传感器和变送器的正确选用
电流变送器的选型方法
![电流变送器的选型方法](https://img.taocdn.com/s3/m/944dd62d53d380eb6294dd88d0d233d4b14e3f37.png)
电流变送器的选型方法电流变送器是一种被广泛应用于工业自动化领域的传感器。
它可以将工业过程中的电流信号转换成标准的电流信号输出,以便于被各种控制器、计算机等设备使用。
但是,在进行选型时,需要考虑到许多因素,以确保选用的电流变送器能够配合所需的工艺过程,达到最佳的性能和可靠性。
本篇文档将为大家介绍一些电流变送器选型的基本方法和注意事项。
一、电流变送器的种类电流变送器种类繁多,主要包括以下几种:1.模拟电流变送器:输出标准电流信号,包括0-20mA、4-20mA等,是最常见的电流变送器种类;2.数字电流变送器:将模拟信号转化为数字信号输出;3.隔离型电流变送器:可将高电压区域与低电压区域隔离开来,以免干扰造成事故;4.双电源电流变送器:可同时支持交直流两种电源,保证了电路的稳定性。
根据所需应用的环境和性能,可选择不同种类的电流变送器。
二、电流变送器的性能指标在选型时,需要考虑到以下几个指标:1.准确度:反映电流变送器将电流信号转换为输出信号的精度,一般用百分比表示;2.稳定性:即电流变送器在长时间使用过程中输出信号的稳定程度,一般用百分比表示;3.线性度:用于描述电流变送器的输出与输入之间的线性关系;4.隔离性:反映电流变送器的电隔离程度,以及是否有对电路造成干扰的情况;5.响应时间:即电流变送器将输入信号转换为输出信号所需的时间,一般单位为毫秒;6.工作电压范围:即电流变送器的工作电压上限和下限,需要与实际工作环境相协调;7.防护等级:反映电流变送器的抗震、防尘、防水等等性能;8.安装方式:依据不同的场合及安装要求可选择不同的安装方式;9.生产厂家:需要在选型过程中考虑到生产厂家的声誉和可靠性,以确保所选产品的品质和售后服务。
三、电流变送器的选型步骤按照以下步骤进行选型:1. 确定系统需求首先需要对所需的电流变送器进行要求确认。
需要考虑的问题包括:工艺过程的要求、操作环境的条件、使用的电气系统要求等等。
压力仪表的选型原则及方法总结
![压力仪表的选型原则及方法总结](https://img.taocdn.com/s3/m/f87e002c02d8ce2f0066f5335a8102d277a26174.png)
压力仪表的选型原则及方法总结一、压力表的选择1、按照使用环境和测量介质的性质选择(1)在大气腐蚀性较强、粉尘较多和易喷淋液体等环境恶劣的场合,宜选用密闭式全塑压力表。
(2)稀硝酸、醋酸、氨类及其它一般腐蚀性介质,应选用耐酸压力表、氨压力表或不锈钢膜片压力表。
(3)稀盐酸、盐酸气、重油类及其类似的具有强腐蚀性、含固体颗粒、粘稠液等介质,应选用膜片压力表或隔膜压力表。
其膜片或隔膜的材质,必须根据测量介质的特性选择。
(4)结晶、结疤及高粘度等介质,应选用膜片压力表。
(5)在机械振动较强的场合,应选用耐震压力表或船用压力表。
(6)在易燃、易爆的场合,如需电接点讯号时,应选用防爆电接点压力表。
(7)下列测量介质应选用专用压力表:气氨、液氨:氨压力表、真空表、压力真空表;氧气:氧气压力表;氢气:氢气压力表;氯气:耐氯压力表、压力真空表;乙炔:乙炔压力表;硫化氢:耐硫压力表;碱液:耐碱压力表、压力真空表。
2、精确度等级的选择(1)一般测量用的压力表、膜盒压力表和膜片压力表,应选用1.5级或2.5级。
(2)精密测量和校验用压力表,应选用0.4级、0.25级或0.16级。
3、外型尺寸的选择(1)在管道和设备上安装的压力表,公称直径为φ100mm或φ150m (2)在仪表气动管路及其辅助设备上安装的压力表,公称直径为φ60mm。
(3)安装在照度较低、位置较高以及示值不易观测场合的压力表,公称直径为φ200mm或φ250mm。
4、测量范围的选择(1)测量稳定的压力时,正常操作压力值应在仪表测量范围上限值的2/3~1/3。
(2)测量脉动压力(如:泵、压缩机和风机等出口处压力)时,正常操作压力值应在仪表测量范围上限值的1/2~1/3。
(3)测量高、中压力(大于4MPa)时,正常操作压力值不应超过仪表测量范围上限值的1/2。
5单位及标度(刻度)(1)压力仪表一律使用法定计量单位。
即:帕(Pa)、千帕(kPa)和兆帕(MPa)。
压力变送器取压点选取及传感器使用注意事项
![压力变送器取压点选取及传感器使用注意事项](https://img.taocdn.com/s3/m/c94bf0e3f242336c1eb95ef1.png)
压力变送器取压点选取及传感器使用注意事项1、测量气体压力时,取压点应在工艺管道的上半部。
2、测量液体压力时,取压点应在工艺管道的下半部与工艺管道的水平中心线成0~45°夹角的范围内。
3、测量蒸汽压力时,取压点取在工艺管道的上半部以及下半部与工艺管道水平中心线成0~45°夹角的范围内。
4、压力取源部件的安装位置,应选择在工艺介质流束稳定的管段。
5、压力取源部件与温度取源部件在同一管道上时,压力取源部件应安装在温度取源件的上游侧。
6、压力取源部件的端部不应超出工艺设备和工艺管道的内壁。
7、在垂直工艺管道上测量带有灰尘、固体颗粒或沉淀物等混浊介质的压力时,取源部件应倾斜向上安装,与水平线的夹角应大于30度,在水平工艺管道上宜顺流束成锐角安装。
8、压力变送器安装位置应光线充足,操作和维护方便,不宜安装在振动、潮湿、高温、有腐蚀性和强磁场干扰的地方。
9、压力变送器安装位置应尽可能靠近取源部件。
测量低压的变送器的安装高度宜与取压点高度一致,尤其是测量液体介质和可凝性气体介质。
10、测量气体介质压力时,变送器安装位置宜高于取压点,测量液体或蒸汽压力时,变送器安装位置宜低于取压点,目的在于减少排气、排液附加设施。
压力传感器使用过程应注意考虑下列情况:1、变送器上切勿使用高于36V的电压,容易导致损坏。
2、变送器切勿用硬物碰触膜片,会损坏隔膜片。
3、被测介质不能结冰,否则传感器元件隔离膜片容易损伤,导致变送器破坏。
4、在测量蒸汽或其他高温介质时,其温度不应超过变送器使用时的极限温度,否则必须使用散热装置。
5、在测量蒸汽或其他高温介质时,为使变送器和管道连在一起,应使用散热管,并使用管道上的压力传至变压器。
