高三数学知识点之三角函数公式大全

合集下载

三角函数公式大全高中

三角函数公式大全高中

三角函数公式大全高中一、同角三角函数的基本关系。

1. 平方关系。

- sin^2α+cos^2α = 1- 1+tan^2α=sec^2α(secα=(1)/(cosα))- 1+cot^2α=csc^2α(cscα=(1)/(sinα))2. 商数关系。

- tanα=(sinα)/(cosα)- cotα=(cosα)/(sinα)二、诱导公式。

1. 终边相同的角的三角函数值相等。

- sin(α + 2kπ)=sinα,k∈ Z- cos(α+ 2kπ)=cosα,k∈ Z- tan(α + 2kπ)=tanα,k∈ Z2. 关于x轴对称的角的三角函数值关系。

- sin(-α)=-sinα- cos(-α)=cosα- tan(-α)=-tanα3. 关于y = x对称的角的三角函数值关系(α与(π)/(2)-α)- sin((π)/(2)-α)=cosα- cos((π)/(2)-α)=sinα- tan((π)/(2)-α)=cotα4. 关于y轴对称的角的三角函数值关系(α与π-α) - sin(π-α)=sinα- cos(π - α)=-cosα- tan(π-α)=-tanα5. 关于原点对称的角的三角函数值关系(α与π+α) - sin(π+α)=-sinα- cos(π+α)=-cosα- tan(π+α)=tanα6. α与(3π)/(2)-α的三角函数关系。

- sin((3π)/(2)-α)=-cosα- cos((3π)/(2)-α)=-sinα- tan((3π)/(2)-α)=cotα7. α与(3π)/(2)+α的三角函数关系。

- sin((3π)/(2)+α)=-cosα- cos((3π)/(2)+α)=sinα- tan((3π)/(2)+α)=-cotα三、两角和与差的三角函数公式。

- sin(A + B)=sin Acos B+cos Asin B2. 两角和的余弦公式。

2024高中三角函数公式大全

2024高中三角函数公式大全

2024高中三角函数公式大全
1、三角函数的定义
三角函数是建立在三角形中的特殊关系上,用于表示角度和边长之间的函数。

三角函数的基本定义如下:
(1)正弦函数sinθ:表示角θ的对边和斜边的比值,即sinθ = y/r。

(2)余弦函数cosθ:表示角θ的邻边和斜边的比值,即cosθ = x/r。

(3)正切函数tanθ:表示角θ的对边和邻边的比值,即tanθ = y/x。

(4)反正弦函数arcsinα:表示α对应的角度θ,即arcsinα = θ。

(5)反余弦函数arccosα:表示α对应的角度θ,即arccosα = θ。

(6)反正切函数arctanα:表示α对应的角度θ,即arctanα = θ。

2、三角函数的基本公式
(1)正弦定理:(a,b,C)为θ对应的三边,则
a/sinθ=b/sinθ=c/sinθ。

(2)余弦定理:(a,b,C)为θ对应的三边,则a^2=b^2+c^2-
2bc*cosθ。

(3)正切定理:(a,b,C)为θ对应的三边,则tanθ=b/a=c/b。

(4)反正弦定理:arcsinα=θ,其中θ的范围在(-π/2,π/2)
之间。

(5)反余弦定理:arccosα=θ,其中θ的范围在(0,π)之间。

(6)反正切定理:arctanα=θ,其中θ的范围在(-π/2,π/2)
之间。

3、三角函数的关系和性质
(1)正弦定理:sin2θ+cos2θ=1
(2)正弦定理的奇偶周期性:sin(-θ)= -sinθ;cos(-θ)= cosθ。

三角函数公式大全

三角函数公式大全

三角函数公式大全三角函数是数学中非常重要的一个分支,广泛应用于物理学、工程学、计算机科学等多个领域。

下面为大家带来一份三角函数公式大全。

一、基本三角函数1、正弦函数(sin):在直角三角形中,一个锐角的正弦是它的对边与斜边的比值。

即 sinA = a / c (其中 A 为锐角,a 为 A 的对边,c 为斜边)。

2、余弦函数(cos):一个锐角的余弦是它的邻边与斜边的比值。

即 cosA = b / c (其中 b 为 A 的邻边)。

3、正切函数(tan):一个锐角的正切是它的对边与邻边的比值。

即 tanA = a / b 。

二、同角三角函数基本关系1、平方关系:sin²A + cos²A = 1 。

2、商数关系:tanA = sinA / cosA 。

三、诱导公式1、终边相同的角的三角函数值相等:sin(2kπ + A) = sinA ,cos(2kπ + A) = cosA ,tan(2kπ + A) = tanA (k ∈ Z)。

