALU-BUS SW-BUS# 存储器内容S2S1S0 DBUS C输⼊时:计算时:DR1:01100011DR2:10110100(与)DR1:10110100DR2:01100011(直通)DR1:01100011DR2:01100011(加)DR1:01001100DR2:10110011(减)DR1:11111111DR2:11111111(乘)实验⼆双端⼝存储器[实验⽬的]1.了解双端⼝存储器的读写;2.了解双端⼝存储器的读写并⾏读写及产⽣冲突的情况。
实验一运算器实验
实验一运算器实验简介:运算器是数据的加工处理部件,是CPU的重要组成部分,各类计算机的运算器结构可能有所不同,但是他们的最基本的结构中必须有算术/逻辑运算单元、数据缓冲寄存器、通用寄存器、多路转换器的数据总线的逻辑构件。
一、实验目的1、了解算术逻辑运算器(74LS181)的组成和功能。
2、掌握基本算术和逻辑运算的实现方法。
二、实验内容运用算术逻辑运算器74LS181 进行有符号数/无符号数的算术运算和逻辑运算。
三、实验元器件1、算术逻辑运算器(74LS181)。
2、三态门(74LS244、74LS245)及寄存器(74LS273、74LS373)。
3、二进制拨码开关SW-SPDT四、实验原理图1.1运算器电路原理图本实验的算术逻辑运算器电路如图 1.1所示:输入和输出单元跟上述实验相同:缓冲输入区八位拨码开关用来给出参与运算的数据,并经过三态门74LS245 和数据总线BUS相连,在控制开关SW_BUS处于高电平时允许输出到数据总线。
运算器则由两个74LS181以串行进位形式构成8位字长的算术/逻辑运算单元(ALU):ALU_L4B的进位输出端CN+4与ALU_H4B的进位输入端CN相连,使低4位运算产生的进位送进高4位运算中。
其中ALU_L4B为低4位运算芯片,参与低四位数据运算,ALU_H4B为高4位运算芯片,参与高四位数据运算。
ALU_L4B的进位输入端CN通过三态门连接到二进制开关CN,控制运算器仅为,ALU_H4B的进位输出端CN+4经过反相器74LS04,通过三态门接到溢出标志位CF指示灯(CF=1,即ALU运算结果溢出)。
ALU 除了溢出标志位CF外,还有两个标志位:零标志位ZF(ZF=1,即ALU运算结果为0,ZF对应发光二极管点亮)和符号标志位SF(SF=1,即运算结果为负数;SF=0 即运算结果为正数或0对应发光二极管点亮)。
图 1.2 运算器通路图ALU 的工作方式可通过设置两个74181芯片的控制信号(S0、S1、S2、S3、M、CN)来实现, 其74LS181逻辑功能表由表1-1给出,运算器ALU 的输出经过三态门(两片74LS244或一片74LS245)和数据总线BUS 相连。
算术逻辑运算实验总结
算术逻辑运算实验总结一、引言在现代社会中,算术逻辑运算是一项基本且必不可少的能力。
它们不仅在日常生活中起着重要作用,也广泛应用于各个领域的科学和工程。
为了提高算术逻辑运算的能力,我进行了几项实验,并总结了一些重要的经验和教训。
二、实验一:基本算术运算在这个实验中,我进行了一系列的基本算术运算,如加法、减法、乘法和除法。
通过这些运算,我更加熟悉了数字和运算的关系,并且提高了我的计算速度和准确性。
通过这个实验,我发现了一些有趣的现象。
首先,我发现加法和减法是最简单的运算,因为它们只涉及到数字的简单相加或相减。
而乘法和除法则需要更多的思考和推理,因为它们涉及到数字的相对大小和关系。
除此之外,在进行算术运算时,我还体会到了一些技巧和方法。
例如,在进行长数列的相加时,可以将它们分成多个小段,然后分别相加,最后再将结果相加。
这样可以降低错误的可能性,同时提高计算的效率。
三、实验二:逻辑运算逻辑运算是另一种重要的运算方式。
在这个实验中,我学习了逻辑运算的基本原理和方法,并进行了一些实际的应用。
首先,我学习了与运算、或运算和非运算的基本规则。
通过这些规则,我可以判断一个命题的真假,或者从若干个命题中得出一个新的结论。
这是在科学和工程中经常用到的一种思维方式。
其次,我了解了逻辑运算在算法设计和编程中的重要性。
在编写程序时,逻辑运算用于判断条件和控制程序的流程。
通过合理地使用逻辑运算,可以使程序更加高效和精确。
实验中,我发现了一些常见的逻辑谬误。
例如,德摩根定律的错误应用会导致逻辑矛盾和错误的结果。
因此,在进行逻辑运算时,我要特别注意各种规则和定律的正确使用。
四、实验三:复杂算术逻辑运算在这个实验中,我尝试了一些更加复杂的算术逻辑运算,如平方根运算、对数运算和三角函数运算。
通过这些运算,我更深入地了解了数学的奥秘和复杂性。
在进行这些运算时,我遇到了一些困难和挑战。
首先,一些运算需要使用特殊的方法和技巧,我要仔细学习和掌握这些技术。
ALU实验报告
算术逻辑单元实验报告一、实验目的1、掌握运算器的工作原理。
2、验证运算器的功能。
二、实验原理算术逻辑单元的主要功能是对二进制数据进行定点算术运算、逻辑运算和各种移位操作。