当被测介质为水蒸气时,散热管中要注入适量的水,以防过热蒸汽直接与变送器接触,致使损坏传感器。
6、在压力传输过程中,应注意几点:变送器与散热管连接处不可漏气;在打开阀门时要小心,以免被测介质直接冲击、损坏传感器膜片;必须保持管路畅通,避免管道中的沉积物弹出并损坏传感器膜片。
压力传感器和压力变送器有什么区别
![压力传感器和压力变送器有什么区别](https://img.taocdn.com/s3/m/944312d7eff9aef8951e0643.png)
压力传感器是能感受压力信号,并能按照一定的规律将压力信号转换成可用的输出的电信号的器件或装置。
压力变送器是一种将压力转换成气动信号或电动信号进行控制和远传的设备。
下面笔者来跟大家讲一下压力传感器和压力变送器有什么区别一、原理不同1、压力传感器电阻应变片是压阻式应变传感器的主要组成部分之一。
金属电阻应变片的bai工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。
2、陶瓷压力传感器基于压阻效应,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥,由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号。
3、扩散硅压力传感器工作原理也是基于压阻效应,利用压阻效应原理,被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,利用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。
4、压力变送器感受压力的电器元件一般为电阻应变片,电阻应变片是一种将被测件上的压力转换成为一种电信号的敏感器件。
电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。
金属电阻应变片又有丝状应变片和金属箔状应变片两种。
5、通常是将应变片通过特殊的黏合剂紧密地粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。
二、相关应用不同1、压力传感器主要应用于:增压缸、增压器、气液增压缸、气液增压器、压力机,压缩机,空调制冷设备等领域。
2、压力变送器:(1)、智能化:由于集成化的出现,在集成电路中可添加一些微处理器,使得变送器具有自动补偿、通讯、自诊断、逻辑判断等功能。
(2)、集成化:压力变送器已经越来越多的与其它测量用变送器集成以形成测量和控制系统。
集成系统在过程控制和工厂自动化中可提高操作速度和效率。
霍尔电流电压传感器、变送器的基本原理与使用方法
![霍尔电流电压传感器、变送器的基本原理与使用方法](https://img.taocdn.com/s3/m/86135b3d640e52ea551810a6f524ccbff121ca26.png)
霍尔电流电压传感器、变送器的基本原理与使用方法一、霍尔电流电压传感器、变送器的基本原理与使用方法1( 霍尔器件霍尔器件是一种采用半导体材料制成的磁电转换器件。
如果在输入端通入控制电流I,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势V。
CH如图1,1所示。
IBsin霍尔电势V的大小与控制电流I和磁通密度B的乘积成正比,即:V,KHCHHCΘ霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。
因此,使电流的非接触测量成为可能。
通过测量霍尔电势的大小间接测量载流导体电流的大小。
因此,电流传感器经过了电,磁,电的绝缘隔离转换。
2( 霍尔直流检测原理如图1,2所示。
由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔器件输出的电压讯号U可以间接反映出被测电流I的大小,即:I?B?U 01110我们把U定标为当被测电流I为额定值时,U等于50mV或100mV。
这就制成010霍尔直接检测(无放大)电流传感器。
3( 霍尔磁补偿原理原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。
所以称为霍尔磁补偿电流传感器。
这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。
霍尔磁补偿原理如图1,3所示。
从图1,3知道:Φ,Φ 12IN,IN 1122I,N/N?I 2I21当补偿电流I流过测量电阻R时,在R两端转换成电压。
做为传感器测量电2MM压U即:U,IR 02M0按照霍尔磁补偿原理制成了额定输入从0.01A,500A系列规格的电流传感器。
由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。
4( 磁补偿式电压传感器为了测量mA级的小电流,根据Φ,IN,增加N的匝数,同样可以获得高磁1111通Φ。
温度变送器的适用介绍
![温度变送器的适用介绍](https://img.taocdn.com/s3/m/216f226b3069a45177232f60ddccda38376be121.png)
温度变送器的适用介绍温度变送器是一种常见的工业自动化控制仪表,它是用于将现场温度信号转换为标准信号输出的装置。
温度变送器可以将不同种类的温度传感器检测到的温度信号转换为标准的信号,如4-20mA电流或0-10V电压等。
温度变送器适用于各种工业场合,如化工、石化、电力、制药、食品等行业。
本文将介绍温度变送器的适用范围、分类、选型和安装注意事项。
适用范围温度变送器适用于以下场合:1.环境温度较高或较低的工况2.采用远传信号的场合,提供稳定的远距离信号传输3.对信号精度有要求的情况4.要求设备可控、自动化程度高的场合分类根据输入信号类型的不同,温度变送器可以分为以下几种类型:热电偶变送器热电偶变送器是将热电偶检测到的温度信号转换为标准信号输出的装置。
热电偶变送器适用于工作温度在-270℃至+1800℃范围内的场合,具有测量范围宽、质量稳定、抗干扰能力强等特点。
热电阻变送器热电阻变送器是将热电阻检测到的温度信号转换为标准信号输出的装置。