2、关于 x 轴对称:sin(A) = sinA ,cos(A) = cosA ,tan(A) =tanA 。

3、关于 y 轴对称:sin(π A) = sinA ,cos(π A) = cosA ,tan(π A) = tanA 。

4、关于原点对称:sin(π + A) = sinA ,cos(π + A) = cosA ,tan(π + A) = tanA 。

5、 90°相关:sin(π/2 A) = cosA ,cos(π/2 A) = sinA 。

四、两角和与差的三角函数公式1、两角和的正弦:sin(A + B) = sinAcosB + cosAsinB 。

2、两角差的正弦:sin(A B) = sinAcosB cosAsinB 。

3、两角和的余弦:cos(A + B) = cosAcosB sinAsinB 。

4、两角差的余弦:cos(A B) = cosAcosB + sinAsinB 。

(完整版)三角函数三角函数公式表

(完整版)三角函数三角函数公式表

(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。

公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。

公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。

公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。

公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。

公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。

高三数学三角函数公式

高三数学三角函数公式

高三数学三角函数公式高三数学三角函数公式大全进入高三,我们必须对自己所学的各科知识的有个全面的把握。

高三数学复习从基础复习到慢慢深入,高三学生学习高中数学,要掌握好高三数学公式。

以下是关于高三数学三角函数公式的相关内容,供大家参考!高三数学三角函数公式大全sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA?-SinA?=1-2SinA?=2CosA?-1tan2A=(2tanA)/(1-tanA?)(注:SinA?是sinA的平方sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina三角函数辅助角公式Asinα+Bcosα=(A?+B?)’(1/2)sin(α+t),其中sint=B/(A?+B?)’(1/2)cost=A/(A?+B?)’(1/2)tant=B/AAsinα+Bcosα=(A?+B?)’(1/2)cos(α-t),tant=A/B降幂公式sin?(α)=(1-cos(2α))/2=versin(2α)/2cos?(α)=(1+cos(2α))/2=covers(2α)/2tan?(α)=(1-cos(2α))/(1+cos(2α))三角函数推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos?α1-cos2α=2sin?α1+sinα=(sinα/2+cosα/2)?=2sina(1-sin?a)+(1-2sin?a)sina=3sina-4sin?acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos?a-1)cosa-2(1-sin?a)cosa=4cos?a-3cosasin3a=3sina-4sin?a=4sina(3/4-sin?a)=4sina[(√3/2)?-sin?a]=4sina(sin?60°-sin?a)=4sina(sin60°+sina)(sin60°-sina)=4sina__2sin[(60+a)/2]cos[(60°-a)/2]__2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos?a-3cosa=4cosa(cos?a-3/4)=4cosa[cos?a-(√3/2)?]=4cosa(cos?a-cos?30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa__2cos[(a+30°)/2]cos[(a-30°)/2]__{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)三角函数半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin?(a/2)=(1-cos(a))/2cos?(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角函数三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)三角函数两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)三角函数和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角函数积化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2三角函数诱导公式sin(-α)=-sinαcos(-α)=cosαtan(—a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtanA=sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan’(α/2)]cosα=[1-tan’(α/2)]/1+tan’(α/2)]tanα=2tan(α/2)/[1-tan’(α/2)]其它公式(1)(sinα)?+(cosα)?=1(2)1+(tanα)?=(secα)?(3)1+(cotα)?=(cscα)?证明下面两式,只需将一式,左右同除(sinα)?,第二个除(cosα)?即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)?+(cosB)?+(cosC)?=1-2cosAcosBcosC(8)(sinA)?+(sinB)?+(sinC)?=2+2cosAcosBcosC(9)si nα+sin(α+2π/n)+sin(α+2π__2/n)+sin(α+2π__3/n)+……+sin[α+2π__(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π__2/n)+cos(α+2π__3/n)+……+cos[α+2π__(n-1)/n]=0以及sin?(α)+sin?(α-2π/3)+sin?(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0高三数学学习技巧一、用好课本:侧重以下几个方面1.对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念。

高中生必备实用三角函数公式总表

高中生必备实用三角函数公式总表

高中生必备实用三角函数公式总表高中数学中,三角函数是一个非常重要的概念。

通过掌握三角函数的相关公式和性质,可以解决许多与角度和三角形相关的问题。

本文将为高中生提供一个实用的三角函数公式总表,以帮助他们更好地学习和理解这一领域。

一、基本三角函数公式:1. 正弦函数(Sine function):sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinB2. 余弦函数(Cosine function):cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinB3. 正切函数(Tangent function):tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)二、和差公式:1. 正弦函数公式:sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinBsin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinBcos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB) tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)三、倍角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan2A = (2 · tanA) / (1 - tan2A)四、半角公式:1. 正弦函数公式:sin(A/2) = ±√((1 - cosA) / 2)2. 余弦函数公式:cos(A/2) = ±√((1 + cosA) / 2)3. 正切函数公式:tan(A/2) = ±√((1 - cosA) / (1 + cosA))五、和角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosA2. 余弦函数公式:cos2A = cos2A - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)六、其他常见公式:1. 正切与余切的关系:tanA = 1 / cotAcotA = 1 / tanA2. 正弦与余弦的关系:sin2A + cos2A = 13. 正切与正弦、余弦的关系:tanA = sinA / cosA通过掌握这些三角函数的公式,高中生可以更好地解决与角度和三角形相关的问题。

