2020挑战中考数学压轴题

合集下载

2020年中考数学压轴题十大题型(含详细答案)

2020年中考数学压轴题十大题型(含详细答案)

2020年中考数学压轴题十大题型(含详细答案)函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。

求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。

几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。

一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。

求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。

找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。

求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。

而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。

解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过树立点与数即坐标之间的对应干系,一方面可用代数方法研究几何图形的性子,另一方面又可借助几何直观,得到某些代数问题的解答。

关键是把握几种常用的数学思想方法。

一是运用函数与方程思想。

以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。

二是运用分类讨论的思想。

对问题的条件或结论的多变性进行考察和探究。

三是运用转化的数学的思想。

由已知向未知,由复杂向简单的转换。

中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。

因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。

2020年九年级数学典型中考压轴题训练《四边形》(含答案)

2020年九年级数学典型中考压轴题训练《四边形》(含答案)

16.如图,在平面直角坐标系中,已知矩形 AOBC 的顶点 C 的坐标是(2,4),动点 P 从点 A 出发,沿线段 AO 向终点 O 运动,同时动点 Q 从点 B 出发,沿线段 BC 向终点 C 运动.点 P、Q 的运动速度均为每秒 1 个单位,过点 P 作 PE⊥AO 交 AB 于点 E,一点到达,另一点 即停.设点 P 的运动时间为 t 秒(t>0).
学探究此问题的方法是,延长 FD 到点 G.使 DG=BE.连结 AG,先证明△ABE≌△ADG.再
证明

,可得出结论,他的结论应是
.请你按照小王同学的思路
写出完整的证明过程.
实际应用
(2)如图 2,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西 30°的一处,舰艇
乙在指挥中心南偏东 70°的 B 处,且两舰艇到指挥中心的距离相等接到行动指令后,舰
4.(1)【问题发现】如图 1,在 Rt△ABC 中,AB=AC=4,∠BAC=90°,点 D 为 BC 的中
点,以 CD 为一边作正方形 CDEF,点 E 恰好与点 A 重合,则线段 BE 与 AF 的数量关系


(2)【拓展研究】在(1)的条件下,如果正方形 CDEF 绕点 C 旋转,当点 B,E,F 三点
ABDE 的面积是否存在最大值?若存在,请求出最大值并说明理由;若不存在,请说明理
由;
创新应用:
(3)如图④,四边形 ABCE 中,AB=BC,∠ABC=90°,CE=2,AE=4,连接 BE,请求出
BE 的最大值,并说明理由.
(4)如图⑤,BE、AC 为四边形 ABCE 的对角线,CE=2,∠CAE=60°,∠CAB=90°,∠
已知∠MDN=∠BAD=60°,AC=6. (1)如图 1,当 DE⊥AB,DF⊥BC 时, ①求证:△ADE≌△CDF;②求线段 GH 的长; (2)如图 2,当∠MDN 绕点 D 旋转时,线段 AG,GH,HC 的长度都在变化.设线段 AG=m, GH=p,HC=n,试探究 p 与 mn 的等量关系,并说明理由.

2020年中考数学压轴题题型专练:规律探索题(含答案)

2020年中考数学压轴题题型专练:规律探索题(含答案)

2020中考数学压轴题题型专练:规律探索题类型一数式规律1. 将一组数2,2,6,22,10,…,210,按下列方式进行排列:2,2,6,22,10;23,14,4,32,25;…若2的位置记为(1,2),23的位置记为(2,1),则38这个数的位置记为________.(4,4)【解析】∴当10n -2=38时,n =4,∴38这个数的位置记为(4,4). 2. 按一定规律排列的一列数:-12,1,-1, ,-911,1113,-1317,…,请你仔细观察,按照此规律方框内的数字应为________.1 【解析】将原来的一列数变形为-12,33,-55, ,-911,1113,-1317,…,观察这列数可得奇数项为负数,偶数项为正数,分子是依次从小到大排列的连续奇数,分母是依次从小到大排列的质数,故方框内填77,故答案为1.3. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是________.-12211 【解析】∵-2=-12+11,52= 22+12,-103=-32+13,174= 42+14,-265= -52+15,∴第11个数据是:-112+111=-12211.4. 已知a 1= t t -1,a 2= 11-a 1,a 3= 11-a 2,…,a n +1= 11-a n(n 为正整数,且t ≠0,1),则a 2018= ________(用含t 的代数式表示). 1-t 【解析】根据题意得:a 1= t t -1,a 2= 11-t t -1= 1-t ,a 3= 11-1+t = 1t ,a 4= 11-1t= t t -1, (2018)3= 672……2,∴a 2018的值为1-t . 5. 一列数:0,1,2,3,6,7,14,15,30,…,这列数是由小明按照一定规律写下来的,他第一次写下“0,1”,第二次接着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么30后三个连续数应该是________.31,62,63 【解析】通过观察可知,下一组数的第一个数是前一组数的第二个数的2倍,在同一组数中的前后两个数相差1,由此可得30后三个连续数为31,62,63.类型二 图形累加规律1. 如图,用菱形纸片按规律依次拼成如图图案,第1个图案中有5个菱形纸片,第2个图案中有9个菱形纸片,第3个图案中有13个菱形纸片,按此规律,第10个图案中有________个菱形纸片.第1题图41【解析】观察图形发现:第1个图案中有5=4×1+1个菱形纸片,第2个图案有9=4×2+1个菱形纸片,第3个图案中有13=4×3+1个菱形纸片,…,第n个图形中有4n+1个菱形纸片,故第10个图案中有4×10+1=41个菱形纸片.2. 如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为________.第2题图n2+n【解析】由题图知,第1、2、3个图案对应的正方形的个数分别为2=1×2、6=2×3、12=3×4,…,∴第n个图案所对应的正方形的个数为n(n+1)=n2+n.3. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为________.第3题图85【解析】可以分两部分观察,上半部分小圆圈个数为:1+2+3+…+n +n+1,下半部分小圆圈个数为n2,所以第⑦个图形小圆圈个数为1+2+3+4+5+6+7+8+72=85.4. 如图是用棋子摆成的“T”字图案:从图案中可以看出,第一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”字图案需要11枚棋子.则摆成第n个图案需要________枚棋子.第4题图3n+2【解析】观察图案可知,图案分成两部分,横向的横子数量依次为3,5,7,…,纵向的棋子数量依次为2,3,4,…,∴第n个图案棋子数量为2n+1+(n+1)=3n+2.5. 如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n(n≥3)盆花,每个图案中花盆总数为S,按照图中的规律可以推断S与n(n≥3)的关系是________.第5题图n2-n【解析】n=3时,S=6=3×2,n=4时,S=12=4×3,n=5时,S =20=5×4,…,依此类推,当边数为n时,S=n(n-1)=n2-n.类型三图形成倍递变规律1. 如图,过点A0(2,0)作直线l:y=33x的垂线,垂足为点A1,过点A1作A1A2⊥x轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:A0A1,A1A2,A2A3,…,则线段A2016A2017的长为()A. (32)2015 B. (32)2016C. (32)2017 D. (32)2018第1题图B【解析】由y=33x,得直线l的倾斜角为30°,∵点A0坐标为(2,0),∴OA0=2,∴OA1=32OA0=3,OA2=32OA1=32,OA3=32OA2=334,OA4=32OA3=98,…,∴OA n=(32)n OA0=2×(32)n.∴OA2016=2×(32)2016,A2016A2017=12×2×(32)2016=(32)2016.2. 如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),则第4个正方形的边长为________,第n个正方形的边长为________.第2题图8,2n-1【解析】∵函数y=x与x轴正半轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n-1.3. 如图,在矩形ABCD中,AD=a,AB=b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2,…,如此操作下去,得到菱形I2016,则I2016的面积是________.第3题图(12)4033ab 【解析】由题意得,菱形I 1的面积为:12AG ·AE =12×12a ×12b =(12)3ab ,菱形I 2的面积为:12FQ ·FN =12×(12×12a )×(12×12b )=(12)5ab ;…;菱形I n 的面积为:(12)2n +1ab .∴当n =2016时,菱形I 2016的面积为(12)4033ab .4. 如图,已知∠AOB =30°,在射线OA 上取点O 1,以O 1为圆心的圆与OB 相切;在射线O 1A 上取点O 2,以O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以O 3为圆心,O 3O 2为半径的圆与OB 相切;…;在射线O 9A 上取点O 10,以O 10为圆心,O 10O 9为半径的圆与OB 相切.若⊙O 1的半径为1,则⊙O 10的半径长是________.第4题图29 【解析】如解图,作O 1C 、O 2D 、O 3E 分别⊥OB ,∵∠AOB =30°,∴OO 1=2CO 1,OO 2= 2DO 2,OO 3=2EO 3,∵O 1O 2=DO 2,O 2O 3= EO 3,O 1C =1,∴O 2D =2,O 3E =4,∴圆的半径呈2倍递增,∴⊙On 的半径为2n -1CO 1,∵⊙O 1的半径为1,∴⊙O 10的半径长= 29.第4题解图类型四图形周期变化规律1. 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A. (1,-1)B. (-1,-1)C. (2,0)D. (0,-2)第1题图B【解析】∵菱形OABC的顶点O(0,0),点B的坐标是(2,2),∴BO与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1) ,∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).2. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2018个梅花图案中,共有________个“”图案.第2题图505【解析】∵2018÷4=504……2,∴有505个.3. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…,则正方形OB2017B2018C2018的顶点B2018的坐标是________.第3题图(0,21009)【解析】点B的位置依次落在第一象限、y正半轴、第二象限、x负半轴、第三象限、y负半轴、第四象限、x正半轴…,每8次一循环.2018÷8=252……2,所以B2018落在y轴正半轴,故B2018的横坐标是0;OB n是正方形的对角线,OB1=2,OB2=2=(2)2,OB3=22=(2)3,…,所以OB2018=(2)2018=21009,所以B2018的坐标为(0,21009).4. 如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是________,翻滚2017次后AB中点M经过的路径长为________.第4题图(5,3),(134633+896)π 【解析】如解图,翻滚3次后点B 的对应点是B 3,作B 3E ⊥x 轴于E ,易知OE = 5,B 3E = 3,B 3(5,3),观察图象可知翻滚3次为一个循环,一个循环点M 的运动路径为MM 1︵、M 1M 2︵、M 2M 3︵,120 ·π ·3180+120 ·π ·1180+120 ·π ·1180=23+43π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672×23+43π+23π3= (134633+896)π.第4题解图。

2020年中考数学10道压轴题(附答案)(4)

2020年中考数学10道压轴题(附答案)(4)

2020年中考数学10道压轴题(附答案)1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22)2. 如图,在Rt ABC △中,90A ∠=o ,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR△为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向A BCD ERP H QA BCM N P图 3OABC MND图 2OACMNP图 1O旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(3,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于3,若存在,请求出符合条件的点P的坐标;若不存在,4请说明理由.5如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.6如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点.(1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.7.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积; (2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y 的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平 移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为 .C D A BE F NMxO yAB 友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.x O y 123 1 QP 2 P 1Q 19.如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB =,矩形ABOC绕点O 按顺时针方向旋转60o 后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;A OxyBFC(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.11.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?y xOD EC FA B12.在平面直角坐标系中△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆过点C若C的坐标为(0,2),AB=5, A,B两点的横坐标X A,X B是关于X的方程2(2)10-++-=的两根:x m x n(1)求m,n的值(2)若∠ACB的平分线所在的直线l交x轴于点D,试求直线l对应的一次函数的解析式(3)过点D任作一直线`l分别交射线CA,CB(点C除外)于点M,N,则11+的值是否为定值,若是,求出定值,若不CM CN是,请说明理由13.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a bac a b 44,22)14.已知抛物线c bx ax y ++=232,ACO BNDML`(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.15.已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题:(1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.图②A Q CPB图①QP16.已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线k y x=上的动点.过点B 作BD ∥y 轴于点D.过N (0,-n )作NC ∥x 轴交双曲线k y x=于点E ,交BD 于点C.(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值. (2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.压轴题答案1. 解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b=2∴抛物线的线的解析式为2y x =-+(2)4)所以对称轴为x=1,A,E 关于称,所以E(3,0)D BCE NO A Myx设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9 (3)相似如图,2222112BG DG +=+=22223332BO OE +=+= 22222425DF EF ++=所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==所以AOB DBE ∆∆:.2 解:(1)Q Rt A ∠=∠,6AB =,8AC =,10BC ∴=.Q 点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=o Q ,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=g . (2)QR AB Q ∥,90QRC A ∴∠=∠=o .C C ∠=∠Q ,RQC ABC ∴△∽△, RQ QCAB BC∴=,10610y x-∴=,即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=o Q ,290C ∠+∠=o ,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA ==Q , 366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形. 3解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴AM AN AB AC=,即43x AN =. ∴ AN =43x . (2)分ABCD ERP H QM 21 A BCD E RP HQA BCD E R PHQACM NP 图 1O∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分(2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN .在Rt △ABC 中,BC =22AB AC +=5.由(1)知 △AMN ∽ △ABC .∴AM MN AB BC=,即45x MN=.∴ 54MN x =, ∴58OD x =. (5)分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QMBC AC=.∴55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线B C 相切. (7)分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC . ∴ △AMO ∽ △ABP . ∴12AM AO AB AP ==. AM =MB =2. ABCMND图 2O QAC MNP图 3O故以下分两种情况讨论: ① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x=2时,2332.82y =⨯=最大 (8)分② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x . ∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB . ∴2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭.∴ ()2322PEF S x ∆=-. (9)分MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………1分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭. ∴当83x =时,满足2<x<4,2y =最大. (11)分综上所述,当83x =时,y 值最大,最大值是ABCMN图 4OEF2. …………………………12分4 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23B(3∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-,以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o , ∴ΔAPD 是等边三角形,PD=PA=2219AO OP +如图,作BE ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30° ∴GD=12BD=33+3=53,∴GB=32BD=32,OH=OE+HE=OE+BG=37222+= ∴D(532,72) (3)设OP=x,则由(2)可得D(323,22x x +)若ΔOPD 的面积为:133(2)2x x +=g 解得:2321x -±=所以2321-±,0) yxH G E DBA OP567解:(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H . ……………1分 ∵ AB ∥CD ,∴ DG =CH ,DG ∥CH .∴ 四边形DGHC 为矩形,GH =CD =1.∵ DG =CH ,AD =BC ,∠AGD =∠BHC =90°, ∴ △AGD ≌△BHC (HL ).∴ AG =BH =2172-=-GH AB =3. ………2分 ∵ 在Rt △AGD 中,AG =3,AD =5, ∴ DG =4.C D ABE F NMG H∴()174162ABCD S +⨯==梯形. ………………………………………………3分(2)∵ MN ∥AB ,ME ⊥AB ,NF ⊥AB , ∴ ME =NF ,ME ∥NF . ∴ 四边形MEFN 为矩形. ∵ AB ∥CD ,AD =BC , ∴ ∠A =∠B .∵ ME =NF ,∠MEA =∠NFB =90°, ∴ △MEA ≌△NFB (AAS ).∴ AE =BF . ……………………4分 设AE =x ,则EF =7-2x . ……………5分 ∵ ∠A =∠A ,∠MEA =∠DGA =90°, ∴ △MEA ∽△DGA . ∴ DGMEAG AE =.∴ME =x 34. …………………………………………………………6分 ∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. (8)分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)C D E FNMG H能. ……………………………………………………………………10分由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得1021=x . ……………………………………………11分∴ EF =21147272105x -=-⨯=<4.∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形.8解:(1)由题意可知,()()()131-+=+m m m m .解,得 m =3. ………………………………3分∴ A (3,4),B (6,2);∴ k =4×3=12. ……………………………4分 (2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 点坐标为(3,4),B 点坐标为(6,2), ∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分xO yAB M 1N 1M 2 N 2M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k .∴ 直线M 1N 1的函数表达式为232+-=x y . (8)分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称. ∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k ,∴ 直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . (11)分(3)选做题:(9,2),(4,5). ………………………………………………2分 9解:(1)Q 直线33y x =-x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(03)C -, ········································· 1分Q 点A C ,都在抛物线上,23033a c c ⎧=++⎪∴⎨⎪-=⎩ 333a c ⎧=⎪∴⎨⎪=-⎩ ∴抛物线的解析式为2323333y x x =-- ····················· 3分 ∴顶点4313F ⎛⎫- ⎪ ⎪⎝⎭, ··········································· 4分(2)存在 ················································ 5分 1(03)P -, ··················································· 7分 2(23)P -, ··················································9分(3)存在 ·············································· 10分 理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点.······························· 11分 过点B '作B H AB '⊥于点H .B Q 点在抛物线2323333y x x =--上,(30)B ∴, 在Rt BOC △中,3tan 3OBC ∠=,30OBC ∴∠=o ,23BC =,在Rt BB H '△中,1232B H BB ''==,36BH B H '==,3OH ∴=,(323)B '∴--, (12)分设直线B F '的解析式为y kx b =+A O xyBFC HBM233433k b k b ⎧-=-+⎪∴⎨-=+⎪⎩ 解得36332k b ⎧=⎪⎪⎨⎪=-⎪⎩33362y x ∴=- ············································ 13分3333362y x y x ⎧=--⎪∴⎨=-⎪⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩,310377M ⎛⎫∴- ⎪ ⎪⎝⎭, ∴在直线AC上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,. ··········································· 14分解法二:过点F 作AC 的垂线交y 轴于点H ,则点H 为点F 关于直线AC 的对称点.连接BH 交AC 于点M ,则点M 即为所求. 11分过点F 作FG y ⊥轴于点G ,则OB FG ∥,BC FH ∥.90BOC FGH ∴∠=∠=o ,BCO FHG ∠=∠HFG CBO ∴∠=∠同方法一可求得(30)B ,. 在Rt BOC △中,3tan 3OBC ∠=,30OBC ∴∠=o ,可求得33GH GC ==,GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形, AC ∴垂直平分FH .即点H 为点F 关于AC 的对称点.5303H ⎛⎫∴- ⎪ ⎪⎝⎭, ············· 12分设直线BH 的解析式为y kx b =+,由题意得A OxyBF C HM G03533k b b =+⎧⎪⎨=⎪⎩ 解得539533k b ⎧=⎪⎪⎨⎪=⎪⎩553393y ∴=··········································· 13分55339333y x y x ⎧=⎪∴⎨⎪=⎩ 解得37103x y ⎧=⎪⎪⎨⎪=⎪⎩310377M ⎛∴- ⎝⎭, ∴在直线AC上存在点M ,使得MBF △的周长最小,此时31037M ⎛ ⎝⎭. 110解:(1)点E 在y 轴上 ·································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =Q ,3BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠=o 由题意可知:60AOE ∠=o306090BOE AOB AOE ∴∠=∠+∠=+=o o oQ 点B 在x 轴上,∴点E 在y 轴上. (3)分(2)过点D 作DM x ⊥轴于点M1OD =Q ,30DOM ∠=o∴在Rt DOM △中,12DM =,32OM =Q 点D 在第一象限,∴点D 的坐标为3122⎛⎫⎪ ⎪⎝⎭, ····································· 5分由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A 的坐标为(31), ······································ 6分Q 抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(31)A ,,312D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得 3321331242a b a ⎧+=⎪⎨+=⎪⎩ 解得8953a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:285329y x x =-+ (9)分(3)存在符合条件的点P ,点Q . ······················ 10分 理由如下:Q 矩形ABOC 的面积3AB BO ==g ∴以O B P Q ,,,为顶点的平行四边形面积为3由题意可知OB 为此平行四边形一边, 又3OB =QOB ∴边上的高为2 ······································· 11分依题意设点P 的坐标为(2)m ,Q 点P 在抛物线285329y x x =-+上 2853229m ∴-+= 解得,10m =,2538m =-1(02)P ∴,,25328P ⎛⎫- ⎪ ⎪⎝⎭,Q 以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,3PQ OB ==, ∴当点1P 的坐标为(02),时,点Q 的坐标分别为1(32)Q -,,2(32)Q ,;当点2P 的坐标为5328⎛⎫- ⎪ ⎪⎝⎭,时,点Q 的坐标分别为313328Q ⎛⎫-⎪ ⎪⎝⎭,,43328Q ⎛⎫⎪ ⎪⎝⎭,. ·············· 14分(以上答案仅供参考,如有其它做法,可参照给分) 11解:(1)在2334y x =-+中,令0y =23304x ∴-+= 12x ∴=,22x =-(20)A ∴-,,(20)B , ······················ 1分又Q 点B 在34y x b =-+上 302b ∴=-+ 32b = BC ∴的解析式为3342y x =-+ ·································2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩ 2220x y =⎧⎨=⎩ ···················· 4分914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,y xO D EC FA B Mx yA B CE M D P N O4AB ∴=,94CD = ··········································· 5分 1994242ABCS ∴=⨯⨯=△ ·········································6分(3)过点N 作NP MB ⊥于点PEO MB ⊥Q NP EO ∴∥BNP BEO ∴△∽△ ············································7分 BN NPBE EO∴=················································· 8分由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP∴=,65NP t ∴= ········································ 9分 16(4)25S t t ∴=-g g2312(04)55S t t t =-+<< ······································ 10分2312(2)55S t =--+ ·········································· 11分Q 此抛物线开口向下,∴当2t =时,125S =最大∴当点M 运动2秒时,MNB △的面积达到最大,最大为125.12解: (1)m=-5,n=-3 (2)y=43x+2(3)是定值.因为点D 为∠ACB 的平分线,所以可设点D 到边AC,BC 的距离均为h ,设△ABC AB 边上的高为H, 则利用面积法可得:222CM h CN h MN H⋅⋅⋅+=(CM+CN )h=MN ﹒HCM CN MNH h+=又 H=CM CNMN⋅化简可得 (CM+CN)﹒1MN CM CN h=⋅故 111CM CN h+=13解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得 c=3,b=2∴抛物线的线的解析式为223y x x =-++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9 (3)相似如图,2222112BG DG +=+=yxDEA BFOG22223332BO OE +=+= 22222425DF EF ++=所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且22AO BO BD BE ==所以AOB DBE ∆∆:.14解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x .∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫⎪⎝⎭,. ········· 2分(Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点. 对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31. ······ 3分①当31=c 时,由方程031232=++x x ,解得3121-==x x .此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫-⎪⎝⎭,. · 4分②当31<c 时,11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤.综上,31=c 或51c -<-≤. ······························ 6分(Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a . ············································· 7分 ∵关于x 的一元二次方程0232=++c bx ax 的判别式0])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b ,∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方.8分 又该抛物线的对称轴abx 3-=,由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2, ∴32331<-<a b . 又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,可知在10<<x 范围内,该抛物线与x 轴有两个公共点. ··· 10分15 解:(1)由题意:BP =tcm ,AQ =2tcm ,则CQ =(4-2t)cm , ∵∠C =90°,AC =4cm ,BC =3cm ,∴AB =5cm ∴AP =(5-t )cm ,x∵PQ ∥BC ,∴△APQ ∽△ABC ,∴AP ∶AB =AQ ∶AC ,即(5-t )∶5=2t ∶4,解得:t =107∴当t 为107秒时,PQ ∥BC ………………2分(2)过点Q 作QD ⊥AB 于点D ,则易证△AQD ∽△ABC ∴AQ ∶QD =AB ∶BC ∴2t ∶DQ =5∶3,∴DQ =65t∴△APQ 的面积:12×AP ×QD =12(5-t )×65t ∴y 与t 之间的函数关系式为:y =2335t t -………………5分(3)由题意:当面积被平分时有:2335t t -=12×12×3×4,解得:t 55± 当周长被平分时:(5-t )+2t =t +(4-2t )+3,解得:t =1∴不存在这样t 的值………………8分(4)过点P 作PE ⊥BC 于E易证:△PAE ∽△ABC ,当PE =12QC 时,△PQC 为等腰三角形,此时△QCP ′为菱形∵△PAE ∽△ABC ,∴PE ∶PB =AC ∶AB ,∴PE ∶t =4∶5,解得:PE =45t∵QC =4-2t ,∴2×45t =4-2t,解得:t =109∴当t =109时,四边形PQP ′C 为菱形 此时,PE =89,BE =23,∴CE =73………………10分在Rt △CPE 中,根据勾股定理可知:PC 22PE CE +2287()()93+=5059505cm ………………12分16 解:(1)∵D (-8,0),∴B 点的横坐标为-8,代入14y x =中,得y =-2.∴B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴A (8,2)从而k =8×2=16(2)∵N (0,-n ),B 是CD 的中点,A ,B ,M ,E 四点均在双曲线上,∴mn =k ,B (-2m ,-2n),C (-2m ,-n ),E (-m ,-n )DCNO S 矩形=2mn =2k ,DBO S △=12mn =12k ,OEN S △=12mn =12k.∴OBCE S 矩形=DCNO S 矩形―DBO S △―OEN S △=k.∴k =4.由直线14y x =及双曲线4y x=,得A (4,1),B (-4,-1) ∴C (-4,-2),M (2,2)设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得4222a b a b -+=-⎧⎨+=⎩,解得a =b =23∴直线CM 的解析式是y =23x +23.(3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1,M设A 点的横坐标为a ,则B 点的横坐标为-a.于是111A M MA a mp MP M O m-===, 同理MB m aq MQ m+== ∴p -q =a m m --m am+=-2D B CE N O A My xQ A 1M 1。