热电阻变送器适用于工作温度在-200℃至+600℃范围内的场合,具有精度高、响应快等特点。
同时,它还可以根据温度补偿线的不同,分为三线式、四线式热电阻变送器。
红外温度变送器红外温度变送器是将通过红外线检测到的物体表面温度转换为标准信号输出的装置。
红外温度变送器适用于非接触式温度检测的场合,可以广泛应用于造纸、印染、化工、冶金、炼油、食品加工、纺织等行业。
其他类型除了以上三种类型的温度变送器,还有磁敏电阻温度变送器、晶体管温度变送器、热电积温度变送器等。
这些类型的温度变送器主要应用于特殊的温度检测场合。
选型选择适合的温度变送器,需要考虑以下几个方面:1.检测对象的最高温度和最低温度2.对控制精度、响应速度的要求3.电源的电压和信号传输距离4.工作环境与外界温度条件安装注意事项1.将温度变送器放置在干燥、通风良好的地方,并避免水汽、腐蚀性气体的侵蚀。
2.温度变送器的电源和信号线应分开布置,避免相互干扰。
压力传感器和压力变送器的区别
![压力传感器和压力变送器的区别](https://img.taocdn.com/s3/m/5c601b2b915f804d2b16c1a3.png)
压力定义,压力传感器和压力变送器的区别
压力:流体介质垂直作用于单位面积上的力称为“压强”,在工程技术上一般称它为“压力”,其法定计算单位为帕,符号为Pa。
绝对压力:以绝对真空(零压)为基准来表示的压力PA。
表压力:以实际大气压为基准来表示的压力PG。
差压力:相关两处的压力差值PD。
密封压:以标准大气压为基准来表示的压力PS。
负压:小于实际大气压时的表压力(也叫真空度)。
压力传感器:是一种能感受压力,并按照一定的规律将压力信号转换成可用电信号输出的器件要或装置。
压力传感器内
部没有放大电路,满量程输出一般为毫伏级,带负载
能力低,不能直接与计算机接口。
压力变送器:是一种能感受压力,并按照一定的规律将压力信号转换成可用的统一的电信号输出的器件或装置。
压力变送器
的输出信号与压力信号之间有一定的连续线性函数关
系。
变送器内部装有专用放大电路,其统一的标准输出
信号通常为直流:①4~20mA或1~5V;②0~10mA
或0~10V。
有些压力变送器可以直接与计算机接口。
也有人误把压力变送器称作压力传感器。
文章来源于,蚌埠天光传感器。
常用化工仪表选型原则及方法
![常用化工仪表选型原则及方法](https://img.taocdn.com/s3/m/5e4c5f4a0640be1e650e52ea551810a6f524c8c4.png)
常用化工仪表选型原则及方法随着现代化工生产的迅猛发展,化工生产规模不断扩大,对于自动化控制的要求也越来越高,自动化控制不仅能够调节生产负荷,调整不正常的工况,还能够保证生产过程的安全性。
而仪表作为化工自动化控制中最基本的单元,在整个控制乃至化工生产中起到了非常重要的作用,仪表的正常工作可以为操作人员提供正确可靠的化工生产运行参数,为操作人员正常运行操作调整和异常生产运行状况进行干预提供参考,还能够提高化工生产装置中控制回路的自动控制率,因为当前化工生产中还主要靠大量操作人员24小时不间断操作,所以仪表的正常稳定运行还能够大幅降低操作人员数量及操作人员的劳动强度。
如果仪表存在故障,那么可能会造成实际运行参数与仪表反馈参数不符,操作人员错误判断,产品不合格,甚至会导致装置进入危险状态,威胁各类人员生命财产安全,破坏自然生态环境,在社会上造成严重负面影响。
因此,化工仪表的正确选型显得尤为重要。
笔者收集相关选型原则和选型方法供各位同仁参考。
一、常见化工检测仪表选型的一般原则:1. 工艺过程的条件工艺过程的温度、压力、流量、粘度、腐蚀性、毒性、脉动等因素是决定仪表选型的主要条件,它关系到仪表选用的合理性、仪表的使用寿命及车间的防火、防爆、保安等问题。
2. 操作上的重要性各检测点的参数在操作上的重要性是仪表的指示、记录、积算、报警、控制、遥控等功能选定依据。
一般来说,对工艺过程影响不大,但需经常监视的变量,可选指示型;对需要经常了解变化趋势的重要变量,应选记录式;而一些对工艺过程影响较大的,又需随时监控的变量,应设控制;对关系到物料衡算和动力消耗而要求计量或经济核算的变量,宜设积算;一些可能影响生产或安全的变量,宜设报警。
3. 经济性和统一性仪表的选型也决定于投资的规模,应在满足工艺和自控的要求前提下,进行必要的经济核算,取得适宜的性能/价格比。
为便于仪表的维修和管理,在选型时也要注意到仪表的统一性。
尽量选用同一系列、同一规格型号及同一生产厂家的产品。
传感器的选择注意事项
![传感器的选择注意事项](https://img.taocdn.com/s3/m/79626567443610661ed9ad51f01dc281e53a56d8.png)
传感器的选择注意事项在进行传感器的选择时,需要考虑以下几个注意事项:1.应用需求:首先要明确传感器的应用需求,确定需要测量的参数、测量范围以及测量精度等。
不同的应用场景可能需要不同类型的传感器,因此要确保选取的传感器能够满足应用需求。
2.传感器类型:传感器可以分为许多不同的类型,例如温度传感器、压力传感器、加速度传感器等。
选择合适的传感器类型取决于需要测量的物理量。
有时,一个应用场景可能需要多个传感器以测量多个参数。
3.传感器特性:传感器的特性包括灵敏度、响应时间、线性度、稳定性等。
这些特性会直接影响到传感器的性能和可靠性。
因此,在选择传感器时需要考虑这些特性,并根据需求确定合理的要求。
4.传感器输出:传感器的输出可以分为模拟输出和数字输出两种形式。
模拟输出一般需要转换成数字信号进行处理,而数字输出可以直接连接到数字系统中。
根据应用需求和系统结构,选择合适的传感器输出形式。
5.传感器接口:传感器的接口通常包括模拟接口(如电压输出或电流输出)和数字接口(如I2C、SPI等)。
选择合适的传感器接口取决于系统的硬件平台和应用需求。
6.传感器价格:传感器的价格也是一个需要考虑的因素。
不同类型和不同品牌的传感器价格差异很大。
选择传感器时需要根据预算和应用需求,权衡价格和性能之间的关系。
7.传感器可靠性:传感器的可靠性特性包括寿命、工作温度范围、抗干扰性等。
这些特性会直接影响到传感器的稳定性和使用寿命。
因此,在选择传感器时要注意其可靠性特性。
8.供应商信誉:选择一个可靠的供应商也是至关重要的。