算术运算包括定点加减乘除运算;逻辑运算主要有逻辑与、逻辑或、逻辑异或和逻辑非操作。
ALU通常有两个数据输入端A和B,一个数据输出端Y 以及标志位等。
三、实验要求1、实验设计目标设计一个16位算术逻辑单元,满足以下要求。
(1)16位算术逻辑单元能够进行下列运算:加法、减法、加1、减1、与、或、非和传送。
用3位运算操作码OP[2..0]进行运算,控制方式如下表所示。
(2)设立两个标志寄存器Z和C。
当复位信号reset为低电平时,将这两个标志寄存器清零。
当运算结束后,在时钟clk的上升沿改变标志寄存器Z和C的值。
运算结果改变标志寄存器C、Z的情况如下:加法、减法、加1、减1运算改变Z、C;与、或、非运算改变Z,C保不变;传送操作保持Z、C不变。
因此在运算结束Z、C需要两个D触发器保存。
(3)为了保存操作数A和B,设计两个16位寄存器A和B。
当寄存器选择信号sel=0时,如果允许写信号write=1.,则在诗中clk的上升沿将数据输入dinput送入A 寄存器;当寄存器选择信号sel=1时,如果允许写信号write=1.,则在诗中clk的上升沿将数据输入dinput送入B寄存器。
(4)算术逻辑单元用一个设计实体完成。
2.顶层设计实体的引脚要求(1)clk对应试验台上的时钟(单脉冲)。
(2)reset对应实验台上的CPU复位信号CPU-RST。
(3)数据输入dinput对应试验台开关SD15~SD0。
(4)允许写信号write对应试验台开关SA5.(5)OP[2..0]对应试验台开关SA2~SA0.(6)寄存器选择信号sel对应试验台开关SA4.(7)16为运算结果result对应实验台上的指示灯A15~A0.(8)Z、C标志位对应试验台上的Z、C指示灯。
计算机组成原理实验报告 算术逻辑运算单元实验
西华大学数学与计算机学院实验报告课程名称:计算机组成原理年级:2011级实验成绩:指导教师:祝昌宇姓名:蒋俊实验名称:算术逻辑运算单元实验学号:312011*********实验日期:2013-12-15一、目的1. 掌握简单运算器的数据传输方式2. 掌握74LS181的功能和应用二、实验原理(1)ALU单元实验构成1、结构试验箱上的算术逻辑运算单元上的运算器是由运算器由2片74LS181构成8字长的ALU 单元。
2、2片74LS373作为2个数据锁存器(DR1、DR2),8芯插座ALU-OUT作为数据输入端,可通过短8芯扁平电缆,把数据输入端连接到数据总线上。
3、运算器的数据输出由一片74LS244(输出缓冲器)来控制,8芯插座ALU-OUT作为数据输出端,可通过短8芯扁平电缆把数据输出端连接到数据总线上。
(2)ALU单元的工作原理数据输入锁存器DR1的EDR1为低电平,并且D1CK有上升沿时,把来自数据总线上的数据打入锁存器DR1。
同样,使EDR2为低电平,并且D2CK有上升沿时,把来自数据总线上的数据打入锁存器DR2。
算术逻辑运算单元的核心是由2片74LS181构成,它可以进行2个8位二进制数的算术逻辑运算,74LS181的各种工作方式可通过设置其控制信号来实现(S0、S1、S2、S3、M、CN)。
当实验者正确设置了74LS181的各个控制信号,74LS181会运算数据锁存器DR1、DR2内的数据。
由于DR1、DR2已经把数据锁存,只要74LS181的控制信号不变,那么74LS181的输出数据也不会发生改变。
输出缓冲器采用74LS244,当控制信号ALU-O为低电平时,74LS244导通,把74LS181的运算结果输出到数据总线;ALU-O为高电平时,74LS244的输出为高阻。
图1 算术逻辑单元原理图三、使用环境计算机组成原理实验箱四、实验步骤(一).逻辑或运算实验1.把ALU-IN(8芯的盒型插座)与CPT-B板上的二进制开关单元中J1插座相连(对应二进制开关H16~H23), 把ALU-OUT(8芯的盒型插座)与数据总线上的DJ2相连。
《计算机组成原理》实验
实验一、运算实验算术逻辑一、实验目的1、掌握简单运算器的数据传送通路2、验证运算功能发生器(74LS181)的组合功能二、实验设备CCT-IV计算机组成原理教学实验系统一台,排线若干。
三、实验原理实验中的运算器由两片74LS181构成。
运算器的输出经过一个三态门74LS245和数据总线相连,运算器的两个数据输入端,分别由二个锁存器74LS273锁存,锁存器的输入端和数据总线相连,数据输入输出都通过总线完成;数据显示灯(“BUS UNIT”)与数据总线相连,用来显示数据总线内容。
实验中的数据输入由数据开关(“INPUT DEVICE”)给出,并经过三态门74LS245和数据总线相连,数据输出可以经总线输出至七段数码管(“OUTPUT DEVICE”)显示S3S2S1S0MLDDR1 T4 LDDR2SW-B图1-2运算器数据通路图1-2中T4为脉冲信号,其它均为电平信号。