2020年九年级数学典型中考压轴题训练:《圆的综合》(含答案)

2020年九年级数学典型中考压轴题训练:《圆的综合》(含答案)

2020年九年级数学典型中考压轴题训练:《圆的综合》1.如图,在等边△ABC中,已知AB=8cm,线段AM为BC边上的中线.点N在线段AM上,且MN=3cm,动点D在直线AM上运动,连接CD,△CBE是由△CAD旋转得到的.以点C 圆心,以CN为半径作⊙C与直线BE相交于点P、Q两点.(1)填空:∠DCE=60 度,CN= 5 cm,AM=4cm.(2)如图1当点D在线段AM上运动时,求出PQ的长.(3)当点D在MA的延长线上时,请在图2中画出示意图,并直接写出PQ= 6 cm.当点D在AM的延长线上时,请在图3中画出示意图,并直接写出PQ= 6 cm.解:(1)∵△CBE是由△CAD旋转得到,∴∠ACD=∠BCE,∴∠DCE=∠BCD+∠BCE=∠BCD+∠CAD=∠ACB,∵△ABC是等边三角形,∴∠ACB=60°,∴∠DCE=60°;∵△ABC是等边三角形,AM为BC边上的中线,∴BC=AB=8cm,CM=BC=×8=4cm,在Rt△CMN中,CN===5cm;在Rt△ACM中,AM===4cm;(2)过点C作CF⊥PQ于F,∵△ABC是等边三角形,AM为BC边上的中线,∴∠CAD=∠BAC=×60°=30°,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD=30°,∴CF=BC=×8=4cm,连接CP,则PC=CN=5cm,在Rt△PCF中,PF===3cm,由垂径定理得,PQ=2PF=2×3=6cm;(3)①如图,点D在MA的延长线上时,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD,∴∠CBQ=∠CAM=30°,与(2)同理可求PQ=6cm,②如图,点D在AM的延长线上时,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD=30°,与(2)同理可求PQ=6cm,综上所述,PQ的长度不变都是6cm.故答案为:(1)60,5,4;(3)6,6.2.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BD于点F,交⊙O于点D,AC 与BD交于点G,点E为OC的延长线上一点,且∠OEB=∠ACD.(1)求证:BE是⊙O的切线;(2)求证:CD2=CG•CA;(3)若⊙O的半径为,BG的长为,求tan∠CAB.解:(1)∵∠OEB=∠ACD,∠ACD=∠ABD,∴∠OEB=∠ABD,∵OF⊥BD,∴∠BFE=90°,∴∠OEB+∠EBF=90°,∴∠ABD+∠EBF=90°,即∠OBE=90°,∴BE⊥OB,∴BE是⊙O的切线;(2)连接AD,∵OF⊥BD,∴=,∴∠DAC=∠CDB,∵∠DCG=∠ACD,∴△DCG∽△ACD,∴=,∴CD2=AC•CG;(3)∵OA=OB,∴∠CAO=∠ACO,∵∠CDB=∠CAO,∴∠ACO=∠CDB,而∠CFD=∠GFC,∴△CDF∽△GCF,∴=,又∵∠CDB=∠CAB,∠DCA=∠DBA,∴△DCG∽△ABG,∴=,∴=,∵r=,BG=,∴AB=2r=5,∴tan∠CAB=tan∠ACO===.3.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,∴DE=DH,在Rt△BDE与Rt△BDH中,,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵D是弧AC的中点,∴AD=DC,在Rt△ADE与Rt△CDH中,,∴Rt△ADE≌Rt△CDH(HL).∴AE=CH.∴BE=AB﹣AE=BC+CH=BH,即5﹣AE=3+AE,∴AE=1.4.如图,在Rt△ABC中,∠ACB=90°,O是线段BC上一点,以O为圆心,OC为半径作⊙O,AB与⊙O相切于点F,直线AO交⊙O于点E,D.(1)求证:AO是△ABC的角平分线;(2)若tan∠D=,求的值;(3)如图2,在(2)条件下,连接CF交AD于点G,⊙O的半径为3,求CF的长.(1)证明:连接OF,∵AB与⊙O相切于点F,∴OF⊥AB,∵∠ACB=90°,OC=OF,∴∠OAF=∠OAC,即AO是△ABC的角平分线;(2)如图2,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴,∴;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,∴AO=AE+OE=2+3=5,如图3,连接CF交AD于点G,∵AC,AF是⊙O的切线,∴AC=AF,∠CAO=∠OAF,∴CF⊥AO,∴∠ACO=∠CGO=90°,∵∠COG=∠AOC,∴△CGO∽△ACO,∴,∴OG=,∴CG===,∴CF=2CG=.5.如图1,已知AB是⊙O的直径,点D是弧AB上一点,AD的延长线交⊙O的切线BM于点C,点E为BC的中点,(1)求证:DE是⊙O的切线;(2)如图2,若DC=4,tan∠A=,延长OD交切线BM于点H,求DH的值;(3)如图3,若AB=8,点F是弧AB的中点,当点D在弧AB上运动时,过F作FG⊥AD 于G,连接BG,求BG的最小值.(1)证明:如图,连接OD,BD,∵AB是⊙O的直径,∴∠ADB=∠CDB=90°,∵BM是⊙O的切线,∴∠ABC=90°,∵点E是BC的中点,∴DE=BC=BE=CE,∴∠EDB=∠EBD,又∵OD=OB,∴∠ODB=∠OBD,∴∠ODB+∠EDB=∠OBD+∠EBD=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:如图2,连接BD,∵∠A+∠ABD=∠ABD+∠CBD=90°,∴∠A=∠CBD,∵DC=4,tan∠A=,∴tan∠CBD=tan∠A=,∴BD=8,∴BC==4,∴DE=,∴AB=,∴BO=OD=4,又∵DE是⊙O的切线,∴∠HDE=90°,∴tan∠DHE==,设DH=x,则,∴BH=2x,在Rt△BOH中,OB2+BH2=OH2,即,解得:x=或x=0(舍去),∴DH=;(3)解:如图3,连接BF,取AF中点N,构造圆N,连接NG,∵FG⊥AD于点G,∴当点D在弧AB上运动时,点G在圆N上运动,∴当点N、G、B三点共线时,BG有最小值,∵AB=8,点F是弧AB的中点,∴∠AFB=90°,AF=BF=,∴NG=NF=,BN===2,∴BG=BN﹣NG=2.6.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB =6,BC=,(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.(1)证明:由折叠的性质可知,AF=AB=6,在Rt△ADF中,DF===3,∴CF=DC﹣DF=3,∴DF=FC,即F是CD的中点;(2)证明:在Rt△ADF中,DF=3,AF=6,∴∠DAF=30◦,∴∠BAF=60◦,由折叠的性质可知,∠EAF=∠EAB,∠AFE=∠B=90°,∴∠EAF=∠EAB=30°,∴AE=2EF,∠EFC=180°﹣∠AFD﹣∠AFE=30◦,∴EF=2CE,∴AE=4CE;(3)解:连接OP、OH、PH,∵⊙O与AD相切于点P,∴OP⊥AD,∴OP∥DF,∵∠DAF=30°,∴∠AOP=90°﹣∠DAF=60°,OF=OP=OA,∴∠OFH=∠AOP=60°,OP=OF=2,∴AP==2,∴DP=AD﹣AP=,∵∠OFH=60°,OH=OF,∴△OHF为等边三角形,∴∠FOH=∠OHF=60°,HF=OF=2,∴DH=DF﹣HF=1,∵OP∥DF,∴∠POH=∠OHF=60°,∴∠POH=∠HOF,∴=,∴阴影部分的面积=△PDH的面积=×DH×DP=.7.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=9 .证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,∴S△OBE由勾股定理得OP===9.故答案为:9.8.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是的中点,求DF的长为4﹣2;②取的中点H,当∠EAB的度数为30°时,求证:四边形OBEH为菱形.解:(1)证明:如图1,∵BA=BC,∠ABC=90°,∴∠BAC=45°∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠ADF=∠BDG=90°∴∠DAF+∠BGD=∠DBG+∠BGD=90°∴∠DAF=∠DBG∵∠ABD+∠BAC=90°∴∠ABD=∠BAC=45°∴AD=BD∴△ADF≌△BDG(ASA);(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE∵FD⊥AD,FH⊥AB∴FH=DF,∵sin∠ABD==sin45°=,∴,即BF=FD,∵AB=4,∴BD=4cos45°=2,即BF+FD=2,∴,∴=4﹣2.故答案为:4﹣2.②证明:如图3,连接OH,EH,OE,∵∠AEB=90°,∠EAB=30°,∴∠ABE=60°,∵点H是的中点,∴∠AOH=∠HOE=60°,∴△OEH和△OBE都是等边三角形,∴OB=OH=HE=BE,∴四边形OBEH为菱形.9.已知:AB为⊙O的直径,,D为AC上一动点(不与A、C重合).(1)如图1,若BD平分∠CBA,连接OC交BD于点E.①求证:CE=CD;②若OE=1,求AD的长;(2)如图2,若BD绕点D顺时针旋转90°得DF,连接AF.求证:AF为⊙O的切线.(1)①证明:∵AB为⊙O的直径,∴∠BCA=90°,∵,∴∠CBA=∠BAC=45°,∠BOC=90°,∴∠BCO=45°,∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠CED=∠CBD+∠BCE,∠CDE=∠ABD+∠BAC,∴∠CED=∠CDE,∴CE=CD;②解:如图1,取BD中点G,连接OG,∵O为AB的中点,∴AD=2OG,OG∥AD,∴∠OGE=∠CDE,∵∠OEG=∠CED,∠CED=∠CDE,∴OG=OE=1,∴AD=2OG=2;(2)证明:如图2,在BC上截取BP=AD,连接DP,∵∠CBA=∠BAC=45°,∴BC=AC,∴CP=CD,∴∠CPD=45°,∴∠BPD=135°.,由旋转性质得,∠BDF=90°,BD=FD,∴∠BDC+∠FDA=90°,∵∠BDC+∠CBD=90°,∴∠CBD=∠ADF,∴△DFA≌△BDP(SAS),∴∠FAD=∠DBO=135°,∴∠FAB=∠FAD﹣∠BAC=135°﹣45°=90°,∴OA⊥AF,∴AF为⊙O的切线.10.若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.解:(Ⅰ)∵四边形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,∴∠CAC′=60°,∴的长度==2π,线段AC扫过的扇形面积==12π;(Ⅱ)解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=6,在Rt△AB′C′中,AC′==6,∴BC′=6﹣6,∵∠C′BE=180°﹣∠ABC=90°,∠BC′E=90°﹣45°=45°,∴△BC′E是等腰直角三角形,∴C′E=BC′=12﹣6,∴D′E=C′D′﹣EC′=6﹣(12﹣6)=6﹣6;(Ⅲ)如图3,连接DB,AC相交于点O,则O是DB的中点,∵F为线段BC′的中点,∴FO=AB′=3,∴F在以O为圆心,3为半径的圆上运动,∵DO=3,∴DF最大值为3+3,DF的最小值为3﹣3,∴DF长的取值范围为3﹣3≤DF≤3+3.11.如图所示,A是线段BF延长线上的点,矩形BCDF的外接圆⊙O过AC的中点E.(1)求证:BD=AF;(2)若BC=4,DC=3,求tan∠BAC的值;(3)若AD是⊙O的切线,求的值.解:(1)在矩形BCDF中,BD=FC,BF=DC,∠FDC=90°,∴FC为圆O的直径,∴∠FEC=∠FDC=90°,即FE⊥AC,∵E是AC的中点,∴AF=FC,∴BD=AF;(2)在Rt△BCD中,BC=4,DC=3,根据勾股定理得:BD===5=AF,BF=DC=3,∴AB=AF+BF=5+3=8,∴在Rt△ABC中,tan∠BAC===;(3)∵∠BCD=90°,∴BD是⊙O的直径,∵AD是⊙O的切线,∴∠ADB=90°=∠BCD,∵∠ABD=∠BDC,∴△ABD∽△BDC,设DC=BF=a,AF=FC=c,∵=,∴a2+ac﹣c2=0,解得:a=c,(负值舍去),∴=.12.如图,在Rt△ABC中,以BC为直径的⊙O交AC于点D,过点D作⊙O的切线交AB于点M,交CB延长线于点N,连接OM,OC=1.(1)求证:AM=MD;(2)填空:①若DN=,则△ABC的面积为;②当四边形COMD为平行四边形时,∠C的度数为45°.(1)证明:连接OD,∵DN为⊙O的切线,∴∠ODM=∠ABC=90°,在Rt△BOM与Rt△DOM中,,∴Rt△BOM≌Rt△DOM(HL),∴BM=DM,∠DOM=∠BOM=,∵∠C=,∴∠BOM=∠C,∴OM∥AC,∵BO=OC,∴BM=AM,∴AM=DM;(2)解:①∵OD=OC=1,DN=,∴tan∠DON==,∴∠DON=60°,∴∠C=30°,∵BC=2OC=2,∴AB=BC=,∴△ABC的面积为AB•BC=×2=;②当四边形COMD为平行四边形时,∠C的度数为45°,理由:∵四边形COMD为平行四边形,∴DN∥BC,∴∠DON=∠NDO=90°,∴∠C=DON=45°,故答案为:,45°.13.如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A 作⊙O 切CP 于点P ,设BP =x .(1)如图1,x 为何值时,圆心O 落在AP 上?若此时⊙O 交AD 于点E ,直接指出PE 与BC 的位置关系;(2)当x =4时,如图2,⊙O 与AC 交于点Q ,求∠CAP 的度数,并通过计算比较弦AP 与劣弧长度的大小;(3)当⊙O 与线段AD 只有一个公共点时,直接写出x 的取值范围.解:(1)如图1,AP 经过圆心O ,∵CP 与⊙O 相切于P ,∴∠APC =90°,∵▱ABCD ,∴AD ∥BC ,∴∠PBC =∠DAB ∴=tan ∠PBC =tan ∠DAB =,设CP =4k ,BP =3k ,由CP 2+BP 2=BC 2,得(4k )2+(3k )2=152,解得k 1=﹣3(舍去),k 2=3,∴x =BP =3×3=9,故当x =9时,圆心O 落在AP 上;∵AP 是⊙O 的直径,∴∠AEP =90°,∴PE ⊥AD ,∵▱ABCD ,∴BC ∥AD∴PE ⊥BC(2)如图2,过点C 作CG ⊥AP 于G ,∵▱ABCD ,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1814.如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=15.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD 的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:△KGD∽△KEG;②若cos C=,AK=,求BF的长.解:(1)如图,连接OG.∵EG=EK,∴∠KGE=∠GKE=∠AKH,又OA=OG,∴∠OGA=∠OAG,∵CD⊥AB,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF是⊙O的切线.(2)①∵AC∥EF,∴∠E=∠C,又∠C=∠AGD,∴∠E=∠AGD,又∠DKG=∠GKE,∴△KGD∽△KEG;②连接OG,∵,AK=,设,∴CH=4k,AC=5k,则AH=3k∵KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK﹣CH=k.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即,解得k=1,∴CH=4,AC=5,则AH=3,设⊙O半径为R,在Rt△OCH中,OC=R,OH=R﹣3k,CH=4k,由勾股定理得:OH2+CH2=OC2,即(R﹣3)2+42=R2,∴,在Rt△OGF中,,∴,∴.16.如图,AB是⊙O的直径,AB=4,M为弧AB的中点,正方形OCGD绕点O旋转与△AMB 的两边分别交于E、F(点E、F与点A、B、M均不重合),与⊙O分别交于P、Q两点.(1)求证:△AMB为等腰直角三角形:(2)求证:OE=OF;(3)连接EF,试探究:在正方形OCGD绕点O旋转的过程中,△EMF的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.解(1)证明:∵AB是⊙O的直径,∴∠AMB=90°,∵M是弧AB的中点,∴=,∴MA=MB,∴△AMB为等腰直角三角形.(2)连接OM,由(1)得:∠ABM=∠BAM=45°,∠OMA=∠OMB=45°,∴,∴∠MOE+∠BOE=90°,∵∠COD=90°,∴∠MOE+∠MOF=90°,∴∠BOE=∠MOF,在△OBE和△OMF中,,△OBE≌△OMF(ASA),∴OE=OF(3)解:△EFM的周长有最小值.∵OE=OF,∴△OEF为等腰直角三角形,∴,∵△OBE≌△OMF,∴BE=MF,∴△EFM的周长=EF+MF+ME=EF+BE+ME=EF+MB=当OE⊥BM时,OE最小,此时,∴△EFM的周长的最小值为.。

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(4.18)一、选择题1.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12 B.﹣10 C.﹣9 D.﹣62.如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE =2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.则线段OF长的最小值()A.2B.+2 C.2﹣2 D.5二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=,b=;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y=上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;【解答】解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选:A.2.【分析】连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,证明△EDO≌△FDM,可得FM=OE=2,由条件可得OM=5,根据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD=,∴OM=,∵OF+MF≥OM,∴OF≥.故选:D.二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.【分析】如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.想办法证明AF=DE=EH,BE+AF的最小值转化为EH+EB 的最小值.【解答】解:如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.∵CA=CB,∠C=90°,∴∠CAB=∠CBA=45°,∵C,D关于AB对称,∴DA=DB,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°,∴∠CAD=∠CBD=∠ADC=∠C=90°,∴四边形ACBD是矩形,∵CA=CB,∴四边形ACBD是正方形,∵CF=AE,CA=DA,∠C=∠EAD=90°,∴△ACF≌△DAE(SAS),∴AF=DE,∴AF+BE=ED+EB,∵CA垂直平分线段DH,∴ED=EH,∴AF+BE=EB+EH,∵EB+EH≥BH,∴AF+BE的最小值为线段BH的长,BH==,∴AF+BE的最小值为,故答案为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于2或1cm.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ =30°,再由PN与DC平行,得到∠PF A=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE=2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PF A=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=3,b=4;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.【分析】(1)根据函数的图象,即可得出a、b的值;(2)分点P在线段AB上跟点P在线段BC上讨论,依据相似三角形的性质,即可得出y与x之间的关系;(3)由等高三角形的面积比等于底边长之比,可得出BP的长,根据勾股定理得出x的值,代入到(2)中的关系式中即可求出y的值.【解答】解:(1)当点P在线段AB上时,D到AB的距离为AD,由函数图象可看出,AD=4,即BC=b=4,当点P运动到线段BC上时,D到AB的距离出现变化,由函数图象可看出,AB=3=a.故答案为:3;4.(2)①当点P在线段AB上时,有0≤AP≤AB,即0≤x≤3,此时y=4.②当点P在线段BC上时,连接AC,过点D作DE⊥AP于点E,如图,由勾股定理可得:AC==5.∵此时P点过B点向C点运动,∴AB<AP≤AC,即3<x≤5.∵AD∥BC,∴∠DAE=∠APB,又∵∠ABP=∠DEA=90°,∴△DAE∽△APB,∴=,即=,∴y=.综合①②得:y=.(3)∵△PCD的面积是△ABP的面积的,且两三角形等高,∴BP=3PC,∵BP+PC=BC=4,∴BP=3,由勾股定理可得:x==3,将x=3代入,得y==2.故当△PCD的面积是△ABP的面积的时,y的值为2.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据点B,C的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可得出点A的坐标,由点B,C的坐标可得出直线BC的解析式,作O关于BC的对称点O′,则点O′的坐标为(3,3),由两地之间线段最短可得出当A,P,O′共线时,PO+P A取最小值,由点O′,A的坐标可求出该最小值,由点A,O′的坐标,利用待定系数法可求出直线AO′的解析式,联立直线AO′和直线BC的解析式成方程组,通过解方程组可求出点P的坐标;(3)由点B,C,D的坐标可得出BC,BD,CD的长,由CD2+BC2=BD2可得出∠BCD=90°,由点A,C的坐标可得出OA,OC的长度,进而可得出=,结合∠AOC=∠DCB=90°可得出△AOC∽△DCB,进而可得出点Q与点O重合时△AQC∽△DCB;连接AC,过点C作CQ⊥AC,交x轴与点Q,则△ACQ∽△AOC∽△DCB,由相似三角形的性质可求出AQ的长度,进而可得出点Q的坐标.综上,此题得解.【解答】解:(1)将B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0).∵点B的坐标为(3,0),点C的坐标为(0,3),∴直线BC的解析式为y=﹣x+3.如图1,作O关于BC的对称点O′,则点O′的坐标为(3,3).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+P A的最小值=PO′+P A=AO′==5.设直线AO′的解析式为y=kx+m,将A(﹣1,0),Q′(3,3)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点D的坐标为(1,4).又∵点C的坐标为(0,3),点B的坐标为(3,0),∴CD==,BC==3,BD==2,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣1,0),点C的坐标为(0,3),∴OA=1,OC=3,∴==.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴=,即=,∴AQ=10,∴点Q的坐标为(9,0).综上所述:当Q的坐标为(0,0)或(9,0)时,以A,C,Q为顶点的三角形与△BCD相似.。

2020年中考数学几何压轴题训练及答案

2020年中考数学几何压轴题训练及答案

2020年中考几何压轴题训练及答案几何压轴题(一)1、面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m>0,四边形ABCD是矩形。

(1)如图1,当四边形ABCD为正方形时,求m,n的值;(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短。