高考数学常用三角函数公式总结_高考数学复习指导整理

高考数学常用三角函数公式总结_高考数学复习指导整理

高考数学常用三角函数公式总结_高考数学复习指导整理高考数学中涉及的三角函数公式是数学考试中经常考察的内容,弄清楚这些公式对提高解题能力非常重要。

下面是高考数学常用的三角函数公式总结:1.三角函数的定义:正弦函数:sinA = 对边/斜边 = a/c余弦函数:cosA = 邻边/斜边 = b/c正切函数:tanA = 对边/邻边 = a/b2.基本关系:余弦函数与正弦函数的关系:sin^2A + cos^2A = 1正切函数与余切函数的关系:tanA * cotA = 13.三角函数的基本性质:奇偶性:sin(-A) = -sinA,cos(-A) = cosA,tan(-A) = -tanA关于y轴对称:sin(-A) = -sinA,cot(-A) = -cotA关于x轴对称:cos(-A) = cosA,tan(-A) = -tanA周期性:sin(A + 2πn) = sinA,其中n为整数cos(A + 2πn) = cosA,其中n为整数tan(A + πn) = tanA,其中n为整数4.初等角的三角函数值:30度特殊角:sin30° = 1/2,cos30° = √3/2,tan30° = 1/√3 45度特殊角:sin45° = √2/2,cos45° = √2/2,tan45° = 1 60度特殊角:sin60° = √3/2,cos60° = 1/2,tan60° = √3 5.和差角公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)6.二倍角公式:sin2A = 2sinAcosAcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan2A = 2tanA / (1 - tan^2A)7.半角公式:sin(A/2) = √[(1 - cosA) / 2]cos(A/2) = √[(1 + cosA) / 2]tan(A/2) = sinA / (1 + cosA) = (1 - cosA) / sinA8.三倍角公式:sin3A = 3sinA - 4sin^3Acos3A = 4cos^3A - 3cosAtan3A = (3tanA - tan^3A) / (1 - 3tan^2A)9.和角公式:sin(A + B) = sinAcosB + cosAsinBcos(A + B) = cosAcosB - sinAsinBtan(A + B) = (tanA + tanB) / (1 - tanAtanB)10.差角公式:sin(A - B) = sinAcosB - cosAsinBcos(A - B) = cosAcosB + sinAsinBtan(A - B) = (tanA - tanB) / (1 + tanAtanB)这些三角函数的常用公式总结可以帮助高中生更好地复习和理解数学知识,提高解题能力和应对高考的能力。

三角函数的全部公式整理高中

三角函数的全部公式整理高中

三角函数的全部公式整理高中一、正弦函数(Sine Function)正弦函数是最基本的三角函数之一,在数学中起着非常重要的作用。

它的定义如下:定义:设角θ的终边在单位圆上,点P(x,y)是单位圆上的点,则称y为角θ的正弦,记作sinθ。

1. 正弦函数的基本关系•sin(π/2 - θ) = cosθ•sin(π + θ) = -sinθ•sin(2π - θ) = -sinθ2. 正弦函数的等于关系•sin(0°) = 0•sin(30°) = 1/2•sin(45°) = √2/2•sin(60°) = √3/2•sin(90°) = 1二、余弦函数(Cosine Function)余弦函数也是常见的三角函数之一,定义如下:定义:设角θ的终边在单位圆上,点P(x,y)是单位圆上的点,则称x为角θ的余弦,记作cosθ。

1. 余弦函数的基本关系•cos(π/2 - θ) = sinθ•cos(π + θ) = -cosθ•cos(2π - θ) = cosθ2. 余弦函数的等于关系•cos(0°) = 1•cos(30°) = √3/2•cos(45°) = √2/2•cos(60°) = 1/2•cos(90°) = 0三、正切函数(Tangent Function)正切函数是正弦函数和余弦函数的比值,定义如下:定义:设角θ的终边在单位圆上,点P(x,y)是单位圆上的点,则称y/x为角θ的正切,记作tanθ。

