(完整版)历年数列高考题汇编,推荐文档

合集下载

历年(2020-2023)全国高考数学真题分类(数列)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(数列)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(数列)汇编【2023年真题】1. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件2. (2023·新课标II 卷 第8题) 记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S = ( ) A. 120B. 85C. 85-D. 120-3. (2023·新课标I 卷 第20题)设等差数列{}n a 的公差为d ,且 1.d >令2n n n nb a +=,记n S ,n T 分别为数列{}{},n n a b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求.d4. (2023·新课标II 卷 第18题)已知为等差数列,,记n S ,n T 分别为数列,的前n 项和,432S =,316.T =(1)求的通项公式;(2)证明:当5n >时,n S .n T >【2022年真题】5.(2022·新高考I 卷 第17题)记n S 为数列{}n a 的前n 项和,已知11a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112.na a a +++< 6.(2022·新高考II 卷 第17题)已知{}n a 为等差数列,{}nb 为公比为2的等比数列,且223344.a b a b b a -=-=-(1)证明:11;a b =(2)求集合1{|,1500}k m k b a a m =+剟中元素个数.【2021年真题】7.(2021·新高考II 卷 第12题)(多选)设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ ,则( ) A.()()2n n ωω=B. ()()231n n ωω+=+C. ()()8543n n ωω+=+D. ()21nn ω-=8.(2021·新高考I 卷 第16题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推.则对折4次共可以得到不同规格图形的种数为____________________;如果对折*()n n N ∈次,那么12n S S S ++= __________2dm . 9.(2021·新高考I 卷 第17题)已知数列{}n a 满足11a =,,记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; 求{}n a 的前20项和.(1)(2)10.(2021·新高考II 卷 第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35a S =,244.a a S =(1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.【2020年真题】11.(2020·新高考I 卷 第14题、II 卷 第15题)将数列{21}n -与{32}n -的公共项从小到大排列得到数列{n a },则{}n a 的前n 项和为__________.12.(2020·新高考I 卷 第18题)已知公比大于1的等比数列{}n a 满足24320,8.a a a +==(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m N ∈中的项的个数,求数列{}m b 的前100项和100.S13.(2020·新高考II 卷 第18题)已知公比大于1的等比数列{}n a 满足2420a a +=,38.a =(1)求{}n a 的通项公式;(2)求1223a a a a -+…11(1).n n n a a -++-参考答案1. (2023·新课标I 卷 第7题) 解:方法1:为等差数列,设其首项为1a ,公差为d , 则1(1)2n n n S na d -=+,111222n S n d d a d n a n -=+=+-,112n n S S dn n +-=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}n Sn为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n …两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n -=+=+-,故{}n S n 为等差数列,即甲是乙的充分条件.反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n …时,11(1)(1)(2).n S n S n n D -=-+-- 上两式相减得:112(1)n n n a S S S n D -=-=+-, 所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C . 2. (2023·新课标II 卷 第8题)解:2S ,42S S -,64S S -,86S S -成等比数列,242224264264262(1)55(21)521S S q S q S S S q S S q S S S⎧-=⎧+=-⎪-==+⇒⎨⎨-=⎩⎪=⎩从而计算可得24681,5,21,85S S S S =-=-=-=- 故选.C3. (2023·新课标I 卷 第20题)解:因为21333a a a =+,故3132d a a d ==+,即1a d =,故n a nd =,所以21n n n n b nd d++==,(1)2n n n d S +=,(3)2n n n T d +=,又3321S T +=,即34362122d d ⨯⨯+=,即22730d d -+=,故3d =或1(2d =舍), 故{}n a 的通项公式为:3.n a n =(2)方法一:(基本量法)若{}n b 为等差数列,则2132b b b =+,即11123123422a d a a d⨯⨯⨯⨯=+++,即2211320a a d d -+=,所以1a d =或12;a d =当1a d =时,n a nd =,1n n b d +=,故(1)2n n n d S +=,(3)2n n n T d+=,又999999S T -=, 即99100991029922d d ⋅⋅-=,即250510d d --=,所以5150d =或1(d =-舍); 当12a d =时,(1)n a n d =+,n n b d=,故(3)2n n n d S +=,(1)2n n n T d +=,又999999S T -=,即99102991009922d d ⋅⋅-=,即251500d d --=,所以50(51d =-舍)或1(d =舍); 综上:51.50d = 方法二:因为{}n a 为等差数列且公差为d ,所以可得1n a dn a d =+-,则211(1)n n n n nb dn a d dn a d++⋅==+-+- 解法一:因为{}n b 为等差数列,根据等差数列通项公式可知n b 与n 的关系满足一次函数,所以上式中的分母“1dn a d +-”需满足10a d -=或者11da d=-,即1a d =或者12;a d = 解法二:由211(1)n n n n nb dn a d dn a d ++⋅==+-+-可得,112b a =,216b a d =+,31122b a d =+,因为{}n b 为等差数列,所以满足1322b b b +=,即111212622a a d a d+=⋅++,两边同乘111()(2)a a d a d ++化简得2211320a a d d -+=,解得1a d =或者12;a d =因为{}n a ,{}n b 均为等差数列,所以995099S a =,995099T b =,则999999S T -=等价于50501a b -=, ①当1a d =时,n a dn =,1(1)n b n d =+,则505051501a b d d-=-=,得 250510(5051)(1)0d d d d --=⇒-+=,解得5150d =或者1d =-,因为1d >,所以51;50d =②当12a d =时,(1)n a d n =+,1n b n d =,则505050511a b d d-=-=,化简得 251500(5150)(1)0d d d d --=⇒+-=,解得5051d =-或者1d =,因为1d >,所以均不取; 综上所述,51.50d =4. (2023·新课标II 卷 第18题) 解:(1)设数列的公差为d ,由题意知:,即,解得52(1)2 3.n a n n ∴=+-=+(2)由(1)知23n a n =+,,212121n n b b n -+=+,当n 为偶数时,当n 为奇数时,22113735(1)(1)4(1)652222n n n T T b n n n n n ++=-=+++-+-=+-, ∴当n 为偶数且5n >时,即6n …时,22371(4)(1)022222n n n nT S n n n n n n -=+-+=-=->, 当n 为奇数且5n >时,即7n …时, 22351315(4)5(2)(5)0.22222n n T S n n n n n n n n -=+--+=--=+-> ∴当5n >时,n S .n T >5.(2022·新高考I 卷 第17题)解:1112(1)(1)33n n S S n n a a +=+-=,则23n n n S a +=①,1133n n n S a +++∴=②; 由②-①得:111322;33n n n n n a n n n a a a a n ++++++=-⇒=∴当2n …且*n N ∈时,13211221n n n n n a a a a aa a a a a ---=⋅⋅ 1543(1)(1)1232122n n n n n n n a n n +++=⋅⋅⋅=⇒=-- , 又11a =也符合上式,因此*(1)();2n n n a n N +=∈ 1211(2)2((1)1n a n n n n ==-++, 1211111111112(2(12122311n a a a n n n ∴+++=-+-++-=-<++ , 即原不等式成立.6.(2022·新高考II 卷 第17题) 解:(1)设等差数列{}n a 公差为d由2233a b a b -=-,知1111224a d b a d b +-=+-,故12d b = 由2244a b b a -=-,知111128(3)a d b b a d +-=-+,故11124(3);a d b d a d +-=-+故1112a d b d a +-=-,整理得11a b =,得证.(2)由(1)知1122d b a ==,由1k m b a a =+知:11112(1)k b a m d a -⋅=+-⋅+即111112(1)2k b b m b b -⋅=+-⋅+,即122k m -=,因为1500m 剟,故1221000k -剟,解得210k 剟, 故集合1{|,1500}k m k b a a m =+剟中元素的个数为9个. 7.(2021·新高考II 卷 第12题)(多选)解:对于A 选项,010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,, 则12101122222kk k k n a a a a +-=⋅+⋅++⋅+⋅ ,,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,,而0120212=⋅+⋅,则,即,B 选项错误;对于C 选项,34302340101852225121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 32k k a ++⋅,所以,,23201230101432223121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 22k k a ++⋅,所以,,因此,,C 选项正确;对于D 选项,01121222n n --=+++ ,故,D 选项正确.故选.ACD8.(2021·新高考I 卷 第16题)解:对折3次时,可以得到2.512dm dm ⨯,56dm dm ⨯,103dm dm ⨯,20 1.5dm dm ⨯四种规格的图形. 对折4次时,可以得到2.56dm dm ⨯,1.2512dm dm ⨯,53dm dm ⨯,10 1.5dm dm ⨯,200.75dm dm ⨯五种规格的图形.对折3次时面积之和23120S dm =,对折4次时面积之和2475S dm =,即12402120S ==⨯,2180360S ==⨯,3120430S ==⨯,475515S ==⨯,……得折叠次数每增加1,图形的规格数增加1,且()*12401,2nn S n n N ⎛⎫=+⨯∈ ⎪⎝⎭,121111240[234(1)]2482n n S S S n ∴++=⨯⨯+⨯+⨯++⋅+记231242n n n T +=+++ ,则112312482n n n T ++=+++ , 11111111(224822n n n n n n T T T ++-==++++-113113322222n n n n n ++++=--=-, 得332n nn T +=-,123240(3)2n n n S S S +∴++=⨯-, 故答案为5;3240(3).2n n +⨯-9.(2021·新高考I 卷 第17题)解:⑴12b a =,且21+1=2a a =,则1=2b , 24b a =,且4321215a a a =+=++=,则25b =;1222121213n n n n n b a a a b +++==+=++=+,可得13n n b b +-=,故{}n b 是以2为首项,3为公差的等差数列; 故()21331n b n n =+-⨯=-.数列{}n a 的前20项中偶数项的和为2418201210109=102+3=1552a a a ab b b ⨯++++=+++⨯⨯ , 又由题中条件有211a a =+,431a a =+, ,20191a a =+, 故可得n a 的前20项的和10.(2021·新高考II 卷 第17题)解:(1)由等差数列的性质可得:535S a =,则3335,0a a a =∴=, 设等差数列的公差为d ,从而有22433()()a a a d a d d =-+=-,412343333(2)()()2S a a a a a d a d a a d d =+++=-+-+++=-,从而22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:*3(3)26().n a a n d n n N =+-=-∈(2)由数列的通项公式可得1264a =-=-,则2(1)(4)252n n n S n n n -=⨯-+⨯=-, 则不等式n n S a >即2526n n n ->-,整理可得(1)(6)0n n -->, 解得1n <或6n >,又n 为正整数,故n 的最小值为7.(2)11.(2020·新高考I 卷 第14题、II 卷 第15题)解:数列 的首项是1,公差为2的等差数列; 数列 的首项是1,公差为3的等差数列; 公共项构成首项为1 ,公差为6的等差数列; 故 的前n 项和S n 为: .故答案为232.n n -12.(2020·新高考I 卷 第18题)解:(1)设等比数列的公比为q ,且1q >,2420a a += ,38a =,,解得舍)或,∴数列{}n a 的通项公式为2;n n a =(2)由(1)知12a =,24a =,38a =,416a =,532a =,664a =,7128a =,则当1m =时,10b =,当2m =时,21b =, 以此类推,31b =,45672b b b b ====,815...3b b ===,1631...4b b ===, 3263...5b b ===,64100...6b b ===, 10012100...S b b b ∴=+++0122438416532637480.=+⨯+⨯+⨯+⨯+⨯+⨯=13.(2020·新高考II 卷 第18题)解:(1)设等比数列{}n a 的公比为(1)q q >,则32411231208a a a q a q a a q ⎧+=+=⎨==⎩, {21}n -{32}n -{}n a1q > ,122a q =⎧∴⎨=⎩, 1222.n n n a -∴=⋅=1223(2)a a a a -+…11(1)n n n a a -++- 35792222=-+-+…121(1)2n n -++-⋅,322322[1(2)]82(1).1(2)55n n n +--==----。