2、△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.3、如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.4、如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.5、以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A(﹣4,0),B(0,﹣2),M(0,4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P的纵坐标为a.(1)求BC边所在直线的解析式;(2)设y=MP2+OP2,求y关于a的函数关系式;(3)当△OPM为直角三角形时,求点P的坐标.6、如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.7、如图,一次函数y=k1x+5(k1<0)的图象与坐标轴交于A,B两点,与反比例函数y=(k2>0)的图象交于M,N两点,过点M作MC⊥y轴于点C,已知CM=1.(1)求k2﹣k1的值;(2)若=,求反比例函数的解析式;(3)在(2)的条件下,设点P是x轴(除原点O外)上一点,将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由.8、已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.9、(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE 是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.10、边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C 不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE= BC;(3)猜想PF与EQ的数量关系,并证明你的结论.11、如图在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q 为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.参考答案1、【解答】解:(1)如图1,过点D作DE⊥y轴于E,∴∠AED=∠AOB=90°,∴∠ADE+∠DAE=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAE+∠BAO=90°,∴∠ADE=∠BAO,在△ABO和△ADE中,,∴△ABO≌△ADE,∴DE=OA,AE=OB,∵A(0,3),B(m,0),D(n,4),∴OA=3,OB=m,OE=4,DE=n,∴n=3,∴OE=OA+AE=OA+OB=3+m=4,∴m=1;(2)画法:如图2,①过点A画AB的垂线l1,过点B画AB的垂线l2,②过点E(0,4),画y轴的垂线l3交l1于D,③过点D画直线l1的垂线交直线l2于点C,所以,四边形ABCD是所求作的图形,过点C作CF⊥x轴于F,∴∠CBF+∠BCF=90°,∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BAD=90°,∴∠ABO+∠CBF=90°,∴∠BCF=∠ABO,同理:∠ABO=∠DAE,∴∠BCF=∠DAE,在△ADE和△CBF中,,∴△ADE≌△CBF,∴DE=BF=n,AE=CF=1,易证△AOB∽△DEA,∴,∴,∴n=,∴OF=OB+BF=m+,∴C(m+,1);(3)如图3,由矩形的性质可知,BD=AC,∴BD最小时,AC最小,∵B(m,0),D(n,4),∴当BD⊥x轴时,BD有最小值4,此时,m=n,即:AC的最小值为4,连接BD,AC交于点M,过点A作AE⊥BD于E,由矩形的性质可知,DM=BM=BD=2,∵A(0,3),D(n,4),∴DE=1,∴EM=DM﹣DE=1,在Rt△AEM中,根据勾股定理得,AE=,∴m=,即:当m=时,矩形ABCD的对角线AC的长最短为4。

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题一、选择题1.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.第1题第2题2.如图,在平面直角坐标系xOy中,A(﹣3,0),B(3,0),若在直线y=﹣x+m上存在点P满足∠APB=60°,则m的取值范围是()A.≤m≤B.﹣﹣5≤m≤+5C.﹣2≤m≤+2D.﹣﹣2≤m≤+2二、填空题18.如图,点G是矩形ABCD的对角线BD上一点,过点G作EF∥AB交AD于E,交BC 于F,若EG=5,BF=2,则图中阴影部分的面积为.第3题第4题24.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B 两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有(写出所有正确结论的序号)三、解答题5.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)若F为CD上一动点,求出当△DEF与△COD相似时点F的坐标;(2)过E作x轴的垂线l,在直线l上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【答案与解析】一、选择题1.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.2.【分析】作等边三角形ABE,然后作外接圆,求得直线y=﹣x+m与外接圆相切时的m的值,即可求得m的取值范围.【解答】解:如图,作等边三角形ABE,∵A(﹣3,0),B(3,0),∴OA=OB=3,∴E在y轴上,当E在AB上方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P1重合时m的值最大,当P与P1重合时,连接QP1,则QP1⊥直线y=﹣x+m,∵OA=3,∴OE=3,设⊙Q的半径为x,则x2=32+(3﹣x)2,解得x=2,∴EQ=AQ=PQ=2,∴OQ=,由直线y=﹣x+m可知OD=OC=m,∴DQ=m﹣,CD=m,∵∠ODC=∠P1DQ,∠COD=∠QP1D,∴△QP1D∽△COD,∴=,即=,解得m=+2,当E在AB下方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P2重合时m的值最小,当P与P2重合时,同理证得m=﹣﹣2,∴m的取值范围是﹣﹣2≤m≤+2,故选:D.二、填空题3.【分析】由矩形的性质可证明S矩形AEGM=S矩形CFGN=2×5=10,即可求解.【解答】解:作GM⊥AB于M,延长MG交CD于N.则有四边形AEGM,四边形DEGN,四边形CFGN,四边形BMGF都是矩形,∴AE=BF=2,S△ADB=S△DBC,S△BGM=S△BGF,S△DEG=S△DNG,∴S矩形AEGM=S矩形CFGN=2×5=10,∴S阴=S矩形CFGN=5,故答案为:5.4.【分析】由图象分别求出a>0,c=﹣2,b=﹣a<0,则函数解析式为y=ax2﹣ax﹣2,则对称轴x=,由开口向上的函数的图象开口与a的关系可得:当a变大,函数y=ax2﹣ax﹣2的开口变小,依据这个性质判断m的取值情况.【解答】解:由图象可知,a>0,c=﹣2,∵对称轴x=﹣=,∴b=﹣a<0,∴abc>0;∴①正确;A、B两点关于x=对称,∴m+n=1,∴③正确;a>0时,当a变大,函数y=ax2﹣ax﹣2的开口变小,则AB的距离变小,∴⑤不正确;若m<﹣1,n>2,由图象可知n>1,∴④不正确;当a=1时,对于t>0的任意值都有m<﹣1,当a>1时,函数开口变小,则有m>﹣1的时候,∴②不正确;故答案①③.三、解答题5.【分析】(1)当△DEF∽△COD时,=,DF=DE cos∠CDO=,据此求出EF的长度和点F的坐标即可;(2)首先以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=;然后求出点P的坐标是多少;设Q(﹣1,a),则()2+(a﹣)2=,据此求出a的值是多少,进而求出Q点坐标是多少即可.【解答】解:(1)∵A(1,0),B(0,3),∴OA=1,OB=3,∵将△AOB绕点O逆时针旋转90°,得到△COD,∴OC=1,OD=3,∴C(0,1),D(﹣3,0),如图1,当△DEF∽△COD时,=∴EF=,∴F(﹣1,);当△DEF∽△COD时,DF=DE cos∠CDO=,作FK⊥OD于K,则FK=DF sin∠CDO=,DK=DF cos∠CDO=,∴F(﹣,);(2)如图2,以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=,又∵P为CD中点,P(﹣,),设Q(﹣1,a),则()2+(a﹣)2=,解得a=2或﹣1,∴Q(﹣1,2)或(﹣1,﹣1).6.【分析】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段,则PF取最大值时,求得的最大值;(3)(i)点F在y轴上时,P在第一象限或第二象限,如图2,3,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH=CO=2,然后利用二次函数解析式求解即可;(ii)点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,可得PS=PK,则P点的横纵坐标互为相反数,可求出P点坐标;点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,可得PN=PM,则P点的横纵坐标相等,可求出P点坐标.由此即可解决问题.【解答】解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.。

决战2020年中考数学压轴题综合提升训练:《四边形》(含答案)

决战2020年中考数学压轴题综合提升训练:《四边形》(含答案)

决战2020中考数学压轴题综合提升训练:《四边形》1.如图①,在矩形ABCD中,已知BC=8cm,点G为BC边上一点,满足BG=AB=6cm,动点E以1cm/s的速度沿线段BG从点B移动到点G,连接AE,作EF⊥AE,交线段CD于点F.设点E移动的时间为t(s),CF的长度为y(cm),y与t的函数关系如图②所示.(1)图①中,CG= 2 cm,图②中,m= 2 ;(2)点F能否为线段CD的中点?若可能,求出此时t的值,若不可能,请说明理由;(3)在图①中,连接AF,AG,设AG与EF交于点H,若AG平分△AEF的面积,求此时t的值.解:(1)∵BC=8cm,BG=AB=6cm,∴CG=2cm,∵EF⊥AE,∴∠AEB+∠FEC=90°,且∠AEB+∠BAE=90°,∴∠BAE=∠FEC,且∠B=∠C=90°,∴△ABE∽△ECF,∴,∵t=6,∴BE=6cm,CE=2cm,∴∴CF=2cm,∴m=2,故答案为:2,2;(2)若点F是CD中点,∴CF=DF=3cm,∵△ABE∽△ECF,∴,∴∴EC2﹣8EC+18=0∵△=64﹣72=﹣8<0,∴点F不可能是CD中点;(3)如图①,过点H作HM⊥BC于点M,∵∠C=90°,HM⊥BC,∴HM∥CD,∴△EHM∽△EFC,∴∵AG平分△AEF的面积,∴EH=FH,∴EM=MC,∵BE=t,EC=8﹣t,∴EM=CM=4﹣t,∴MG=CM﹣CG=2﹣,∵,∴∴CF=∵EM=MC,EH=FH,∴MH=CF=∵AB=BG=6,∴∠AGB=45°,且HM⊥BC,∴∠HGM=∠GHM=45°,∴HM=GM,∴=2﹣,∴t=2或t=12,且t≤6,∴t=2.2.问题提出:(1)如图1,△ABC的边BC在直线n上,过顶点A作直线m∥n,在直线m上任取一点D,连接BD、CD,则△ABC的面积=△DBC的面积.问题探究:(2)如图2,在菱形ABCD和菱形BGFE中,BG=6,∠A=60°,求△DGE的面积;问题解决:(3)如图3,在矩形ABCD中,AB=12,BC=10,在矩形ABCD内(也可以在边上)存在一点P,使得△ABP的面积等于矩形ABCD的面积的,求△ABP周长的最小值.解:问题提出:(1)∵两条平行线间的距离一定,∴△ABC与△DBC同底等高,即△ABC的面积=△DBC的面积,故答案为:=;问题探究:(2)如图2,连接BD,∵四边形ABCD,四边形BGFE是菱形,∴AD∥BC,BC∥EF,AD=AB,BG=BE,∴∠A=∠CBE=60°,∴△ADB是等边三角形,△BGE是等边三角形,∴∠ABD=∠GBE=60°,∴BD∥GE,∴S△DGE=S△BGE=BG2=9;(3)如图3,过点P作PE∥AB,交AD于点E,∵△ABP的面积等于矩形ABCD的面积的,∴×12×AE=×12×10∴AE=8,作点A关于PE的对称点A',连接A'B交PE于点P,此时△ABP周长最小,∴A'E=AE=8,∴AA'=16,∴A'B===20,∴△ABP周长的最小值=AP+AB+PB=A'P+PB+AB=20+12=32.3.(1)方法感悟:如图①,在正方形ABCD中,点E、F分别为DC、BC边上的点,且满足∠EAF=45°,连接EF.将△ADE绕点A顺时针旋转90°得到△ABG,易证△GAF≌△EAF,从而得到结论:DE+BF=EF.根据这个结论,若CD=6,DE=2,求EF的长.(2)方法迁移:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,试猜想DE,BF,EF之间有何数量关系,证明你的结论.(3)问题拓展:如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F 分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试探究线段EF、BE、FD之间的数量关系,请直接写出你的猜想(不必说明理由).解:(1)方法感悟:∵将△ADE绕点A顺时针旋转90°得到△ABG,∴GB=DE=2,∵△GAF≌△EAF∴GF=EF,∵CD=6,DE=2∴CE=4,∵EF2=CF2+CE2,∴EF2=(8﹣EF)2+16,∴EF=5;(2)方法迁移:DE+BF=EF,理由如下:如图②,将△ADE绕点A顺时针旋转90°得到△ABH,由旋转可得,AH=AE,BH=DE,∠1=∠2,∠D=∠ABH,∵∠EAF=∠DAB,∴∠HAF=∠1+∠3=∠2+∠3=∠BAD,∴∠HAF=∠EAF,∵∠ABH+∠ABF=∠D+∠ABF=180°,∴点H、B、F三点共线,在△AEF和△AHF中,∴△AEF≌△AHF(SAS),∴EF=HF,∵HF=BH+BF,∴EF=DE+BF.(3)问题拓展:EF=BF﹣FD,理由如下:在BC上截取BH=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,且AB=AD,BH=DF,∴△ABH≌△ADF(SAS)∴∠BAH=∠DAF,AH=AD,∵∠EAF=∠BAD,∴∠DAE+∠BAH=∠BAD,∴∠HAE=∠BAD=∠EAF,且AE=AE,AH=AD,∴△HAE≌△FAE(SAS)∴HE=EF,∴EF=HE=BE﹣BH=BE﹣DF.4.如图1,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图2,设移动时间为t(s)(0<<4),连结PQ,MQ,解答下列问题:(1)当t为何值时,PQ∥MN?(2)当t为何值时,∠CPQ=45°?(3)当t为何值时,PQ⊥MQ?解:(1)∵AB=3cm,BC=5cm,AC⊥AB,∴AC==4cm,∵MN∥AB,PQ∥MN,∴PQ∥AB,∴,∴,∴t=s(2)如图2,过点Q作QE⊥AC,则QE∥AB,∴,∴,∴CE=,QE=t,∵∠CPQ=45°,∴PE=QE=t,∴t+t+t=4,∴t=s(3)如图2,过点P作PF⊥BC于F点,过点M作MH⊥BC,交BC延长线于点H,∴四边形PMHF是矩形,∴PM=FH=5,∵∠A=∠PFC=90°,∠ACB=∠PCF,∴△ABC∽△FPC,∴,∴=∴PF=,CF=,∴QH=5﹣FQ=5﹣(CF﹣CQ)=,∵PQ⊥MQ,∴∠PQF+∠MQH=90°,且∠PQF+∠FPQ=90°,∴∠FPQ=∠MQH,且∠PFQ=∠H=90°,∴△PFQ∽△QHM,∴,∴∴t=s.5.问题背景:如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得四边形EFGH是正方形.类比探究:如图2,在正△ABC的内部,作∠1=∠2=∠3,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)△DEF是否为正三角形?请说明理由;(3)如图3,进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC=AC,又∵∠1=∠2=∠3,∴∠ABD=∠BCE=∠CAF,在△ABD、△BCE和△CAF中,,∴△ABD≌△BCE≌△CAF(ASA);(2)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)c2=a2+ab+b2.作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c2=(a+b)2+(b)2,∴c2=a2+ab+b2.6.如图,在四边形ABCD中,AC是对角线,∠ABC=∠CDA=90°,BC=CD,延长BC交AD的延长线于点E.(1)求证:AB=AD;(2)若AE=BE+DE,求∠BAC的值;(3)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P,连接PB.设PB=a,点O是直线AE上的动点,当MO+PO的值最小时,点O与点E是否可能重合?若可能,请说明理由并求此时MO+PO的值(用含a的式子表示);若不可能,请说明理由.(1)证明:∵∠ABC=∠CDA=90°,∵BC=CD,AC=AC,∴Rt△ABC≌Rt△ADC(HL).∴AB=AD.(2)解:∵AE=BE+DE,又∵AE=AD+DE,∴AD=BE.∵AB=AD,∴AB=BE.∴∠BAD=∠BEA.∵∠ABC=90°,∴∠BAD═45°.∵由(1)得△ABC≌△ADC,∴∠BAC=∠DAC.∴∠BAC═22.5°.(3)解:当MO+PO的值最小时,点O与点E可以重合,理由如下:∵ME∥AB,∴∠ABC=∠MEC=90°,∠MAB=∠EMA.∵MP⊥DC,∴∠MPC=90°.∴∠MPC=∠ADC=90°.∴PM∥AD.∴∠EAM=∠PMA.由(1)得,Rt△ABC≌Rt△ADC,∴∠EAC=∠MAB,∴∠EMA=∠AMP.即MC平分∠PME.又∵MP⊥CP,ME⊥CE,∴PC=EC.如图,连接PB,连接PE,延长ME交PD的延长线于点Q.设∠EAM=α,则∠MAP=α.在Rt△ABE中,∠BEA=90°﹣2α.在Rt△CDE中,∠ECD=90°﹣∠BEA=2α.∵PC=EC,∴∠PEB=∠EPC=∠ECD=α.∴∠PED=∠BEA+∠PEB=90°﹣α.∵ME∥AB,∴∠QED=∠BAD=2α.当∠PED=∠QED时,∵∠PDE=∠QDE,DE=DE,∴△PDE≌△QDE(ASA).∴PD=DQ.即点P与点Q关于直线AE成轴对称,也即点M、点E、点P关于直线AE的对称点Q,这三点共线,也即MO+PO的值最小时,点O与点E重合.因为当∠PED=∠QED时,90°﹣α=2α,也即α=30°.所以,当∠ABD=60°时,MO+PO取最小值时的点O与点E重合.此时MO+PO的最小值即为ME+PE.∵PC=EC,∠PCB=∠ECD,CB=CD,∴△PCB≌△ECD(SAS).∴∠CBP=∠CDE=90°.∴∠CBP+∠ABC=180°.∴A,B,P三点共线.当∠ABD=60°时,在△PEA中,∠PAE=∠PEA=60°.∴∠EPA=60°.∴△PEA为等边三角形.∵EB⊥AP,∴AP=2AB=2a.∴EP=AE=2a.∵∠EMA=∠EAM=30°,∴EM=AE=2a.∴MO+PO的最小值为4a.7.已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB边交于点F,连接EF.(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G 运动的路线长.解:(1)补全图形如图1所示:(2)线段DE,EF,BF的数量关系为:EF=DE+BF.理由如下:延长AD到点H,使DH=BF,连接CH,如图2所示:∵四边形ABCD是正方形,∴∠BCD=∠ADC=∠B=90°,BC=DC,∴∠CDH=90°=∠B,在△CDH和△CBF中,,∴△CDH≌△CBF(SAS).∴CH=CF,∠DCH=∠BCF.∵∠ECF=45°,∴∠ECH=∠ECD+∠DCH=∠ECD+∠BCF=45°.∴∠ECH=∠ECF=45°.在△ECH和△ECF中,,∴△EC H≌△ECF(SAS).∴EH=EF.∵EH=DE+DH,∴EF=DE+BF;(3)由(2)得:△ECH≌△ECF(SAS),∴∠CEH=∠CEF,∵CD⊥AD,CG⊥EF,∴CD=CG=4,∴点G的运动轨迹是以C为圆心4为半径的弧DB,∴点G运动的路线长==2π.8.如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP的对称点为E,连接AE.连接DE并延长交射线AP于点F,连接BF.(1)若∠BAP=α,直接写出∠ADF的大小(用含α的式子表示);(2)求证:BF⊥DF;(3)连接CF,用等式表示线段AF,BF,CF之间的数量关系,并证明.(1)解:由轴对称的性质得:∠EAP=∠BAP=α,AE=AB,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠DAE=90°﹣2α,AD=AE,∴∠ADF=∠AED=(180°﹣∠DAE)=(90°+2α)=45°+α;(2)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵点E与点B关于直线AP对称,∴∠AEF=∠ABF,AE=AB.∴AE=AD.∴∠ADE=∠AED.∵∠AED+∠AEF=180°,∴在四边形ABFD中,∠ADE+∠ABF=180°,∴∠BFD+∠BAD=180°,∴∠BFD=90°∴BF⊥DF;(3)解:线段AF,BF,CF之间的数量关系为AF=BF+CF,理由如下:过点B作BM⊥BF交AF于点M,如图所示:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABM=∠CBF,∵点E与点B关于直线AP对称,∠BFD=90°,∴∠MFB=∠MFE=45°,∴△BMF是等腰直角三角形,∴BM=BF,FM=BF,在△AMB和△CFB中,,∴△AMB≌△CFB(SAS),∴AM=CF,∵AF=FM+AM,∴AF=BF+CF.9.如图1,已知等腰Rt△ABC中,E为边AC上一点,过E点作EF⊥AB于F点,以为边作正方形,且AC=3,EF=.(1)如图1,连接CF,求线段CF的长;(2)将等腰Rt△ABC绕点旋转至如图2的位置,连接BE,M点为BE的中点,连接MC,MF,求MC与MF关系.解:(1)如图1,∵△ABC是等腰直角三角形,AC=3,∴AB=3,过点C作CM⊥AB于M,连接CF,∴CM=AM=AB=,∵四边形AGEF是正方形,∴AF=EF=,∴MF=AM﹣AF=﹣,在Rt△CMF中,CF===;(2)CM=FM,CM⊥FM,理由:如图2,过点B作BH∥EF交FM的延长线于H,连接CF,CH,∴∠BHM=∠EFM,∵四边形AGEF是正方形,∴EF=AF∵点M是BE的中点,∴BM=EM,在△BMH和△EMF中,,∴△BMH≌△EMF(AAS),∴MH=MF,BH=EF=AF∵四边形AGEF是正方形,∴∠FAG=90°,EF∥AG,∵BH∥EF,∴BH∥AG,∴∠BAG+∠ABH=180°,∴∠CBH+∠ABC+∠BAC+∠CAG=180°.∵△ABC是等腰直角三角形,∴BC=AC,∠ABC=∠BAC=45°,∴∠CBH+∠CAG=90°,∵∠CAG+∠CAF=90°,∴∠CBH=∠CAF,在△BCH和△ACF中,,∴△BCH≌△ACF(SAS),∴CH=CF,∠BCH=∠ACF,∴∠HCF=∠BCH+∠BCF=∠ACF+∠BCF=90°,∴△FCH是等腰直角三角形,∵MH=MF,∴CM=FM,CM⊥FM;10.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.解:(1)如图1中,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=45°,∠C′NM=∠C′D′B′=45°,∴∠C′MN=∠C′NM,∴C′M=C′N,∵C′B′=C′D′,'∴MB′=ND′,∵AB′=AD′,∠AB′M=∠AD′N=90°,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠B′AD′=90°,∠MAN=45°,∴∠B′AM=∠D′AN=22.5°,∵∠BAC=45°,∴∠BAB′=22.5°,∴α=22.5°.(2)①如图2中,∵∠AB′Q=∠ADQ=90°,AQ=AQ,AB′=AD,∴Rt△AQB′≌Rt△AQD(HL),∴∠QAB′=∠QAD,∵∠BAB′=30°,∠BAD=90°,∴∠B′AD=30°,∴∠QAD=∠B′AD=30°.②如图2中,连接AP,在AB上取一点E,使得AE=EP,连接EP.设PB=a.∵∠ABP=∠AB′P=90°,AP=AP,AB=AB′,∴Rt△APB≌Rt△APB′(HL),∴∠BAP=∠PAB′=15°,∵EA=EP,∴∠EAP=∠EPA=15°,∴∠BEP=∠EAP+∠EPA=30°,∴PE=AE=2a,BE=a,∵AB=6,∴2a+a=6,∴a=6(2﹣).∴PB=6(2﹣),∴PC=BC﹣PB=6﹣6(2﹣)=6﹣6,∵∠CPQ+∠BPB′=180°,∠BAB′+∠BPB′=180°,∴∠CPQ=∠BAB′=30°,∴PQ===12﹣4.11.已知,如图1,在边长为2的正方形ABCD中,E是边AB的中点,点F在边AD上,过点A作AG⊥EF,分别交线段CD、EF于点G、H(点G不与线段CD的端点重合).(1)如图2,当G是边CD中点时,求AF的长;(2)设AF=x,四边形FHGD的面积是y,求y关于x的函数关系式,并写出x的取值范围;(3)联结ED,当∠FED=45°时,求AF的长.解:(1)∵E是AB的中点,AB=2,∴AE=AB=1,同理可得DG=1,∵AG⊥EF,∴∠AHF=∠HAF+∠AFH=90°,∵四边形ABCD是正方形,∴∠ADG=90°=∠DAG+∠AGD,∴∠AFH=∠AGD,∵∠EAF=∠ADG=90°,∴△EAF∽△ADG,∴,即,∴AF=;(2)如图1,由(1)知:△EAF∽△ADG,∴,即,∴DG=2x,∵∠HAF=∠DAG,∠AHF=∠ADG=90°,∴∠AHF∽△ADG,∴=,∴=,∴AH==,FH==,∴y=S△ADG﹣S△AFH,=,=2x﹣,如图2,当G与C重合时,∵EF⊥AG,∴∠AHE=90°,∵∠EAH=45°,∴∠AEH=45°,∴AF=AE=1,∴0<x<1;∴y关于x的函数关系式为:y=2x﹣(0<x<1);(3)如图3,过D作DM⊥AG,交BC于M,连接EM,延长EA至N,使AN=CM,连接DN,设CM=a,则AN=a,∵AD=CD,∠NAD=∠DCM=90°,∴△NAD≌△MCD(SAS),∴∠ADN=∠CDM,DN=DM,∵EF⊥AG,DM⊥AG,∴EF∥DM,∴∠EDM=∠FED=45°,∴∠ADE+∠CDM=∠EDM=45°,∴∠NDA+∠ADE=∠NDE=∠EDM,∵ED=ED,∴△NDE≌△MDE(SAS),∴EN=EM=a+1,∵BM=2﹣a,在Rt△EBM中,由勾股定理得:BE2+BM2=EM2,∴12+(2﹣a)2=(a+1)2,a=,∵∠AEF+∠EAG=∠EAG+∠DAG,∴∠AEF=∠DAG=∠CDM,∴tan∠AEF=tan∠CDM,∴,∴,∴AF=.12.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,△ACB中,∠ACB=90°,AC⊥AG且AC=AG,AB⊥AE 且AE=AB,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.解:(1)四边形ABCD是垂美四边形,理由如下:连接AC,BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴AC是线段BD的垂直平分线,∴四边形ABCD是垂美四边形;(2)∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;故答案为:AB2+CD2=AD2+BC2;(3)∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.13.如图1,四边形ACEB,连接BC,∠ACB=∠BEC=90°,D在AB上,连接CD,∠ACD=∠ABC,BE=CD.(1)求证:四边形CDBE为矩形;(2)如图2,连接DE,DE交BC于点O,若tan∠A=2,在不添加任何辅助线和字母的情况下,请直接写出图中所有长度与AD的长度相等的线段.(1)证明:∵∠ACB=90°,∴∠A+∠ABC=90°,∵∠ACD=∠ABC,∴∠A+∠ACD=90°,∴∠ADC=90°,∴∠BDC=180°﹣90°=90°=∠BEC,在Rt△BCD和Rt△CBE中,,∴Rt△BCD≌Rt△CBE(HL),∴BD=CE,∵CD=BE,∴四边形CDBE是平行四边形,又∵∠BEC=90°,∴四边形CDBE为矩形;(2)解:图中所有长度与AD的长度相等的线段为AC=OC=OB=OD=OE=AD.理由如下:由(1)得:四边形CDBE为矩形,∠ADC=90°,∴BC=DE,OD=OE,OB=OC,∴OC=OB=OD=OE=BC,∵∠ADC=∠ACB=90°,∴tan∠A=2==,∴CD=2AD,BC=2AC,∴AC===AD,∴DE=BC=2AC,∴OC=OB=OD=OE=BC=AC=AD,∴AC=OC=OB=OD=OE=AD.14.如图在直角坐标系中,四边形ABCO为正方形,A点的坐标为(a,0),D点的坐标为(0,b),且a,b满足(a﹣3)2+|b﹣|=0.(1)求A点和D点的坐标;(2)若∠DAE=∠OAB,请猜想DE,OD和EB的数量关系,说明理由.(3)若∠OAD=30°,以AD为三角形的一边,坐标轴上是否存在点P,使得△PAD 为等腰三角形,若存在,直接写出有多少个点P,并写出P点的坐标,选择一种情况证明.解:(1)∵(a﹣3)2+|b﹣|=0,∴a=3,b=,∴D(0,),A(3,0);(2)DE=OD+EB;理由如下:如图1,在CO的延长线上找一点F,使OF=BE,连接AF,在△AOF和△ABE中,,∴△AOF≌△ABE(SAS),∴AF=AE,∠OAF=∠BAE,又∵∠OAB=90°,∠DAE=,∴∠BAE+∠DAO=45°,∴∠DAF=∠OAF+∠DAO=45°,∴∠DAF=∠EAD,在△AFD和△AED中,,∴△AFD≌△AED(SAS),∴DF=DE=OD+EB;(3)有3种情况共6个点:①当DA=DP时,如图2,Rt△ADO中,OD=,OA=3,∴AD===2,∴P 1(﹣3,0),P2(0,3),P3(0,﹣);②当AP4=DP4时,如图3,∴∠ADP4=∠DAP4=30°,∴∠OP4D=60°,Rt△ODP 4中,∠ODP4=30°,OD=,∴OP4=1,∴P4(1,0);③当AD=AP时,如图4,∴AD=AP 5=AP6=2,∴P 5(3+2,0),P6(3﹣2,0),综上,点P的坐标为:∴P(﹣3,0)或(0,3)或(0,﹣)或(1,0)或(3+2,0)或(3﹣2,0).证明:P 5(3+2,0),∵∠OAD=30°且△ADO是直角三角形,又∵AO=3,DO=,∴DA=2,而P 5A=|3+2﹣3|=2,∴P5A=DA,∴△P5AD是等腰三角形.15.已知,在四边形ABCD中,点M、N、P、Q分别为边AB、AD、CD、BC的中点,连接MN、NP、PQ、MQ.(1)如图1,求证:四边形MNPQ为平行四边形;(2)如图2,连接AC,AC分别交MN、PQ于点E、F,连接BD,BD分别交MQ、NP于点G、H,AC与BD交于点O,且AC⊥BD,若tan∠ADB=,在不添加任何辅助线的情况下,请直接写出图2中所有长度等于OD的线段.(1)证明:如图1,连接BD.∵Q,P分别是BC,CD的中点,所以PQ∥BD,PQ=BD.∵M,N分别是AB,AD的中点.∴MN∥BD,MN=BD.∴PQ∥MN,且PQ=MN.∴四边形MNPQ是平行四边形.(2)解:∵四边形MNPQ是平行四边形,AC⊥BD,∴四边形MNPQ是矩形,∴四边形NHOE和四边形EOGM都是矩形,∴NH=OE=MG=AE=,∵tan∠ADB=,∴,∴NH=OE=MG=AE=.即长度等于OD的线段有NH,OE,MG,AE.。