一个有良好信誉的供应商通常能提供优质的产品和良好的售后服务,能够为使用者提供技术支持和解决问题的帮助。
在进行传感器选择时,上述注意事项应该综合考虑,根据应用需要和预算情况,选择最适合的传感器。
此外,定期维护和校准传感器也是保持传感器性能和可靠性的重要方式。
pt100和温度变送器的对应关系
![pt100和温度变送器的对应关系](https://img.taocdn.com/s3/m/ef9edd2f26d3240c844769eae009581b6ad9bd67.png)
pt100和温度变送器的对应关系在工业领域中,温度测量是一个非常重要的参数。
温度变送器是一种常用的仪器,用于将温度信号转换为电流或电压信号,以便于远程监测和控制温度。
PT100是一种常用的温度传感器,它基于铂电阻的特性来测量温度。
在本文中,我们将讨论PT100和温度变送器之间的对应关系。
PT100是一种基于铂电阻的温度传感器,它的工作原理是根据铂电阻的温度特性来测量温度。
PT100的特点是精度高、稳定性好、线性度高,被广泛应用于工业领域的温度测量中。
PT100的测量范围通常在-200°C到850°C之间,具体的范围可以根据实际应用需求来确定。
温度变送器是一种用于将温度信号转换为标准的电流或电压信号的装置。
它的作用是将温度传感器采集到的温度信号转换为标准的4-20mA电流信号或0-10V电压信号,以便于传输和处理。
温度变送器通常具有高精度、高稳定性和线性度好的特点,可以适应各种恶劣的工作环境。
PT100和温度变送器之间的对应关系是通过温度变送器的输入信号和输出信号之间的关系来建立的。
通常情况下,温度变送器的输入信号是PT100的温度信号,而输出信号则是经过转换后的标准的4-20mA电流信号或0-10V电压信号。
具体的对应关系可以通过温度变送器的技术手册或者参数表来确定。
在使用PT100和温度变送器的过程中,我们需要注意以下几点:首先,需要正确连接PT100和温度变送器。
通常情况下,PT100的两个引脚需要连接到温度变送器的输入端,而温度变送器的输出端则需要连接到控制系统或监测设备。
其次,需要注意PT100的测量范围和温度变送器的输入范围的匹配。
PT100的测量范围应该在温度变送器的输入范围内,否则会导致测量误差或无法正常工作。
此外,还需要了解温度变送器的输出信号的范围和类型,以便于正确使用和解读温度变送器的输出信号。
最后,需要定期检查和校准PT100和温度变送器的性能。
由于环境和使用条件的影响,PT100和温度变送器的性能可能会有所变化,因此定期检查和校准是确保测量准确性和稳定性的重要步骤。
压力传感器选型原则
![压力传感器选型原则](https://img.taocdn.com/s3/m/f5c4354802d8ce2f0066f5335a8102d276a261c6.png)
压力传感器选型原则
压力传感器是一种用于测量压力的装置,广泛应用于工业控制、汽车工程、医疗设备和其他领域。
在选择合适的压力传感器时,有
一些重要的原则需要考虑。
本文将介绍压力传感器选型的原则。
1. 测量范围,首先要确定需要测量的压力范围。
不同的应用需
要不同范围的压力传感器,因此需要根据具体的测量要求来选择合
适的传感器。
2. 精度要求,对于一些需要高精度的应用,如医疗设备或实验
室仪器,需要选择具有较高精度的压力传感器。
而对于一些工业控
制应用,精度要求可能没有那么高。
3. 环境条件,考虑传感器将要使用的环境条件,例如温度、湿度、腐蚀性气体等。
选择能够适应这些环境条件的传感器,以确保
其可靠性和稳定性。
4. 响应时间,对于一些需要快速响应的应用,如汽车制动系统,需要选择具有较短响应时间的传感器。
5. 安装要求,考虑传感器的安装方式和空间限制,选择适合的尺寸和安装方式的传感器。
6. 成本考虑,最后要考虑成本因素,选择符合预算的传感器,并在性能和成本之间做出权衡。
总之,选择合适的压力传感器需要综合考虑测量范围、精度、环境条件、响应时间、安装要求和成本等因素。
只有根据具体应用的要求来选择合适的传感器,才能确保其能够正常工作并满足实际需求。
流体力学实验装置的压力传感器的选择和校准
![流体力学实验装置的压力传感器的选择和校准](https://img.taocdn.com/s3/m/880c939e370cba1aa8114431b90d6c85ec3a8898.png)
流体力学实验装置的压力传感器的选择和校准在流体力学实验中,压力传感器是非常重要的装置,用于测量流体中的压力变化。
选择和校准合适的压力传感器对实验的准确性和稳定性起着至关重要的作用。
本文将探讨流体力学实验装置中压力传感器的选择和校准方法。
选择合适的压力传感器是保证实验数据准确性的关键。
首先,需要考虑传感器的测量范围是否覆盖实验中液体或气体的压力范围。
其次,传感器的灵敏度和精度也是选择的重要因素,需要根据实验要求进行相应的选择。
此外,传感器的材质和耐受性也需要考虑,以确保在特定实验环境下能够正常工作。
在选择合适的压力传感器后,必须进行校准以保证测量结果的准确性。
校准过程可以分为零点校准和满量程校准两个步骤。
零点校准是通过调节传感器输出来保证零点位置的准确性。
而满量程校准则是通过给定不同压力下的标准值进行比对,来确定传感器整个测量范围的准确性。
在校准过程中,需要注意以下几点。
首先,校准应在恒定温度和大气压环境下进行,以避免外部因素对校准结果的影响。
其次,校准仪器的选择也是至关重要的,应选择准确可靠的仪器进行校准。
最后,在校准过程中要仔细记录每一步的操作,并将校准结果进行标定,以便后续实验使用时能够准确读取数据。
总的来说,选择和校准流体力学实验装置中的压力传感器是确保实验数据准确性的重要环节。
合理选择合适的传感器,并通过严谨的校准过程,可以保证实验结果的可靠性,为流体力学领域的研究提供有力支持。
希望本文的内容能够对相关领域的研究者提供一定的参考和帮助。
如何选购正确的温度变送器
![如何选购正确的温度变送器](https://img.taocdn.com/s3/m/d0aafb80fc0a79563c1ec5da50e2524de518d0f5.png)
如何选购正确的温度变送器选购温度变送器是一个关键的任务,因为它直接影响到测量和控制系统的准确性和可靠性。
下面是一些指导原则,帮助您正确选择温度变送器。