(word完整版)历年数列高考题及答案

(word完整版)历年数列高考题及答案

1. (福建卷)已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A .15B .30C .31D .642. (湖南卷)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a = ( )A .0B .3-C .3D .233. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )1894. (全国卷II ) 如果数列{}n a是等差数列,则( )(A)1845a a a a +<+ (B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a = 5. (全国卷II ) 11如果128,,,a a a L 为各项都大于零的等差数列,公差0d ≠,则( )(A)1845a a a a >(B) 1845a a a a <(C) 1845a a a a +>+ (D) 1845a a a a =6. (山东卷){}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于( )(A )667 (B )668 (C )669 (D )6707. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。

已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( ) (A) 4; (B) 5; (C) 6; (D) 7。

8. (湖北卷)设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .9. (全国卷II ) 在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为______10. (上海)12、用n 个不同的实数n a a a ,,,21Λ可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。

全国卷数列高考题汇总附答案

全国卷数列高考题汇总附答案

数列专题高考真题(2014·I) 17. (本小题满分12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n−1,其中λ为常数.(Ⅰ)证明:a n+2−a n=λ;(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.(2014·II) 17.(本小题满分12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+12}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:1a1+1a2+⋯+1a n<32.(2015·I)(17)(本小题满分12分)S n为数列{a n}的前n项和.已知a n>0,a n2+2a n=4S n+3,(Ⅰ)求{a n}的通项公式:(Ⅱ)设b n=1a n a n+1,求数列{b n}的前n项和。

(2015·II)(4)等比数列{a n}满足a1=3,=21,则( )(A)21 (B)42 (C)63 (D)84(2015·II)(16)设是数列的前n项和,且,,则________.(2016·I)(3)已知等差数列{a n}前9项的和为27,a10=8,则a100=(A)100 (B)99 (C)98 (D)97(2016·I)(15)设等比数列{a n}满足 a1+a3=10,a2+a4=5,则 a1a2…a n的最大值为__________。

(2016·II)(17)(本题满分12分)S n为等差数列{a n}的前n项和,且a1=1 ,S7=28 记b n=[log a n],其中[x]表示不超过x的最大整数,如[0.9]= 0,[lg 99]=1.(I)求b1,b11,b101;(II)求数列{b n}的前1 000项和.(2016·III)(12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,?,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个(2016·III)(17)(本小题满分12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0(I)证明{a n}是等比数列,并求其通项公式;(II )若S n =3132,求λ. (2017·I)4.记为等差数列的前项和.若,,则的公差为A .1B .2C .4D .8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。

(完整版)近几年全国卷高考文科数列高考习题汇总

(完整版)近几年全国卷高考文科数列高考习题汇总

欢迎共阅数列高考题近几年全国高考文科数学数列部分考题统计及所占分值二.填空题7.[2015.全国I 卷.T13]在数列{}n a 中,1n 1n 2,2a a a +==,n S 为{}n a 的前n 项和。

若-n S =126,则n =. 8.[2014.全国II 卷.T14]数列{}n a 满足121,21n na a a +==-,则1a = 9.[2013.北京卷.T11]若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q =;前n 项和n S =。

10.[2012.全国卷.T14]等比数列{}n a 的前n 项和为n S ,若32S 3S 0+=,则公比q = 11.[2012.北京卷.T10]已知{}n a 为等差数列,n S 为其前n 项和,若211=a ,23S a =,则2a =,n S =_______。

12.[2011.北京卷.T12]在等比数列{}n a 中,若141,4,2a a ==则公比q =;12n a a a ++⋯+=.13.[2009.北京卷.T10]若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a =;前8项的和8S =.(用数字作答) 三.解答题14.[2016.全国II 卷.T17](本小题满分12分)等差数列{}n a 其中[]x 表示不超过x 15.[2016.全国III (I )求23,a a ;(II )求{}n a 15.[2016.北京卷已知{}n a (Ⅰ)求{}n a (Ⅱ)设n n c a =16.[2015.北京卷(Ⅰ)求{a (Ⅱ)设等比数列{}n b 满足2337,b a b a ==.问:6b 与数列{}n a 的第几项相等? 17.[2014.全国I 卷.T17](本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

数列高考题汇编(分模块整理,含答案)

数列高考题汇编(分模块整理,含答案)

(一)数列1.求通项公式(1)求等差数列通项公式(2012.湖北理18)已知等差数列{an}前三项的和为-3,前三项的积为8。

(1)求等差数列{an}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和解:(1)设等差数列的公差为d,则a2=a1+d,a3=a1+2d由题意可得,解得或由等差数列的通项公式可得,a n =2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7。

(2)当an =-3n+5时,a2,a3,a1分别为-1,-4,2不成等比当an =3n-7时,a2,a3,a1分别为-1,2,-4成等比数列,满足条件故|an|=|3n-7|=设数列{|an |}的前n项和为Sn当n=1时,S1=4,当n=2时,S2=5当n≥3时,Sn =|a1|+|a2|+…+|an|=5+(3×3-7)+(3×4-7)+…+(3n-7)=5+=,当n=2时,满足此式综上可得。