2020年江苏中考数学考前压轴题冲刺练习(含参考答案解析)

2020年江苏中考数学考前压轴题冲刺练习(含参考答案解析)

2020年江苏中考数学考前压轴题冲刺练习一、选择题(共6题)1.如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1 D.y=x+2.如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=3.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)4.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD 绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣5.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°6.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题(共6题)1.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE=DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是(只填序号).2.如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是.3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.5.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第5题第6题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题(共6题)1.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.2.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx与x轴交于点A(10,0),点B (1,2)是抛物线上点,点M为射线OB上点(不含O,B两点),且MH⊥x轴于点H.(1)求直线OB及抛物线解析式;(2)如图1,过点M作MC∥x轴,且与抛物线交于C,D两点(D位于C左边),若MC=MH,点Q为直线BC上方的抛物线上点,求△BCQ面积的最大值,并求出此时点Q的坐标;(3)如图2,过点B作BE∥x轴,且与抛物线交于E,在线段OA上有点P,在点H从左向右运动时始终有AP=2OH,过点P作PN⊥x轴,且PN与直线OB交于点N,当M 与N重合时停止运动,试判断在此运动过程中△MNE与△BME能否全等,若能请求出全等时的HP长度,若不能请说明理由.3.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s 的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.4.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接P A,点P在运动过程中,P A﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD =AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】由已知点可求四边形ABCD分成面积=AC×(|y B|+3)==14;求出CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有7=×(3﹣)×(+1),即可求k;【解答】解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0(舍去),∴k=,∴直线解析式为y=x+;故选:D.【点评】本题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系数法求函数解析式的方法是解题的关键.2.【分析】根据勾股定理可判断A;连接CF,作FG⊥EC于G,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B;根据平行线分线段成比例定理可判断C;求得cos∠HCD可判断D.【解答】解:∵正方形ABCD,DPMN的面积分别为S1,S2,∴S1=CD2,S2=PD2,在Rt△PCD中,PC2=CD2+PD2,∴S1+S2=CP2,故A结论正确;连接CF,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠FCH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∵EG=x,FG=2x,∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,HS⊥CD于S,∴HQ∥AB,∴=,即=,∴HQ=x,∴CS=CD﹣HQ=x﹣x=x∴cos∠HCD===,故结论D错误,故选:D.3.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.4.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF=2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.5.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.6.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP =3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题1.【分析】连接CD.证明△ADE≌△CDF,利用全等三角形的性质即可一一判断.【解答】解:连接CD,∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴ED=DF,故①正确;∴S△ADE=S△CDF,∴S四边形CEDF=S△ADC=S△ABC=定值,故②错误,∵△ADE≌△CDF,∴AE=CF,∴CE+CF=CE+AE=AC=AB,故③正确,∵AE=CF,AC=BC,∴EC=BF,∴AE2+BF2=CF2+CE2=EF2,∵EF2=2DE2,∴AE2+BF2=2ED2,故④正确.故答案为①③④.2.【分析】方法1、过点A作BD的垂线AG,AG为定值;过点P作BD的垂线PE,只要PE最大即可,进而求出PE最大,即可得出结论;方法2、先判断出最大时,BE最大,再用相似三角形的性质求出BG,HG,CH,进而判断出HM最大时,BE最大,而点M在⊙C上时,HM最大,即可HP',即可得出结论.【解答】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG 都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则P A+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,5.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.6.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC 为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题1.【分析】(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.利用勾股定理构建方程组解决问题即可.(2)如图2中,作CH⊥AB于H.证明△ACH是等腰直角三角形,四边形EFHC是矩形,求出EF即可解决问题.【解答】解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∵AB∥CD,EF⊥AB,∴EF⊥CD,∴∠CEF=∠BFO=90°∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得(舍弃)或,∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.2.【分析】(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,可求y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),由已知可求C(3m,2m),将点C代入抛物线解析式可得m=,即可求BC的直线解析为y=x+,设Q(n,﹣n2+n),过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),QT=|n2﹣8n+7|,当QT最大时,则△BCQ的面积最大;(3)函数对称轴x=5,E(9,2),设P(t,0),则依次可求N(t,2t),H(5﹣t,0),M(5﹣t,10﹣t),BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,t+1=10﹣t,,此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,由于△<0,t不存在.【解答】解:(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,∴a=﹣,b=,∴y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),∵MC=MH,∴C(3m,2m),∴2m=﹣×9m2+×3m,∴m=,∴C(7,),M(,),∴BC的直线解析为y=x+,设Q(n,﹣n2+n),∴过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),∴QT=|n2﹣8n+7|,∴当n=4时,△BCQ面积的最大值,∴Q(4,);(3)函数对称轴x=5,∴E(9,2),设P(t,0),∴N(t,2t),∵AP=2OH,∴H(5﹣t,0),∴M(5﹣t,10﹣t),∴BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,∴t+1=10﹣t,,∴t=,t=,∴此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,∴△<0,∴t不存在;综上所述:在此运动过程中△MNE与△BME不能全等.3.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形AP A′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=P A'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=P A′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.4.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=P A﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=P A﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,P A﹣有最大值为,5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠F AC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.。

2020年九年级数学备战中考—中考真题计算压轴题(图形题)含解析

2020年九年级数学备战中考—中考真题计算压轴题(图形题)含解析

2020年九年级备战中考——中考题型计算压轴题(图形题)1.如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,点M是AB的中点,连接MC,点P是线段BC延长线上一点,且PC<BC,连接MP交AC于点H.将射线MP绕点M逆时针旋转60°交线段CA的延长线于点D.(1)找出与∠AMP相等的角,并说明理由.(2)如图2,CP=12BC,求ADBC的值.(3)在(2)的条件下,若MD=√133,求线段AB的长.2.如图,四边形ABCD是菱形,∠BAD=120°,点E在射线AC上(不包括点A和点C),过点E的直线GH 交直线AD于点G,交直线BC于点H,且GH∥DC,点F在BC的延长线上,CF=AG,连接ED,EF,DF.(1)如图1,当点E在线段AC上时,①判断△AEG的形状,并说明理由.②求证:△DEF是等边三角形.(2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.3.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD为直角边作Rt△CDE 和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由. 4.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出CEAB 的值.5.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD= √2 CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.6.如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90°得到线段EG,过点E作GD 的垂线QH,垂足为点H,交射线BC于点Q .(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为________.(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,AB=3DE,QC=1,请直接写出线段BP的长.7.如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4√2,请直接写出点O经过的路径长.8.如图,在四边形ABCD中,AB//CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE .(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.9.在Rt△ABC中,∠ACB=90°,D是△ABC内一点,连接AD,BD.在BD左侧作Rt△BDE,使∠BDE=90°,以AD和DE为邻边作▱ADEF,连接CD,DF.(1)若AC=BC,BD=DE.①如图1,当B,D,F三点共线时,CD与DF之间的数量关系为________.②如图2,当B,D,F三点不共线时,①中的结论是否仍然成立?请说明理由.________(2)若BC=2AC,BD=2DE,CDAC =45,且E,C,F三点共线,求AFCE的值.10.已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.求证:①△AEF≌△CGF;②四边形BGCE是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出EDEF 的值及∠DEF的度数.(3)小颖受到启发也做了探究:如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出EDEF 的值,并用含α的代数式直接表示∠DEF的度数.11.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=25,∠CBG=45°,BC=4 √2,则▱ABCD的面积是________.12.如图1,ΔABC(12AC<BC<AC)绕点C顺时针旋转得ΔDEC,射线AB交射线DE于点F .(1)∠AFD与∠BCE的关系是________;(2)如图2,当旋转角为60°时,点D,点B与线段AC的中点O恰好在同一直线上,延长DO 至点G,使OG=OD,连接GC .①写出∠AFD与∠GCD的关系,请说明理由;②如图3,连接AE,BE,若∠ACB=45∘,CE=4,求线段AE的长度.13.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,ΔABC中,∠BAC=90∘,点D,E在BC上,AD=AB,AB=kBD(其中√22<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出AH的值.”HC(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;的值(用含k的代数式表示).(3)直接写出AHHC答案解析部分1.【答案】 (1)解: ∠D =∠AMP . 理由如下:∵ ∠ACB =90° , ∠B =30° , ∴ ∠BAC =60° . ∴ ∠D +∠DMA =60° .由旋转的性质知, ∠DMA +∠AMP =60° . ∴ ∠D =∠AMP(2)解:如图,过点C 作 CG ∥BA 交MP 于点G.∴ ∠GCP =∠B =30° , ∠BCG =150° .∵ ∠ACB =90° ,点M 是AB 的中点, ∴ CM =12AB =BM =AM . ∴ ∠MCB =∠B =30° . ∴ ∠MCG =120° .∵ ∠MAD =180°−60°=120° . ∴ ∠MAD =∠MCG .∵ ∠DMG −∠AMG =∠AMC −∠AMG , ∴ ∠DMA =∠GMC . 在 △MDA 与 △MGC 中, {∠MAD =∠M CGAM =CM∠DMA =∠GMC∴ △MDA ≌△MGC(ASA) . ∴ AD =CG . ∵ CP =12BC . ∴ CP =13BP . ∵ CG ∥BM ,∴ △CGP ∽△BMP . ∴CG BM=CP BP =13 .设 CG =AD =t ,则 BM =3t , AB =6t . 在 Rt △ABC 中, cos B =BC AB=√32.∴ BC =3√3t .∴AD BC=3√3t=√39(3)解:如图,由(2)知 △CGP ∽△BMP .则 MD =MG =√133.∵ CG ∥MA .∴ ∠CGH =∠AMH . ∵ ∠GHC =∠MHA , ∴ △GHC ∽△MHA . ∴HG HH=CH AH =CG AM =13 .∴ HG =14MG =14×√133=√1312.∴ MH =√133−√1312=√134 .由(2)知, CG =AD =t ,则 BM =AM =CA =3t . ∴ CH =34t , AH =94t .∵ ∠MHA =∠DHM , ∠HMA =∠D . ∴ △MHA ∽△DMH . ∴MH DH=AHMH .∴ MH 2=AH ⋅DH ,即 (√134)2=94t ⋅134t . 解得 t 1=13, t 2=−13(舍去).∴ AB =6t =2 .2.【答案】 (1)解:①解:△AEG是等边三角形;理由如下: ∵四边形ABCD 是菱形,∠BAD=120°,∴AD∥BC,AB =BC =CD =AD ,AB∥CD,∠CAD= 12∠BAD=60°, ∴∠BAD+∠ADC=180°, ∴∠ADC=60°, ∵GH∥DC,∴∠AGE=∠ADC=60°,∴∠AGE=∠EAG=∠AEG=60°, ∴△AEG是等边三角形;②证明:∵△AEG是等边三角形, ∴AG=AE , ∵CF=AG , ∴AE=CF ,∵四边形ABCD 是菱形, ∴∠BCD=∠BAD=120°, ∴∠DCF=60°=∠CAD,在△AED和△CFD中, {AD =CD ∠EAD =∠FCD AE =CF,∴△AED≌△CFD(SAS ) ∴DE=DF ,∠ADE=∠CDF, ∵∠ADC=∠ADE+∠CDE=60°, ∴∠CDF+∠CDE=60°,即∠EDF=60°,∴△DEF是等边三角形(2)解:△DEF是等边三角形;理由如下:同(1)①得:△AEG是等边三角形,∴AG=AE,∵CF=AG,∴AE=CF,∵四边形ABCD是菱形,∴∠BCD=∠BAD=120°,∠CAD=12∠BAD=60°,∴∠FCD=60°=∠CAD,在△AED和△CFD中,{AD=CD∠EAD=∠FCDAE=CF,∴△AED≌△CFD(SAS),∴DE=DF,∠ADE=∠CDF,∵∠ADC=∠ADE﹣∠CDE=60°,∴∠CDF﹣∠CDE=60°,即∠EDF=60°,∴△DEF是等边三角形.3.【答案】(1)证明:①∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵∠CDF+∠ADC=90°,∴∠CAD=∠CDF;②作FH⊥BC交BC的延长线于H,则四边形FECH为矩形,∴CH=EF,在△ACD和△DHF中,{∠CAD=∠HDF∠ACD=∠DHF=90°AD=DF ,∴ΔACD≅ΔDHF(AAS)∴DH=AC,∵AC=CB,∴DH=CB,∴DH−CD=CB−CD,即HG=BD,∴BD=EF(2)解:BD=EF,理由如下:作FG⊥BC交BC的延长线于G,则四边形FECG为矩形,∴CG=EF,∵∠CAD=∠GDF,∠ACD=∠DGF=90°,∴ΔACD∽ΔDGF,∴DGAC =DFAD=2,即DG=2AC,GF=2CD,∵BC=2AC,CE=2CD,∴BC=DG,GF=CE,∴BD=CG,∵GF∥CE,GF=CE,∠G=90°,∴四边形FECG为矩形,∴CG=EF,∴BD=EF.4.【答案】(1)解:当点D与点C重合时,CE∥AB,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,∴CE∥AB(2)解:当点D与点C不重合时,(1)的结论仍然成立,理由如下:在AC上截取AF=CD,连接EF,∵∠AED=∠ACB=90°,∴∠EAF=∠EDC,在△EAF和△EDC中,{AE=ED∠EAF=∠EDC AF=DC ,∴△EAF≌△EDC(SAS),∴EF=EC,∠AEF=∠DEC,∵∠AED=90°,∴∠FEC=90°,∴∠ECA=45°,∴∠ECA=∠CAB,∴CE∥AB;(3)解:如图②,∠EAC=15°,∴∠CAD=30°,∴AD=2CD,AC=√3CD,∴ FC=(√3﹣1)CD,∵△CEF为等腰直角三角形,∴ EC=√22FC=√6−√22CD,∵△ABC是等腰直角三角形,∴ AB=√2AC=√6CD,∴ CEAB √6−√22√63−√36,如图③,∠EAC=15°,由(2)得,∠EDC=∠EAC=15°,∴∠ADC=30°,∴ CD=√3AC,AB=√2AC,延长AC至G,使AG=CD,∴CG=AG﹣AC=DC﹣AC=√3 AC﹣AC,在△EAG和△EDC中,{AG=DC∠EAG=∠EDC AC=DE ,∴△EAG≌△EDC(SAS),∴EG=EC,∠AEG=∠DEC,∴∠CEG=90°,∴△CEG为等腰直角三角形,∴ EC=√22CG=√6−√22AC,∴ CEAB √3−12,综上所述,当∠EAC=15°时,CEAB 的值为3−√36或√3−12.5.【答案】(1)证明:①在四边形ADBC中,∠DAC+∠DBC+∠ADB+∠ACB=360°,∵∠ADB+∠ACB=180°,∴∠DAC+∠DBC=180°,∵∠EAC+∠DAC=180°,∴∠DBC=∠EAC,∵BD=AE,BC=AC,∴△BCD≌△ACE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠BCD+∠DCA=90°,∴∠ACE+∠DCA=90°,∴∠DCE=90°,∴CD⊥CE;②∵CD=CE,CD⊥CE,∴△CDE是等腰直角三角形,∴DE= √2 CD,∵DE=AD+AE,AE=BD,∴DE=AD+BD,∴AD+BD= √2 CD(2)解:AD-BD= √2 CD;理由:如图2,在AD上截取AE=BD,连接CE,∵AC=BC,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠ADB=90°,∴∠CBD=90°-∠BAD-∠ABC=90°-∠BAD-45°=45°-∠BAD,∵∠CAE=∠BAC-∠BAD=45°-∠BAD,∴∠CBD=∠CAE,∵BD=AE,BC=AC,∴△CBD≌△CAE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠ACE+∠BCE=∠ACB=90°,∴∠BCD+∠BCE=90°,即∠DCE=90°,∴DE= √CD2+CE2 = √2CD2 = √2 CD,∵DE=AD-AE=AD-BD,∴AD-BD= √2 CD.6.【答案】(1)BP+QC=EC(2)解:(1)中的结论仍然成立,理由如下:由题意得:∠PEG=90°,EG=EP,∴∠PEQ +∠GEH =90° ,∵QH ⊥GD ,∴∠H =90° , ∠G +∠GEH =90° ,∴∠PEQ =∠G ,∵ 四边形 ABCD 是正方形,∴∠DCB =90° , BC =DC ,∴∠EPQ +∠PEC =90° ,∵∠PEC +∠GED =90° ,∴∠GED =∠EPQ ,在 ΔPEQ 和 ΔEGD 中, {∠EPQ =∠GEDEP =EG ∠PEQ =∠G,∴ΔPEQ ≅ΔEGD(ASA) ,∴PQ =ED ,∴BP +QC =BC −PQ =CD −ED =EC ,即 BP +QC =EC(3)解:分两种情况:①当点 P 在线段 BF 上时,点 Q 在线段 BC 上,由(2)可知: BP =EC −QC ,∵AB =3DE =6 ,∴DE =2 , EC =4 ,∴BP =4−1=3 ;②当点 P 在射线 FC 上时,点 Q 在线段 BC 的延长线上,如图3所示:同(2)可得: ΔPEQ ≅ΔEGD(AAS) ,∴PQ =ED ,∵BC =DC , DC =EC +DE ,∴BP =BC +PC =DC +PC =EC +DE +PC =EC +PQ +PC =EC +QC ,∴BP =QC +EC =1+4=5 ;综上所述,线段 BP 的长为3或5.7.【答案】 (1)解: OE =OD , OE ⊥OD ;理由如下:由旋转的性质得: AF =AC , ∠AFE =∠ACB ,∵四边形ABCD 是正方形,∴ ∠ACB =∠ACD =∠FAC =45° ,∴ ∠ACF =∠AFC =12(180°−45°)=67.5° ,∴ ∠DCF =∠EFC =22.5° ,∵ ∠FEC =90° ,O 为CF 的中点,∴ OE =12CF =OC =OF ,同理: OD =12CF ,∴ OE =OD =OC =OF ,∴ ∠EOC =2∠EFO =45° , ∠DOF =2∠DCO =45° ,∴ ∠DOE =180°−45°−45°=90° ,∴ OE ⊥OD(2)解:当 45°<α<90° 时,(1)中的结论成立,理由如下:延长EO 到点M ,使 OM =EO ,连接DM 、CM 、DE ,如图2所示:∵O为CF 的中点,∴ OC =OF , 在 △COM 和 △FOE 中, {OM =OE∠COM =∠FOE OC =OF,∴ △COM ≌ △FOE (SAS ),∴ ∠MCF =∠EFC , CM =EF .∵四边形ABCD 是正方形,∴ AB =BC =CD , ∠BAC =∠BCA =45° ,∵ ΔABC 绕点A 逆时针旋转α得 ΔAEF ,∴ AB =AE =EF =CD , AC =AF ,∴ CD =CM , ∠ACF =∠AFC ,∵ ∠ACF =∠ACD +∠FCD , ∠AFC =∠AFE +∠CFE , ∠ACD =∠AFE =45° ,∴ ∠FCD =∠CFE =∠MCF ,∵ ∠EAC +∠DAE =45° , ∠FAD +∠DAE =45° ,∴ ∠EAC =∠FAD ,在 △ACF 中,∵ ∠ACF +∠AFC +∠CAF =180° ,∴ ∠DAE +2∠FAD +∠DCM +90°=180° ,∵ ∠FAD +∠DAE =45° ,∴ ∠FAD +∠DCM =45° ,∴ ∠DAE =∠DCM ,在 △ADE 和 △CDM 中, {AE =CM∠DAE =∠DCM AD =CD ,∴ △ADE ≌ △CDM (SAS ),∴ DE =DM ,∵ OE =OM ,∴ OE ⊥OD , 在 △COM 和 △COD 中, {CM =CD∠MCF =∠FCD OC =OC ,∴ △COM ≌ △COD (SAS ),∴ OM =OD .∴ OE =OD ,∴ OE =OD , OE ⊥OD(3)解:连接AO ,如图3所示:∵ AC=AF,CO=OF,∴ AO⊥CF,∴ ∠AOC=90°,∴点O在以AC为直径的圆上运动,∵ α=360°,∴点O经过的路径长等于以AC为直径的圆的周长,∵ AC=√2AB=√2×4√2=8,∴点O经过的路径长为:πd=8π .8.【答案】(1)证明:∵AB//CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE//BC,且AB//CD∴四边形ABCE是平行四边形∴AE=BC(2)解:∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB−CD=2∴四边形ABCE的面积=3×2=69.【答案】(1)DF=√2 CD.;结论仍然成立.理由:如图2中,连接CF.延长BD交AF的延长线于H,设AC交BH于G.∵四边形AFED是平行四边形,∴AF=DE,DE∥AF,∵BD=DE,∴AF=BD,∵∠BDE=90°,∴∠DEH=∠DHA=90°=∠BCG,∵∠CGB=∠AGH,∴∠CBD=∠CAF,∵BC=AC,∴△BCD≌△ACF(SAS),∴∠BCD=∠ACF,CD=CF,∴∠BCA=∠DCF=90°,∴△CDF是等腰直角三角形,∴DF=√2 CD(2)解:如图3中,延长BD交AF于H.设BH交AC于G.∵四边形AFED是平行四边形,∴AF=DE,DE∥AF,∵∠BDE=90°,∴∠DEH=∠DHA=90°=∠BCG,∵∠CGB=∠AGH,∴∠CBD=∠CAF,∵ BDDE =BCAC=2,∴ BDAF =BCAC,∴△CBD∽△CAF,∴ CDCF =BCAC=2,∠BCD=∠ACF,∴∠BCA=∠DCF=90°,∵AD∥EF,∴∠ADC+∠DCF=180°,∴∠ADC=90°,∵CD:AC=4:5,设CD=4k,AC=5k,则AD=EF=3k,∴CF=12CD=2k,∴EC=EF﹣CF=k,∴DE=AF=√CD2+EC2=√(4k)2+k2=√17k,∴ AFCE =√17kk=√17 .10.【答案】(1)解:证明:①如图1中,∵△EFC与△AFC都是等腰直角三角形,∴FA=FC,FE=FG,∠AFC=∠EFG=90°,∴∠AFE=∠CFG,∴△AFE≌△CFG(SAS).②∵△AFE≌△CFG,∴AE=CG,∠AEF=∠CGF,∵△AEB是等腰直角三角形,∴AE=BE,∠BEA=90°,∴CG=BE,∵△EFG是等腰直角三角形,∴∠FEG=∠FGE=45°,∴∠AEF+∠BEG=45°,∵∠CGE+∠CGF=45°,∴∠BEG=∠CGE,∴BE∥CG,∴四边形BECG是平行四边形(2)解:如图2中,延长ED到G,使得DG=ED,连接CG,FG.∵点D是BC的中点,∴BD=CD,∵∠EDB=∠GDC,∴EB=GC,∠EBD=∠GCD,在Rt△AEB与Rt△AFC中,∵∠EAB=∠FAC=30°,∴ EBAE =√33,FCAF=√33,∴ CGAE =FCAF,∵∠EBD=∠2+60°,∴∠DCG=∠2+60°,∴∠GCF=360°﹣60°﹣(∠2+60°)﹣∠3=360°﹣120°﹣(∠2+∠3)=360°﹣120°﹣(180°﹣∠1)=60°+∠1,∵∠EAF=30°+∠1+30°=60°+∠1,∴∠GCF=∠EAF,∴△CGF∽△AEF,∴ FG FE =FC FA =√33 ,∠CFG=∠AFE,∴∠EFG=∠CFG+∠EFC=∠AFE+∠EFC=90°,∴tan∠DEF= FG FE =√33 ,∴∠DEF=30°,∴FG= 12 EG ,∵ED= 12 EG ,∴ED=FG ,∴ ED EF =√33(3)解:如图3中,延长ED 到G ,使得DG =ED ,连接CG ,FG.作EH⊥AB于H ,连接FD.∵BD=DC ,∠BDE=∠CDG,DE =DG ,∴△CDG≌△BDE(SAS ),∴CG=BE =AE ,∠DCG=∠DBE=α+∠ABC,∵∠GCF=360°﹣∠DCG﹣∠ACB﹣∠ACF=360°﹣(α+∠ABC)﹣∠ACB﹣(90°﹣α)=270°﹣(∠ABC+∠ACB)=270°﹣(180°﹣∠BAC)=90°+∠BAC=∠EAF,∴△EAF≌△GCF(SAS ),∴EF=GF ,∠AFE=∠CFG,∴∠AFC=∠EFC,∴∠DEF=∠CAF=90°﹣α,∵∠AEH=90°﹣α,∴∠AEH=∠DEF,∵AE=m ,AH = 12 AB = 12 n ,∴EH= √AE 2−AH 2=√m 2−14n 2=√4m 2−n 22 ,∵D E =DG ,EF =GF ,∴DF⊥EG,cos∠DEF=cos∠AEH=EHAE =√4m2−n22m=√4m2−n22m.11.【答案】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF∥BE,∴∠DFA=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形;(2)24.12.【答案】(1)∠AFD=∠BCE(2)解:① ∠AFD=12∠GCD或∠AFD+∠GCD=180°,理由:如图2,连接AD,由旋转知,∠CAB=∠CDE,CA=CD,∠ACD=60°,∴ ΔACD是等边三角形,∴ AD=CD,∵ ∠AMC=∠DMF,∴ ΔACM∽ ΔDFM,∴ ∠ACD=∠AFD,∵ O是AC的中点,∴ AO=CO,∵ OD=OG,∠AOD=∠COG,∴ ΔAOD≌ ΔCOG(SAS),∴ AD=CG,∴ CG=CD,∴ ∠GCD=2∠ACD=120°,∴ ∠AFD=12∠GCD或∠AFD+∠GCD=180°,故答案为:∠AFD=12∠GCD或∠AFD+∠GCD=180°;②由①知,∠GCD=120°,∠ACD=∠BCE=60°,∴ ∠GCA=∠GCD−∠ACD=60°,∴ ∠GCB=∠BCE,∵ ∠GCB=∠GCA+∠ACB,∠ACE=∠BCE+∠ACB,∴ ∠GCB=∠ACE,由①知,CG=CD,CD=CA,∴ CG=CA,∵ BC=EC=4,∴ △GCB≅△ACE(SAS),∴ BC=CE=4,∴ GB=AE,∵ CG=CD,OG=OD,∴ CO⊥GD,∴ ∠COG=∠COB=90°在RtΔBOC中,BO=BC⋅sin∠ACB=2√2,CO=BC⋅cos∠ACB=2√2,在RtΔGOC中,GO=CO•tan∠GCA=2√6,∴ GB=CO+BO=2√6+2√2,∴ AE=2√6+2√2 .13.【答案】(1)证明:∵ AB=AD∴ ∠ABD=∠ADB∵ ∠ADB=∠ACB+∠DAC , ∠ABD=∠ABC=∠ACB+∠BAE∴ ∠BAE=∠DAC(2)解:设∠DAC=α=∠BAE,∠C=β∴ ∠ABC=∠ADB=α+β∵ ∠ABC+∠C=α+β+β=α+2β=90∘,∠BAE+∠EAC=90∘=α+∠EAC ∴ ∠EAC=2β∵ AF平分∠EAC∴ ∠FAC=∠EAF=β∴ ∠FAC=∠C,∠ABE=∠BAF=α+β∴ ∠ABE=∠BAF=α+β∴ AF=12BC=BF∵ ∠ABE=∠BAF,∠BGA=∠BAC=90∘∴ ΔABG∽ ΔBCA∴ BGAC =ABBC∵ ∠ABE=∠BAF,∠ABE=∠AFB ∴ ΔAFB∽ ΔBAD∴ ABBD =BFAB,且AB=kBD,AF=12BC=BF∴ k=BC2AB ,即ABBC=12k∴ BGAC =12k(3)解:∵ ∠ABE=∠BAF,∠BAC=∠AGB=90∘∴ ∠ABH=∠C,且∠BAC=∠BAC∴ ΔABH∽ ΔACB∴ ABAC =AHAB∴ AB2=AC×AH设BD=m,AB=km,∵ ABBC =12k∴ BC=2k2m∴ AC=√BC2−AB2=km√4k2−1∴ AB2=AC×AH(km)2=km√4k2−1×AH∴ AH=√4k2−1∴ HC=AC−AH=km√4k2−1√4k2−1=2√4k2−1∴ AHCH =14k2−2。