在实验中,只需将“W/R UNIT”的T4接至“STATE UNIT”的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲,而S3、S2、S1、S0、Cn、M、LDDR、ALU-B、SW-B各电平控制信号用“SWITCH UNIT”中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B为低电平有效,LDDR1,LDDR2为高电平有效进位控制运算的实验,是在前面实验的基础上增加进位控制部分(如1-3图所示),其中181的进位进入一个74锁存器,其写入是由T4的AR信号控制,T4是脉冲信号,实验时将T4连至“STATE UNIT”的微动开关KK2上。
AR是电平控制信号,可用于实现带进位控制实验,而T4脉冲是将本次运算的进位结果锁存到进位锁存器中。
四、实验内容1、按图1-1实验接线图连接线路,仔细查线无误后,接通电源。
2、用二进制数码开关分别向DR1和DR2寄存器臵数01100101,10100111。
①打开数据输入三态门SW-B=0 关闭运算器输出三态门ALU-B=1②向寄存器DR1传送数据,数据开关臵01100101,LDDR1=1,LDDR2=0,按下KK2,产生T4信号③向寄存器DR2传送数据,数据开关臵10100111,LDDR1=0,LDDR2=1,按下KK2,产生T4信号④关闭数据输入三态门SW-B=1,打开运算器输出三态门ALU-B=0⑤当臵S3、S2、S1、S0、M为11111时,总线指示灯DR1中的数,而臵成10101时总线指示DR2中的数。
(计算机组成原理)实验一运算器实验
D5
D4
D3
D2
CLK D1 D0
Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0
D7
D DA2(74LS273)6
D5
D4
D3
D2
CLK D1 D0
返回
D7-D0
BUS TO ALU
Cn181
B-DA2 B-DA1
DA1,DA2:两片74LS273
❖ 74LS273:带清零端的8D寄存器 ❖ MR:异步清零信号(--接+5V) 返回 ❖ CP:时钟脉冲(--B-DA1、 B-DA2)
74LS245
B0 B1 B2 B3 B4 B5 B6 B7
18 17 16 15 14 13 12 11
D0 D1
D2 D3 D4 D5 D6 D7
19 1
E D IR
地址
Ai
+5
❖ 只有当I/O-R#和Ai同时=0时E#打开,开关 值BUS(D7~D0)
2、Input Device
❖ 输入设备(开关)的工作过程:
0FFH+01H (算术加) 5BH+0A0H+FC(算术加) 5BH∧0A0H(逻辑与) 79H+32H+FC(算术加)
返回
(一)实验原理逻辑框图
T4
74299
299-B M
S0 S1 S2 S3
ALU UNIT
ALU (74LS181) T4
进位 判零 电路
ALU-B
CyCn CyNCn M Ci
B-DA1
DA1 (74LS273)
DA2 (74LS273)
B-DA2
I/O-R INPUT
Ai=“0”
实验报告算术逻辑单元
一、实验目的1. 理解算术逻辑单元(ALU)的基本原理和功能。
2. 掌握ALU的设计方法和实现过程。
3. 通过实验加深对计算机组成原理的理解。
二、实验原理算术逻辑单元(ALU)是计算机中执行算术运算和逻辑运算的核心部件。
它主要完成加、减、乘、除等算术运算以及与、或、非、异或等逻辑运算。
ALU的设计和实现是计算机组成原理中的基础内容。
三、实验内容1. 设计一个8位ALU,能够完成加、减、乘、除、与、或、非、异或等运算。
2. 使用Verilog HDL语言实现该ALU。
3. 在FPGA平台上进行测试,验证ALU的功能。
四、实验步骤1. 分析ALU的功能需求,确定输入和输出信号。
2. 设计ALU的内部结构,包括运算单元、控制单元和寄存器。
3. 使用Verilog HDL语言编写ALU的代码。
4. 在FPGA平台上进行测试,验证ALU的功能。
五、实验结果与分析1. 实验结果根据实验要求,我们设计了一个8位ALU,能够完成加、减、乘、除、与、或、非、异或等运算。
以下是部分实验结果:(1)加法运算输入:A = 10101010,B = 11001100输出:10111010(2)减法运算输入:A = 11001100,B = 10101010输出:01010100(3)乘法运算输入:A = 10101010,B = 11001100输出:1111100000(4)除法运算输入:A = 11111111,B = 10000000输出:11111111(5)与运算输入:A = 10101010,B = 11001100输出:10001000(6)或运算输入:A = 10101010,B = 11001100输出:11101110(7)非运算输入:A = 10101010输出:01010101(8)异或运算输入:A = 10101010,B = 11001100输出:011001102. 实验分析通过实验,我们成功设计并实现了8位ALU。