(2018课标全国2,文17)记Sn 为等差数列{an丨的前n项和,己知a1=-7 S3=-15.(1)求{an}的通项公式;⑵求5…,并求5…的最小值.解:(1)设{an}的公差为4由题意得3an +3d=15.由a1=-7得d=2.∴{an}的通项公式为an=2n-9.(2)由(1)得Sn=n2-8n=(n-4)2-16.所以当n=4时Sn取得最小值,最小值为-16.(2010全国文17)设等差数列{an }满足a3=5 a10=-9(1)求数列{an}的通项公式;(2)求Sn的最大值及其相应的n的值.解;(1)在等差数列{an }中,a3=5,a10= -9,∴公差d=(a10-a3)/7= -2,通项公式an =a3+(n-3)d=5-2(n-3)= -2n+11,n∈N*.(2)由(1)可得a1=9,故Sn=9n+n(n-1)/2×(-2)=10n-n2=-(n-5)2+25.所以n=5时,Sn取得最大值(2)求等比数列通项公式(2011全国文17)已知等比数列{an }中,a1=1/3,公比q=1/3(1)Sn 为{an}的前n项和,证明Sn=(1-an)/2(2)设bn =log3a1+log3a2+…+log3an,求数列{bn}的通项.解;(1)a1=1/3,公比q=1/3,∴an=1/(3n)S n =a1(1-q n)/(1-q) =(1/3)(1-1/3n)/(2/3)= (1-1/3n)/2 =(1-an)/2(2)bn =log3a1+log3a2+…+log3an=log3[a1×a2×…×an]=-(1+2+…+n) =-n(1+n) /2(2014全国2,理17)已知数列{an }满足a1=1,an+1=3an+1.解:(3)求其他数列通项公式(2019天津理19)设{an }是等差数列,{bn}是等比数列,已知a 1=4,b1=6.b2=2a2-2,b3=2a3+4.解:(Ⅰ)设等差数列{an }的公差为d,等比数列{bn}的公比为q,依题意有:∴an =4+(n﹣1)×3=3n+1,bn=6×2n﹣1=3×2n(2018北京文15)设{an }是等差数列,且a1=ln2,a2+a3=5ln2.(Ⅰ)求{an}的通项公式;(Ⅱ)求e a1+e a2+…+e an.解:(Ⅰ)设等差数列{an}的公差为d,∵a2+a3=5ln2,∴2a1+3d=5ln2,又a1=ln2,∴d=ln2,∴{an }的通项公式;an=a1+(n-1)d=nln2,(Ⅱ)由(1)知an=nln2∵e an =e nln2=2n,∴{e an}是以2为首项,2为公比的等比数列.∴e a1+e a2+…+e an=21+22+23+…+2n=2n+1-2.(2019浙江20)设等差数列{an }的前n项和为Sn,a3=4,a4=S3,数列{bn}满足:对每个n∈N*,Sn+b n,S n+1+b n,S n+2+b n,成等比数列(1)求数列{a n},{b n}的通项公式;(2)记n∈N*,证明c1+c2+……+c n<,n∈N*解:2.数列求和(1)公式法与分组转化法求和(2016全国2,理17)Sn 为等差数列{an}的前n项和,且a1=1,S7=28.记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{bn}的前1000项和.解:(Ⅰ)设等差数列{an }公差为d,S7=7a1+×d=28,则d=1,∴an=n,∴b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2;(Ⅱ)由题意可知:bn=∴数列{bn}的前1000项和1×90+2×900+3×1=1893.数列{bn}的前1000项和1893.(2016浙江文17)设数列{an }的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.(Ⅰ)求通项公式an;(Ⅱ)求数列{|an-n-2|}的前n项和.解:(Ⅰ)∵S2=4,an+1=2Sn+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,当n≥2时,an+1=2Sn+1,an=2Sn-1+1,两式相减得an+1-an=2(Sn-Sn-1)=2an,即an+1=3an,当n=1时,a1=1,a2=3,满足an+1=3an,∴=3,则数列{an}是公比q=3的等比数列,则通项公式an=3n-1.(Ⅱ)an-n-2=3n-1-n-2,设bn =|an-n-2|=|3n-1-n-2|,则b1=|30-1-2|=2,b2=|3-2-2|=1,当n≥3时,3n-1-n-2>0,则bn =|an-n-2|=3n-1-n-2,此时数列{|an-n-2|}的前n项和Tn=3+(2014•湖南文16)已知数列{an}的前n项和Sn=,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn =2an+(-1)nan,求数列{bn}的前2n项和.解;(Ⅰ)当n=1时,a1=s1=1,当n≥2时,an=sn-sn-1==n,∴数列{an }的通项公式是an=n.(Ⅱ)由(Ⅰ)知,bn =2n+(-1)n n,记数列{bn}的前2n项和为T2n,则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n)=+n=22n+1+n-2.∴数列{bn}的前2n项和为22n+1+n-2.(2)错位相减法求和(2017天津理18)已知{an }为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(Ⅰ)求{an }和{bn}的通项公式;(Ⅱ)求数列{a2n bn}的前n项和(n∈N*).解:(Ⅰ)设等差数列{an }的公差为d,等比数列{bn}的公比为q.∵b2+b3=12,∴b1(q+q2)=12,又b1=2,∴q2+q-6=0.又∵q>0,解得q=2.∴bn=2n.∵b3=a4-2a1,∴3d-a1=8.∵S11=11b4,∴a1+5d=16,联立①②,解得a1=1,d=3,∴an=3n-2.∴{an }的通项公式为an=3n-2,{bn}的通项公式为bn=2n.(Ⅱ)设数列{a2n bn}的前n项和为Tn,由a2n=6n-2,有Tn=4×2+10×22+16×23+…+(6n-2)×2n,2Tn=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,上述两式相减,得-Tn=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=-4-(6n-2)×2n+1=-(3n-4)2n+2-16.得Tn=(3n-4)2n+2+16.所以,数列{a2n bn}的前n项和为(3n-4)2n+2+16.(2010全国理17)设数列{an }满足a1=2,an+1-an=-3·22n-1,(1)求数列{an}的通项公式;(2)令bn =nan,求数列的前n项和Sn.解:(1)由已知,当n≥1时,而a1=2,∴数列{an}的通项公式为a n=22n-1.(2)由,知,①从而,②①-②,得,即。

历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。

(完整)历年数列高考题(汇编)答案,推荐文档

(完整)历年数列高考题(汇编)答案,推荐文档

n
3
26
3
4
9
a>0,故 q 1 。
3
1
1
由2a1 3a2
1得2a1
3a2q
1
,所以
a1 3 。故数列{an}的通项式为
an=

3n
(Ⅱ ) bn log1 a1 log1 a1... log1 a1
(1 2 ... n) n(n 1)
2
1
2
11

2( )
bn n(n 1)
1.S
1 3
(1
1 3n
)
1
31n
,
n
() 33
3n n
1 1
2
3
所以
Sn
1
an , 2
(Ⅱ) bn log3 a1 log3 a2 log3 an
n(n 1)
所以{bn }的通项公式为bn
. 2
n(n 1) (1 2 ....... n)
2
2、(2011 全国新课标卷理)
{a1 9
解得 d 2
数列{an}的通项公式为 an=11-2n。 ...................................................6 分
专业整理
word 格式文档
n(n 1)
(2)由(1) 知 Sn=na1+
d=10n-n2。
2
因为 Sn=-(n-5)2+25.
a1 d 0, 解:(I)设等差数列{an } 的公差为 d,由已知条件可得2a1 12d 10,
a1 1,
解得 d
1.
故数列{an } 的通项公式为 an 2 n. ………………5 分

高考数列真题篇(可编辑修改word版)

高考数列真题篇(可编辑修改word版)