2020中考数学专题突破训练_填空压轴题_含解析_-1

2020中考数学专题突破训练_填空压轴题_含解析_-1

2020中考数学专题突破训练:填空压轴题(含解析)1.如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣.∵△CDF∽△A′HC,∴ =,∴ =,∴DF=6﹣2.故答案为:6﹣2.2.数学课上,老师提出如下问题:△ABC是⊙O的内接三角形,OD⊥BC于点D.请借助直尺,画出△ABC中∠BAC的平分线.晓龙同学的画图步骤如下:(1)延长OD交»BC于点M;(2)连接AM交BC于点N.所以线段AN为所求△ABC中∠BAC的平分线.请回答:晓龙同学画图的依据是.【答案】垂径定理,等弧所对的圆周角相等.3.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1.P2.P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1.P2.P3作x轴的垂线段,垂足分别为点C.D.E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P 2坐标代入y=﹣x+4,得:﹣(6+a )+4=a ,解得:a=,∴A 1A 2=2a=3,P 2D=,同理求得P 3E=、A 2A 3=,∵S 1=×6×3=9.S 2=×3×=、S 3=××=、……∴S 2018=,故答案为:.4.阅读下面材料:小亮的作法如下:C老师说:“小亮的作法正确”请回答:小亮的作图依据是_________________________________________________.【答案】两点确定一条直线;同圆或等圆中半径相等;5.如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC ;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.6.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是【分析】由图形可知,第n行最后一个数为=,据此可得答案.【解答】解:由图形可知,第n行最后一个数为=,∴第8行最后一个数为==6,则第9行从左至右第5个数是=,故答案是 7.已知:在四边形ABCD 中,∠ABC =∠ADC =90º,M 、N 分别是CD 和BC 上的点.求作:点M 、N ,使△AMN 的周长最小.作法:如图,(1)延长AD ,在AD 的延长线上截取DA ´=DA ;(2)延长AB ,在AB 的延长线上截取B A″=BA ;(3)连接A′A″,分别交CD 、BC 于点M 、N .则点M 、N 即为所求作的点.请回答:这种作法的依据是_____________.【答案】①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的 连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短.8.如图,∠MON=30°,点B 1在边OM 上,且OB 1=2,过点B 1作B 1A 1⊥OM 交ON 于点A 1,以A 1B 1为边在A 1B 1右侧作等边三角形A 1B 1C 1;过点C 1作OM 的垂线分别交OM 、ON 于点B 2.A 2,以A 2B 2ABC D A ''A 'N M DC BA为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3.A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n的面积为()2n﹣2×.(用含正整数n的代数式表示)【解答】解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△A n B n+1C n的边长为()n﹣1×,∴△A n B n+1C n的面积为×[()n﹣1×]2=()2n﹣2×.9.如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为23 °.解∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=46°,由翻折不变性可知,∠DBE=∠EBC=∠DBC=23°,故答案为23.10. 我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy 中,矩形ABCD 的边AB 在x 轴上,,,边AD 长为5. 现固定边AB ,“推”矩形使点D 落在y 轴的正半轴上(落点记为),相应地,点C 的对应点的坐标为 .【答案】(7,4)11.如图,正方形AOBO 2的顶点A 的坐标为A (0,2),O 1为正方形AOBO 2的中心;以正方形AOBO 2的对角线AB 为边,在AB 的右侧作正方形ABO 3A 1,O 2为正方形ABO 3A 1的中心;再以正方形ABO 3A 1的对角线A 1B 为边,在A 1B 的右侧作正方形A 1BB 1O 4,O 3为正方形A 1BB 1O 4的中心;再以正方形A 1BB 1O 4的对角线A 1B 1为边在A 1B 1的右侧作正方形A 1B 1O 5A 2,O 4为正方形A 1B 1O 5A 2的中心:…;按照此规律继续下去,则点O 2018的坐标为 (21010﹣2,21009) .【分析】由题意Q 1(1,1),O 2(2,2),O 3(,4,2),O 4(,6,4),O 5(10,4),O 6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,点O 2018的纵坐标为21009,可得21009=x+1,同侧x=21010﹣2,可得点O 2018的坐标为(21010﹣2,21009).【解答】解:由题意Q 1(1,1),O 2(2,2),O 3(,4,2),O 4(,6,4),O 5(10,4),O 6(14,8)…观察可知,下标为偶数的点的纵坐标为2,(3,0)A -(4,0)B D 'C'下标为偶数的点在直线y=x+1上,∵点O 2018的纵坐标为21009, ∴21009=x+1,∴x=21010﹣2,∴点O 2018的坐标为(21010﹣2,21009). 故答案为(21010﹣2,21009). 12.在平面直角坐标系xOy 中,点(2,)A m -绕坐标原点O 顺时针旋转90︒后,恰好落在右图中阴影区域(包括边界)内,则m 的取值范围是 .【答案】532m ≤≤ 13.为了从2018枚外形相同的金蛋中找出唯一的有奖金蛋,检查员将这些金蛋按1﹣2018的顺序进行标号.第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,他将剩下的金蛋在原来的位置上又按1﹣1009编了号(即原来的2号变为1号,原来的4号变为2号……原来的2018号变为1009号),又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋……如此下去,检查到最后一枚金蛋才是有奖金蛋,问这枚有奖金蛋最初的编号是 1024 .【解答】解:∵将这些金蛋按1﹣2018的顺序进行标号,第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,∴剩余的数字都是偶数,是2的倍数,;∵他将剩下的金蛋在原来的位置上又按1﹣1009编了号,又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋,∴剩余的数字为4的倍数,以此类推:2018→1009→504→252→126→63→31→15→7→3→1共经历10次重新编号,故最后剩余的数字为:210=1024.故答案为:1024.14.下面是“作以已知线段为斜边的等腰直角三角形”的尺规作图过程.请回答:在上面的作图过程中,①ABC △是直角三角形的依据是 ;②ABC △是等腰三角形的依据是 .【答案】①直径所对的圆周角为直角OQB②线段垂直平分线上的点与这条线段两个端点的距离相等15.按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为_____.【答案】【解析】【分析】根据数列得出第n个数为,据此可得前2018个数的和为,再用裂项求和计算可得.【详解】由数列知第n个数为,则前2018个数的和为===1﹣=,故答案为:.16.下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;请回答:该尺规作图的依据是.【答案】与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义.17.下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是15a16.【分析】直接利用已知单项式的次数与系数特点得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.。

2020年九年级中考数学压轴试题(附答案)

2020年九年级中考数学压轴试题(附答案)

那么∠BAF 的大小为( )
A.40°
B.45°
C.50°
D.10°
第 4 题图
第 5 题图
第 6 题图
5.如图,在△ ABC 中,AB=AC,∠A=30°,AB 的垂直平分线 l 交 AC 于点 D,则∠CBD 的
度数为( )
A.30°
B.45°
C.50°
D.75°
6.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路
九年级数学中考压轴试题第 7 页
∴FC=4cos30°=2 3(cm).
故答案为:2 3. 14.解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a), ∴当 y=0 时,x1=1a,x2=﹣a, ∴抛物线与 x 轴的交点为(1a,0)和(﹣a,0). ∵抛物线与 x 轴的一个交点的坐标为(m,0)且 2<m<3, ∴当 a>0 时,2<1a<3,解得:13<a<12; 当 a<0 时,2<﹣a<3,解得﹣3<a<﹣2. 故答案为:13<a<12或﹣3<a<﹣2.【少填给 1 分,填错或不填不给分】
程后,乙开始出发,当乙超出甲 150 米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速
度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程 y(米)与甲出发的时间 x(秒)
的函数图象,则乙在途中等候甲用了( )秒
A.200
B.150
C.100
D.80
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)
21.(8 分)AB 为⊙O 直径,BC 为⊙O 切线,切点为 B,CO 平行于弦 AD,作直线 DC. (1)求证:DC 为⊙O 切线; (2)若 AD•OC=8,求⊙O 半径 r.

2020年九年级数学典型中考压轴题专练:二次函数(含答案)

2020年九年级数学典型中考压轴题专练:二次函数(含答案)

