高中物理动量守恒定律基础练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动量守恒定律基础练习题
一、高考物理精讲专题动量守恒定律
1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2
m
∆ 的压缩气体,每级总质量均为
2
M
,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m
【解析】对模型甲: ()00M m v mv =-∆-∆甲
21085=200.5629
v h m m g =≈甲甲
对模型乙第一级喷气: 10022
m m
M v v ∆∆⎛
⎫=-- ⎪⎝⎭乙 解得: 130m v s
=乙
2s 末: ‘
11=10m v v gt s
-=乙乙
22
11
1'=402v v h m g
-=乙乙乙
对模型乙第一级喷气:
‘120=)2222
M M m m v v v ∆∆--乙乙( 解得: 2670=
9
m
v s 乙 2
2222445=277.10281
v h m m g =≈乙乙
可得: 129440
+=
116.5481
h h h h m m ∆=-≈乙乙甲。
2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑
1
4
圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求:
(1)小物块与小车BC 部分间的动摩擦因数;
(2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】
解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R
L
μ=
= (2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211
22
mgR mv Mv =+ 联立解得: 21/ v m s =
3.冰球运动员甲的质量为80.0kg 。当他以5.0m/s 的速度向前运动时,与另一质量为100kg 、速度为3.0m/s 的迎面而来的运动员乙相撞。碰后甲恰好静止。假设碰撞时间极短,求:
(1)碰后乙的速度的大小; (2)碰撞中总动能的损失。 【答案】(1)1.0m/s (2)1400J 【解析】
试题分析:(1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V′,规定甲的运动方向为正方向,由动量守恒定律有:mv-MV =MV′…① 代入数据解得:V′=1.0m/s…②
(2)设碰撞过程中总机械能的损失为△E ,应有:mv 2+MV 2=MV′2+△E…③ 联立②③式,代入数据得:△E=1400J 考点:动量守恒定律;能量守恒定律
4.(1)(5分)关于原子核的结合能,下列说法正确的是 (填正确答案标号。选
对I 个得2分,选对2个得4分,选对3个得5分;每选错1个扣3分,最低得分为0分)。
A.原子核的结合能等于使其完全分解成自由核子所需的最小能量
B .一重原子核衰变成α粒子和另一原子核,衰变产物的结合能之和一定大于原来重核的结合能
C .铯原子核(
13355
Cs )的结合能小于铅原子核(20882Pb
)的结合能 D .比结合能越大,原子核越不稳定
E.自由核子组成原子核时,其质量亏损所对应的能量大于该原子核的结合能
(2)(10分)如图,光滑水平直轨道上有三个质童均为m 的物块A、B 、C 。 B 的左侧固定一轻弹簧(弹簧左侧的挡板质最不计).设A 以速度v0朝B 运动,压缩弹簧;当A 、 B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动。假设B 和C 碰撞过程时间极短。求从A开始压缩弹簧直至与弹黄分离的过程中,
(ⅰ)整个系统损失的机械能; (ⅱ)弹簧被压缩到最短时的弹性势能。 【答案】(1)ABC (2)2
P 0
1348
E m =
v 【解析】(1)原子核的结合能等于核子结合成原子核所释放的能量,也等于将原子核分解成核子所需要的最小能量,A 正确;重核的比结合能比中等核小,因此重核衰变时释放能量,衰变产物的结合能之和小球原来重核的结合能,B 项正确;原子核的结合能是该原子核的比结合能与核子数的乘积,虽然銫原子核(13355
Cs )的比结合能稍大于铅原子核(20882Pb
)的比结合能,但銫原子核(
13355
Cs )的核子数比铅原子核(20882Pb
)的核子数少得多,因此其结合能小,C 项正确;比结合能越大,要将原子核分解成核子平均需要的能量越大,因此原子核越稳定,D 错;自由核子组成原子核时,其质量亏损所对应的能最等于该原子核的结合能,E 错。中等难度。
(2)(ⅰ)从A 压缩弹簧到A 与B 具有相同速度1v 时,对A 、B 与弹簧组成的系统,由动量守恒定律得012m m =v v
①
此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为2v ,损失的机械能为E ∆。对
B 、
C 组成的系统,由动量守恒和能量守恒定律得
122m m =v v
②
22
12
11(2)22
m E m =∆+v v
③
联立①②③式得2
116
E m ∆=
v ④
(ⅱ)由②式可知21