1. 正切函数的基本关系•tanθ = sinθ / cosθ•tan(π/2 - θ) = 1 / tanθ2. 正切函数的等于关系•tan(0°) = 0•tan(30°) = √3/3•tan(45°) = 1•tan(60°) = √3•tan(90°) = 不存在四、三角函数间的基本关系1. 三角函数的互余关系•sinθ = cos(π/2 - θ)•cosθ = sin(π/2 - θ)•tanθ = 1 / cotθ•cotθ = 1 / tanθ2. 三角函数的倒数关系•sinθ = 1 / cscθ•cosθ = 1 / secθ•tanθ = 1 / cotθ五、和差化积公式1. 正弦和差化积公式sin(A ± B) = sinAcosB ± cosAsinB2. 余弦和差化积公式cos(A ± B) = cosAcosB ∓ sinAsinB六、倍角公式1. 正弦倍角公式sin2θ = 2sinθcosθ2. 余弦倍角公式cos2θ = cos²θ - sin²θ结语以上就是高中阶段关于三角函数的全部公式整理,这些公式在解决三角形问题、波动问题等数学中起着至关重要的作用。

高中三角函数公式大全

高中三角函数公式大全

高中三角函数公式大全角度制与弧度制的换算公式:1. 弧度制转角度制:角度 = 弧度× (180/π)2. 角度制转弧度制:弧度 = 角度× (π/180)正弦函数公式:正弦函数(sin)表示一个角的正弦值,其中角度以弧度为单位。

1. 正弦函数的定义:sinθ = 对边/斜边2. 余弦函数的定义:cosθ = 邻边/斜边3. 正切函数的定义:tanθ = 对边/邻边4. 正弦函数的倒数:cscθ = 1/sinθ5. 余弦函数的倒数:secθ = 1/cosθ6. 正切函数的倒数:cotθ = 1/tanθ三角函数的平方和差公式:1. 正弦函数的平方和差公式:sin(A±B) = sinA·cosB ± cosA·sinB2. 余弦函数的平方和差公式:cos(A±B) = cosA·cosB ∓ sinA·sinB3. 正切函数的平方和差公式:tan(A±B) = (tanA ± tanB) / (1 ∓tanA·tanB)倍角、半角公式:1. 正弦函数的倍角公式:sin(2A) = 2·sinA·cosA2. 余弦函数的倍角公式:cos(2A) = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A3. 正切函数的倍角公式:tan(2A) = (2·tanA) / (1 - tan^2A)三角函数的和差化积公式:1. 正弦函数的和化积公式:sinA + sinB = 2·sin[(A+B)/2]·cos[(A-B)/2]正弦函数的差化积公式:sinA - sinB = 2·cos[(A+B)/2]·sin[(A-B)/2]2. 余弦函数的和化积公式:cosA + cosB = 2·cos[(A+B)/2]·cos[(A-B)/2]余弦函数的差化积公式:cosA - cosB = -2·sin[(A+B)/2]·sin[(A-B)/2]3. 正切函数的和化积公式:tanA + tanB = sin(A+B) / cosA·cosB正切函数的差化积公式:tanA - tanB = sin(A-B) / cosA·cosB其他重要的三角函数公式:1. 正弦函数的倒数公式:sin(π/2 - A) = cosA2. 余弦函数的倒数公式:cos(π/2 - A) = sinA3. 正切函数的倒数公式:tan(π/2 - A) = 1/tanA4. 三角函数的和差公式:sin(A±B) = sinA·cosB ± cosA·sinB以上是高中三角函数公式的大全,这些公式是学习和解决三角函数问题的基础。

高考必备之高中三角函数公式总表

高考必备之高中三角函数公式总表

三角公式总表⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π⒉正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2=b 2+c 2-2bc A cos bca cb A 2cos 222-+=b 2=a 2+c 2-2ac B cosc 2=a 2+b 2-2ab C cos4. 12S ∆=a a h ⋅ =21ab C sin =21bc A sin =21ac B sin=Rabc 4=2R 2A sin B sin C sin ⒌同角关系:⑴商的关系: θtg =x y =θθcos sin⑵倒数关系:sin csc cos sec tan cot 1θθθθθθ⋅=⋅=⋅= ⑶平方关系:22sin cos 1θθ+=⑷)sin(cos sin 22ϕθθθ++=+b a b a(其中辅助角ϕ与点(a,b )在同一象限,且tan baφ=)⒍诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限7和差角公式βαβαβαsin cos cos sin )sin(±=±βαβαβαsin sin cos cos )cos( =± tan tan tan()1tan tan αβαβαβ±±=⋅ tan tan tan()(1tan tan )αβαβαβ±=±⋅8二倍角公式:(含万能公式)①22tan sin 22sin cos 1tan θθθθθ==+ ②2222221tan cos 2cos sin 2cos 112sin 1tan θθθθθθθ-=-=-=-=+ ③22tan tan 21tan θθθ=- 21cos 2sin 2θθ-=22cos 1cos 2θθ+=⒓半角公式:(符号的选择由2θ所在的象限确定)①2cos 12sin 2θθ-= ○22cos 12cos 2θθ+=○3sin 1cos tan 21cos sin θθθθθ-==+。