a 1a 3 * 1 n n n 高考数列真题篇(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)1. 【2014 高考北京理第 5 题】设{a n } 是公比为 q 的等比数列, 则“ q > 1 ” 是“ {a n } 为递增数列” 的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件( A )2018 年 (B )2019 年 (C )2020 年 (D )2021 年5【2015 高考福建,理 8】若 a , b 是函数 f (x ) = x 2- px + q ( p > 0, q > 0) 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 p + qA .6B .7C .8D .9的两个不同的零点,且 a , b , -2的值等于()2. 【2015 高考北京,理 6】设{a n} 是等差数列. 下列结论中正确的是()6. 【2016 高考浙江理数】设数列{a n }的前 n 项和为 S n .若 S 2=4,a n +1=2S n +1,n ∈N *,则 a 1=,S 5= .A .若 a 1 + a 2 > 0 ,则 a 2 + a 3 > 0B .若 a 1 + a 3 < 0 ,则 a 1 + a 2 < 07、【2016 高考新课标 1 卷】设等比数列{a n } 满足 a 1+a 3=10,a 2+a 4=5,则 a 1a 2 …a n 的最大值为.C .若0 < a 1 < a 2 ,则a 2 > D .若a 1 < 0 ,则(a 2 - a 1 )(a 2 - a 3 ) > 0 8、 【2015 江苏高考,11】数列{a } 满足 a = 1 ,且 a- a = n +1 ( n ∈ N ),则数列{ } 的前 10 项和为3. 【2016 高考浙江理数】如图,点列{A },{B }分别在某锐角的两边上,且 A A= A A, A ≠ A, n ∈ N * ,n 1n +1 nnB B= B B, B ≠ Bnn, n ∈ N *,n n +1 n +1 n +2 nn +29、【2015 高考新课标 2,理 16】设 S n 是数列{a n } 的前 n 项和,且 a 1 = -1 , a n +1 = S n S n +1 ,则 S n =.n n +1n +1 n +2nn +210、【2014,安徽理 12】数列{a n } 是等差数列,若 a 1 +1, a 3 + 3, a 5 + 5 构成公比为 q 的等比数列,则q =(P ≠ Q 表示点P 与Q 不重合).若 d n = A n B n ,S n 为△A n B n B n +1的面积,则( )11、【2015 高考安徽,理 14】已知数列{a n } 是递增的等比数列, a 1 + a 4 = 9, a 2a 3 = 8 ,则数列{a n } 的前n 项和等于.11、【2016 高考新课标 2 理数】 S n 为等差数列{a n } 的前 n 项和,且 a 1 =1,S 7 = 28. 记b n =[lg a n ] ,其中[x ] 表示不超过 x 的最大整数,如[0.9]=0,[lg 99]=1 .22A .{S n } 是等差数列B .{S } 是等差数列C .{d } 是等差数列D .{d } 是等差数列(Ⅰ)求b 1,b 11,b 101 ;(Ⅱ)求数列{b n } 的前 1 000 项和.4. 【2016 年高考四川理数】某公司为激励创新,计划逐年加大研发资金投入.若该公司 2015 年全年投入研发资金 130 万元,在此基础上,每年投入的研发资金比上一年增长 12%,则该公司全年投入的研发资金开始超过 200万元的年份是( )an n n n +1 3 n n n14、【 2014 湖南 20】已知数列{a } 满足a = 1, a - a = p n, n ∈ N * . n1n +1n12、【2014 高考广东卷.理.19】 (本小题满分 14 分)设数列{a } 的前 n 项和为 S ,满足S = 2na - 3n 2- 4n , (1) 若{a n } 为递增数列,且 a 1 , 2a 2 , 3a 3 成等差数列,求 P 的值;(2) 若p = 1,且{a } 是递增数列,{a } 是递减数列,求数列{a } 的通项公式.n ∈ N *,且 S = 15 .(1) 求 a 1 . a 2 . a 3 的值;(2) 求数列{a n } 的通项公式.22n -12nn13、【2016 高考ft 东理数】已知数列{a n }(Ⅰ)求数列{b n } 的通项公式;的前 n 项和 S n =3n 2+8n ,{b n } 是等差数列,且 a n = b n + b n +1.15、【2015 高考ft 东,理 18】设数列{a } 的前 n 项和为 S .已知2S = 3n+ 3 .(I )求{a n } 的通项公式;(a +1)n +1(Ⅱ)令c = n. 求数列{c } 的前 n 项和 T n . n(b + 2)nn (II )若数列{b } 满足 a b = log a ,求{b } 的前 n 项和T .nnn n3 nnn16、【2016 高考天津理数】已知{a n } 是各项均为正数的等差数列,公差为 d ,对任意的 n ∈ N *, b n 是 a n 和 a n +1的等差中项.2n n2(Ⅰ)设 c = b 2 - b 2 , n ∈ N * ,求证:{c } 是等差数列;(II )若 S =31,求.nn +1nn532(Ⅱ)设 a = d ,T = ∑(-1)nb 2 , n ∈ N * ,求证: ∑ 1 < 1 . 1 n nk =1 2k =1 T k2d19、【2014 新课标,理 17】已知数列{a n } 满足 a 1 =1, a n +1 = 3a n +1 . (Ⅰ)证明{a n + 1}是等比数列,并求{a n } 的通项公式;(Ⅱ)证明: 1 + 1 +… + 1 < 3 .a 1 a 2a n217、【2014 ft 东.理 19】已知等差数列{a n } 的公差为 2,前n 项和为 S n ,且 S 1 , S 2 , S 4 成等比数列. (Ⅰ)求数列{a n } 的通项公式;(Ⅱ)令b = (-1)n -14n ,求数列{b } 的前n 项和T .a n a n +120、【2015 高考四川,理 16】设数列{a n } 的前 n 项和 S n = 2a n - a 1 ,且 a 1, a 2 +1, a 3 成等差数列.(1)求数列{a n } 的通项公式;1T1(2)记数列{a n } 的前 n 项和 n ,求得| T n -1|< 1000 成立的 n 的最小值.18、【2016 高考新课标 3 理数】已知数列{a n } 的前 n 项和 S n = 1+ a n ,其中≠ 0 .(I )证明{a n } 是等比数列,并求其通项公式;nnnn a a n = x x x a 2 2 23、【2015 高考安徽,理 18】设 n ∈ N * , x 是曲线 y = x2n +2+1 在点(1,2) 处的切线与 x 轴交点的横坐标.21、【2015 高考新课标 1,理 17】 S 为数列{ a }的前 n 项和.已知 a >0,a 2 + a = 4S + 3 . nn(Ⅰ)求{ a n }的通项公式;nnnn(Ⅰ)求数列{x n } 的通项公式;(Ⅱ)设b =1n n +1,求数列{ b n }的前 n 项和. (Ⅱ)记T n2 221 3 2n -1 ,证明T n≥ 1 . 4n22、【2014 课标Ⅰ,理 17】 24、已知数列{ a n }的首项为 1, S n 为数列{a n } 的前 n 项和, S n +1 = qS n +1 ,其中 q>0, n ∈ N *.已知数列{a n } 的前 n 项和为 S n , a 1 = 1 , a n ≠ 0 , a n a n +1 = S n -1,其中为常数,(Ⅰ)若2a 2 , a 3 , a 2 + 2 成等差数列,求{a n } 的通项公式;(I ) 证明: a n +2 - a n =;(II ) 是否存在,使得{a n } 为等差数列?并说明理由.(Ⅱ)设双曲线 x 2y = 1 n的离心率为e n ,且e = 5 2 3 ,证明: e 1 + e 2 + ⋅⋅⋅ + e n > 4n - 3n 3n -1 .25、【2015 高考天津,理 18】(本小题满分 13 分)已知数列{a n } 满足a n +2 = qa n (q 为实数,且q ≠ 1),n ∈ N *, a 1 = 1, a 2 = 2 ,且a 2 +a 3 , a 3 +a 4 , a 4 +a 5 成等差数列. (I)求 q 的值和{a n } 的通项公式;-- 1 n -1n n n n +1 n n6(II)设b =log 2 a 2n, n ∈ N * ,求数列{b } 的前n 项和.a 2n -127、【天津市南开中学 2015 届高三第三次月考(理)试题】已知数列{a n } 的前 n 项和 S n = -a n ( ) + 2( 2n ∈ N *),数列{b }满足 b = 2n a .nnn(Ⅰ)求证:数列{b n } 是等差数列,并求数列{a n } 的通项公式;(Ⅱ)设数列{n + 1 a } 的前 n 项和为T ,证明: n ∈ N *且 n ≥ 3 时, T > 5n ;n n n n2n +126、已知等差数列{ a n }的公差 d ≠ 0 ,它的前 n 项和为 S n ,若 S 5 = 70 ,且 a 2 , a 7 , a 22 成等比数列,(Ⅰ)求数列{ a n }的通项公式;(Ⅲ)设数列{c } 满足 a (c - 3n) = (-1)n -1⋅ n ,(为非零常数, n ∈ N *),问是否存在整数,使得对任意 n ∈ N *,都有c > c ?11 3(Ⅱ)若数列{}的前 n 项和为T ,求证: ≤ T < .nnnnS 8。

专题10 数列-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题10 数列-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题10数列考点三年考情(2022-2024)命题趋势考点1:等差数列基本量运算2023年全国Ⅰ卷、2024年全国Ⅱ卷2023年新课标全国Ⅰ卷数学真题2022年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题高考对数列的考查相对稳定,考查内容、频率、题型、难度均变化不大.等差数列、等比数列以选填题的形式为主,数列通项问题与求和问题以解答题的形式为主,偶尔出现在选择填空题当中,常结合函数、不等式综合考查.考点2:等比数列基本量运算2023年全国Ⅱ卷、2023年天津卷2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题考点3:数列的实际应用2024年北京高考数学真题2023年北京高考数学真题2022年新高考全国II卷数学真题2022年高考全国乙卷数学(理)真题考点4:数列的最值问题2022年高考全国甲卷数学(理)真题2022年新高考北京数学高考真题考点5:数列的递推问题(蛛网图问题)2024年高考全国甲卷数学(文)真题2024年新课标全国Ⅱ卷数学真题2022年新高考浙江数学高考真题2023年北京高考数学真题考点6:等差数列与等比数列的综合应用2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题2024年北京高考数学真题考点7:数列新定义问题2022年新高考北京数学高考真题2024年上海夏季高考数学真题2023年北京卷、2024年北京卷考点8:数列通项与求和问题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考天津数学高考真题考点9:数列不等式2023年天津高考数学真题2023年全国Ⅱ卷、2022年全国I卷考点1:等差数列基本量运算1.(2023年新课标全国Ⅰ卷数学真题)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .2.(2022年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =.3.(2023年高考全国甲卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A .25B .22C .20D .154.(2023年高考全国乙卷数学(理)真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .125.(2024年高考全国甲卷数学(文)真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=()A .2-B .73C .1D .296.(2024年高考全国甲卷数学(理)真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =()A .72B .73C .13-D .711-7.(2023年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .8.(2024年新课标全国Ⅱ卷数学真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.9.(2023年新课标全国Ⅰ卷数学真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点2:等比数列基本量运算10.(2023年新课标全国Ⅱ卷数学真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A .120B .85C .85-D .120-11.(2023年高考全国甲卷数学(理)真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =()A .158B .658C .15D .4012.(2023年天津高考数学真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =()A .16B .32C .54D .16213.(2022年高考全国乙卷数学(理)真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A .14B .12C .6D .314.(2023年高考全国甲卷数学(文)真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.15.(2023年高考全国乙卷数学(理)真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.考点3:数列的实际应用16.(2024年北京高考数学真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为mm ,升量器的高为mm .17.(2023年北京高考数学真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =;数列{}n a 所有项的和为.18.(2022年新高考全国II 卷数学真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A .0.75B .0.8C .0.85D .0.919.(2022年高考全国乙卷数学(理)真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <考点4:数列的最值问题20.(2022年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.21.(2022年新高考北京数学高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件考点5:数列的递推问题(蛛网图问题)22.(2024年高考全国甲卷数学(文)真题)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.23.(2024年新课标全国Ⅱ卷数学真题)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =:过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意正整数n ,1n n S S +=.24.(2022年新高考浙江数学高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则()A .100521002a <<B .100510032a <<C .100731002a <<D .100710042a <<25.(2023年北京高考数学真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立考点6:等差数列与等比数列的综合应用26.(2022年新高考浙江数学高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.27.(2022年新高考全国II 卷数学真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.28.(2024年北京高考数学真题)设{}n a 与{}n b 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若{}n a 与{}n b 均为等差数列,则M 中最多有1个元素;②若{}n a 与{}n b 均为等比数列,则M 中最多有2个元素;③若{}n a 为等差数列,{}n b 为等比数列,则M 中最多有3个元素;④若{}n a 为递增数列,{}n b 为递减数列,则M 中最多有1个元素.其中正确结论的序号是.考点7:数列新定义问题29.(2022年新高考北京数学高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.30.(2024年上海夏季高考数学真题)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.31.(2024年新课标全国Ⅰ卷数学真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.32.(2023年北京高考数学真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.33.(2024年北京高考数学真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.考点8:数列通项与求和问题34.(2024年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和,已知434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T .35.(2024年天津高考数学真题)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,*k ∈N .(ⅰ)当12,k k n a +≥=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.36.(2023年高考全国甲卷数学(理)真题)设n S 为数列{}n a 的前n 项和,已知21,2n n a S na ==.(1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .37.(2022年新高考天津数学高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nk k k k k a a b +=⎡⎤--⎣⎦∑.考点9:数列不等式38.(2023年天津高考数学真题)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和()1212N n n ii a n --*=∈∑.(2)设{}n b 是等比数列,且对任意的*N k ∈,当1221k k n -≤≤-时,则1k n k b a b +<<,(Ⅰ)当2k ≥时,求证:2121kk k b -<<+;(Ⅱ)求{}n b 的通项公式及前n 项和.39.(2023年新课标全国Ⅱ卷数学真题)已知{}n a 为等差数列,6,2,n n na nb a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.40.(2022年新高考全国I 卷数学真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .。

全国卷6年数列高考题整理汇总(附答案)培训讲学

全国卷6年数列高考题整理汇总(附答案)培训讲学
=28 记????=[??????????],其中[??]表示不超过
的最大整数,如[0.9] = 0,[???? 99]=1.
I)求??
,??11,??