确定所需测量范围:首先,确定您需要测量的温度范围。
这将有助于确定所需的变送器类型。
温度变送器通常适用于广泛的温度范围,例如-200°C至+800°C。
选择合适的传感器类型:温度变送器通常与不同类型的传感器配对使用。
最常见的传感器类型包括热电偶和热电阻。
热电偶适用于高温应用,而热电阻适用于更广泛的温度范围。
根据您的具体需求选择合适的传感器类型。
考虑环境条件:在选择温度变送器时,必须考虑将其使用的环境条件。
特别注意以下因素:温度极限:如果变送器将在极限的温度条件下运行,例如高温或低温环境,确保选择符合这些要求的变送器。
一些高级型号具有绝缘材料和高温耐受能力。
湿度和防护等级:根据环境的湿度水平选择具有适当防护等级的变送器。
例如,如果变送器将在潮湿的条件下使用,选择具有IP67等级的防护。
考虑输出类型和接口:温度变送器可提供不同类型的输出信号,例如模拟信号(如4-20mA或0-10V)或数字信号(如RS485或Modbus)。
确保选择与您的控制系统兼容的输出类型。
校准和精度要求:对于需要高精度测量的应用,确保选择具有较高精度的变送器。
对于一些特殊应用,还可以要求定期校准。
考虑安装和维护便捷性:选择易于安装和维护的温度变送器。
注意选择具有适当连接器和插头的型号,以简化安装过程。
特殊功能和附加功能:某些温度变送器具有特殊功能和附加功能,如故障诊断功能、多点校准功能等。
根据您的特定需求,考虑这些额外的功能和特性。
参考用户评价和品牌信誉:在购买之前,参考用户评价和品牌信誉是非常有用的。
了解不同品牌的温度变送器的可靠性和性能,以便做出明智的选择。
空调压力传感器空调压力变送器安全操作规定
![空调压力传感器空调压力变送器安全操作规定](https://img.taocdn.com/s3/m/1b049b0e3868011ca300a6c30c2259010202f323.png)
空调压力传感器空调压力变送器安全操作规定空调压力传感器和空调压力变送器是空调系统必不可少的两个部件,其主要作用是用来对空调系统的压力进行测量和传输。
但正是因为它
们的重要性,如果不注意操作,就有可能会发生安全事故。
为了确保
使用过程中的安全性,特制定以下操作规定:
一、安装规定
1.安装前应先核对压力传感器型号和主机匹配是否正确,确
认接口尺寸是否符合要求。
2.安装前应先清洗安装位置,确保没有任何杂物或异物,以
避免可能引起的气体泄漏等事故。
3.安装时应注意橡胶密封圈是否完好,压紧力是否适当,以
确保安装牢固而不松动。
4.安装完毕后应再次检查安装情况,并进行密封性能测试,
确保系统不会发生渗漏或空气泄漏等问题。
二、使用规定:
1.空调压力传感器和空调压力变送器不得受到严重的撞击或
挤压,以免损坏其内部结构。
2.避免长时间超负荷使用,以免产生严重的磨损或劣化,影
响其正常工作。
3.使用中,发现异常情况应立刻停止使用,并检查仔细后再
使用,避免因长时间使用而引起危险。
如何选择正确的温度传感器型号
![如何选择正确的温度传感器型号](https://img.taocdn.com/s3/m/8822fd3214791711cc791751.png)
如何选择正确的温度传感器型号选择温度传感器比选择其它类型传感器所需要考虑内容更多。
首先,必须选择传感器结构,使敏感元件规定测量时间之内达到所测流体或被测表面温度。
温度传感器输出仅仅敏感元件温度。
实际上,要确保传感器指示温度即所测对象温度,常常很困难。
大多数情况下,对温度传感器选用,需考虑以下几方面问题:(1)被测对象温度否需记录、报警和自动控制,否需要远距离测量和传送。
(2)测温范围大小和精度要求。
(3)测温元件大小否适当。
(4)被测对象温度随时间变化场合,测温元件滞后能否适应测温要求。
(5)被测对象环境条件对测温元件否损害。
(6)价格如保,使用否方便。
容器中流体温度般用热电偶或热电阻探头测量,但当整系统使用寿命比探头预计使用寿命长得多时,或者预计会相当频繁拆卸出探头以校准或维修却能容器上开口时,容器壁上安装永久性热电偶套管。
用热电偶套管会显著延长测量时间常数。
当温度变化很慢且热导误差很小时,热电偶套管会影响测量精确度,但如果温度变化很迅速,敏感元件跟踪上温度迅速变化,且导热误差又能增加时,测量精确度就会受到影响。
因此要权衡考虑维修性和测量精度这两因素。
电偶或热电阻探头全部材料都应与能和它们接触流体适应。
使用裸露元件探头时,必须考虑与所测流体接触各部件材料(敏感元件、连接引线、支撑物、局部保护罩等)适应性,使用热电偶套管时,只需要考虑套管材料。
电阻式热敏元件浸入液位变送器体及多数气体时,通常密封,至少要涂层,裸露电阻元件能浸入导电或污染流体中,当需要其快速响应时,将它们用于干燥空气和限几种气体及某些液位变送器体中。
电阻元件如用停滞或慢速流动流体中,通常需某种壳体罩住以进行机械保护。
管子、导管或容器能开口或禁止开口,因能使用探头或热电偶套管时,通过外壁钳夹或固定表面温度传感器方法进和测量。
确保合理测量精度,传感器必须与环境大气热隔离并与热辐射源隔离,且必须通过传感器适当设计与安装使壁对敏感元件热传导达到到最佳状态。
第4节 传感器与变送器
![第4节 传感器与变送器](https://img.taocdn.com/s3/m/ba9505c8b14e852458fb5766.png)
所谓调零点,就是当测量信号 ∆p=0 时,确保差压变送器 的输出p出=0.02Mpa。若当p出≠0.02Mpa时,则应该进行调 整。调整方法是通过调整调零弹簧的预紧力,强制改变挡 板与喷嘴之间的初始开度,使得 ∆p=0 时, p 出 =0.02Mpa 。所谓调量程,是指当测量信号 ∆p 达到最大值时,调整 量程支点的上下位置,使得p出=0.10Mpa 。
• 为了检测主机的转向,需安装两个磁头,且它们之间错位1/4 齿距,使两个磁头所产生的脉冲信号在相位上相差1/4周期。 • 正车时,CP端上升沿时,D端为1,Q输出1; • 倒车时,CP端上升沿时,D端为0,Q输出0。
• 二、变送器 • 1.变送器的构成原理
y K ( Dx z0 ) 1 KF
起点从零迁到某一数值。迁移后,量程的起点和终
点都改变,但量程保持不变。
变送器零点迁移前后的输入输出特性
• 2.气动差压变送器 • 工作原理?