实验一 8位算术逻辑运算实验
实验一8位算术逻辑运算实验一、实验目的1、掌握简单运算器的数据传送通路组成原理。
2、验证算术逻辑运算功能发生器74L S181的组合功能。
二、实验内容1、实验原理实验中所用的运算器数据通路如图3-1所示。
其中运算器由两片74L S181以并/串形成8位字长的A L U构成。
运算器的输出经过一个三态门74L S245(U33)到内部数据总线B U S D0~D7插座B U S1~2中的任一个(跳线器J A3为高阻时为不接通),内部数据总线通过L Z D0~L Z D7显示灯显示;运算器的两个数据输入端分别由二个锁存器74L S273(U29、U30)锁存,两个锁存器的输入并联后连至内部总线B U S,实验时通过8芯排线连至外部数据总线E X D0~D7插座E X J1~E X J3中的任一个;参与运算的数据来自于8位数据开并K D0~K D7,并经过一三态门74L S245(U51)直接连至外部数据总线E X D0~E X D7,通过数据开关输入的数据由L D0~L D7显示。
图中算术逻辑运算功能发生器74L S181(U31、U32)的功能控制信号S3、S2、S1、S0、C N、M并行相连后连至6位功能开关,以手动方式用二进制开关S3、S2、S1、S0、C N、M来模拟74L S181(U31、U32)的功能控制信号S3、S2、S1、S0、C N、M;其它电平控制信号L D D R1、L D D R2、A L U B`、S W B`以手动方式用二进制开关L D D R1、L D D R2、A L U B、S W B来模拟,这几个信号有自动和手动两种方式产生,通过跳线器切换,其中A L U B`、S W B`为低电平有效,L D D R1、L D D R2为高电平有效。
另有信号T4为脉冲信号,在手动方式下进行实验时,只需将跳线器J23上T4与手动脉冲发生开关的输出端S D相连,按动手动脉冲开关,即可获得实验所需的单脉冲。
学生实验报告 实验一 算术逻辑运算实验
实验一算术逻辑运算实验班级学号姓名得分一、实验目的:1.掌握简单运算器的组成以及数据传送通路;2.验证运算器功能发生器(74LS181)的组合功能。
二、实验内容:运用算术逻辑运算器进行算术运算和逻辑运算。
三、实验设备:1.ZY15CompSys12BB计算机组成原理及系统结构教学实验箱1台;2.排线若干。
四、实验原理:运算器数据通路如下图所示。
其中运算器由两片74LS181以并/串形式构成___________位字长的ALU。
运算器的两个数据输入端分别由两个___________(74LS273)锁存,锁存器的输入连至数据总线,数据输入开关用来给出参与运算的数据,并经过一个___________(74LS245)和数据总线相连。
运算器的输出经过一个三态门(74LS245)和数据总线相连。
数据显示灯已和数据总线相连,用来显示数据总线内容。
五、实验步骤:1、连接实验线路,将算术逻辑单元、输入单元各信号接口与开关单元对应的信号接口相连;检查线路无误后,接通电源。
2、向DR1置入C1H(11000001),向DR2置入43H(01000011)。
初始状态:CLR=1,LDDR1=0,LDDR2=0,ALU_G=1,SW_G=1,S3 S2 S1 S0 M CN=111111,SP05置为NORM;SP03=STEP;(控制脉冲)C1H置入DR1:数据开关(11000001),SW_G=0,LDDR1=1,LDDR2=0,START;43H置入DR2::数据开关(01000011),LDDR1=0,LDDR2=1,START。
3、查看DR1、DR2中存的数是否正确。
DR1:SW_G=1,ALU_G=0,S3 S2 S1 S0 M CN=111111,指示灯显示11000001,即C1H,正确;DR2:S3 S2 S1 S0 M CN=101011,指示灯显示01000011,即43H,正确。
4、验证74LS181的算术、逻辑运算功能。
计算机组成原理实验指导 (1)
计算机组成原理实验指导实验一运算器部件实验一、实验目的⒈掌握简单运算器的数据传输方式。
⒉验证运算功能发生器(74LS181)及进位控制的组合功能。
二、实验要求完成不带进位及带进位算术运算实验、逻辑运算实验,了解算术逻辑运算单元的运用。
三、实验原理实验中所用的运算器数据通路如图7-1-1所示。
其中运算器由两片74LS181以并/串形式构成8位字长的ALU。
运算器的输出经过一个三态门(74LS245)以8芯扁平线方式和数据总线相连,运算器的2个数据输入端分别由二个锁存器(74LS273)锁存,锁存器的输入亦以8芯扁平线方式与数据总线相连,数据开关(INPUT DEVICE)用来给出参与运算的数据,经一三态门(74LS245)以8芯扁平线方式和数据总线相连,数据显示灯(BUS UNIT)已和数据总线相连,用来显示数据总线内容。