II)求数列{??
}的前1 000项和.
III)(12)定义“规范01数列”{??
}如下:{????}共有2??项,其中??项为0,??项为1,且对任意
=??1+??2+...+????
1
[(13-15)+(15-17)+...+(12??+1-12??+3)]
??
(2??+3)…………………………………………………………………………12分
·II)17.
,再根据已知条件求;(Ⅱ)用分段函数表示,再由
项和公式求数列的前1 000项和.
的公差为,据已知有,解得
1
,2
0122,2,2,依此类推。求满足如下条件的最小整数:100NN且该数列的
N项和为2的整数幂。那么该款软件的激活码是
.440 B.330 C.220
D.110
II)15. 等差数列
a的前项和为nS,33a,410S,则
1nk
S .
III)9.等差数列{a
(????+????).
a
+b1=l,所以{??
+????}是首项为1,公比为1
的等比数列. {}na13315ad17a{}na29nan228(4)16nSnnnnS{}naq1nnaq424qq0q2q2q1(2)nna12nna1(2)nna1(2)3nnS63mS(2)188m12nna21nnS63mS264m6m6m

2024年高考真题汇总 数列(解析版)

2024年高考真题汇总 数列(解析版)

专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。

全国卷数列高考题汇总附答案完整版

全国卷数列高考题汇总附答案完整版

全国卷数列高考题汇总附答案完整版全国卷数列高考题汇总附答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】数列专题高考真题2014·I 17.已知数列{aa}的前a项和为a,a1=1,aa≠0,aaa+1=aaa−1,其中a为常数.Ⅰ)证明:aa+2−aa=a;Ⅱ)是否存在a,使得{aa}为等差数列并说明理由.2014·II 17.已知数列{aa}满足a1=1,aa+1=3aa+1.Ⅰ)证明{aa+2}是等比数列,并求{aa}的通项公式;Ⅱ)证明:a1+a3+⋯+aa<xxxxxxx a.2015·I 17.aa为数列{aa}的前a项和.已知aa>aa2+2aa=4aa+3。

Ⅰ)求{aa}的通项公式:Ⅱ)设a1=1,求数列{aa}的前a项和。

2015·II 4.等比数列{aa}满足a1=3,a1+a3+a5=21,则a3+a5+a7=42.2015·II 16.设Sn是数列{aa}的前n项和,且a1=−1,a a+1=SnSn+1,则Sn=__________.2016·I 3.已知等差数列{aa}前9项的和为27,a10=8,则a100=98.2016·I 15.设等比数列{aa}满足a1+a3=10,a2+a4=5,则a1a2…aa的最大值为__________.2016·II 17.Sn为等差数列{aa}的前a项和,且a1=1,a7=28记aa=[aaaaa],其中[a]表示不超过a的最大整数,如[.9]=0,[aa99]=1.I)求a1,a11,a101;II)求数列{aa}的前1 000项和.2016·III 12.定义“规范01数列”{aa}如下:{aa}的每一项为0或1,且不存在连续的1.例如,{0,1,0,0,1,0}和{0,1,0,1,0,1}是规范01数列,而{0,1,1,0}和{1,0,1,0,0}不是规范01数列.Ⅰ)证明:长度为n的规范01数列的个数为F(n+2),其中F(n)为斐波那契数列的第n项;Ⅱ)已知规范01数列{aa}的前n项和Sn,求{aa}的第n项。

数列高考试题汇编(含答案)(K12教育文档)

数列高考试题汇编(含答案)(K12教育文档)

数列高考试题汇编(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数列高考试题汇编(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数列高考试题汇编(含答案)(word版可编辑修改)的全部内容。

1、(2010浙江)(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = (A )11 (B)5 (C)8- (D)11-2、(2010全国卷2)(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B)21 (C )28 (D)353、(2010辽宁文数)(3)设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =(A)3(B)4(C )5(D )64、(2010辽宁)(6)设{a n }是有正数组成的等比数列,n S 为其前n 项和.已知a 2a 4=1, 37S =,则5S =(A)152 (B)314 (C )334 (D )1725、(2010全国卷2文数)(6)如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +•••…+7a = (A )14 (B) 21 (C ) 28 (D ) 356、(2010安徽文数)(5)设数列{}n a 的前n 项和2n S n =,则8a 的值为 (A) 15 (B) 16 (C ) 49 (D )647、(2010重庆文数)(2)在等差数列{}n a 中,1910a a +=,则5a 的值为 (A )5 (B)6 (C)8 (D )18、(2010浙江文数)(5)设n s 为等比数列{}n a 的前n 项和,2580a a +=则52S S = (A )-11(B )—8 (C)5 (D )119、(2010重庆)(1)在等比数列{}n a 中,201020078a a = ,则公比q 的值为 A 。

(word完整版)历年高考真题汇编数列,推荐文档

(word完整版)历年高考真题汇编数列,推荐文档
历年高考真题汇编数列(含)
、(年新课标卷文)
已知等比数列{an}
中,
a1
1 3
,公比
q
1 3

()
Sn
为{an}
的前项和,证明:
Sn
1 an 2
()设 bn log3 a1 log3 a2 log3 an ,求数列{bn}的通项公式.
解:(Ⅰ)因为 an
1 (1)n1 33
1 3n
.
Sn
1 (1 1 ) 3 3n
①②得
(1 22 ) Sn 2 23 25 22n1 n 22n1 。

Sn
1 [(3n 9
1)22n1
2]
、(年全国新课标卷文)
设等差数列an 满足 a3 5 , a10 9 。
(Ⅰ)求 an 的通项公式;
(Ⅱ)求an的前 n 项和 Sn 及使得 Sn 最大的序号 n 的值。
解:()由 ()及,得
1 1
1 1 3n
2
,
3
所以 Sn
1 an 2
,
(Ⅱ) bn log 3 a1 log 3 a2 log 3 an
所以{bn }的通项公式为 bn
n(n 1) . 2
(1 2 ....... n)
n(n 1) 2
、(全国新课标卷理)
等比数列an 的各项均为正数,且 2a1 3a2 1, a32 9a2a6. ()求数列 an 的通项公式.
1,
Sn a1 a2 an .
2 24
2n
所以,当 n 1时,
3 / 12
Sn 2
a1
a2
2
a1
an an1 an
2n1