图5-60单杠杆差压变送器原理示意图
7-档板
5-顶针架
单 杠 杆 差 压 变 送 器 结 构 原 理 图
6-喷嘴 8-调零迁移弹簧
9-杠杆
11-锁紧螺母 12-静压误差 调节螺母 14-支架 17-负压室 16-膜盒
p 0
E s 0 l3 p出 0.02 MPa F反 l2
• 双杠杆差压变送器 1)在单杠杆变送器中,量程增加→L2增加==>量程非 常大,必须增长主杠杆; 2)主杠杆增加,容易引起振荡。 为此设计出双杠杆变送器,减小主杠杆的长度。
• 双杠杆差压变送器
F膜 L1 L 4 p出 p F反 L 2 L 3 K 双 p
(2)热电偶式温度传感器
+
e
传感器的选用原则
![传感器的选用原则](https://img.taocdn.com/s3/m/bcd3143d312b3169a451a462.png)
传感器的选用原则一、与测量条件有关的因素(1) 测量的目的;(2) 被测试量的选择;(3) 测量范围;(4) 输入信号的幅值,频带宽度;(5) 精度要求;(6) 测量所需要的时间。
二、与传感器有关的技术指标(1) 精度;(2) 稳定度;(3) 响应特性;(4) 模拟量与数字量;(5) 输出幅值;(6) 对被测物体产生的负载效应;(7) 校正周期;(8) 超标准过大的输入信号保护。
三、与使用环境条件有关的因素(1) 安装现场条件及情况;(2) 环境条件(湿度、温度、振动等);(3) 信号传输距离;(4) 所需现场提供的功率容量。
四、与购买和维修有关的因素(1) 价格;(2) 零配件的储备;(3) 服务与维修制度,保修时间;(4) 交货日期。
第二章力敏传感器第一节应变式传感器金属应变片式传感器一、金属应变片式传感器金属应变片式传感器的核心元件是金属应变片,它可将试件上的应变变化转换成电阻变化。
优点:①精度高,测量范围广②频率响应特性较好③结构简单,尺寸小,重量轻④可在高(低)温、高速、高压、强烈振动、强磁场及核辐射和化学腐蚀等恶劣条件下正常工作⑤易于实现小型化、固态化⑥价格低廉,品种多样,便于选择缺点:具有非线性,输出信号微弱,抗干扰能力较差,因此信号线需要采取屏蔽措施;只能测量一点或应变栅范围内的平均应变,不能显示应力场中应力梯度的变化等;不能用于过高温度场合下的测量。
应变式传感器应用金属应变片,除了测定试件应力、应变外,还制造成多种应变式传感器用来测定力、扭矩、加速度、压力等其它物理量。
应变式传感器包括两个部分:一是弹性敏感元件,利用它将被测物理量(如力、扭矩、加速度、压力等)转换为弹性体的应变值;另一个是应变片作为转换元件将应变转换为电阻的变化。
柱力式传感器梁力式传感器应变式压力传感器应变式加速度传感器压阻式传感器优点:灵敏度高、动态响应好、精度高、易于微型化和集成化等。
第2章电阻式传感器电阻式传感器的种类繁多,应用广泛,主要应用于测力、测压、称重、测位移、测加速度、测扭矩、测温度等检测系统。
温度变送器和温度传感器的区别【一文搞懂】
![温度变送器和温度传感器的区别【一文搞懂】](https://img.taocdn.com/s3/m/1edc5cbee45c3b3566ec8bad.png)
温度传感器是能够受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置的总称,通常由敏感元件和转换元件组成。
当传感器的输出为规定的标准信号时,则称为变送器。
温度变送器的概念是将非标准电信号转换为标准电信号的仪器,传感器则是将物理信号转换为电信号的器件,过去常讲物理信号,现在其他信号也有了。
一次仪表指现场测量仪表或基地控制表,二次仪表指利用一次表信号完成其他功能:诸如控制,显示等功能的仪表。
温度传感器是把非电物理量如温度、压力、液位、物料、气体特性等转换成电信号或把物理量如压力、液位等直接送到变送器。
变送器则是把传感器采集到的微弱的电信号放大以便转送或启动控制元件。
或将传感器输入的非电量转换成电信号同时放大以便供远方测量和控制的信号源。
根据需要还可将模拟量变换为数字量。
传感器和变送器一同构成自动控制的监测信号源。
不同的物理量需要不同的传感器和相应的变送器。
还有一种变送器不是将物理量变换成电信号,如一种锅炉水位计的“差压变送器”,是将液位传感器里的下部的水和上部蒸汽的冷凝水通过仪表管送到变送器的波纹管两侧,以波纹管两侧的差压带动机械放大装置用指针指示水位的一种远方仪表。
当然还有把电气模拟量变换成数字量的也可以叫变送器。
(1)温度传感器和温度变送器最大的区别是输出信号不同,温度传感器的输出信号可能是电阻信号、数字信号等,温度变送器输出电流4-20毫安、电压0-5V、0-10V或者485信号,是经过了变送模块处理后的信号。
(2)另外温度传感器和温度变送器的结构不同。
温度传感器通常都是由一个元件封装而成的,而温度变送器包括两部分:温度传感器探头和变送模块。
(3)从产品的外形无法确定温度传感器和变送器,温度传感器也有时候根据使用需要被设计成接线盒的样式,只有通过输出信号这个参数区别。
(4)温度传感器和温度变送器的精度没有区别,同样都有高精度和普通精度等级别,测温范围也没有区别,都是高中低温都可以测量。
变送器的工作原理及应用
![变送器的工作原理及应用](https://img.taocdn.com/s3/m/080c0824f4335a8102d276a20029bd64783e6234.png)
变送器的工作原理及应用工作原理变送器是一种电子设备,用于将物理量(如压力、温度、流量等)转换为标准信号(如电流、电压等),以便传输、测量和控制。