图7-1-1运算器电原理图图7-1-1中T2、T4为时序电路产生的节拍脉冲信号,通过连接时序启停单元时钟信号“”来获得,剩余均为电平控制信号。
进行实验时,首先按动位于本实验装置右中侧的复位按钮使系统进入初始待令状态,在LED显示器闪动位出现“P.”的状态下,按【增址】命令键使LED显示器自左向右第4位切换到提示符“L”,表示本装置已进入手动单元实验状态,在该状态下按动【单步】命令键,即可获得实验所需的单脉冲信号,而LDDR1、LDDR2、ALU-B、SW-B、S3、S2、S1、S0、CN、M各电平控制信号用位于LED显示器上方的26位二进制开关来模拟,均为高电平有效。
四、实验连线图7-1-2实验连线示意图按图7-1-2所示,连接实验电路:①总线接口连接:用8芯扁平线连接图7-1-2中所有标明“”或“”图案的总线接口。
②控制线与时钟信号“”连接:用双头实验导线连接图7-1-2中所有标明“”或“”图案的插孔(注:Dais-CMH的时钟信号已作内部连接)。
五、实验系统工作状态设定在闪动的“P.”状态下按动【增址】命令键,使LED显示器自左向右第4位显示提示符“L”,表示本装置已进入手动单元实验状态。
算术逻辑运算实验报告
算术逻辑运算实验报告
《算术逻辑运算实验报告》
在这个数字时代,算术和逻辑运算已经成为我们生活中不可或缺的一部分。
无论是在日常生活中做出购物决策,还是在工作中处理数据和信息,都需要进行各种形式的算术和逻辑运算。
因此,我们进行了一项实验,以探究算术逻辑运算在现代社会中的重要性和应用。
实验的第一部分是针对算术运算的。
我们邀请了一些参与者来完成一系列简单的算术运算,包括加法、减法、乘法和除法。
结果显示,参与者们在进行这些算术运算时,大部分都能够迅速而准确地完成,表明他们对基本的算术运算有着较高的掌握能力。
接着,我们进行了逻辑运算的实验。
参与者们需要解决一系列逻辑问题,包括推理、判断和排列等。
结果显示,参与者们在处理这些逻辑问题时,表现出了较高的逻辑思维能力和解决问题的能力。
在实验的最后,我们进行了一些结合算术和逻辑运算的综合实验。
参与者们需要在规定的时间内完成一系列复杂的算术逻辑运算题目。
结果显示,大部分参与者们都能够在规定的时间内完成题目,并且在准确率上也表现出了较高的水平。
通过这次实验,我们可以得出结论:算术和逻辑运算在现代社会中具有重要的意义和应用。
无论是在个人生活中,还是在工作和学习中,良好的算术和逻辑运算能力都能够帮助我们更好地处理信息和解决问题。
因此,我们应该重视算术和逻辑运算的学习和训练,以提升自己的综合能力和竞争力。
同时,也需要在教育和培训中加强对算术和逻辑运算的培养,以培养更多具有良好算术和逻
辑思维能力的人才。
算术逻辑运算实验报告
算术逻辑运算实验报告算术逻辑运算实验报告一、引言算术逻辑运算是数学中的重要分支,它研究数字和符号之间的关系以及它们之间的运算规则。
在日常生活中,我们经常进行算术逻辑运算,比如加减乘除、逻辑与或非等。
本实验旨在通过一系列实验,探索算术逻辑运算的规律和特点。
二、实验一:加法与减法1. 实验目的通过加法和减法实验,观察数字之间的相互关系,并分析运算规律。
2. 实验步骤首先,我们随机选择两个数字进行加法运算,记录结果。
然后,再选择两个数字进行减法运算,同样记录结果。
3. 实验结果与分析我们发现,在加法运算中,两个正数相加的结果仍然是正数,而两个负数相加的结果仍然是负数。
而正数与负数相加,则会根据绝对值的大小决定结果的正负性。
在减法运算中,两个正数相减的结果可能是正数或零,而两个负数相减的结果可能是负数或零。
正数与负数相减,则会根据绝对值的大小决定结果的正负性。
三、实验二:乘法与除法1. 实验目的通过乘法和除法实验,观察数字之间的相互关系,并分析运算规律。
2. 实验步骤我们选择两个数字进行乘法运算,记录结果。
然后,再选择两个数字进行除法运算,同样记录结果。
3. 实验结果与分析我们发现,在乘法运算中,两个正数相乘的结果仍然是正数,而两个负数相乘的结果则变为正数。
正数与负数相乘,则会根据负数的个数决定结果的正负性。
在除法运算中,两个正数相除的结果仍然是正数,而两个负数相除的结果则变为正数。
正数与负数相除,则会根据负数的个数决定结果的正负性。
四、实验三:逻辑与与逻辑或1. 实验目的通过逻辑与和逻辑或实验,观察逻辑运算的结果,并分析运算规律。
2. 实验步骤我们随机选择两个命题进行逻辑与运算,记录结果。
然后,再选择两个命题进行逻辑或运算,同样记录结果。
3. 实验结果与分析逻辑与运算的结果只有在两个命题都为真时才为真,否则为假。
逻辑或运算的结果只有在两个命题都为假时才为假,否则为真。
五、实验四:逻辑非1. 实验目的通过逻辑非实验,观察逻辑运算的结果,并分析运算规律。
计算机组成原理实验报告一 算术逻辑运算器
算术逻辑运算器一.实验目的与要求试验目的:1、掌握算术运算器单元ALU(74LS181)的工作原理。
2、掌握简单运算器的数据传送通道。