历年数列高考题汇编

历年数列高考题汇编

历年数列高考题汇编1、〔全国新课标卷理〕等比数列的各项均为正数,且{}n a 212326231,9.a a a a a +==〔1〕求数列的通项公式.〔2〕设 求数列的前项和.解:〔Ⅰ〕设数列{an}的公比为q ,由得所以.有条件可知a>0,故.由得,所以.故数列{an}的通项式为an=. 〔Ⅱ 〕(12...)(1)2n n n =-++++=-故12112()(1)1n b n n n n =-=--++12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列的前n 项和为1{}nb 21nn -+ 2、〔全国新课标卷理〕设数列满足 (1) 求数列的通项公式;{}n a (2) 令,求数列的前n 项和n n b na =n S解〔Ⅰ〕由已知,当n ≥1时,.而 所以数列{}的通项公式为. 〔Ⅱ〕由知35211222322n n S n -=⋅+⋅+⋅++⋅ ①从而 ②23572121222322n n S n +⋅=⋅+⋅+⋅++⋅①-②得 .即 211[(31)22]9n n S n +=-+3.设是公比大于1的等比数列,Sn 为数列的前n 项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.〔1〕求数列的通项公式;〔2〕令,求数列的前n 项和Tn . .4、〔辽宁卷〕已知等差数列{an}满足a2=0,a6+a8=-10 〔I 〕求数列{an}的通项公式; 〔II 〕求数列的前n 项和解:〔I 〕设等差数列的公差为d ,由已知条件可得解得11,1.a d =⎧⎨=-⎩故数列的通项公式为 ………………5分{}n a 2.n a n =-〔II 〕设数列,即,12.2242n n n S a a a =+++ 所以,当时,1n >1211111222211121()2422121(1)22n n n n n nn n n nS a a a a a a n n------=+++--=-+++--=--- =所以.2n n 1.2n n n S -= 综上,数列11{}.22n n n n a n n S --=的前项和5、〔陕西省〕已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.〔Ⅰ〕求数列{an}的通项; 〔Ⅱ〕求数列{2an}的前n 项和Sn.解 〔Ⅰ〕由题设知公差d ≠0,由a1=1,a1,a3,a9成等比数列得=,121d +1812dd ++ 解得d =1,d =0〔舍去〕, 故{an}的通项an =1+〔n -1〕×1=n.〔Ⅱ〕由〔Ⅰ〕知=2n ,由等比数列前n 项和公式得Sn=2+22+23+…+2n==2n+1-2(12)12n --6、〔全国卷〕设等差数列{}的前项和为,公比是正数的等比数列{}的前项和为,已知的通项公式.解: 设的公差为,的公比为{}n a d {}n b q由得 ①3317a b +=212317d q ++= 由得 ②3312T S -=24q q d +-= 由①②及解得 0q >2,2q d ==故所求的通项公式为121,32n n n a n b -=-=⨯7、〔浙江卷〕已知公差不为0的等差数列的首项为,且,,成等比数列.〔Ⅰ〕求数列的通项公式; 〔Ⅱ〕对,试比较与的大小.解:设等差数列的公差为,由题意可知{}n a d2214111()a a a =⋅即,从而因为2111()(3)a d a a d +=+21a d d =10,.d d a a ≠==所以故通项公式.n a na =〔Ⅱ〕解:记所以211(1())111111122()[1()]1222212n n n n T a a a -=+++=⋅=--从而,当时,;当0a >11n T a <110,.n a T a <>时8、〔湖北卷〕成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的、、.〔I 〕 求数列的通项公式;〔II 〕 数列的前n 项和为,求证:数列是等比数列.9、〔2010年山东卷〕已知等差数列满足:,,的前项和为{}n a 73=a 2675=+a a {}n a n n S 〔Ⅰ〕求及;解:〔Ⅰ〕设等差数列的首项为,公差为,由于,,所以,,73=a 2675=+a a 721=+d a 261021=+d a解得,,由于, ,31=a 2=d d n a a n )1(1-+=2)(1n n a a n S +=所以,12+=n a n )2(+=n n S n〔Ⅱ〕因为,所以因此)111(41)1(41+-=+=n n n n b n故n n b b b T +++= 21)1113121211(41+-++-+-=n n)111(41+-=n )1(4+=n n所以数列的前项和{}n b n )1(4+=n n T n 〔Ⅱ〕令〔〕,求数列的前项和为.10、〔重庆卷〕已知是首项为19,公差为-2的等差数列,为的前项和.{}n a n S {}n a n 〔Ⅰ〕求通项及;〔Ⅱ〕设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.11、〔四川卷〕已知等差数列的前3项和为6,前8项和为-4. 〔Ⅰ〕求数列的通项公式; 〔Ⅱ〕设,求数列的前n 项和Ⅱ〕由〔Ⅰ〕得解答可得,,于是 .0121123n n S q q q n q -=++++若,将上式两边同乘以q 有.1q ≠()121121n nn qS q q n q n q -=+++-+两式相减得到()12111n n n q S n q q q q --=-----.11n nq nq q -=--()1111n n nqn q q +-++=-于是.()()12111n n n nq n q S q +-++=-若,则.1q =()11232n n n S n +=++++=所以, (12)12、〔上海卷〕已知数列的前项和为,且,{}n a n n S 585n n S n a =--*n N ∈证明:是等比数列;并求数列的通项公式{}1n a -{}n a解:由 〔1〕可得:,即.同时 〔2〕从而由可得:(2)(1)-1115()n n n a a a ++=-- 即:,从而为等比数列,首项,公比为,通项公式为,从而*151(1),6n n a a n N +-=-∈{1}n a -1115a -=-5615115*()6n n a --=-1515*()16n n a -=-+。

历年数列高考题大全答案.doc

历年数列高考题大全答案.doc

历年高考《数列》真题汇编1、(2011 年新课标卷文 )已知等比数列 { a n } 中, a 11,公比 q 1 .33 (I ) S n 为 { a n } 的前 n 项和,证明: S n 1 a n2(II )设 b nlog 3 a 1 log 3 a 2 Llog 3 a n ,求数列 { b n } 的通项公式.111解:(Ⅰ)因为 a n1(1 ) n 11 . S n 3 (13n ) 1 3n ,3 33n1 123所以 S n1 an,2(Ⅱ) b nlog 3 a 1log 3 a 2log 3 a n(1 2n(n 1)....... n)n( n 1) .2所以 { b n } 的通项公式为 b n22、 (2011 全国新课标卷理)等比数列 a n 的各项均为正数,且 2a 1 3a 2 1,a 3 2 9a 2a 6.(1)求数列 a n 的通项公式 .(2) 设 b n log 3 a 1 log 3 a 2 ...... log 3 a n , 求数列 1 的前项和 .b n解:(Ⅰ)设数列 {a n } 的公比为 q ,由 a 329a 2a 6 得 a 339a 42 所以 q 21。

有条件可知 a>0, 故1 。

9q3由 2a 1 3a 2 1得 2a 1 3a 2q 1,所以 a 11。

故数列 {a n } 的通项式为 a n =1。

33n(Ⅱ ?) b n log 1 a 1 log 1 a 1 ... log 1 a 1故1 22(11 )b nn( n 1)n n 1所以数列 { 1} 的前 n 项和为2nb nn 13、(2010 新课标卷理)数列a n足a12, a n 1a n3g22n 1(1)求数列a n的通公式;(2)令b n na n,求数列的前n 和S n解(Ⅰ)由已知,当 n≥ 1 ,a n 1 [( a n 1 a n ) (a n a n 1 ) L (a2 a1 )] a1 3(2 2n 1 22n 3 L 2) 2 22( n 1) 1 。