高考数学三角函数必背公式大全

高考数学三角函数必背公式大全

高考数学三角函数必背公式大全高考数学三角函数必背公式1、设α为任意角,终边相同的角的同一三角函数的值相等sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα3、任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα4、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα5、诱导公式sin(-α)=-sinαcos(-α)=cosαtan(—a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtanA=sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα6、和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB三角函数的性质三角函数性质是:如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。

高三数学总复习三角函数公式

高三数学总复习三角函数公式

三角函数公式一、三角函数的和差公式1、cos(A-B)=cosAcosB+sinAsinB2、cos(A+B)=cosAcosB-sinAsinB3、sin(A+B)=sinAcosB+cosAsinB4、sin (A-B)= sinAcosB-cosAsinB5、tan(A+B)=tan A+tanB 1tan AtanB-6、tan(A-B)=tan A-tanB 1tan AtanB+二、倍角公式7、sin2A= 2sinAcosB8、cos2A=cos A-sin A (变形形式cos2A=1-2sin A ;cos2A=2cos A-1)22229、tan2A=22tan A 1tan A-三、积化和差公式10、sinAcosB=[sin(A+B) +sin (A-B)]12证:右=[sin(A+B) +sin (A-B)]12=[ (sinAcosB+cosAsinB) + (sinAcosB-cosAsinB)]12 = sinAcosB=左11、cosAsinB=[sin(A+B) -sin (A-B)]12证:右=[sin(A+B) -sin (A-B)]12=[ (sinAcosB+cosAsinB) - (sinAcosB-cosAsinB)]12 = cosAsinB =左12、cosAcosB=[cos(A+B)+cos (A-B)]12证:右=[cos(A+B)+cos (A-B)]12=[ (cosAcosB-sinAsinB)+ (cosAcosB+sinAsinB)]12 = cosAcosB =左13、sinAsinB=[cos(A-B)-cos (A+B)]12证:右=[cos(A+B)+cos (A-B)]12=[ (cosAcosB+sinAsinB)+ (cosAcosB-sinAsinB)]12 = sinAsinB =左四、和差化积公式14、sinA+sinB=2sin cos A B 2+A B 2-证:令X=,Y=,则A=X+Y ,B=X-Y A B 2+A B 2-左= sinA+sinB= sin(X+Y)+sin(X-Y)=( sinXcosY+cosXsinY)+( sinXcosY-cosXsinY)=2 sinXcosY=2sin cos =右A B 2+A B 2-15、sinA-sinB=2sin cos A B 2-A B 2+证:左= sinA-sinB= sinA+sin(-B)= 2sin cos =右A+(B)2-A-(-B)216、cosA+cosB=2cos cos A B 2+A B 2-证:令X=,Y=,则A=X+Y ,B=X-Y A B 2+A B 2-左= cosA+cosB = cos(X+Y)+cos(X-Y)=( cosXcosY-sinXsinY)+( cosXcosY+sinXsinY)=2cosXcosY=2cos cos =右A B 2+A B 2-17、cosA-cosB=-2sin sin A B 2+A B 2-证:令X=,Y=,则A=X+Y ,B=X-Y A B 2+A B 2-左= cosA-cosB = cos(X+Y)-cos(X-Y)=( cosXcosY-sinXsinY)-( cosXcosY+sinXsinY)=-2sinXsinY=-2sin sin =右A B 2+A B 2-补充:18、sin2A=22tan A 1tan A+证:左=22222sin A22tan A 2sin A cos A sin 2A cos A sin 2A=sin A 1tan A sin A cos A 11cos A ⋅====+++右19、cos2A=221tan A 1tan A-+证:左=2222222222sin A 11tan A sin A cos A cos 2A cos A cos 2A=sin A 1tan A sin A cos A 11cos A---====+++右五、万能公式令t=tan ,则A2sinA=(公式18的变形);221tt +cosA=(公式19的变形);2211t t -+tanA=(公式9的变形)。

高中数学三角函数应知应会必记公式汇总

高中数学三角函数应知应会必记公式汇总

高中数学三角函数应知应会必记公式汇总设是一个任意角,它的终边与单位圆交于点(,),那么正弦sinα=y,余弦cosα=x,正切tanα=(x≠0).设α是一个任意角,它的终边上任意一点P(x,y),记r=,那么正弦sinα=,余弦cosα=,正切tanα= (x≠0).3同角三角函数的基本关系式(必记)(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tanα(α≠+kπ,k∈Z).记)5和角、差角公式(必记)6二倍角公式(必记)二倍角公式有以下常用变形结论:(规律:升幂缩角,降幂扩角)(会推导)1、升幂公式:2、降幂公式:3、正余弦的和差与积结构互化4、正切的和差与积结构互化5、倍半关系弦切互化7半角公式(熟悉其中一组即可)(会推导)8万能公式(可以理解为二倍角公式的另一种形式)(会推导)万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。