3、验算由74LS181等组合逻辑电路组成的运算功能发生器运算功能。
4、能够按给定数据,完成实验指定的算术/逻辑运算。
试验要求:按练习的要求输入数据和完成相应的操作,将实验结果填入表格二.实验方案1、按实验连线图接好线,仔细检查正确与否,无误后才接通电源。
2、用二进制数据开关分别向DR1寄存器和DR2寄存器置数。
3、通过总线输出DR1寄存器和DR2寄存器的内容。
4、比较实验结果和理论值是否一致,如果不一致,就分析原因,然后重做。
三.实验结果练习一表1.1.2练习二表1.1.31.实验结果分析●实验结果和理论值一致,讲明实验操作过程正确,实验结果准确无误。
2.结论●要有理论基础才可以做好实验的每一步,所以,平时一定要学好理论知识。
3.问题与讨论我们这个小组,在做第二个实验时就遇到了很多问题,就是我们我无论输入什么显示灯都不变,然后我们就互相讨论,但是还是没办法解决,后来问了老师才知道我们插错线。
4.实验总结(1)以前没有做过这种实验,所以实验前我做了充分的预习。
但预习毕竟不是实际操作,经常会在想实际情况会是什么样,在实际操作过程中我遇到了不少的困难,例如我做第二个实验时就插错线,幸好在老师的帮助下还加上自己的思考,终于把问题解决掉了。
我觉得,实验前老师应该做些示范给我们看,这样我们会学得更快。
(2)在做表1.1.4的实验时,不知道怎样查出S3、S2、S1、S0、M、Cn的值,问周围的同学,他们也不知道。
因为这个很重要,直接影响到后面的实验,所以请教了老师。
经过老师的解释后,我顺利地完成了后面的实验。
5.思考题1)写出本实验中的各控制端的作用。
答:S0 S1 S2 S3(它们共同决定运算器执行哪一种运算)M(决定是算术运算还是逻辑运算). CN(表示有无进位) SW-B(输入三态门控制“INPUT DEVICE”中的八位数据开关D7-D0的数据是否送到数据总线BUS上) ALU-B(输出三态门,控制运算器的运算结果是否送到数据总线BUS)LDDR1 LDDR2 (寄存器,寄存数据)2)在实验中哪些控制端高电平有效,哪些低电平有效?答:高电平有效(LDDR1 LDDR2)低电平有效(CN ALU-B SW-B)3)在实验正常的输入和输出操作中,SW-B和ALU-B为什么不能同时为0的状态?答:ALU-B SW-B都是低电平有效,如果同时为低电平,这将导致数据一边输入一边输出。
组成原理实验一接线与操作
(1)找ALU UNIT, 将 ) 8线插头插入到实验仪 线插头插入到实验仪 最左边的74LS299芯片 最左边的 芯片 上面的B0-B7 插座。 插座。 上面的
299芯片
(3)检查:两端代码相 )检查: 同的导线颜色要一致, 同的导线颜色要一致,例 图中插座一头B0是 如,图中插座一头 是 用黄线, 用黄线,那么另一头黄线 对应的代码也是B0。 对应的代码也是 。
(1)找ALU UNIT,将6线插头插入 ) 将 线插头插入 插座。 到S3~Cn插座。 插座
实验一(1) 实验一
算术逻辑运算器连线步骤7
(2)再找 )再找SWITCH UNIT,将2线插头 将 线插头 另一端,插入到LDDR1、LDDR2插 另一端,插入到 、 插 座的中间2根插针上 根插针上, 座的中间 根插针上,记住左线为 LDDR1, 右线为 , 右线为LDDR2 。
实验一(1)
数据操作步骤12
总线8盏显示灯 显示数据是00110011(灭灭亮 总线 盏显示灯B7~B0显示数据是 盏显示灯 显示数据是 ( 亮灭灭亮亮)。 与刚才存入DR1寄存器的数据一致, 寄存器的数据一致, 亮灭灭亮亮)。 与刚才存入 寄存器的数据一致 正确。 正确。
实验一(1)
例4的 操作 过程
实验一(3) 实验一
移位运算器连线步骤 3
(3)检查:两端代码相同的导线颜色 )检查: 要一致, 图中插座一头B0是 要一致,如,图中插座一头 是黄线, 那么另一头黄线对应是D0 那么另一头黄线对应是
(1)找BUS ) UNIT,将8线插 将 线插 头一端, 头一端,插入 到B0—B7插 插 座。
算术逻辑运算实验
算术逻辑运算实验实验目的:(1)了解运算器的组成与结构。
(2)掌握运算器的工作原理。
(3)学习运算器的设计方法。
(4)掌握简单运算器的数据传输通路。
(5)验证运算功能发生器74LS181的组合功能。
实验仪器设备:TDN-CM+或者TDN-CM++教学试验系统一套和导线若干。
实验原理:图1 运算器通路图运算器数据通路图如图1。
图中运算器主要由两片74LS181(功能见表1)芯片并/串形式构成,实现数据的运算,是运算器核心部件为。
图中是8位字长的运算器,其中左边为高4位,右边为低4位。
低位片的进位输出端Cn+4与高位的Cn相连,使进位可以输入高位片。
数据存储由DR1与DR2两个寄存器分别寄存,由锁存器74LS273实现。
高电平有效。
其控制端分别为LDDR1与LDDR2。
当T4脉冲到达时总线上的数据就被锁存进DR1与DR2中。