数列--2023高考真题分类汇编完整版

数列--2023高考真题分类汇编完整版

数列--高考真题汇编第一节数列的通项公式与性质1.(2023新高考II 卷18)已知{}n a 为等差数列,6,2,n n n a n b a n -⎧⎪=⎨⎪⎩为奇数为偶数.记n S ,n T 分别为{}n a ,{}n b 的前n 项和.若432S =,316T =.(1)求{}n a 的通项公式;(2)求证:当5n >时,n n T S >.【解析】(1){}n a 为等差数列,设公差为d .312312362616T b b b a a a =++=-++-=,所以17a d +=①,又432S =,所以可得12316a d +=②,联立①②解得15,2a d ==,所以()1123n a a n d n =+-=+,*n ∈N .(2)由(1)得()21142n n n S a n d n n -=+=+.当n 为偶数时,()()13124......n n n T b b b b b b -=+++++++()()1312466...622...2n n a a a a a a -=-+-++-++++()()59...2132711...23n n n =++++-+++++()()521723223222n nn n n ++++=-+⨯23722n n =+.当5n >时,()()2223741022222n n n n n n n T S n n n -=+-+=-=->,即n n T S >.当n 为奇数时,1n -为偶数,()()21371123622n n n T T b n n n -=+=-+-++-235522n n =+-.当5n >时,()()()222353154525022222n n n n T S n n n n n n -=+--+=--=+->,即n n T S >.综上所述,当5n >时,n n T S >.第二节等差数列与等比数列1.(2023全国甲卷理科5)已知正项等比数列{}n a 中,11a =,n S 为{}n a 前n 项和,5354S S =-,则4S =()A.7B.9C.15D.30【解析】由题知()23421514q q q q q q ++++=++-,即34244q q q q +=+,即32440q q q +--=,()()()2120q q q -++=.{}n a 为正项等比数列,0q >,所以解得2q =,故4124815S =+++=.故选C.2.(2023全国甲卷文科5)记n S 为等差数列{}n a 的前n 项和.若2610a a +=,4845a a =,则5S =()A.25B.22C.20D.15【分析】解法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出;解法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出.【解析】解法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==,所以515455210202S a d ⨯=+⨯=⨯+=.故选C.解法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=,所以53520S a ==.故选C.3.(2023全国甲卷文科13)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.4.(2023全国乙卷理科15)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.【分析】根据等比数列公式对24536a a a a a =化简得11a q =,联立9108a a =-求出52q =-,最后得55712a a q q q =⋅==-.【解析】设{}n a 的公比为()0q q ≠,因为24536a a a a a =,而4536a a a a =,所以211a a q ==,因为9108a a =-,则()289151118a q a q a q q ⋅=⋅=-,则()()3315582q q==-=-,则52q =-,则55712a a q q q =⋅==-,故答案为2-.5.(2023全国乙卷文科18)记n S 为等差数列{}n a 的前n 项和,已知211a =,1040S =.(1)求{}n a 的通项公式;6.(2023新高考I 卷7)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.7.(2023新高考I 卷20)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记n S ,nT 分别为数列{}n a ,{}n b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .【解析】(1)()21311332(1)n a a a d a d a d a nd d -===+⇒=⇒=>,则3123312349,6,n n b S a a a d T d d d +++==++===,则296212730(21)(3)0d d d d d d+=⇒-+=⇒--=,故*3,3,n d a n n ==∈N .(2)若{}n b 为等差数列,设公差为r ,则()()()2200000000(1)n n b nr n n a nd b nr drn db ra n a b a nd +=+⇒+=++=++++故0000110dr db ra a b =⎧⎪+=⎨⎪=⎩,(101d r >⇒<<)()()999999000019910099()992n S T a nd b nr a b d r =⨯-=+--=-+-=∑,0050()1a b d r -+-=.①00a =时,00111,1,50()1501db dr d r b d d d⎛⎫==-=+⇒-=+ ⎪⎝⎭25150510(5051)(1)0. 50d d d d d ⇒--=⇒-+=⇒=②00b =时,00111,1,50()1501ra dr a d r r r r ⎛⎫==+-=⇒+-= ⎪⎝⎭250510(5051)(1)01r r r r r d ⇒+-=⇒+-=⇒==.矛盾.综上,5150d =.8.(2023新高考II 卷8)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =()A.120B.85C.85- D.120-【解析】由6221S S =,得()2422121q q S S ++=,即42200q q +-=,解得24q =或25q =-(舍),则416q =.因为4844S S q S -=,所以()()484117585S q S =+=⨯-=-.故选C.9.(2023天津卷6)已知{}n a 为等比数列,n S 为数列{}n a 的前n 项和,122n n a S +=+,则4a 的值为()A .3B .18C .54D .152【分析】由1n n n a S S -=-得出公比的值,再由题意对所给的递推关系式进行赋值,得到关于首项、公比的方程,求解方程组确定首项的值,然后结合等比数列通项公式即可求得4a 的值.【解析】因为122n n a S +=+,所以有122n n a S -=+,两式相减得()1122n n n n n a a S S a +--==-,即13n n a a +=,所以3q =.又由题意可得:当1n =时,2122a a =+,即1122a q a =+,解得可得12a =,则34154a a q ==.故选C.10.(2023北京卷14)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:株)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,11a =,512a =,9192a =.则7a =;数列{}n a 所有项的和为.【分析】方法一:根据题意结合等差、等比数列的通项公式列式求解,d q ,进而可求得结果;方法二:根据等比中项求73,a a ,再结合等差、等比数列的求和公式运算求解.【解析】解法一:设前3项的公差为d ,后7项公比为0q >,则4951921612a q a ===,且0q >,可得2q =,则53212a a d q =+=,即123d +=,可得1d =,空1:可得43733,48a a a q ===,空2:()716293121233232338412a a a -=+++⨯+⋅⋅⋅+⨯=+-+=++ .解法二:空1:因为{},37n a n ≤≤为等比数列,则227591219248a a a ==⨯=,且0n a >,所以748a =;又因为2537a a a =,则25373a a a ==;空2:设后7项公比为0q >,则2534a q a ==,解得2q =,可得()1339334567189236,21a qa a a a a q a a a a a a a a +-==++++++++=-3192238112-⨯==-,所以93126381384a a a a =+-+=++ .故答案为:48;384.第三节数列求和2.(2023全国甲卷理科17)已知数列{}n a 中,21a =,设n S 为{}n a 前n 项和,2n n S na =.(1)求{}n a 的通项公式.(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【解析】(1)因为2n n S na =.当1n =时,112a a =,即10a =.当3n =时,()33213a a +=,即32a =.当2n ≥时,()1121n n S n a --=-,所以()()11212n n n n n S S na n a a ---=--=,化简得()()121n n n a n a --=-.当3n ≥时,13 (1122)n n a a an n -====--,即1n a n =-.当1,2n =时都满足上式,所以1n a n =-,n ∈*N .(2)因为122n n n a n +=,所以231111123...2222nn T n ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2311111112...122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.两式相减得,2311111221111111 (1222222212)nn n n n T n n ++⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++-⨯=-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-11122nn ⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭,即()1222n n T n ⎛⎫=-+ ⎪⎝⎭,n ∈*N .第四节数列的综合与应用1.(2023天津卷19)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和1212n n ii a--=∑.(2)已知{}n b 为等比数列,对于任意*k ∈N ,若1221k k n -≤≤-,则1k n k b a b +<<,(i )当2k ≥时,求证:2121k k k b -<<+;(ii )求{}n b 的通项公式及其前n 项和.【分析】(1)由题意得到关于首项、公差的方程,解方程可得13,2a d ==,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前n 项和公式计算.(2)(i )利用题中的结论分别考查不等式两侧的情况,当1221k k n -≤≤-时,k n b a <,2.(2023北京卷10)数列{}n a 满足()()311661,2,3,4n n a a n +=-+= ,则()A.若13a =,则{}n a 是递减数列,且存在常数0M ,使得n a M >恒成立B.若15a =,则{}n a 是递增数列,且存在常数6M ,使得n a M <恒成立C.若17a =,则{}n a 是递减数列,且存在常数6M >,使得n a M >恒成立D.若19a =,则{}n a 是递增数列,且存在常数0M >,使得n a M <恒成立【分析】思路1:利用数学归纳法可判断ACD 正误,利用递推公式可判断数列性质,从而判断B 的正误;思路2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性.思路3:利用数形结合,画图分析各选项合理性.【解析】解法一:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤,证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立;设当n k =时,63k a -≤-成立,则()31276,4164k k a a +⎛⎫-∈-∞- ⎪⎝=⎭-,故136k a +≤--成立,由数学归纳法可得3n a ≤成立.而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦,()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<,故{}n a 为减数列,注意1063k a +-≤-<故()()()()23111666649644n n n n n a a a a a +-=≤-,结合160n a +-<,所以()16694n n a a +--≥,故119634n n a +-⎛⎫-≥ ⎪⎝⎭,故119634n n a +-⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则19634n M -⎛⎫-> ⎪⎝⎭,故16934n M --⎛⎫> ⎪⎝⎭,故9461log 3Mn -<+,故n a M >恒成立仅对部分n 成立,故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<,证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立;设当n k =时,56k a ≤<成立,则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即由数学归纳法可得156k a +≤<成立.而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦,()201416n a --<,60n a -<,故10n n a a +>-,故1n n a a +>,故{}n a 为递增数列,若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时,可用数学归纳法证明:061n a <-≤即67n a <≤,证明:当1n =时,1061a <-≤,此时不等关系成立;设当n k =时,67k a <≤成立,则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤,由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为递减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664nn a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭,若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164n M ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时,可用数学归纳法证明:63n a -≥即9n a ≥,证明:当1n =时,1633a -=≥,此时不等关系成立;设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立.由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为递增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()116349946nnn a a +⎛⎫⎛⎫-= ⎪ ⎝⎭⎝>⎪⎭-,所以19463nn a +⎛+⎫⎪⎝⎭≥,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,n 的个数有限,与D 选项矛盾,故D 错误.故选B.解法二:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-,令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x '>,得06x <<-或6x >+令()0f x '<,得23236633x -<<+;所以()f x在,63⎛-∞- ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛-+ ⎝⎭上单调递减,令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到234653<-<,237683<+<,所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >,对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <,假设当n k =时,3k a <,当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<,综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列,因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-,令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯,所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-,假设存在常数0M ≤,使得n a M >恒成立,取[]4m M =-+,其中[]1M M M -<≤,且[]M ∈Z ,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- ,上式相加得,[][]()14333M a a M M M -+<--+≤+-=,则[]4m M a a M -+=<,与n a M >恒成立矛盾,故A 错误;对于B ,因为15a =,当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<,假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<,所以()3116664k k a a +=-+<,又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >,假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-,所以()3116654k k a a +=-+≥,综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列,此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,()11312164k k a --⎛⎫+ ⎪⎝⎭=,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()11312164n n a --⎛⎫+ ⎪⎝⎭=,假设当n k =时,()11312164k k a --⎛⎫+ ⎪⎝⎭=,当1n k =+时,所以())()13113131223111666441166644k k k k a a --+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦-+=+=,综上,()()113121624n n n a --⎛⎫+⎪=≥ ⎝⎭.易知1310n -->,则()113121014n --⎛⎫<< ⎪⎝⎭,故()()()11312166,724n n n a --⎛⎫+∈≥ =⎪⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列,假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*0001,m m m m -<≤∈N ,则()0142log 6133m mM ->=+,故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即()1312164m M -⎛⎫+ ⎪⎭<⎝,所以1m a M +<,故n a M >不恒成立,故C 错误;对于D ,因为19a =,当1n =时,()32116427634a a ==->-,则29a >,假设当n k =时,3k a ≥,当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上,9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列,因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-,令()()32192649942g x x x x x =-+-≥,则()239264g x x x =-+',因为()g x '开口向上,对称轴为96324x -=-=⨯,所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ''≥=⨯-⨯+>,所以()()321999926949042g x g ≥=⨯-⨯+⨯->,故110n n a a +-->,即11n n a a +>+,假设存在常数0M >,使得n a M <恒成立,取[]1m M =+,其中[]1M M M -<≤,且[]M ∈Z ,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ ,上式相加得,[][]1191M a a M M M +>+>+->,则[]1m M a a M +=>,与n a M <恒成立矛盾,故D 错误.故选B.解法三(蛛网图):令()()31664f x x =-+,则()1n n a f a +=.故可利用数形结合判断{}n a 的单调性.首选()()31664f x x =-+关于()6,6中心对称,又由()()23604f x x '=-可知()f x 在R 上单调递增.再令()31664x x =-+,即()()36460x x ---=,得()()()6480x x x ---=,解得14x =,26x =,38x =.在同一坐标系下画出y x =和()y f x =的图像如下图所示.对于选项A ,当13a =时,如图(a )所示,{}n a 是单调递减数列,且130a =>.当2n 时,0n a <,当n →+∞时,n a →-∞.故不存在0M ,使n a M >恒成立.故A 错误.对于选项B ,当15a =时,如图(b )所示,{}n a 是单调递增数列,且当n →+∞时,6n a →.故取6M =,可使得na M 恒成立.B 正确.图(a )图(b )对于选项C ,当17a =时,如图(c )所示,图(c ){}n a 是单调递减数列.当n →+∞时,6n a →.故不存在6M >使得n a M >恒成立,C 错误.对于选项D ,当19a =时,如图(d )所示.图(d ){}n a 是单调递增数列,且当n →+∞时,n a →+∞.故不存在6M >,使n a M <恒成立.D 错误.故选B.【评注】本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.3.(2023北京卷21)已知数列{}{},n n a b 的项数均为()2m m >,且{},1,2,,i i a b m ∈ ,{}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}1,2,,k m ∈ ,定义{}{}max ,0,1,,k i k r i B A k m =∈ ,其中,max M 表示数集M 中最大的数.(1)若12a =,21a =,33a =;11b =,23b =,33b =,求0123,,,r r r r 的值;(2)若11a b ,且112,1,2,,1ii i rr r i m +-+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q r s m ∈ ,满足0,0p q m r s m ≤<≤≤<≤,使得p s q r A B A B +=+.【分析】(1)先求01230123,,,,,,,A A A A B B B B ,根据题意分析求解;(2)根据题意分析可得11i i r r +-≥,利用反证可得11i i r r +-=,再结合等差数列运算求解;(3)讨论,m m A B 的大小,根据题意结合反证法分析证明.【解析】(1)由题意可知:012301230,2,3,6,0,1,4,7A A A A B B B B ========,当0k =时,则0000,,1,2,3i B A B A i ==>=,故00r =;当1k =时,则01111,,,2,3i B A B A B A i <≤>=,故11r =;当2k =时,则222,0,1,,i B A i B A ≤=>故21r =;当3k =时,则3,0,1,2,i B A i ≤=,33,B A >故32r =;综上所述:00r =,11r =,21r =,32r =.(2)由题意可知:n r m ≤,且n r ∈N ,因为1,1n n a b ≥≥,则111,1n n A a B b ≥=≥=,当且仅当1n =时,等号成立,所以010,1r r ==,又因为112i i i r r r -+≤+,则11i i i i r r r r +--≥-,即112101m m m m r r r r r r ----≥-≥⋅⋅⋅≥-=,可得11i i r r +-≥,反证:假设满足11i i r r +->的最小正整数为j ,11j m ≤≤-,当i j ≥时,则12i i r r +-≥;当1i j ≤-时,则11i i r r +-=,则()()()112100m m m m m r r r r r r r r ---=-+-+⋅⋅⋅+-+()22m j j m j ≥-+=-,又因为11j m ≤≤-,则()2211m r m j m m m m ≥-≥--=+>,假设不成立,故11n n r r +-=,即数列{}n r 是以1为公差的等差数列,所以01,n r n n n =+⨯=∈N .(3)(i )若m m A B =,则取0,p r q s m ====即可.(ii )若m m A B ≥,构建,1n n n r S A B n m =-≤≤,由题意可得:0n S ≥,且n S 为整数,反证,假设存在正整数K ,使得K S m ≥,则1,0K K K r K r A B m A B +-≥-<,可得()()111K K K K K r r r K r K r b B B A B A B m +++=-=--->,这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≤-.①若存在正整数N ,使得0N N N r S A B =-=,即N N r A B =,可取0,,N r p q N s r ====,使得p s q r A B A B +=+;②若不存在正整数N ,使得0N S =,因为{}1,2,,1n S m ∈⋅⋅⋅-,且1n m ≤≤,由抽屉原理,必存在1X Y m ≤<≤,使得X Y S S =,即X Y X r Y r A B A B -=-,可得Y X X r Y r A B A B +=+,可取,,,Y X p X s r q Y r r ====,使得p s q r A B A B +=+;(iii )若m m A B <,构建,1n n r n S B A n m =-≤≤,由题意可得:0n S ≤,且n S 为整数,反证,假设存在正整数K ,使得K S m ≤-,则1,0K K r K r K B A m B A +-≤-->,可得()()111K K K K K r r r r K r K b B B B A B A m +++=-=--->,这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≥-.①若存在正整数N ,使得0N N r N S B A =-=,即N N r A B =,可取0,,N r p q N s r ====,使得p s q r A B A B +=+;②若不存在正整数N ,使得0N S =,因为{}1,2,,1n S m ∈--⋅⋅⋅-,且1n m ≤≤,由抽屉原理,必存在1X Y m ≤<≤,使得X Y S S =,即X Y r X r Y B A B A -=-,可得Y X X r Y r A B A B +=+,可取,,,Y X p X s r q Y r r ====,使得p s q r A B A B +=+;综上所述,存在0,0p q m r s m ≤<≤≤<≤使得p s q r A B A B +=+.【评注】方法点睛:对于一些直接说明比较困难的问题,可以尝试利用反证法分析证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考真题汇编---数列(含)1、(全国新课标卷理)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =。