万能公式推导思路:9和差化积公式(会推导)了解和差化积公式的推导,有助于我们理解并掌握好公式:10积化和差公式(会推导)我们可以把积化和差公式看成是和差化积公式的逆应用。

11辅助角公式(必记)12正弦定理(必记)13余弦定理(必记)14三角形的面积公式(必记)说明:三角问题解题思路的三个转化方向:1、转化角:分析角的和差倍半关系、异角化同角、非特殊角化特殊角。

2、转化函数名:异名化同名、弦切互化、正余弦互化。

3、转化结构:凑公式结构、和差与积结构的互化、升幂或降幂、因式分解、配完全平方、分式的合并与拆分,整式与分式的互化,出根号,分母有理化、通分、消项、去分母等代数式恒等变形方法与三角公式的分解合并的灵活结合。

高中全部三角函数公式

高中全部三角函数公式

高中全部三角函数公式高中三角函数公式是高中数学中的一个重要部分,它是解决与三角函数有关的问题的基础。

下面是高中全部三角函数公式,共分为三个部分:1.正弦函数公式正弦函数公式定义如下:sinθ = 对边/斜边其中,θ表示夹角,对边表示夹角θ的对边长度,斜边表示夹角θ的斜边长度。

2.余弦函数公式余弦函数公式定义如下:cosθ = 邻边/斜边其中,θ表示夹角,邻边表示夹角θ的邻边长度,斜边表示夹角θ的斜边长度。

3.正切函数公式正切函数公式定义如下:tanθ = 对边/邻边其中,θ表示夹角,对边表示夹角θ的对边长度,邻边表示夹角θ的邻边长度。

以上三个基本三角函数公式是高中数学中最基础和最重要的一部分,通过这些公式可以计算出夹角的正弦、余弦和正切值。

二、诱导公式1.余弦-正弦诱导公式cos(α-β) = cosαcosβ + sinαsinβcos(α+β) = cosαcosβ - sinαsinβsin(α+β) = sinαcosβ + cosαsinβsin(α-β) = sinαcosβ - cosαsinβ2.二倍角公式sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θtan2θ = 2tanθ/1-tan^2θ3.万能公式sinθ = 2tan(θ/2)/1+tan^2(θ/2)cosθ = 1-tan^2(θ/2)/1+tan^2(θ/2)tanθ = 2tan(θ/2)/1-tan^2(θ/2)以上是诱导公式中的一部分,它们可以通过一些变换和推导得到,使用这些公式可以简化一些复杂的三角函数表达式的计算。

三、三角函数的和差化积和积化和公式1.和差化积公式sin(α+β) = cosαsinβ + sinαcosβsin(α-β) = sinαcosβ - cosαsinβcos(α+β) = cosαcosβ - sinαsinβcos(α-β) = cosαcosβ + sinαsinβ2.积化和公式sinαsinβ = (1/2)(cos(α-β) - cos(α+β))cosαcosβ = (1/2)(cos(α-β) + cos(α+β))sinαcosβ = (1/2)(sin(α+β) + sin(α-β))以上是高中全部的三角函数公式,包括基本三角函数公式、诱导公式和三角函数的和差化积和积化和公式。

高中高数三角函数公式大全

高中高数三角函数公式大全

高中高数三角函数公式大全1.三角函数的定义:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边2.基本公式:-两个角的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβcos(α ± β) = cosαcosβ ∓ sinαsinβtan(α ± β) = (tanα ± tanβ)/(1 ∓ tanαtanβ) -二倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1 - tan^2θ)-半角公式:sin(θ/2) = ±√((1 - cosθ)/2)cos(θ/2) = ±√((1 + cosθ)/2)tan(θ/2) = ±√((1 - cosθ)/(1 + cosθ))-三倍角公式:sin3θ = 3sinθ - 4sin^3θcos3θ = 4cos^3θ - 3cosθtan3θ = (3tanθ - tan^3θ)/(1 - 3tan^2θ) 3.三角恒等式:-倍角恒等式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1 - tan^2θ)-二倍角恒等式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1 - tan^2θ)-半角恒等式:sin^2(θ/2) = (1 - cosθ)/2cos^2(θ/2) = (1 + cosθ)/2tan^2(θ/2) = (1 - cosθ)/(1 + cosθ)-和差化积恒等式:sin(α ± β) = sinαcosβ ± cosαsinβcos(α ± β) = cosαcosβ ∓ sinαsinβ-积化和差恒等式:sinαsinβ = (cos(α - β) - cos(α + β))/2cosαcosβ = (cos(α - β) + cos(α + β))/2-其他常用恒等式:sinα + sinβ = 2sin((α + β)/2)cos((α - β)/2)sinα - sinβ = 2cos((α + β)/2)sin((α - β)/2)cosα + cosβ = 2cos((α + β)/2)cos((α - β)/2)cosα - cosβ = -2sin((α + β)/2)sin((α - β)/2)4.三角函数的周期性:-正弦函数和余弦函数的周期都是2π-正切函数的周期是π5.三角函数的图像:-正弦函数图像:呈现波浪线,振幅为1,最大值为1,最小值为-1 -余弦函数图像:呈现波浪线,振幅为1,最大值为1,最小值为-1 -正切函数图像:呈现周期性的谐波曲线,没有定义的点为x=(2k+1)π/2(k为整数)。