数据输出是在输出端连接一个三态门(用74LS245实现),当三态门控制端ALU-B为低电平的时候,运算结果即可以输出到总线。
否则为高阻态。
数据输入(实验板上INPUT DEVICE部分)用以给出参与运算的数据。
由一个三态门(74LS245)控制输入。
输入开关经三态门与内总线相连,当其控制信号SW-B为低电平的时,数据通过三态门送入内总线。
T4为脉冲信号,需要连接到“STATE UNIT”单元中的微动开关KK2。
S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU-B、SW-B各电平控制信号使用“SWITCH UNIT”单元中的二进制数据开关模拟,其中Cn、ALU-B、SW-B为低电平有效,LDDR1、LDDR2为高电平有效。
对于单总线的数据通路,实验时要分时控制总线,即当数据输入时(DR1、与DR2工作寄存器送入数据时),数据开关三态门打开(SW-B=0),同时保证运算输出三态门关闭(ALU-B=1);同样,当输出结果至总线时,数据输出三态门处于打开(ALU-B=0),同时保证数据输入三态门处于关闭(SW-B=1)状态。
计算机组成原理 运算器实验—算术逻辑运算实验复习过程
计算机组成原理运算器实验—算术逻辑运算实验实验报告一、实验名称运算器实验—算术逻辑运算实验二、实验目的1、了解运算器的组成原理。
2、掌握运算器的工作原理。
3、掌握简单运算器的数据传送通路。
4、验证运算功能发生器(74LS181)的组合功能。
三、实验设备TDN-CM++计算机组成原理教学实验系统一套,导线若干。
四、实验原理实验中所用的运算器数据通路如图1-1所示。
其中两片74LSl81以串行方式构成8位字长的ALU,ALU的输出经过一个三态门(74LS245)和数据总线相连。
三态门由ALU-R控制,控制运算器运算的结果能否送往总线,低电平有效。
为实现双操作数的运算,ALU的两个数据输入端分别由二个锁存器DR1、DR2(由74LS273实现)锁存数据。
要将数据总线上的数据锁存到DRl、DR2中,锁存器的控制端LDDR1和DDR2必须为高电平,同时由T4脉冲到来。
数据开关(“INPUT DEVICE")用来给出参与运算的数据,经过三态(74LS245)后送入数据总线,三态门由SW—B控制,低电平有效。
数据显示灯(“BUS UNIT")已和数据总线相连,用来显示数据总线上的内容。
图中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信号外,其它均为电平信号。
由于实验电路中的时序信号均已连至“W/R UNIT”的相应时序信号引出端,因此,在进行实验时,只需将“W/R UNIT"的T4接至“STATE UNIT”的微动开关KK2的输入端,按动微动开关,即可获得实验所需的单脉冲。
ALU运算所需的电平控制信号S3、S2、S1、S0 、Cn、M、LDDRl、LDDR2、ALU-B、SW-B均由“ SWITCH UNIT ”中的二进制数据开关来模拟,其中Cn、ALU—B、SW一B为低电平有效LDDR1、LDDR2为高电平有效。
对单总线数据通路,需要分时共享总线,每一时刻只能由一组数据送往总线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息工程学院实验报告
课程名称:计算机组成基础Array
实验项目名称:算术逻辑运算实验实验时间:
班级:141 姓名:王炳地学号:201411401121
一、实验目的
(1) 了解运算器的组成结构。
(2) 掌握运算器的工作原理。
二、实验设备
PC机一台,TD-CMA实验系统一套。
三、实验原理
本实验的原理如图1-1-1所示。
运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要处理的数据存于暂存器A 和暂存器B,三个部件同时接受来自A和B的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM),各部件对操作数进行何种运算由控制信号S3…S0和CN来决定,任何时候,多路选择开关只选择三部件中一个部件的结果作为ALU的输出。
如果是影响进位的运算,还将置进位标志FC,在运算结果输出前,置ALU零标志。
ALU中所有模块集成在一片CPLD中。
逻辑运算部件由逻辑门构成,较为简单,而后面又有专门的算术运算部件设计实验,在此对这两个部件不再赘述。
移位运算采用的是桶形移位器,一般采用交叉开关矩阵来实现,交叉开关的原理如图1-1-2所示。
图中显示的是一个4X4的矩阵(系统中是一个8X8的矩阵)。
每一个输入都通过开关与一个输出相连,把沿对角线的开关导通,就可实现移位功能,即:
(1) 对于逻辑左移或逻辑右移功能,将一条对角线的开关导通,这将所有的输入位与所使用的输出分别相连,而没有同任何输入相连的则输出连接0。
(2) 对于循环右移功能,右移对角线同互补的左移对角线一起激活。
例如,在4位矩阵中使用‘右1’和‘左3’对角线来实现右循环1位。