其工作原理可以分为以下几个方面:1.传感器:变送器通常与传感器配合使用,传感器负责感知待测物理量并将其转换为电信号。
常用的传感器包括压力传感器、温度传感器、液位传感器等。
2.信号调理:变送器对传感器输出的信号进行放大、滤波和线性化等处理,以确保信号的准确性和稳定性。
3.信号转换:在信号调理的基础上,变送器将信号转换为符合标准的信号形式,如电流信号(4-20mA)、电压信号(0-10V)等。
4.信号传输:变送器将转换后的信号传输给后续的测量、控制设备,如远程显示仪表、控制系统等。
应用变送器在工业自动化控制领域有着广泛的应用。
下面列举几个常见的应用场景:1.压力变送器:压力变送器广泛应用于工业过程控制中,用于测量和监控管道、容器等介质的压力。
通过将压力转换为标准的电信号,可以实现对压力的远程监控和控制。
2.温度变送器:温度变送器常用于温度测量和控制系统中,常见于化工、冶金、电力等行业。
它可以将温度传感器感知到的温度转换为标准的电信号,在温度范围内实现测量、报警和控制。
3.液位变送器:液位变送器用于测量和控制液体介质的高度或接触点位置。
在化工、石油、造纸等行业中,液位变送器广泛应用于储罐、槽、管道等设备的液位监测和控制。
4.流量变送器:流量变送器在流体控制和测量领域中起着重要作用。
它可以通过测量液体或气体的流速、流量来实现对流体的控制和监测,广泛应用于化工、制药、电力等行业。
5.氧气变送器:氧气变送器用于测量和监控环境中的氧气含量。
在环境保护、生物工程、医疗设备等领域中,氧气变送器可以提供重要的数据支持,保障环境质量和人类健康。
除了以上几个常见的应用场景,变送器还可以用于其他物理量的测量和控制,如PH值、电导率、振动等。
通过将待测物理量转换为标准信号,变送器在工业自动化领域中发挥着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器和变送器的正确选用
传感器和变送器在仪器、仪表和工业自动化领域中起着举足轻重的作用。
与传感器不同,变送器除了能将非电量转换成可测量的电量外,一般还具有一定的放大作用。
本文简单地介绍了各类变送器的特点,以供使用者选用。
一、一体化温度变送器
一体化温度变送器一般由测温探头(热电偶或热电阻传感器)和两线制固体电子单元组成。
采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的变送器。
一体化温度变送器一般分为热电阻和热电偶型两种类型。
热电阻温度变送器是由基准单元、R/V转换单元、线性电路、反接保护、限流保护、V/I转换单元等组成。
测温热电阻信号转换放大后,再由线性电路对温度与电阻的非线性关系进行补偿,经V/I转换电路后输出一个与被测温度成线性关系的4~20mA的恒流信号。
热电偶温度变送器一般由基准源、冷端补偿、放大单元、线性化处理、V/I转换、断偶处理、反接保护、限流保护等电路单元组成。
它是将热电偶产生的热电势经冷端补偿放大后,再帽由线性电路消除热电势与温度的非线性误差,最后放大转换为4~20mA电流输出信号。
为防止热电偶测量中由于电偶断丝而使控温失效造成事故,变送器中还设有断电保护电路。
当热电偶断丝或接解不良时,变送器会输出最大值(28mA)以使仪表切断电源。
一体化温度变送器具有结构简单、节省引线、输出信号大、抗干扰能力强、线性好、显示仪表简单、固体模块抗震防潮、有反接保护和限流保护、工作可靠等优点。
一体化温度变送器的输出为统一的4~20mA信号;可与微机系统或其它常规仪表匹配使用。
也可用户要求做成防爆型或防火型测量仪表。
二、压力变送器
压力变送器也称差变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。
它能将接收的气体、液体等压力信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节.压力变送器的测量原理图如图3所示。
其测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。
由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。
工作时,压力变送器将被测物理量转换成mV级的电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。
放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。
压力变送器根据测压范围可分成一般压力变送器(0.001MPa~20MP3)和微差压变送器(0~30kPa)两种。
三、液位变送器
1、浮球式液位变送器
浮球式液位变送器由磁性浮球、测量导管、信号单元、电子单元、接线盒及安装件组成。
一般磁性浮球的比重小于0.5,可漂于液面之上并沿测量导管上下移动。
导管内装有测量元件,它可以在外磁作用下将被测液位信号转换成正比于液位变化的电阻信号,并将电子单元转换成4~20mA或其它标准信号输出。
该变送器为模块电路,具有耐酸、防潮、防震、防腐蚀等优点,电路内部含有恒流反馈电路和内保护电路,可使输出最大电流不超过28mA,因而能够可靠地保护电源并使二次仪表不被损坏。
2、浮简式液位变送器
浮筒式液位变送器是将磁性浮球改为浮筒,它是根据阿基米德浮力原理设计的。
浮筒式液位变送器是利用微小的金属膜应变传感技术来测量液体的液位、界位或密度的。