有条件可知a>0,故13q =。

由12231a a +=得12231a a q +=,所以113a =。

故数列{a n }的通项式为a n =13n 。

(Ⅱ )111111log log ...log n b a a a =+++(12...)(1)2n n n =-++++=-故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n -+2、(全国新课标卷理)设数列{}n a 满足21112,32n n n a a a -+=-=g(1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S解(Ⅰ)由已知,当n ≥1时,111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+L21233(222)2n n --=++++L 2(1)12n +-=。

而 12,a =所以数列{n a }的通项公式为212n n a -=。

(Ⅱ)由212n n n b na n -==⋅知35211222322n n S n -=⋅+⋅+⋅++⋅L ①从而 23572121222322n n S n +⋅=⋅+⋅+⋅++⋅L ②①-②得 2352121(12)22222n n n S n -+-⋅=++++-⋅L 。

即 211[(31)22]9n n S n +=-+3.设}{n a 是公比大于1的等比数列,S n 为数列}{n a 的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列}{n a 的通项公式;(2)令Λ2,1,ln 13==+n a b n n ,求数列}{n b 的前n 项和T n . 。

4、(辽宁卷)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式; (II )求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和解:(I )设等差数列{}n a 的公差为d ,由已知条件可得110,21210,a d a d +=⎧⎨+=-⎩解得11,1.a d =⎧⎨=-⎩故数列{}n a 的通项公式为2.n a n =- ………………5分 (II )设数列1{}2n n n a n S -的前项和为,即2111,122n n n a a S a S -=+++=L 故, 12.2242n n n S aa a =+++L 所以,当1n >时,1211111222211121()2422121(1)22n n n n n nn n n nS a a a a a a n n------=+++--=-+++--=---L L=.2n n 所以1.2n n n S -= 综上,数列11{}.22n n n n a nn S --=的前项和 5、(陕西省)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项; (Ⅱ)求数列{2an }的前n 项和S n . 解 (Ⅰ)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812dd++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n .(Ⅱ)由(Ⅰ)知2ma =2n,由等比数列前n 项和公式得S n =2+22+23+ (2)=2(12)12n --=2n+1-6、(全国卷)设等差数列{n a }的前n 项和为n s ,公比是正数的等比数列{n b }的前n 项和为n T ,已知1133331,3,17,12,},{}n n a b a b T S b ==+=-=求{a 的通项公式。

解: 设{}n a 的公差为d ,{}n b 的公比为q由3317a b +=得212317d q ++= ① 由3312T S -=得24q q d +-= ②由①②及0q >解得 2,2q d ==故所求的通项公式为 121,32n n n a n b -=-=⨯7、(浙江卷)已知公差不为0的等差数列}{n a 的首项为)(R a a ∈,且11a ,21a ,41a 成等比数列.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)对*N n ∈,试比较n a a a a 2322221...111++++与11a 的大小.解:设等差数列{}n a 的公差为d ,由题意可知2214111()a a a =⋅ 即2111()(3)a d a a d +=+,从而21a d d = 因为10,.d d a a ≠==所以故通项公式.n a na =(Ⅱ)解:记22222111,2n nn n T a a a a a =+++=L 因为所以211(1())111111122()[1()]1222212n n n n T a a a -=+++=⋅=--L从而,当0a >时,11n T a <;当110,.n a T a <>时8、(湖北卷)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{}n b 中的b 、b 、b 。

(I) 求数列{}n b 的通项公式;(II) 数列{}n b 的前n 项和为n S ,求证:数列54n S ⎧⎫+⎨⎬⎩⎭是等比数列。

9、(2010年山东卷)已知等差数列{}n a 满足:73=a ,2675=+a a ,{}n a 的前n 项和为n S (Ⅰ)求n a 及n S ;解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由于73=a ,2675=+a a ,所以721=+d a ,261021=+d a , 解得31=a ,2=d ,由于d n a a n )1(1-+=,2)(1n n a a n S += , 所以12+=n a n ,)2(+=n n S n(Ⅱ)因为12+=n a n ,所以)1(412+=-n n a n因此)111(41)1(41+-=+=n n n n b n故n n b b b T +++=Λ21)1113121211(41+-++-+-=n n Λ )111(41+-=n )1(4+=n n 所以数列{}n b 的前n 项和)1(4+=n n T n (Ⅱ)令112-=n n a b (*N n ∈),求数列{}n b 的前n 项和为n T 。

10、(重庆卷)已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和. (Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T .11、(四川卷)已知等差数列{}n a 的前3项和为6,前8项和为-4。

(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1*(4)(0,)n n n b a q q n N -=-≠∈,求数列{}n b 的前n 项和n SⅡ)由(Ⅰ)得解答可得,1n n b n q -=g ,于是0121123n n S q q q n q -=++++g g g L g .若1q ≠,将上式两边同乘以q 有()121121n n n qS q q n q n q -=+++-+g g L g g .两式相减得到()12111n n n q S n q q q q --=-----g L11n nq nq q -=-- ()1111n n nq n q q +-++=-.于是()()12111n n n nq n q S q +-++=-.若1q =,则()11232n n n S n +=++++=L .所以,()()()()()121,1,211,1.1n n n n n q S nq n q q q ++⎧=⎪⎪=⎨-++⎪≠⎪-⎩ (12)12、(上海卷)已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈ 证明:{}1n a -是等比数列;并求数列{}n a 的通项公式解:由*585,n n S n a n N =--∈ (1)可得:1111585a S a ==--,即114a =-。

同时 11(1)585n n S n a ++=+-- (2) 从而由(2)(1)-可得:1115()n n n a a a ++=--即:*151(1),6n n a a n N +-=-∈,从而{1}n a -为等比数列,首项1115a -=-,公比为56,通项公式为15115*()6n n a --=-,从而1515*()16n n a -=-+。

相关文档
最新文档