2020年九年级数学典型中考压轴题专练:二次函数(含答案)1、已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.2、已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A (﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.3、如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.4、如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y 轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.5、课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.6、正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.7、如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.8、如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M 的坐标.9、如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)①当P点运动到A点处时,计算:PO= ,PH= ,由此发现,PO PH(填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC 相似?若存在,求出P点的坐标;若不存在,请说明理由.10、如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.11、如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)12、在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)点M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q 构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.13、在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.14、如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A(3,0),B (﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).15、如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD 折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求A D的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.16、如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.参考答案:1、解:(1)过点P作PE⊥x轴于点E,∵y=ax2﹣2ax+c,∴该二次函数的对称轴为:x=1,∴OE=1∵OC∥BD,∴CP:PD=OE:EB,∴OE:EB=2:3,∴EB=,∴OB=OE+EB=,∴B(,0)∵A与B关于直线x=1对称,∴A(﹣,0);(2)过点C作CF⊥BD于点F,交PE于点G,令x=1代入y=ax2﹣2ax+c,∴y=c﹣a,令x=0代入y=ax2﹣2ax+c,∴y=c∴PG=a,∵CF=OB=,∴tan∠PDB=,∴FD=2,∵PG∥BD∴△CPG∽△CDF,∴==∴PG=,∴a=,∴y=x2﹣x+c,把A(﹣,0)代入y=x2﹣x+c,[来源:学科网]∴解得:c=﹣1,∴该二次函数解析式为:y=x2﹣x﹣1.2、解:(1)∵把C(0,﹣6)代入抛物线的解析式得:C=﹣6,把A(﹣2,0)代入y=x2+bx ﹣6得:b=﹣1,∴抛物线的解析式为y=x2﹣x﹣6.∴y=(x﹣)2﹣.∴抛物线的顶点坐标D(,﹣).(2)二次函数的图形沿x轴向左平移个单位长度得:y=(x+2)2﹣.令y=0得:(x+2)2﹣=0,解得:x1=,x2=﹣.∵a>0,∴当y<0时,x的取值范围是﹣<x<.3、解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).4、解:(1)∵抛物线y=ax2+bx﹣3,∴c=﹣3,∴C(0,﹣3),∴OC=3,∵BO=OC=3AO,∴BO=3,AO=1,∴B(3,0),A(﹣1,0),∵该抛物线与x轴交于A、B两点,∴,∴,∴抛物线解析式为y=x2﹣2x﹣3,(2)由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵B(3,0),A(﹣1,0),C(0,﹣3),∴BC=3,BE=2,CE=,∵直线y=﹣x+1与y轴交于点D,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD=,∴,,,∴,∴△BCE∽△BDO,(3)存在,理由:设P(1,m),∵B(3,0),C(0,﹣3),∴BC=3,PB=,PC=,∵△PBC是等腰三角形,①当PB=PC时,∴=,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3=,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,∴3=,∴m=﹣3±,∴P(1,﹣3+)或P(1,﹣3﹣),∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣)5、解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.6、解:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.①∵正方形OABC的边长为4,对角线相交于点P,∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).②设抛物线L的解析式为y=ax2+bx+c,∵抛物线L经过O、P、A三点,∴有,解得:,∴抛物线L的解析式为y=﹣+2x.(2)∵点E是正方形内的抛物线上的动点,∴设点E的坐标为(m,﹣+2m)(0<m<4),∴S△OAE+S OCE=OA•y E+OC•x E=﹣m2+4m+2m=﹣(m﹣3)2+9,∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.7、解:(1)把A、B两点坐标代入解析式可得,解得,∴抛物线解析式为y=x2+x﹣5;(2)在y=x2+x﹣5中,令x=0可得y=﹣5,∴C(0,﹣5),∵S△ABE=S△ABC,且E点在x轴下方,∴E点纵坐标和C点纵坐标相同,当y=﹣5时,代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),[来源:学科网] ∴E点坐标为(﹣2,﹣5);(3)假设存在满足条件的P点,其坐标为(m, m2+m﹣5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC﹣DC=5﹣=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴=,即=,∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),当m2+m﹣5=(5+m)时,整理可得4m2﹣5m﹣75=0,解得m=或m=﹣5(与A点重合,舍去),当m2+m﹣5=﹣(5+m)时,整理可得4m2+11m﹣45=0,解得m=或m=﹣5(与A点重合,舍去),8、解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线y=ax2+bx+c中,得:,解得:故抛物线的解析式:y=x2﹣2x﹣3.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x=﹣=1,故P(1,0);(3)如图所示:抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:MA2=m2+4,MC2=(3+m)2+1=m2+6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2+6m+10,解得:m=﹣1,②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2+6m+10=10,得:m1=0,m2=﹣6;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,﹣)(1,﹣1)(1,0).9、(1)解:∵抛物线y=ax2+1经过点A(4,﹣3),∴﹣3=16a+1,∴a=﹣,[来源:学,科,网Z,X,X,K]∴抛物线解析式为y=﹣x2+1,顶点B(0,1).(2)①当P点运动到A点处时,∵PO=5,PH=5,∴PO=PH,故答案分别为5,5,=.②结论:PO=PH.理由:设点P坐标(m,﹣ m2+1),∵PH=2﹣(﹣m2+1)=m2+1PO==m2+1,∴PO=PH.(3)∵BC==,AC==,AB==4∴BC=AC,∵PO=PH,又∵以P,O,H为顶点的三角形与△ABC相似,∴PH与BC,PO与AC是对应边,∴=,设点P(m,﹣ m2+1),∴=,解得m=±1,∴点P坐标(1,)或(﹣1,).10、解:(1)∵抛物线与x轴交于A(﹣1,0),B(4,0),∴设抛物线的解析式为:y=a(x+1)(x﹣4),把(0,﹣2)代入y=a(x+1)(x﹣4),∴a=,∴抛物线的解析式为:y=x2﹣x﹣2;(2)当△PBH与△AOC相似时,∴△AOC是直角三角形,∴△PBH也是直角三角形,由题意知:H(0,2),∴OH=2,∵A(﹣1,0),B(4,0),∴OA=1,OB=4,∴∵∠AOH=∠BOH,∴△AOH∽△BOH,∴∠AHO=∠HBO,∴∠AHO+∠BHO=∠HBO+∠BHO=90°,∴∠AHB=90°,设直线AH的解析式为:y=kx+b,把A(﹣1,0)和H(0,2)代入y=kx+b,∴,∴解得,∴直线AH的解析式为:y=2x+2,联立,解得:x=1或x=﹣8,当x=﹣1时,y=0,当x=8时,y=18∴P的坐标为(﹣1,0)或(8,18)(3)过点M作MF⊥x轴于点F,设点E的坐标为(n,0),M的坐标为(m,0),∵∠BME=∠BDC,∴∠EMC+∠BME=∠BDC+∠MBD,∴∠EMC=∠MBD,∵CD∥x轴,∴D的纵坐标为﹣2,令y=﹣2代入y=x2﹣x﹣2,∴x=0或x=3,∴D(3,﹣2),∵B(4,0),∴由勾股定理可求得:BD=,∵M(m,0),∴MD=3﹣m,CM=m(0≤m≤3)∴由抛物线的对称性可知:∠NCM=∠BDC,∴△NCM∽△MDB,∴,∴,∴CN==﹣(m﹣)2+,∴当m=时,CN可取得最大值,∴此时M的坐标为(,﹣2),∴MF=2,BF=,MD=∴由勾股定理可求得:MB=,∵E(n,0),∴EB=4﹣n,∵CD∥x轴,∴∠NMC=∠BEM,∠EBM=∠BMD,∴△EMB∽△BDM,∴,∴MB2=MD•EB,∴=×(4﹣n),∴n=﹣,∴E的坐标为(﹣,0).11、解:(1)由A(﹣1,0),对称轴为x=2,可得,解得,∴抛物线解析式为y=x2﹣4x﹣5;(2)由A点坐标为(﹣1,0),且对称轴方程为x=2,可知AB=6,∴OB=5,∴B点坐标为(5,0),∵y=x2﹣4x﹣5,∴C点坐标为(0,﹣5);(3)如图,连接BC,则△OBC是直角三角形,∴过O、B、C三点的圆的直径是线段BC的长度,在Rt△OBC中,OB=OC=5,∴BC=5,∴圆的半径为,∴圆的面积为π()2=π.12、解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴,解得:,∴此抛物线的解析式为:y=﹣x2+3x+4;(2)连接AA′,设直线AA′的解析式为:y=kx+b,∴,解得:,∴直线AA′的解析式为:y=﹣x+4,设点M的坐标为:(x,﹣x2+3x+4),则S△AMA′=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,∴M的坐标为:(2,6);(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,①当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴﹣x2+3x+4=±4,当﹣x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当﹣x2+3x+4=﹣4时,解得:x3=,x2=,∴P3(,﹣4),P4(,﹣4);②当PQ为对角线时,BP∥QN,BP=QN,此时P与P1,P2重合;综上可得:点P的坐标为:P1(0,4),P2(3,4),P3(,﹣4),P4(,﹣4);如图2,当这个平行四边形为矩形时,点N的坐标为:(0,0)或(3,0).13、解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC=S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.[来源:学科网ZXXK]14、解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得:,∴y=x2﹣x﹣4;(2)过点D作DM⊥y轴于点M,∵y=x2﹣x﹣4=(x﹣1)2﹣,∴点D(1,﹣)、点C(0,﹣4),则S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC=×(1+3)×﹣×(﹣4)×1﹣×3×4=4;(3)四边形APEQ为菱形,E点坐标为(﹣,﹣).理由如下如图2,E点关于PQ与A点对称,过点Q作,QF⊥AP于F,∵AP=AQ=t,AP=EP,AQ=EQ∴AP=AQ=QE=EP,∴四边形AQEP为菱形,∵FQ∥OC,∴==,∴==∴AF=t,FQ=t•∴Q(3﹣t,﹣t),∵EQ=AP=t,∴E(3﹣t﹣t,﹣t),∵E在二次函数y=x2﹣x﹣4上,∴﹣t=(3﹣t)2﹣(3﹣t)﹣4,∴t=,或t=0(与A重合,舍去),∴E(﹣,﹣).15、解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).16、解:(1)∵抛物线的对称轴x=1,B(3,0),∴A(﹣1,0)∵抛物线y=ax2+bx+c过点C(0,3)∴当x=0时,c=3.又∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0)∴,∴∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵C(0,3),B(3,0),∴直线BC解析式为y=﹣x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4)∵对于直线BC:y=﹣x+1,当x=1时,y=2;将抛物线L向下平移h个单位长度,[来源:学*科*网]∴当h=2时,抛物线顶点落在BC上;当h=4时,抛物线顶点落在OB上,∴将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC 的边界),则2≤h≤4;(3)设P(m,﹣m2+2m+3),Q(﹣3,n),①当P点在x轴上方时,过P点作PM垂直于y轴,交y轴与M点,过B点作BN垂直于MP 的延长线于N点,如图所示:∵B(3,0),∵△PBQ是以点P为直角顶点的等腰直角三角形,∴∠BPQ=90°,BP=PQ,则∠PMQ=∠BNP=90°,∠MPQ=∠NBP,在△PQM和△BPN中,,∴△PQM≌△BPN(AAS),∴PM=BN,∵PM=BN=﹣m2+2m+3,根据B点坐标可得PN=3﹣m,且PM+PN=6,∴﹣m2+2m+3+3﹣m=6,解得:m=1或m=0,∴P(1,4)或P(0,3).②当P点在x轴下方时,过P点作PM垂直于l于M点,过B点作BN垂直于MP的延长线与N点,同理可得△PQM≌△BPN,∴PM=BN,∴PM=6﹣(3﹣m)=3+m,BN=m2﹣2m﹣3,则3+m=m2﹣2m﹣3,解得m=或.∴P(,)或(,).综上可得,符合条件的点P的坐标是(1,4),(0,3),(,)和(,).。

2020年江苏中考数学压轴题精选精练5(解析版)

2020年江苏中考数学压轴题精选精练5(解析版)

2020年中考数学压轴题精选精练5一、选择题1.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m2.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP =QO,则的值为()A.B.C.D.3.如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A.12 B.14 C.24 D.214.如图,AB是半圆O的直径,且AB=12,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是()A.4πB.5πC.6πD.8π5.如图,△ABC和△DCE都是边长为8的等边三角形,点B,C,E在同一条直线上接BD,AE,则四边形FGCH的面积为()A.B.C.D.6.如图,△ABC内接于⊙O,∠A=60°,BC=4,当点P在上由B点运动到C点时,弦AP的中点E运动的路径长为()A.πB.πC.πD.2二、填空题1.如图,四边形ABCD中,已知AB=AD,∠BAD=60°,∠BCD=120°,若四边形ABCD 的面积为4,则AC=.第1题第2题2.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.3.如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是.第3题第4题4.如图,AB为⊙O的直径,点C、D分别是半圆AB的三等分点,AB=4,点P自A点出发,沿弧ABC向C点运动,T为△P AC的内心.当点P运动到使BT最短时就停止运动,点T运动的路径长为5.如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE、EF、DF,则DF的长为.第3题第4题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题1.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.2.如图,抛物线23(0)y ax ax c a =-+≠与x 轴交于A ,B 两点,交y 轴于点C ,其中A (-1,0),C (0,3). (1) 求抛物线的解析式(2) 点P 是线段BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PD ⊥x 轴,垂足为D ,交BC 于点E ,作PF ⊥直线BC 于点F ,设点P 的横坐标为x ,△PEF 的周长记为l ,求l 关于x 的函数关系式,并求出l 的最大值及此时点P 的坐标(3) 点H 是直线AC 上一点,该抛物线的对称轴上一动点G ,连接OG ,GH ,则两线段OG ,GH 的长度之和的最小值等于______,此时点G 的坐标为_____(直接写出答案。

2020年中考数学压轴题型专练:数学新定义题型(含答案)

2020年中考数学压轴题型专练:数学新定义题型(含答案)

2020中考数学 压轴题型专练:数学新定义题型(含答案)1.我们规定:若m u r =(a ,b ),n r =(c ,d ),则m u r •n r =ac +bd .如m u r =(1,2),n r =(3,5),则m u r •nr=1×3+2×5=13.(1)已知m u r =(2,4),n r =(2,-3),求m u r •n r ;(2)已知m u r =(x -a ,1),n r =(x -a ,x +1),求y =m u r •n r ,问y =m u r •n r的函数图象与一次函数y =x -1的图象是否有交点,请说明理由.解:(1)∵m u r =(2,4),n r=(2,-3), ∵m u r •n r=2×2+4×(-3)=-8;(2)无交点.理由:∵m u r =(x -a ,1),n r=(x -a ,x +1),∵y =m u r •n r=(x -a )2+(x +1)=x 2-(2a -1)x +a 2+1 ∵y =x 2-(2a -1)x +a 2+1联立方程:x 2-(2a -1)x +a 2+1=x -1, 化简得:x 2-2ax +a 2+2=0, ∵∵=b 2-4ac =-8<0,∵方程无实数根,两函数图象无交点.2,T (4,2)=1. (1)求a ,b 的值;(2)若T (m ,m +3)=-1,求m 的值.解:(1)(1,1)2,21a bT --==--即a -b =-2, T (4,2)=42182a b+=+,即2a +b =5,解得a =1,b =3;(2) 根据题意得3(3)12(3)m m m m ++=-++,解得127m =-,经检验,127m =-是方程的解. 3.一个三位正整数M ,其各位数字均不为零且互不相等.若将M 的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M 的“友谊数”,如:168的“友谊数”为“618”;若从M 的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M 的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132. (1)求证:M 与其“友谊数”的差能被15整除;(2)若一个三位正整数N ,其百位数字为2,十位数字为a 、个位数字为b ,且各位数字互不相等(a ≠0,b ≠0),若N 的“团结数”与N 之差为24,求N 的值. 解:(1)由题意可得,设M 为100a +10b +c ,则它的友谊数为:100b +10a +c , (100a +10b +c )-(100b +10a +c )=100a +10b +c -100b -10a -c∵M 与其“友谊数”的差能被15整除;(2)由题意可得,N =2×100+10a +b =200+10a +b ,N 的团结数是:10×2+a +10a +2+10×2+b +10×b +2+10a +b + 10b +a =22a +22b +44,∵22a +22b +44-(200+10a +b )=24,已知a、b为整数,且a≠0,b≠0,a≠b,解得84ab⎧⎨⎩==或18ab⎧⎨⎩==,即N是284或218.4.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0.那么我们称这个方程为“凤凰”方程.(1)已知ax2+bx+c=0(a≠0)是“凤凰”方程.且有两个相等的实数根.试求a与c 的关系;(2)已知关于x的方程m(x2+1)-3x2+nx=0是“凤凰”方程,且两个实数根都是整数.求整数m的值.解:(1)由题意得:a+b+c=0,b=-a-c,∵ax2+bx+c=0(a≠0)有两个相等的实数根,∵∵=b2-4ac=0,把b=-a-c代入到b2-4ac=0中得:(-a-c)2-4ac=0,(a-c)2=0,∵a=c;(2)m(x2+1)-3x2+nx=0,(m-3)x2+nx+m=0,当x=1时,2m-3+n=0,n=3-2m,解得因为方程两个实数根都是整数,∵整数m为0或2或4或6.5. 设三个内角的度数分别为α、β、γ,如果其中一个角的度数是另一个角度数的3倍,那么“和谐”,并把满足条件的α、β、γ(β≤γ)称为“和谐”的一组值.例如α=30°,β=60°,γ=90°是“和谐”的一组值.(1)当α=48°,写出以α=48°为其中一个内角的“和谐”的一组值;(2)当α≥135°时,符合条件的“和谐”的值是否只有一组,写出你的判断并用含α的代数式表示β、γ;(3)α为何值时,符合条件的“和谐”的值分别有一组、二组、三组值?请你分别写出对应α的值或范围(直接填在下表中).解:(1)α=48°,β=33°,γ=99°或α=48°,β=16°,γ=116°.(3)α≥135°,45°≤α<135°,0°<α<45°.【解法提示】α≥135°时,只有一组;45°≤α<135°时,有二组;0°<α<45°时,有三组.6. 观察下表:我们把某格中字母相加所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:征多项式”为 ;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16. ∵求x ,y 的值;∵在∵的条件下,第n 格的“特征多项式”是否有最小值?若有,求出最小值和相应的n 值;若没有,请说明理由.解:(1):16x +9y ;25x +16y ;(n +1)2x +n 2y ;【解法提示】第3格的“特征多项式”为:16x +9y ;第4格的“特征多项式”为:25x +16y ;第n 格的“特征多项式”为:(n +1)2x +n 2y ;(2)∵∵第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,∵根据题意可得:4109416x y x y +-+-⎧⎨⎩==,∵有最小值,7.在平面直角坐标系xOy中,定义一种变换:使平面内的点P(x,y)对应的像为P′(ax +by,bx-ay),其中a、b为常数.已知点(2,1)经变换后的像为(1,-8).(1)求a,b的值;(2)已知线段OP=2,求经变换后线段O′P′的长度(其中O′、P′分别是O、P经变换后的像,点O为坐标原点).解:(1)根据题意,得21 28a bb a+--⎧⎨⎩==,解得23 ab-⎧⎨⎩==;(2)∵OP=2,点P的坐标是(x,y),∵根据勾股定理知,x2+y2=4.∵O′、P′分别是O、P经变换后的像,点O为坐标原点,∵O′(0,0),P′(2x-3y,-3x-2y),8.定义新运算:(a,b)∵(c,d)=(ac,bd),(a,b)∵(c,d)=(a+c,b+d),(a,b)*(c,d)=a2+c2-bd .(1)已知(1,2)∵(p,q)=(2,-4),分别求出p与q的值;(2)在(1)的条件下,求(1,2)∵(p,q)的结果.解:(1)∵(a,b)∵(c,d)=(ac,bd),∵(1,2)∵(p ,q )=(1×p ,2×q ), ∵(1,2)∵(p ,q )=(2,-4), ∵p =2,2q =-4, ∵q =-2;(2)∵p =2,q =-2,(a ,b )∵(c ,d )=(a +c ,b +d ), ∵(1,2)∵(p ,q ) =(1,2)∵(2,-2) =(3,0).9.已知抛物线21111y a x b x c =++,22222y a x b x c =++,且满足111222(0,1)a b c k k a b c ===≠,则抛物线12,y y 互为“友好抛物线”. (1)若y 2有最大值8,则y 1也有最大值,这样的说法对吗,为什么? (2)结合二次函数的特点和你对“友好抛物线”的理解,写出至少2条结论. 解:(1)不对.当k >0时,y 1有最大值为8k ; 当k <0时,y 1有最小值为8k .(2)①当a 1与a 2符号相反时其开口方向相反,当| a 1|≠| a 2|时,两抛物线开口大小不同; ②y 1与y 2的对称轴相同;③如果1y 与x 轴有两个不同的交点,则y 2与x 轴也有两个不同的交点(写出2条合理结论即可)10. 在直角坐标系中,如果二次函数y =ax 2+bx +2(a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,2),且AB =OC ,那么我们称这个二次函数为“和合二次函数”.理由;(2)“和合二次函数”y=ax2+bx+2的图象经过点(-6,2).∵求a与b的值;∵此函数图象可由抛物线y=ax2经过怎样的平移得到?与x轴的交点坐标为A(-4,0),B(-2,0),AB=2,∵AB=OC,(2)∵y=ax2+bx+2与x轴交点的横坐标为x1,x2,11.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①,在∵ABC中,AB=AC,顶角A的正对记作sad A,这时sad A=BCAB=底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad60°= ,sad90°= ;(2)如图②,已知sin A=35,其中∵A为锐角,试求sad A的值.第11题图解(2)设AB =5a ,BC =3a ,则AC =4a ,如解图,在AB 上取AD =AC =4a ,作DE ∵AC 于点E ,则DE =AD ·sin A =4a ·35,AE =AD ·cos A =4a ·45,CE =4a 165-a =45a ,CD 5==,∵sad A =5CD AC =.第11题解图12.阅读材料,解答下面问题:如果一个三角形能被经过其顶点的一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形,这条线段为这个三角形的特异线.如图∵,∵ABC 中,∵A =36°,∵ABC =∵C =72°,BD 平分∵ABC ,∵ABC 被分成了两个等腰三角形,即∵ABD、∵BDC.我们称BD为∵ABC的特异线,∵ABC为特异三角形.(1)如图∵,∵ABC中,∵B=2∵C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是∵ABC的一条特异线.(2)若∵ABC是特异三角形,∵A=30°,∵B为钝角,请在图∵、图∵中尝试画出∵ABC 的两条特异线,并标出∵C的度数,(说明:图形为示意图,只需画出图形,标出角度即可).第12题图解:(1)∵DE是线段AC的垂直平分线,∵EA=EC,即∵EAC是等腰三角形,∵∵EAC=∵C,∵∵AEB=∵EAC+∵C=2∵C,∵∵B=2∵C,∵∵AEB=∵B,即∵EAB是等腰三角形,∵AE是∵ABC是一条特异线;(2)如解图∵,BD是特异线时,如果AB=BD=DC,则∵BDA=∵A=30°,∵∵BDC=150°,∵∵C=15°,如解图∵,AD=AB,DB=DC,则∵ADB=∵ABD=75°,∵∵C=37.5°.第12题解图13. 定义,如果一个锐角等腰三角形满足一个角度数是另一个角度数的2倍,那么我们称这个三角形为“智慧三角形”.(1)“智慧三角形”顶角的度数为;(2)如图∵,正五边形ABCDE中,对角线AC,BE交于点P.求证:∵APE是“智慧三角形”;(3)如图∵,六边形ABCDEF中,AB∵DE,BC∵EF,CD∵AF,且∵A=108°,∵B=144°,∵求∵D的度数;∵求证:AB+BC=DE+EF.第13题图(1)解:36°;【解法提示】分两种情况:∵底角度数是顶角度数的2倍时,设顶角度数为x,则底角度数为2x,由三角形内角和定理得:x+2x+2x=180°,解得x=36°,即顶角度数为36°;∵顶角度数是底角度数的2倍时,设底角度数为x,则顶角度数为2x,由三角形内角和定理得:x+x+2x=180°,解得x=45°,2x=90°(不合题意);综上所述:“智慧三角形”顶角的度数为36°;(2)证明:∵五边形ABCDE是正五边形,∵AB=AE=BC,∵ABC=∵BAE=108°,∵∵ABE=∵AEB=∵ACB=36°,∵∵PAE=108°-36°=72°,∵∵APE=72°,∵∵APE=∵PAE=2∵AEB,∵AE=PE,∵∵APE为智慧三角形;(3)∵解:延长FA、CB交于点G,延长AB、DC交于点H,延长CD、FE交于M,如解图所示,∵∵BAF=108°,∵ABC=144°,∵∵BAG=72°,∵ABG=36°,∵∵G=72°,同理:∵H=72°,∵AB∵DE,∵∵CDE=180°-72°=108°;∵证明:∵∵G=∵BAG,∵BG=AB,同理:EM=DE,∵BC∵EF,CD∵AF,∵四边形GCMF是平行四边形,∵GC=FM,即BG+BC=EM+EF,∵AB+BC=DE+EF.第13题解图14. 定义:如果三角形有一条边上的中线恰好等于这条边的边长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)请根据定义判断下列命题的真假(请在真命题后的横线内打“√”,假命题后的横线内打“∵”)∵等腰直角三角形一定不存在匀称中线.∵如果直角三角形是匀称三角形,那么匀称中线一定是较长直角边上的中线.(2)已知:如图∵,在Rt∵ABC中,∵C=90°,AC>BC,若∵ABC是“匀称三角形”,求BC:AC:AB的值;(3)拓展应用:如图∵,∵ABC是∵O的内接三角形,AB>AC,∵BAC=45°,将∵ABC绕点A逆时针旋转45°得∵ADE,点B的对应点为D,连接CD 交∵O于M,连接AM.∵请根据题意用实线在图∵中补全图形;∵若∵ADC是“匀称三角形”,求tan∵AMC的值.第14题图解:(1)√,√;(2)如解图∵,∵∵C=90°,AC>BC由(1)可知∵ABC的匀称中线是AC边上的中线,设D为AC中点,则BD为匀称中线,设AC=2a,则CD=a,BD=2a,∵∵C=90°,(3)∵补全图形如解图∵;∵如解图∵,∵∵ABC绕点A逆时针旋转45°得∵ADE,∵∵DAE=∵BAC=45°,AD=AB,∵∵DAC=90°,AD>AC,∵∵ADC是匀称三角形,过点C作CH∵AB于H,则∵AHC=∵BHC=90°,第14题解图解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0,根据以上阅读材料所提供的方法,完成下面的解答:根据2m2-5m-1=0和2n2-5n-1=0的特征,∵m、n是方程2x2-5x-1=0的两个不相等的实数根,。