(3) 对于未连接的输出位,移位时使用符号扩展或是0填充,具体由相应的指令控制。
使用另外的逻辑进行移位总量译码和符号判别。
图1-1-1 运算器原理图
运算器部件由一片CPLD 实现。
ALU 的输入和输出通过三态门74LS245连到CPU 内总线上,另外还有指示灯标明进位标志FC 和零标志FZ 。
请注意:实验箱上凡丝印标注有马蹄形标记‘ ’,表示这两根排针之间是连通的。
图中除T4和CLR ,其余信号均来自于ALU 单元的排线座,实验箱中所有单元的T1、T2、T3、T4都连接至控制总线单元的T1、T2、T3、T4,CLR 都连接至CON 单元的CLR 按钮。
T4由时序单元的TS4提供(时序单元的介绍见附录二),其余控制信号均由CON 单元的二进制数据开关模拟给出。
控制信号中除T4为脉冲信号外,其余均为电平信号,其中ALU_B 为低有效,其余为高有效。
out[0]out[1]out[2]out[3]
图1-1-2 交叉开关桶形移位器原理图
暂存器A 和暂存器B 的数据能在LED 灯上实时显示,原理如图1-1-3所示(以A0为例,其它相同)。
进位标志FC 、零标志FZ 和数据总线D7…D0的显示原理也是如此。
VCC
A0
图1-1-3 A0显示原理图
ALU 和外围电路的连接如图1-1-4所示,图中的小方框代表排针座。
运算器的逻辑功能表如表1-1-1所示,其中S3 S2 S1 S0 CN 为控制信号,FC 为进位标志,FZ 为运算器零标志,表中功能栏内的FC 、FZ 表示当前运算会影响到该标志。
图1-1-4 ALU和外围电路连接原理图
表1-1-1 运算器逻辑功能表
四、实验内容与步骤
(1) 按图1-1-5连接实验电路,并检查无误。
图中将用户需要连接的信号用圆圈标明(其它实验相同)。
图1-1-5 实验接线图
(2) 将时序与操作台单元的开关KK2置为‘单拍’档,开关KK1、KK3置为‘运行’档。
(3) 打开电源开关,如果听到有‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。
然后按动CON单元的CLR按钮,将运算器的A、B和FC、FZ清零。
(4) 用输入开关向暂存器A置数。
①拨动CON单元的SD27…SD20数据开关,形成二进制数01100101(或其它数值),数据显示亮为‘1’,灭为‘0’。
②置LDA=1,LDB=0,连续按动时序单元的ST按钮,产生一个T4上沿,则将二进制数01100101置入暂存器A中,暂存器A的值通过ALU单元的A7…A0八位LED灯显示。
(5) 用输入开关向暂存器B置数。
①拨动CON单元的SD27…SD20数据开关,形成二进制数10100111(或其它数值)。
②置LDA=0,LDB=1,连续按动时序单元的ST按钮,产生一个T4上沿,则将二进制数10100111
置入暂存器B中,暂存器B的值通过ALU单元的B7…B0八位LED灯显示。
(6) 改变运算器的功能设置,观察运算器的输出。
置ALU_B=0、LDA=0、LDB=0,然后按表1-1-1置S3、S2、S1、S0和Cn的数值,并观察数据总线LED显示灯显示的结果。
如置S3、S2、S1、S0为0010,运算器作逻辑与运算,置S3、S2、S1、S0为1001,运算器作加法运算。
如果实验箱和PC联机操作,则可通过软件中的数据通路图来观测实验结果(软件使用说明请看附录一),方法是:打开软件,选择联机软件的“【实验】—【运算器实验】”,打开运算器实验的数据通路图,如图1-1-6所示。
进行上面的手动操作,每按动一次ST按钮,数据通路图会有数据的流动,反映当前运算器所做的操作,或在软件中选择“【调试】—【单节拍】”,其作用相当于将时序单元的状态开关KK2置为‘单拍’档后按动了一次ST按钮,数据通路图也会反映当前运算器所做的操作。
重复上述操作,并完成表1-1-2。
然后改变A、B的值,验证FC、FZ的锁存功能。
表1-1-2 运算结果表
五、实验现象与结果及其分析(主要内容包括对实验结果、实验中遇到的问题、实验的关键点等内容进行整理、解释、分析总结。
实验箱的接线情况和操作过程中的代表性步骤要求拍照留影。
)实验照片:
实验问题:我们按照实验图连接好线路后,打开开关,发出滴滴的报警声,于是我们关闭开关,仔细检查线路后发现有个别针脚没有插入,接好后重新打开开关,正常运行。
实验结果:按实验步骤输入A、B的数据后,依照表1-1-2 运算结果表输入S3~S0的值,输入值为1时按钮上面灯亮起,输入值为0时灯不亮(不能将按钮调到中间,不然结果不准确),输入完毕后按动时序单元的ST按钮四下,然后观察已经连接了箱子的电脑上的运算器实验数据通路图,写下F、FC、FZ的
值(无关打X)。
六、实验总结
这是这门课的第一次实验,刚开始对实验器材比较陌生,手忙脚乱的。
连好线路后,遇到不懂得赶紧问同学,看老师的演示,最后终于弄懂了。
知道了运算器工作的原理,熟悉了算术/逻辑运算过程以及控制这种运算的方法。