高中高考数学三角函数公式汇总

高中高考数学三角函数公式汇总

高中高考数学三角函数公式汇总一、三角函数的基本概念和性质1.弧度与角度的换算公式:弧度=角度×π/180角度=弧度×180/π2.三角函数的定义:(1) 正弦函数 sin(x) = y / r(2) 余弦函数 cos(x) = x / r(3) 正切函数 tan(x) = y / x这里的x是直角三角形的一个锐角,y是对边的长度,x是邻边的长度,r是斜边的长度。

3.三角函数的周期性:(1) 正弦函数的周期是2π,即sin(x + 2π) = sin(x)(2) 余弦函数的周期是2π,即cos(x + 2π) = cos(x)(3) 正切函数的周期是π,即tan(x + π) = tan(x)4.三角函数的奇偶性:(1) 正弦函数是奇函数,即 sin(-x) = -sin(x)(2) 余弦函数是偶函数,即 cos(-x) = cos(x)(3) 正切函数是奇函数,即 tan(-x) = -tan(x)5.三角函数的相关性质:(1) 正弦函数与余弦函数的关系:sin^2(x) + cos^2(x) = 1(2) 正切函数与正弦函数的关系:tan(x) = sin(x) / cos(x)(3) 正切函数与余弦函数的关系:tan(x) = 1 / cot(x)二、基本角的三角函数值1.0°、30°、45°、60°和90°的三角函数值:(1) sin(0°) = 0, cos(0°) = 1, tan(0°) = 0(2) sin(30°) = 1/2, cos(30°) = √3/2, tan(30°) = √3/3(3) sin(45°) = √2/2, cos(45°) = √2/2, tan(45°) = 1(4) sin(60°) = √3/2, cos(60°) = 1/2, tan(60°) = √3(5) sin(90°) = 1, cos(90°) = 0, tan(90°) = 无穷大2.常用角的三角函数值:(1) sin(180° - x) = sin(x)(2) cos(180° - x) = -cos(x)(3) tan(180° - x) = -tan(x)三、和差角公式1.正弦函数的和差角公式:(1) sin(a + b) = sin(a)cos(b) + cos(a)sin(b)(2) sin(a - b) = sin(a)cos(b) - cos(a)sin(b)(1) cos(a + b) = cos(a)cos(b) - sin(a)sin(b)(2) cos(a - b) = cos(a)cos(b) + sin(a)sin(b)3.正切函数的和差角公式:(1) tan(a + b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b))(2) tan(a - b) = (tan(a) - tan(b)) / (1 + tan(a)tan(b))四、倍角公式1.正弦函数的倍角公式:(1) sin(2a) = 2sin(a)cos(a)2.余弦函数的倍角公式:(1) cos(2a) = cos^2(a) - sin^2(a) = 2cos^2(a) - 1 = 1 - 2sin^2(a)3.正切函数的倍角公式:(1) tan(2a) = (2tan(a)) / (1 - tan^2(a))五、半角公式1.正弦函数的半角公式:(1) sin(a/2) = ±√[(1 - cos(a)) / 2]2.余弦函数的半角公式:(1) cos(a/2) = ±√[(1 + cos(a)) / 2](1) tan(a/2) = ±√[(1 - cos(a)) / (1 + cos(a))]六、三角函数的积化和差公式1.余弦函数的积化和差公式:(1) cos(a)cos(b) = (1/2)[cos(a + b) + cos(a - b)]2.正弦函数的积化和差公式:(1) sin(a)sin(b) = -(1/2)[cos(a + b) - cos(a - b)]3.正弦函数与余弦函数的积化和差公式:(1) sin(a)cos(b) = (1/2)[sin(a + b) + sin(a - b)]以上是高中高考数学里常见的三角函数公式汇总,希望能对你的学习有所帮助。