2020挑战压轴题中考数学强化训练第二部分_一、图形的平移

2020挑战压轴题中考数学强化训练第二部分_一、图形的平移

第二部分填空题、选择题中的动态图形训练题一、图形的平移1、在平面直角坐标系中,点A向右平移4个单位得到点B,点B向下平移3个单位得到点C·那么△ABC 的面积为2、直线y=2x-1向上平移3个单位后得到的直线不经过第象限3、抛物线y=-x2+2x+1向下平移4个单位后得到的抛物线的解析式是4、将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到新抛物线的表达式为5、平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n)、B(2,-1)、C(-m,-n),则点D的坐标是()6、如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A'B‘C'的位置时,A'B恰好经过AC的中点O,则△ABC平移的距离为7、如图,把三角板的斜边紧靠直尺平移,如果一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC’=8、如图,正六边形ABCDEF内接于半径为4的圆,则B、E两点间的距离为9、如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4m,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△BF的周长为10、如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为11、小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A、3个(B)4个(C)5个(D)无数12、如图,在平面直角坐标系中,点A、C在x轴上,点C的坐标为(-1,0),AC=2.将Rt△ABC先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点的坐标是()(A)(2,2)(B)(1,2)(C)(-1,2)(D)(2,-1)13、在平面直角坐标系中,将点A(-1,-2)向右平移3个单位得到点B,则点B关于x轴的对称点B的坐标为()(A)(-3,-2)(B)(2,2)C(-2,2)D(2,-2)14、已知抛物线y=x2+2x-3与x轴交于A、B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x轴交于C、D两点(点C在点D的左侧),若B、C是线段AD的三等分点,则m的值为15、将直线y=2x-3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为16、如图所示,在平面直角坐标系中,已知点A2),B(1,1)。

决胜中考数学最难压轴题大挑战模块三 解答题篇专题3-6 圆综合题

决胜中考数学最难压轴题大挑战模块三 解答题篇专题3-6  圆综合题

决胜2020年中考最难压轴题大挑战模块三解答题篇专题3-6 圆综合题挑战突破1.(2020•云南模拟)如图,AB是⊙O的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=4 5.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2.(2020•陕西模拟)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、BĈ是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,BĈ所对的圆心角为60°,新区管委会想在BĈ路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在BĈ、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)3.(2020•莱芜模拟)已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=194,tan∠BAD=34,求⊙O的半径.4.(2020•温州模拟)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是P A,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和CM̂的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.5.(2020•云南模拟)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.6.(2020•南宁模拟)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD̂上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tan G=34,AH=3√3,求EM的值.7.(2020•深圳模拟)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是CBD̂上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.8.(2020•大庆模拟)如图,四边形ABCD内接于圆O,∠BAD=90°,AC为直径,过点A 作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB于点G,连结CG.(1)求证:AB=CD;(2)求证:CD2=BE•BC;(3)当CG=√3,BE=92时,求CD的长.9.(2020•陕西模拟)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP =3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE ⊥AB交AB̂于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)10.(2020•哈尔滨模拟)已知:AB是⊙O的弦,点C是AB̂的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是AĈ上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=35,求MPMQ的值.11.(2020•淄博模拟)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.12.(2020•湘潭模拟)如图,动点M在以O为圆心,AB为直径的半圆弧上运动(点M不̂的中点F重合),连接OM.过点M作ME⊥AB于点E,以BE为边在半与点A、B及AB圆同侧作正方形BCDE,过点M作⊙O的切线交射线DC于点N,连接BM、BN.(1)探究:如图一,当动点M 在AF̂上运动时; ①判断△OEM ∽△MDN 是否成立?请说明理由; ②设ME+NC MN=k ,k 是否为定值?若是,求出该定值,若不是,请说明理由;③设∠MBN =α,α是否为定值?若是,求出该定值,若不是,请说明理由; (2)拓展:如图二,当动点M 在FB̂上运动时; 分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)13.(2020•上海模拟)如图,已知⊙O 的半径长为1,AB 、AC 是⊙O 的两条弦,且AB =AC ,BO 的延长线交AC 于点D ,联结OA 、OC . (1)求证:△OAD ∽△ABD ;(2)当△OCD 是直角三角形时,求B 、C 两点的距离;(3)记△AOB 、△AOD 、△COD 的面积分别为S 1、S 2、S 3,如果S 2是S 1和S 3的比例中项,求OD 的长.14.(2020•无锡模拟)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D 两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.15.(2020•咸宁模拟)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.16.(2020•扬州模拟)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.17.(2020•杭州模拟)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB 交于点F,与⊙O交于点G,设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α的函数表达式,γ关于α的函数表达式,并给出证明;(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.18.(2020•宁波模拟)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA 的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,当DH=BG 时,求△BGH 与△ABC 的面积之比.19.(2020•广州模拟)如图,AB 是⊙O 的直径,AC ̂=BC ̂,AB =2,连接AC . (1)求证:∠CAB =45°;(2)若直线l 为⊙O 的切线,C 是切点,在直线l 上取一点D ,使BD =AB ,BD 所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论; ②EB CD是否为定值?若是,请求出这个定值;若不是,请说明理由.20.(2020•内江模拟)如图,在⊙O 中,直径CD 垂直于不过圆心O 的弦AB ,垂足为点N ,连接AC ,点E 在AB 上,且AE =CE (1)求证:AC 2=AE •AB ;(2)过点B 作⊙O 的切线交EC 的延长线于点P ,试判断PB 与PE 是否相等,并说明理由;(3)设⊙O 半径为4,点N 为OC 中点,点Q 在⊙O 上,求线段PQ 的最小值.决胜2020年中考最难压轴题大挑战模块三 解答题篇专题3-6 圆综合题挑战突破1.(2020•云南)如图,AB 是⊙O 的直径,M 、D 两点在AB 的延长线上,E 是⊙C 上的点,且DE 2=DB •DA ,延长AE 至F ,使得AE =EF ,设BF =10,cos ∠BED =45. (1)求证:△DEB ∽△DAE ; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.【点睛】(1)∠D =∠D ,DE 2=DB •DA ,即可求解;(2)由ED DA=EB AE=DB ED,即:ED10+BD=68=BD DE,即可求解;(3)在△BED 中,过点B 作HB ⊥ED 于点H ,36﹣(1207−x )2=(907)2﹣x 2,解得:x =43235,则cos β=x 907=2425,即可求解. 【详解】解:(1)∵∠D =∠D ,DE 2=DB •DA , ∴△DEB ∽△DAE ;(2)∵△DEB ∽△DAE ,∴∠DEB =∠DAE =α,∵AB 是直径,∴∠AEB =90°,又AE =EF , ∴AB =BF =10,∴∠BFE =∠BAE =α,则BF ⊥ED 交于点H ,∵cos ∠BED =45,则BE =6,AE =8 ∴ED DA=EB AE=DB ED,即:ED10+BD=68=BD DE,解得:BD =907,DE =1207, 则AD =AB +BD =1607, ED =1207; (3)点F 在B 、E 、M 三点确定的圆上,则BF 是该圆的直径,连接MF , ∵BF ⊥ED ,∠BMF =90°,∴∠MFB =∠D =β,在△BED 中,过点B 作HB ⊥ED 于点H ,设HD =x ,则EH =1207−x , 则36﹣(1207−x )2=(907)2﹣x 2,解得:x =43235,则cosβ=x907=2425,则sinβ=725,MB=BF sinβ=10×725=145,DM=BD﹣MB=352 35.2.(2020•陕西模拟)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为5.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、BĈ是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,BĈ所对的圆心角为60°,新区管委会想在BĈ路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在BĈ、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)【点睛】(1)设O是△ABC的外接圆的圆心,易证△ABO是等边三角形,所以AB=OA =OB=5;(2)当PM⊥AB时,此时PM最大,连接OA,由垂径定理可知:AM=12AB=12,再由勾股定理可知:OM=5,所以PM=OM+OP=18,(3)设连接AP,OP,分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,交AB于点E,交AC于点F,连接PE、PF,所以AM=AP=AN,设AP=r,易求得:MN=√3r,所以PE+EF+PF=ME+EF+FN=MN=√3r,即当AP最小时,PE+EF+PF可取得最小值.【详解】解:(1)设O是△ABC的外接圆的圆心,∴OA=OB=OC,∵∠A=120°,AB=AC=5,∴△ABO是等边三角形,∴AB=OA=OB=5,(2)当PM⊥AB时,此时PM最大,连接OA,由垂径定理可知:AM=12AB=12,∵OA=13,∴由勾股定理可知:OM=5,∴PM=OM+OP=18,(3)设连接AP,OP分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,交AB于点E,交AC于点F,连接PE、PF,∵∠MAB=∠P AB,∠NAC=∠P AC,∴∠BAC=∠P AB+∠P AC=∠MAB+∠NAC=60°,∴∠MAN=120°∴M、P、N在以A为圆心,AP为半径的圆上,设AP=r,易求得:MN=√3r,∵PE=ME,PF=FN,∴PE+EF+PF=ME+EF+FN=MN=√3r,∴当AP最小时,PE+EF+PF可取得最小值,∵AP+OP≥OA,∴AP≥OA﹣OP,即点P在OA上时,AP可取得最小值,设AB的中点为Q,∴AQ=AC=3,∵∠BAC=60°,∴AQ=QC=AC=BQ=3,∴∠ABC=∠QCB=30°,∴∠ACB=90°,∴由勾股定理可知:BC=3√3,∵∠BOC=60°,OB=OC=3√3,∴△OBC是等边三角形,∴∠ABO=90°∴由勾股定理可知:OA=3√7,∵OP=OB=3√3,∴AP=r=OA﹣OP=3√7−3√3,∴PE+EF+PF=MN=√3r=3√21−9∴PE+EF+PF的最小值为(3√21−9)km.3.(2020•莱芜模拟)已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=194,tan∠BAD=34,求⊙O的半径.【点睛】(1)欲证明DE是⊙O的切线,只要证明OD⊥DE;(2)首先证明OD⊥BC,在Rt△BDN中,利用勾股定理计算即可;(3)如图②中,设FG与AD交于点H,根据题意,设AB=5x,AD=4x,则AF=54x,想办法用x表示线段FH、GH,根据FH+GH=194,列出方程即可解决问题;【详解】(1)证明:如图①中,连接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,∴∠ODE+∠AED=180°,∵∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)如图①中,连接BC,交OD于点N,∵AB是直径,∴∠BCA=90°,∵OD∥AE,O是AB的中点,∴ON∥AC,且ON=12AC,∴∠ONB=90°,且ON=3,则BN=4,ND=2,∴BD=√42+22=2√5.(3)如图②中,设FG与AD交于点H,根据题意,设AB=5x,AD=4x,则AF=54x,FH=AF•tan∠BAD=54x•34=1516x,AH=AFcos∠BAD=54x45=2516x,HD=AD﹣AH=4x−2516x=3916x,由(1)可知,∠HDG+∠ODA=90°,在Rt△HF A中,∠F AH+∠FHA=90°,∵∠OAD=∠ODA,∠FHA=∠DHG,∴∠DHG=∠HDG,∴GH=GD,过点G作GM⊥HD,交HD于点M,∴MH=MD,∴HM=12HD=12×3916x=3932x,∵∠F AH+∠AHF=90°,∠MHG+∠HGM=90°,∴∠F AH =∠HGM ,在Rt △HGM 中,HG =HMsin∠HGM =3932x 35=6532x ,∵FH +GH =194, ∴1516x +6532x =194, 解得x =85,∴此圆的半径为52×85=4.4.(2020•温州模拟)如图,已知线段AB =2,MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E ,D 分别是P A ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点C (点C 在线段BD 上),连结AC ,DE .(1)当∠APB =28°时,求∠B 和CM ̂的度数; (2)求证:AC =AB . (3)在点P 的运动过程中①当MP =4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值;②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得到点G ,当点G 恰好落在MN 上时,连结AG ,CG ,DG ,EG ,直接写出△ACG 和△DEG 的面积之比.【点睛】(1)根据三角形ABP 是等腰三角形,可得∠B 的度数,再连接MD ,根据MD 为△P AB 的中位线,可得∠MDB =∠APB =28°,进而得到CM̂=2∠MDB =56°; (2)根据∠BAP =∠ACB ,∠BAP =∠B ,即可得到∠ACB =∠B ,进而得出AC =AB ; (3)①记MP 与圆的另一个交点为R ,根据AM 2+MR 2=AR 2=AC 2+CR 2,即可得到PR =138,MR =198,再根据Q 为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ =90°时,当∠QCD =90°时,当∠QDC =90°时,当∠AEQ =90°时,即可求得MQ 的值为198或34或158;②先判定△DEG 是等边三角形,再根据GMD =∠GDM ,得到GM =GD =1,过C 作CH ⊥AB 于H ,由∠BAC =30°可得CH =12AC =1=MG ,即可得到CG =MH =√3−1,进而得出S △ACG =12CG ×CH =√3−12,再根据S △DEG =√34,即可得到△ACG 和△DEG 的面积之比.【详解】解:(1)∵MN ⊥AB ,AM =BM , ∴P A =PB , ∴∠P AB =∠B , ∵∠APB =28°, ∴∠B =76°,如图1,连接MD,∵MD为△P AB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,̂=2∠MDB=56°;∴CM(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=13 8,∴MR=19 8,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=19 8;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=13 4,∴MQ=3 4;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=√17,∴DP=12BP=√172,∵cos∠MPB=MPPB=DPPQ,∴PQ=17 8,∴MQ=15 8;Ⅳ.如图5,当∠AEQ =90°时,由对称性可得∠AEQ =∠BDQ =90°,∴MQ =158; 综上所述,MQ 的值为198或34或158;②△ACG 和△DEG 的面积之比为6−2√33. 理由:如图6,∵DM ∥AF ,DE ∥AB ,∴四边形AMDE 是平行四边形,四边形AMDF 是等腰梯形, ∴DF =AM =DE =1, 又由对称性可得GE =GD , ∴△DEG 是等边三角形, ∴∠EDF =90°﹣60°=30°, ∴∠DEF =75°=∠MDE , ∴∠GDM =75°﹣60°=15°, ∴∠GMD =∠PGD ﹣∠GDM =15°,∴∠GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=12AC=12AB=1=MG,AH=√3,∴CG=MH=√3−1,∴S△ACG=12CG×CH=√3−12,∵S△DEG=√3 4,∴S△ACG:S△DEG=6−2√33.5.(2020•云南模拟)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.【点睛】(1)连接OC ,根据等腰三角形的性质得到∠A =∠OCA ,由平行线的性质得到∠A =∠BOP ,∠ACO =∠COP ,等量代换得到∠COP =∠BOP ,由切线的性质得到∠OBP =90°,根据全等三角形的性质即可得到结论;(2)过O 作OD ⊥AC 于D ,根据相似三角形的性质得到CD •OP =OC 2,根据已知条件得到OC OP=√33,由三角函数的定义即可得到结论; (3)连接BC ,根据勾股定理得到BC =√AB 2−AC=12,当M 与A 重合时,得到d +f=12,当M 与B 重合时,得到d +f =9,于是得到结论. 【详解】解:(1)连接OC , ∵OA =OC , ∴∠A =∠OCA , ∵AC ∥OP ,∴∠A =∠BOP ,∠ACO =∠COP , ∴∠COP =∠BOP ,∵PB 是⊙O 的切线,AB 是⊙O 的直径, ∴∠OBP =90°,在△POC 与△POB 中,{OC =OB∠COP =∠BOP OP =OP,∴△COP ≌△BOP , ∴∠OCP =∠OBP =90°, ∴PC 是⊙O 的切线; (2)过O 作OD ⊥AC 于D ,∴∠ODC =∠OCP =90°,CD =12AC , ∵∠DCO =∠COP , ∴△ODC ∽△PCO ,∴CD OC=OC PO,∴CD •OP =OC 2,∵OP =32AC ,∴AC =23OP , ∴CD =13OP ,∴13OP •OP =OC 2∴OC OP=√33, ∴sin ∠CPO =OC OP =√33; (3)连接BC , ∵AB 是⊙O 的直径, ∴AC ⊥BC , ∵AC =9,AB =15,∴BC=√AB2−AC2=12,当CM⊥AB时,d=AM,f=BM,∴d+f=AM+BM=15,当M与B重合时,d=9,f=0,∴d+f=9,∴d+f的取值范围是:9≤d+f≤15.6.(2020•南宁模拟)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD̂上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tan G=34,AH=3√3,求EM的值.【点睛】(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出AD̂=AĈ,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AHEM =HCOE,由此即可解决问题;【详解】(1)证明:如图1中,∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴AD̂=AĈ,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠F AH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH =3√3,∴HC =4√3,在Rt △HOC 中,∵OC =r ,OH =r ﹣3√3,HC =4√3,∴(r ﹣3√3)2+(4√3)2=r 2,∴r =25√36, ∵GM ∥AC ,∴∠CAH =∠M ,∵∠OEM =∠AHC ,∴△AHC ∽△MEO ,∴AH EM =HC OE ,∴3√3EM =√325√36, ∴EM =25√38. 7.(2020•深圳模拟)如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是CBD̂上任意一点,AH =2,CH =4.(1)求⊙O 的半径r 的长度;(2)求sin ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求HE •HF 的值.【点睛】(1)在Rt △COH 中,利用勾股定理即可解决问题;(2)只要证明∠CMD =∠COA ,求出sin ∠COA 即可;(3)由△EHM ∽△NHF ,推出HE HN =HM HF ,推出HE •HF =HM •HN ,又HM •HN =AH •HB ,推出HE •HF =AH •HB ,由此即可解决问题.【详解】解:(1)如图1中,连接OC .∵AB ⊥CD ,∴∠CHO =90°,在Rt △COH 中,∵OC =r ,OH =r ﹣2,CH =4,∴r 2=42+(r ﹣2)2,∴r =5.(2)如图1中,连接OD .∵AB ⊥CD ,AB 是直径,∴AD ̂=AC ̂=12CD ̂, ∴∠AOC =12∠COD ,∵∠CMD =12∠COD ,∴∠CMD =∠COA ,∴sin∠CMD=sin∠COA=CHCO=45.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHF∴△EHM∽△NHF,∴HEHN =HMHF,∴HE•HF=HM•HN,∵HM•HN=AH•HB(相交弦定理),∴HE•HF=AH•HB=2•(10﹣2)=16.8.(2020•大庆模拟)如图,四边形ABCD内接于圆O,∠BAD=90°,AC为直径,过点A 作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB于点G,连结CG.(1)求证:AB=CD;(2)求证:CD2=BE•BC;(3)当CG=√3,BE=92时,求CD的长.【点睛】(1)根据三个角是直角的四边形是矩形证明四边形ABCD是矩形,可得结论;(2)证明△ABE∽△CBA,列比例式可得结论;(3)根据F是AC的三等分点得:AG=2BG,设BG=x,则AG=2x,代入(2)的结论解出x的值,可得CD的长.【详解】证明:(1)∵AC为⊙O的直径,∴∠ABC=∠ADC=90°,∵∠BAD=90°,∴四边形ABCD是矩形,∴AB=CD;(2)∵AE为⊙O的切线,∴AE⊥AC,∴∠EAB +∠BAC =90°,∵∠BAC +∠ACB =90°,∴∠EAB =∠ACB ,∵∠ABC =90°,∴△ABE ∽△CBA ,∴AB BC =BE AB ,∴AB 2=BE •BC ,由(1)知:AB =CD ,∴CD 2=BE •BC ;(3)∵F 是AC 的三等分点,∴AF =2FC ,∵FG ∥BE ,∴△AFG ∽△ACB ,∴AF FC =AG BG =2,设BG =x ,则AG =2x ,∴AB =3x ,在Rt △BCG 中,CG =√3,∴BC 2=(√3)2﹣x 2,BC =√3−x 2,由(2)得:AB 2=BE •BC ,(3x )2=92√3−x 2,4x 4+x 2﹣3=0,(x 2+1)(4x 2﹣3)=0,x =±√32, ∵x >0,∴x =√32,∴CD =AB =3x =3√32. 9.(2020•陕西模拟)问题提出(1)如图①,△ABC 是等边三角形,AB =12,若点O 是△ABC 的内心,则OA 的长为 4√3 ;问题探究(2)如图②,在矩形ABCD 中,AB =12,AD =18,如果点P 是AD 边上一点,且AP =3,那么BC 边上是否存在一点Q ,使得线段PQ 将矩形ABCD 的面积平分?若存在,求出PQ 的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM 草地和弦AB 与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB (即每次喷灌时喷灌龙头由MA 转到MB ,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB =24m ,MB =10m ,△AMB 的面积为96m 2;过弦AB 的中点D 作DE⊥AB 交AB̂于点E ,又测得DE =8m .请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【点睛】(1)构建Rt△AOD中,利用cos∠OAD=cos30°=ADOA,可得OA的长;(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD中,r2=122+(r﹣8)2,解得:r=13根据三角形面积计算高MN的长,证明△ADC∽△ANM,列比例式求DC的长,确定点O在△AMB内部,利用勾股定理计算OM,则最大距离FM的长可利用相加得出结论.【详解】解:(1)如图1,过O作OD⊥AC于D,则AD=12AC=12×12=6,∵O是内心,△ABC是等边三角形,∴∠OAD=12∠BAC=12×60°=30°,在Rt△AOD中,cos∠OAD=cos30°=AD OA,∴OA=6÷√32=4√3,故答案为:4√3;(2)存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ 将矩形ABCD的面积平分,∵点O 为矩形ABCD 的对称中心,∴CQ =AP =3,过P 作PM ⊥BC 于点M ,则PM =AB =12,MQ =18﹣3﹣3=12, 由勾股定理得:PQ =√PM 2+MQ 2=√122+122=12√2;(3)如图3,作射线ED 交AM 于点C∵AD =DB ,ED ⊥AB ,AB̂是劣弧, ∴AB̂所在圆的圆心在射线DC 上, 假设圆心为O ,半径为r ,连接OA ,则OA =r ,OD =r ﹣8,AD =12AB =12,在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r =13,∴OD =5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB =24,∴12AB •MN =96, 12×24×MN =96,∴MN =8,NB =6,AN =18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC MN=AD AN , ∴DC 8=1218,∴DC=16 3,∴OD<CD,∴点O在△AMB内部,∴连接MO并延长交AB̂于点F,则MF为草坪上的点到M点的最大距离,∵在AB̂上任取一点异于点F的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF>MG,过O作OH⊥MN,垂足为H,则OH=DN=6,MH=3,∴OM=√MH2+OH2=√32+62=3√5,∴MF=OM+r=3√5+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.10.(2020•哈尔滨模拟)已知:AB是⊙O的弦,点C是AB̂的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是AĈ上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=35,求MPMQ的值.【点睛】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)解法一:如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM ≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠P AB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=PHPM,sin∠ABO=35,设DP=3a,则PM=5a,可得结果.解法二:连接BQ、OQ.易知AB⊥OM,OB⊥MB,利用相似三角形的性质解决问题即可:【详解】(1)证明:如图1,连接OA,∵C是AB̂的中点,∴AĈ=BĈ,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT ∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠P AB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠P AB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∵∠PMH=12∠PMN=12∠AMB=∠BMO,∠BMO=∠ABO∴∠PMH=∠ABO,∵sin∠PMH=PHPM,sin∠ABO=35,∴PHPM =35,∴DPPM =35,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴PMMQ =518.解法二:连接BQ、OQ.易知AB⊥OM,OB⊥MB,∴∠OMB=∠ABO,∴sin∠ABO=sin∠OMB=OBOM=35,设OB=OQ=3a,则OM=5a,易证MB2=MD•MO,∵MB是切线,∴∠MBP =∠MQB ,∴△MPB ∽△MBQ ,∴MP MB =MB MQ ,∴MB 2=MP •MQ ,∴MD •MO =MP •MQ ,∴MD MP =MQ MO ,∵∠DMP =∠QMO ,∴△MPD ∽△MOQ ,∴PD OQ =MP MO ,∴MP =MO OQ •PD =5a 3a•PD , ∴MP MQ =53PD 6PD =518.11.(2020淄博模拟)如图,将矩形纸片ABCD 沿直线MN 折叠,顶点B 恰好与CD 边上的动点P 重合(点P 不与点C ,D 重合),折痕为MN ,点M ,N 分别在边AD ,BC 上,连接MB ,MP ,BP ,BP 与MN 相交于点F .(1)求证:△BFN ∽△BCP ;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.【点睛】(1)根据折叠的性质可知,MN垂直平分线段BP,即∠BFN=90°,由矩形的性质可得出∠C=90°=∠BFN,结合公共角∠FBN=∠CBP,即可证出△BFN∽△BCP;(2)①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可;②设⊙O与BC的交点为E,连接OB、OE,由△MDP为直角三角形,可得出MP为⊙O 的直径,根据BM与⊙O相切,可得出MP⊥BM,进而可得出△BMP为等腰直角三角形,根据同角的余角相等可得出∠PMD=∠MBA,结合∠A=∠PMD=90°、BM=MP,即可证出△ABM≌△DMP(AAS),根据全等三角形的性质可得出DM=AB=4、DP=AM,设DP=2a,根据勾股定理结合半径为直径的一半,即可得出关于a的方程,解之即可得出a值,再将a代入OP=2a中求出DP的长度.【详解】(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴MP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP,∴△BMP为等腰直角三角形.∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,∴∠PMD=∠MBA.在△ABM和△DMP中,{∠MBA=∠PMD∠A=∠PMD=90°BM=MP,∴△ABM≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a,则AM=2a,OE=4﹣a,BM=√AB2+AM2=2√4+a2∵BM=MP=2OE,∴2√4+a2=2×(4﹣a),解得:a=3 2,∴DP=2a=3.12.(2020•湘潭模拟)如图,动点M 在以O 为圆心,AB 为直径的半圆弧上运动(点M 不与点A 、B 及AB ̂的中点F 重合),连接OM .过点M 作ME ⊥AB 于点E ,以BE 为边在半圆同侧作正方形BCDE ,过点M 作⊙O 的切线交射线DC 于点N ,连接BM 、BN .(1)探究:如图一,当动点M 在AF̂上运动时; ①判断△OEM ∽△MDN 是否成立?请说明理由;②设ME+NC MN =k ,k 是否为定值?若是,求出该定值,若不是,请说明理由;③设∠MBN =α,α是否为定值?若是,求出该定值,若不是,请说明理由;(2)拓展:如图二,当动点M 在FB̂上运动时; 分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)【点睛】(1)①由正方形的性质得出BE =BC ,∠EBC =∠CDE =∠BCD =∠BED =90°,由切线的性质和直角三角形的性质证出∠EOM=∠DMN,即可得出△OEM∽△MDN;②作BG⊥MN于G,则BG∥OM,∠BGN=∠BGM=90°,由平行线的性质和等腰三角形的性质得出∠OBM=∠GBM,由AAS证明△BME≌△BMG,得出EM=GM,BE=BG,证出BG=BC,由HL证明Rt△BGN≌Rt△BCN,得出GN=CN,证出EM+NC=GM+NC=MN,即可得出结论;③由全等三角形的性质得出∠EBM=∠GBM,∠GBN=∠CBN,求出∠MBN=12∠EBC =45°即可;(2)(1)中的①③结论保持不变;②结论:EM﹣CN=MN.【详解】解:(1)①△OEM∽△MDN成立,理由如下:∵四边形BCDE是正方形,∴BE=BC,∠EBC=∠CDE=∠BCD=∠BED=90°,∴∠EOM+∠EMO=90°,∵MN是⊙O的切线,∴MN⊥OM,∴∠OMN=90°,∴∠DMN+∠EMO=90°,∴∠EOM=∠DMN,∴△OEM∽△MDN;②k值为定值1;理由如下:作BG⊥MN于G,如图一所示:则BG∥OM,∠BGN=∠BGM=90°,∴∠OMB=∠GBM,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2013年上海市中考第24题例2 2012年苏州市中考第29题例3 2012年黄冈市中考第25题例4 2010年义乌市中考第24题例5 2009年临沂市中考第26题例6 2008年苏州市中考第29题1.2 因动点产生的等腰三角形问题例1 2013年上海市虹口区中考模拟第25题例2 2012年扬州市中考第27题例3 2012年临沂市中考第26题例4 2011年湖州市中考第24题例5 2011年盐城市中考第28题例6 2010年南通市中考第27题例7 2009年江西省中考第25题1.3 因动点产生的直角三角形问题例1 2013年山西省中考第26题例2 2012年广州市中考第24题例3 2012年杭州市中考第22题例4 2011年浙江省中考第23题例5 2010年北京市中考第24题例6 2009年嘉兴市中考第24题例7 2008年河南省中考第23题1.4 因动点产生的平行四边形问题例1 2013年上海市松江区中考模拟第24题例2 2012年福州市中考第21题例3 2012年烟台市中考第26题例4 2011年上海市中考第24题例5 2011年江西省中考第24题例6 2010年山西省中考第26题例7 2009年江西省中考第24题1.5 因动点产生的梯形问题例1 2012年上海市松江中考模拟第24题例2 2012年衢州市中考第24题例4 2011年义乌市中考第24题例5 2010年杭州市中考第24题例7 2009年广州市中考第25题1.6 因动点产生的面积问题例1 2013年苏州市中考第29题例2 2012年菏泽市中考第21题例3 2012年河南省中考第23题例4 2011年南通市中考第28题例5 2010年广州市中考第25题例6 2010年扬州市中考第28题例7 2009年兰州市中考第29题1.7 因动点产生的相切问题例1 2013年上海市杨浦区中考模拟第25题例2 2012年河北省中考第25题例3 2012年无锡市中考第28题1.8 因动点产生的线段和差问题例1 2013年天津市中考第25题例2 2012年滨州市中考第24题例3 2012年山西省中考第26题第二部分图形运动中的函数关系问题2.1 由比例线段产生的函数关系问题例1 2013年宁波市中考第26题例2 2012年上海市徐汇区中考模拟第25题例3 2012年连云港市中考第26题例4 2010年上海市中考第25题2.2 由面积公式产生的函数关系问题例1 2013年菏泽市中考第21题例2 2012年广东省中考第22题例3 2012年河北省中考第26题例4 2011年淮安市中考第28题例5 2011年山西省中考第26题例6 2011年重庆市中考第26题第三部分图形运动中的计算说理问题3.1 代数计算及通过代数计算进行说理问题例1 2013年南京市中考第26题例2 2013年南昌市中考第25题3.2几何证明及通过几何计算进行说理问题例1 2013年上海市黄浦区中考模拟第24题例2 2013年江西省中考第24题第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2013年上海市中考第24题如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图1动感体验请打开几何画板文件名“13上海24”,拖动点C 在x 轴上运动,可以体验到,点C 在点B 的右侧,有两种情况,△ABC 与△AOM 相似.请打开超级画板文件名“13上海24”,拖动点C 在x 轴上运动,可以体验到,点C 在点B 的右侧,有两种情况,△ABC 与△AOM 相似.点击按钮的左部和中部,可到达相似的准确位置。