它在工作时可以通过现场按键来进行常规的设定操作。
3、静压或液位变送器
该变送器利用液体静压力的测量原理工作。
它一般选用硅压力测压传感器将测量到的压力转换成电信号,再经放大电路放大和补偿电路补偿,最后以4~20mA
或0~10mA电流方式输出。
四、电容式物位变送器
电容式物位变送器适用于工业企业在生产过程中进行测量和控制生产过程,主要用作类导电与非导电介质的液体液位或粉粒状固体料位的远距离连续测量和指示。
电容式液位变送器由电容式传感器与电子模块电路组成,它以两线制4~
20mA恒定电流输出为基型,经过转换,可以用三线或四线方式输出,输出信号形成为1~5V、0~5V、0~10mA等标准信号。
电容传感器由绝缘电极和装有测量介质的圆柱形金属容器组成。
当料位上升时,因非导电物料的介电常数明显小于空气的介电常数,所以电容量随着物料高度的变化而变化。
变送器的模块电路由基准源、脉宽调制、转换、恒流放大、反馈和限流等单元组成。
采用脉宽调特原理进行测量的优点是频率较低,对周围元射频干扰、稳定性好、线性好、无明显温度漂移等。
五、超声波变送器
超声波变送器分为一般超声波变送器(无表头)和一体化超声波变送器两类,一体化超声波变送器较为常用。
一体化超声波变更新器由表头(如LCD显示器)和探头两部分组成,这种直接输出4~20mA信号的变送器是将小型化的敏感元件(探头)和电子电路组装在一起,从而使体积更小、重量更轻、价格更便宜。
超声波变送器可用于液位。
物位的测量和开渠、明渠等流量测量,并可用于测量距离。
六、锑电极酸度变送器
锑电极酸度变送器是集PH检测、自动清洗、电信号转换为一体的工业在线分析仪表,它是由锑电极与参考电极组成的PH值测量系统。
在被测酸性溶液中,由于锑电极表面会生成三氧化二锑氧化层,这样在金属锑面与三氧化二锑之间会形成电位差。
该电位差的大小取决于三所氧化二锑的浓度,该浓度与被测酸性溶液中氢离子的适度相对应。
如果把锑、三氧化二锑和水溶液的适度都当作1,其电极电位就可用能斯特公式计算出来。
锑电极酸度变送器中的固体模块电路由两大部分组成。
为了现场作用的安全起见,电源部分采用交流24V为二次仪表供电。
这一电源除为清洗电机提供驱动电源外,还应通过电流转换单元转换成相应的直流电压,以供变送电路使用。
第二部分是测量变送器电路,它把来自传感器的基准信号和PH酸度信号经放大后送给斜率调整和定位调整电路,以使信号内阻降低并可调节。
将放大后的PH信号与温度被偿信号进行迭加后再差进转换电路,最后输出与PH值相对应的4~20mA恒流电流信号给二次仪表以完成显示并控制PH值。
七、酸、碱、盐浓度变送器
酸、碱、盐浓度变送器通过测量溶液电导值来确定浓度。
它可以在线连续检测工业过程中酸、碱、盐在水溶液中的浓度含量。
这种变送器主要应用于锅炉给水处理、化工溶液的配制以及环保等工业生产过程。
酸、碱、盐浓度变送器的工作原理是:在一定的范围内,酸碱溶液的浓度与其电导率的大小成比例。
因而,只要测出溶液电导率的大小变可得知酸碱浓度的高低。
当被测溶液流入专用电导池时,如果忽略电极极化和分布电容,则可以等效为一个纯电阻。
在有恒压交变电流流过时,其输出电流与电导率成线性关系,而电导率又与溶液中酸、碱浓度成比例关系。
因此只要测出溶液电流,便可算出酸、碱、盐的浓度。
酸、碱、盐浓度变送器主要由电导池、电子模块、显示表头和壳体组成。
电子模块电路则由激励电源、电导池、电导放大器、相敏整流器、解调器、温度补偿、过载保护和电流转换等单元组成。
八、电导变送器
它是通过测量溶液的电导值来间接测量离子浓度的流程仪表(一体化变送器),可在线连续检测工业过程中水溶液的电导率。
由于电解质溶液与金属导体一样的电的良导体,因此电流流过电解质溶液时必有电阻作用,且符合欧姆定律。
但液体的电阻温度特性与金属导体相反,具有负向温度特性。
为区别于金属导体,电解质溶液的导电能力用电导(电阻的倒数)或电导率(电阻率的倒数)来表示。
当两个互相绝缘的电极组成电导池时,若在其中间放置待测溶液,并通以恒压交变电流,就形成了电流回路。
如果将电压大小和电极尺寸固定,则回路电流与电导率就存在一定的函数关系。
这样,测了待测溶液中流过的电流,就能测出待测溶液的电导率。
电导变送器的结构和电路与酸、碱、盐浓度变送器相同。
九、智能变送器
智能式变送器是由传感器和微处理器(微机)相结构而成的。
它充分利用了微处理器的运算和存储能力,可对传感器的数据进行处理,包括对测量信号的调理(如滤波、放大、A/D转换等)、数据显示、自动校正和自动补偿等。
微处理器是智能式变送器的核心。
它不但可以对测量数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节,以使采集数据达到最佳。
由于微处理器具有各种软件和硬件功能,因而它可以完成传统变送器难以完成的任务。
所以智能式变送器降低了传感器的制造难度,并在很大程主上提高了传感器的性能。
另外,智能式变送器还具有以下特点:
具有自动补偿能力,可通过软件对传感器的非线性、温漂、时漂等进行自动补偿。
可自诊断,通电后可对传感器进行自检,以检查传感器各部分是否正常,并作出判断。
数据处理方便准确,可根据内部程序自动处理数据,如进行统计处理、去除异常数值等。
具有双向通信功能。
微处理器不但可以接收和处理传感器数据,还可将信息反馈至传感器,从而对测量过程进行调节和控制。
可进行信息存储和记忆,能存储传感器的特征数据、组态信息和补偿特性等。
具有数字量接口输出功能,可将输出的数字信号方便地和计算机或现场总线等连接。