思路点拨1.第(2)题把求∠AOM 的大小,转化为求∠BOM 的大小.2.因为∠BOM =∠ABO =30°,因此点C 在点B 的右侧时,恰好有∠ABC =∠AOM . 3.根据夹角相等对应边成比例,分两种情况讨论△ABC 与△AOM 相似.满分解答(1)如图2,过点A 作AH ⊥y 轴,垂足为H . 在Rt △AOH 中,AO =2,∠AOH =30°, 所以AH =1,OH =3.所以A (1,3)-.因为抛物线与x 轴交于O 、B (2,0)两点, 设y =ax (x -2),代入点A (1,3)-,可得3a =. 图2 所以抛物线的表达式为23323(2)y x x x x =-=-.(2)由2232333(1)y x x x =-=--, 得抛物线的顶点M 的坐标为3(1,)-.所以3tan BOM ∠=. 所以∠BOM =30°.所以∠AOM =150°.(3)由A (1,3)-、B (2,0)、M 3(1,)-, 得3tan ABO ∠=,23AB =,23OM =.所以∠ABO =30°,3OAOM=.因此当点C 在点B 右侧时,∠ABC =∠AOM =150°. △ABC 与△AOM 相似,存在两种情况:①如图3,当3BA OA BC OM ==时,23233BC ===.此时C (4,0). ②如图4,当3BC OABA OM==时,33236BC BA ==⨯=.此时C (8,0).图3 图4考点伸展在本题情境下,如果△ABC 与△BOM 相似,求点C 的坐标.如图5,因为△BOM 是30°底角的等腰三角形,∠ABO =30°,因此△ABC 也是底角为30°的等腰三角形,AB =AC ,根据对称性,点C 的坐标为(-4,0).图5例2 2012年苏州市中考第29题如图1,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ ′A =∠B 的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA =,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14bb =-.解得843b =±.所以符合题意的点Q 为(1,23+).②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。

因此△OCQ ∽△QOA . 当BA QA QA OA=时,△BQA ∽△QOA .此时∠OQB =90°. 所以C 、Q 、B 三点共线.因此BO QACO OA =,即14b QA b =.解得4QA =.此时Q (1,4).图4 图5考点伸展第(3)题的思路是,A 、C 、O 三点是确定的,B 是x 轴正半轴上待定的点,而∠QOA 与∠QOC 是互余的,那么我们自然想到三个三角形都是直角三角形的情况.这样,先根据△QOA 与△QOC 相似把点Q 的位置确定下来,再根据两直角边对应成比例确定点B 的位置.如图中,圆与直线x =1的另一个交点会不会是符合题意的点Q 呢?如果符合题意的话,那么点B 的位置距离点A 很近,这与OB =4OC 矛盾.例3 2012年黄冈市中考模拟第25题如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12黄冈25”,拖动点C 在x 轴正半轴上运动,观察左图,可以体验到,EC 与BF 保持平行,但是∠BFC 在无限远处也不等于45°.观察右图,可以体验到,∠CBF 保持45°,存在∠BFC =∠BCE 的时刻.思路点拨1.第(3)题是典型的“牛喝水”问题,当H 落在线段EC 上时,BH +EH 最小. 2.第(4)题的解题策略是:先分两种情况画直线BF ,作∠CBF =∠EBC =45°,或者作BF //EC .再用含m 的式子表示点F 的坐标.然后根据夹角相等,两边对应成比例列关于m 的方程.满分解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-⨯-.解得m =4. (2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小.设对称轴与x 轴的交点为P ,那么HP EOCP CO=. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BCCB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+. 解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =,得244m BF m +=+.所以2(4)4m m BF ++=. 由2BC CE BF =⋅,得222(4)4(2)4m m m m +++=+⨯.整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BCBC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2(22)BF m =+. 由2BC BE BF =⋅,得2(2)222(22)m m +=+.解得222m =± 综合①、②,符合题意的m 为222+考点伸展第(4)题也可以这样求BF 的长:在求得点F ′、F 的坐标后,根据两点间的距离公式求BF 的长.例4 2010年义乌市中考第24题如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标; (2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图2动感体验请打开几何画板文件名“10义乌24”,拖动点I 上下运动,观察图形和图象,可以体验到,x 2-x 1随S 的增大而减小.双击按钮“第(3)题”,拖动点Q 在DM 上运动,可以体验到,如果∠GAF =∠GQE ,那么△GAF 与△GQE 相似.思路点拨1.第(2)题用含S 的代数式表示x 2-x 1,我们反其道而行之,用x 1,x 2表示S .再注意平移过程中梯形的高保持不变,即y 2-y 1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=.当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x轴交于点F,那么要探求相似的△GAF与△GQE,有一个公共角∠G.在△GEQ中,∠GEQ是直线AB与抛物线对称轴的夹角,为定值.在△GAF中,∠GAF是直线AB与x轴的夹角,也为定值,而且∠GEQ≠∠GAF.因此只存在∠GQE=∠GAF的可能,△GQE∽△GAF.这时∠GAF=∠GQE=∠PQD.由于3tan4GAF∠=,tan5DQ tPQDQP t∠==-,所以345tt=-.解得207t=.图3 图4考点伸展第(3)题是否存在点G在x轴上方的情况?如图4,假如存在,说理过程相同,求得的t的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例5 2009年临沂市中考第26题如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,图1动感体验请打开几何画板文件名“09临沂26”,拖动点P 在抛物线上运动,可以体验到,△P AM 的形状在变化,分别双击按钮“P 在B 左侧”、“ P 在x 轴上方”和“P 在A 右侧”,可以显示△P AM 与△OAC 相似的三个情景.双击按钮“第(3)题”, 拖动点D 在x 轴上方的抛物线上运动,观察△DCA 的形状和面积随D 变化的图象,可以体验到,E 是AC 的中点时,△DCA 的面积最大.思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程.4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AOPM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意. 如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=.例6 2008年苏州市中考第29题图1动感体验请打开几何画板文件名“08苏州29”,拖动表示a 的点在y 轴上运动,可以体验到,当抛物线经过点E 1和E 3时,直线N E 1、N E 3和直线AB 交于同一个点G ,此时△POB ∽△PGN .当抛物线经过点E 2和E 4时,直线NE 2、NE 4和直线AB 交于同一个点G ,可以体验到,这个点G 在点N 右侧较远处.思路点拨1.求等腰直角三角形OAB 斜边上的高OH ,解直角三角形POH 求k 、b 的值.2.以DN 为边画正方形及对角线,可以体验到,正方形的顶点和对角线的交点中,有符合题意的点E ,写出点E 的坐标,代入抛物线的解析式就可以求出a .3.当E 在x 轴上方时,∠GNP =45°,△POB ∽△PGN ,把PB PG ⋅转化为14PO PN ⋅=.4.当E 在x 轴下方时,通过估算得到PB PG ⋅大于2.满分解答(1)1OH =,3k =23b = (2)由抛物线的解析式(1)(5)y a x x =+-,得 点M 的坐标为(1,0)-,点N 的坐标为(5,0).因此MN 的中点D 的坐标为(2,0),DN =3.因为△AOB 是等腰直角三角形,如果△DNE 与△AOB 相似,那么△DNE 也是等腰直角三角形.①如图2,如果DN 为直角边,那么点E 的坐标为E 1(2,3)或E 2(2,-3).将E 1(2,3)代入(1)(5)y a x x =+-,求得13a =-.此时抛物线的解析式为21145(1)(5)3333y x x x x =-+-=-++. 将E 2(2,-3)代入(1)(5)y a x x =+-,求得31=a .此时抛物线的解析式为353431)5)(1(312--=-+=x x x x y .②如果DN 为斜边,那么点E 的坐标为E 311(3,1)22或E 4)211,213(-.将E 311(3,1)22代入(1)(5)y a x x =+-,求得29a =-.此时抛物线的解析式为222810(1)(5)9999y x x x x =-+-=-++.将E 4)211,213(-代入(1)(5)y a x x =+-,求得92=a .此时抛物线的解析式为9109892)5)(1(922--=-+=x x x x y .图2 图3对于点E 为E 1(2,3)和E 311(3,1)22,直线NE 是相同的,∠ENP =45°. 又∠OBP =45°,∠P =∠P ,所以△POB ∽△PGN . 因此2101472<=⨯=⋅=⋅PN PO PG PB .对于点E 为E 2(2,-3)和E 4)211,213(-,直线NE 是相同的.此时点G 在直线5=x 的右侧,3314>PG .又334>PB ,所以21034143343314>⨯=⨯>⋅PG PB .考点伸展在本题情景下,怎样计算PB 的长?如图3,作AF ⊥AB 交OP 于F ,那么△OBC ≌△OAF ,OF =OC 233PF =2233P A =3323)31223PF ==,所以31PB =.1.2因动点产生的等腰三角形问题例1 2013年上海市虹口区中考模拟第25题如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC 交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图动感体验请打开几何画板文件名“13虹口25”,拖动点P在射线AB上运动,可以体验到,△PDM 与△QDN保持相似.观察△PDF,可以看到,P、F可以落在对边的垂直平分线上,不存在DF=DP的情况.请打开超级画板文件名“13虹口25”,拖动点P在射线AB上运动,可以体验到,△PDM 与△QDN保持相似.观察△PDF,可以看到,P、F可以落在对边的垂直平分线上,不存在DF=DP的情况.思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.满分解答(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PM DMQN DN==.所以34QN PM=,43PM QN=.图2 图3 图4 ①如图3,当BP=2,P在BM上时,PM=1.此时3344QN PM==.所以319444CQ CN QN=+=+=.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QN PM==.所以1531444CQ CN QN=+=+=.(3)如图5,如图2,在Rt△PDQ中,3 tan4QD DNQPDPD DM∠===.在Rt△ABC中,3tan4BACCA∠==.所以∠QPD=∠C.由∠PDQ=90°,∠CDE=90°,可得∠PDF=∠CDQ.因此△PDF∽△CDQ.当△PDF是等腰三角形时,△CDQ也是等腰三角形.①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图3所示).此时4433PM QN==.所以45333BP BM PM=-=-=.②如图6,当QC=QD时,由cosCHCCQ=,可得5425258CQ=÷=.所以QN=CN-CQ=257488-=(如图2所示).此时4736PM QN==.所以725366BP BM PM=+=+=.③不存在DP=DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示).图5 图6考点伸展如图6,当△CDQ是等腰三角形时,根据等角的余角相等,可以得到△BDP也是等腰三角形,PB=PD.在△BDP中可以直接求解256 BP=.例2 2012年扬州市中考第27题如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12扬州27”,拖动点P在抛物线的对称轴上运动,可以体验到,当点P落在线段BC上时,P A+PC最小,△P AC的周长最小.拖动点M在抛物线的对称轴上运动,观察△MAC的三个顶点与对边的垂直平分线的位置关系,可以看到,点M有1次机会落在AC的垂直平分线上;点A有2次机会落在MC的垂直平分线上;点C有2次机会落在MA的垂直平分线上,但是有1次M、A、C三点共线.思路点拨1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△P AC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3),代入点C(0 ,3),得-3a=3.解得a=-1.所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.(2)如图2,抛物线的对称轴是直线x=1.当点P落在线段BC上时,P A+PC最小,△P AC的周长最小.设抛物线的对称轴与x轴的交点为H.由BH PHBO CO=,BO=CO,得PH=BH=2.所以点P的坐标为(1, 2).图2 (3)点M的坐标为(1, 1)、(1,6)、(1,6-)或(1,0).考点伸展第(3)题的解题过程是这样的:设点M的坐标为(1,m).在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.此时点M的坐标为(1, 1).②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得6m=±.此时点M的坐标为(1,6)或(1,6-).③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).图3 图4 图5例3 2012年临沂市中考第26题如图1,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. (1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12临沂26”,拖动点P 在抛物线的对称轴上运动,可以体验到,⊙O 和⊙B 以及OB 的垂直平分线与抛物线的对称轴有一个共同的交点,当点P 运动到⊙O 与对称轴的另一个交点时,B 、O 、P 三点共线.请打开超级画板文件名“12临沂26”,拖动点P ,发现存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P 重合在一起.满分解答(1)如图2,过点B 作BC ⊥y 轴,垂足为C .在Rt △OBC 中,∠BOC =30°,OB =4,所以BC =2,23OC = 所以点B 的坐标为(2,23)--.(2)因为抛物线与x 轴交于O 、A (4, 0),设抛物线的解析式为y =ax (x -4), 代入点B (2,23)--,232(6)a -=-⨯-.解得3a =. 所以抛物线的解析式为23323(4)y x x x =-=.(3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得23y =±.当P 在(2,3)时,B 、O 、P 三点共线(如图2).②当BP =BO =4时,BP 2=16.所以224(23)16y ++=.解得1223y y ==- ③当PB =PO 时,PB 2=PO 2.所以22224(23)2y y ++=+.解得23y =- 综合①、②、③,点P 的坐标为(2,23)-,如图2所示.图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形.由23323(4)2)y x x x =-=-23D .因此23tan DOA ∠=DOA =30°,∠ODA =120°.例4 2011年盐城市中考第28题如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标; (2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11盐城28”,拖动点R 由B 向O 运动,从图象中可以看到,△APR 的面积有一个时刻等于8.观察△APQ ,可以体验到,P 在OC 上时,只存在AP =AQ 的情况;P 在CA 上时,有三个时刻,△APQ 是等腰三角形.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4).令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8APR ACP POR CORA S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4. 如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠P AQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-.如图5,当AP =AQ 时,解方程520733t t -=-,得418t =.如图6,当QP =QA 时,点Q 在P A 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当P A =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.例5 2010年南通市中考第27题如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1动感体验请打开几何画板文件名“10南通27”,拖动点E 在BC 上运动,观察y 随x 变化的函数图象,可以体验到,y 是x 的二次函数,抛物线的开口向下.对照图形和图象,可以看到,当E 是BC 的中点时,y 取得最大值.双击按钮“m =8”,拖动E 到BC 的中点,可以体验到,点F 是AB 的四等分点.拖动点A 可以改变m 的值,再拖动图象中标签为“y 随x ” 的点到射线y =x 上,从图形中可以看到,此时△DCE ≌△EBF .思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EBCE BF=,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例 6 2009年江西省中考第25题如图1,在等腰梯形ABCD 中,AD //BC ,E 是AB 的中点,过点E 作EF //BC 交CD 于点F ,AB =4,BC =6,∠B =60°.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过点P 作PM ⊥EF 交BC 于M ,过M 作MN //AB 交折线ADC 于N ,连结PN ,设EP =x .①当点N 在线段AD 上时(如图2),△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足条件的x 的值;若不存在,请说明理由.图1 图2 图3动感体验请打开几何画板文件名“09江西25”,拖动点P 在EF 上运动,可以体验到,当N 在AD 上时,△PMN 的形状不发生改变,四边形EGMP 是矩形,四边形BMQE 、四边形ABMN 是平行四边形,PH 与NM 互相平分.当N 在DC 上时,△PMN 的形状发生变化,但是△CMN 恒为等边三角形,分别双击按钮“PM =PN ”、“MP =M N ”和“NP =NM ”,可以显示△PMN 为等腰三角形.思路点拨1.先解读这个题目的背景图,等腰梯形ABCD 的中位线EF =4,这是x 的变化范围.平行线间的距离处处相等,AD 与EF 、EF 与BC 间的距离相等.2.当点N 在线段AD 上时,△PMN 中PM 和MN 的长保持不变是显然的,求证PN 的长是关键.图形中包含了许多的对边平行且相等,理顺线条的关系很重要.3.分三种情况讨论等腰三角形PMN ,三种情况各具特殊性,灵活运用几何性质解题.满分解答(1)如图4,过点E 作EG ⊥BC 于G .在Rt △BEG 中,221==AB BE ,∠B =60°, 所以160cos =︒⋅=BE BG ,360sin =︒⋅=BE EG .所以点E 到BC 的距离为3.(2)因为AD //EF //BC ,E 是AB 的中点,所以F 是D C 的中点. 因此EF 是梯形ABCD 的中位线,EF =4.①如图4,当点N 在线段AD 上时,△PMN 的形状不是否发生改变. 过点N 作NH ⊥EF 于H ,设PH 与NM 交于点Q .在矩形EGMP 中,EP =GM =x ,PM =EG =3. 在平行四边形BMQE 中,BM =EQ =1+x . 所以BG =PQ =1.因为PM 与NH 平行且相等,所以PH 与NM 互相平分,PH =2PQ =2. 在Rt △PNH 中,NH =3,PH =2,所以PN =7.。

相关文档
最新文档