高中三角函数公式大全整理版

高中三角函数公式大全整理版

高中三角函数公式大全整理版以下是一份整理的高中三角函数公式大全:1. 基本关系式:- 余弦定理:c² = a² + b² - 2abcosC- 正弦定理:sinA/a = sinB/b = sinC/c- 正余弦关系式:sin²A + cos²A = 1- 余切关系式:tanA = sinA/cosA2. 角和差公式:- 正弦角和差公式:sin(A±B) = sinAcosB ± cosAsinB- 余弦角和差公式:cos(A±B) = cosAcosB - sinAsinB- 正切角和差公式:tan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB) - 余切角和差公式:cot(A±B) = (cotA cotB ∓ 1) / (cotB ± cotA)3. 二倍角公式:- 正弦二倍角:sin2A = 2sinAcosA- 余弦二倍角:cos2A = cos²A - sin²A- 正切二倍角:tan2A = (2tanA) / (1 - tan²A)- 余切二倍角:cot2A = (cot²A - 1) / 2cotA4. 半角公式:- 正弦半角:sin(A/2) = ±√[(1 - cosA) / 2]- 余弦半角:cos(A/2) = ±√[(1 + cosA) / 2]- 正切半角:tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]- 余切半角:cot(A/2) = ±√[(1 + cosA) / (1 - cosA)]5. 和差化积公式:- 正弦和差化积:sinA + sinB = 2sin[(A+B)/2]cos[(A-B)/2]- 余弦和差化积:cosA + cosB = 2cos[(A+B)/2]cos[(A-B)/2]- 正切和差化积:tanA + tanB = sin(A+B) / [cosAcosB - sinAsinB]- 余切和差化积:cotA - cotB = [cotAcotB - 1] / [cotB - cotA]6. 和差化差公式:- 正弦和差化差:sinA - sinB = 2cos[(A+B)/2]sin[(A-B)/2]- 余弦和差化差:cosA - cosB = -2sin[(A+B)/2]sin[(A-B)/2]- 正切和差化差:tanA - tanB = [sin(A-B)] / [cosAcosB + sinAsinB]- 余切和差化差:cotA + cotB = [cotAcotB + 1] / [cotB + cotA]这只是一小部分高中三角函数公式的整理,还有许多其他公式和恒等式,具体可参考数学教材或参考资料。

高考数学知识点-三角函数公式大全

高考数学知识点-三角函数公式大全

高考数学知识点:三角函数公式大全sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的邻边 / 的对边Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)sin3a=sin(2a+a)=sin2acosa+cos2asinaAsin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2)) tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sina)+(1-2sina)sina =3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa =4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina) =4sina*2sincos*2sincos=4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2coscos*{-2sinsin}=-4cosasin(a+30)sin(a-30)=-4cosasinsin=-4cosacos(60-a)=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))sin(++)=sincoscos+cossincos+coscossin-sinsinsin cos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-ta ntan)cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)sin+sin = 2 sin cossin-sin = 2 cos sincos+cos = 2 cos coscos-cos = -2 sin sintanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) sinsin = /2coscos = /2sincos = /2cossin = /2sin(-) = -sincos(-) = costan (a)=-tansin(/2-) = coscos(/2-) = sinsin(/2+) = coscos(/2+) = -sinsin() = sincos() = -cossin() = -sincos() = -costanA= sinA/cosAtan(/2+)=-cottan(/2-)=cottan()=-tantan()=tan诱导公式记背诀窍:奇变偶不变,符号看象限sin=2tan(/2)/cos=/1+tan^(/2)]tan=2tan(/2)/(1)(sin)^2+(cos)^2=1(2)1+(tan)^2=(sec)^2(3)1+(cot)^2=(csc)^2证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC) 整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C /2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos=0 以及sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。

高中三角函数公式大全

高中三角函数公式大全

高中三角函数公式大全1. 正弦函数(sine function):正弦函数用sin表示,定义域为实数集,值域为[-1,1]。

基本关系式:sinθ=opposite/hypotenuse基本恒等式:- 余角关系式:sin(π/2 - θ) = cosθ ;sin(π/2 + θ) = cosθ- 符号关系式:sin(-θ) = - sinθ ;sin(θ + 2πn) = sinθ (n 为任意整数)三角和差化简公式:- 和差化简:sin(α ± β) = sinα * cosβ ± cosα * sinβ- 差和化简:sinα + sinβ = 2 * sin((α + β) / 2) *cos((α - β) / 2)- 和差化简:sinα - sinβ = 2 * cos((α + β) / 2) *sin((α - β) / 2)2. 余弦函数(cosine function):余弦函数用cos表示,定义域为实数集,值域为[-1,1]。

基本关系式:cosθ = adjacent/hypotenuse基本恒等式:- 余角关系式:cos(π/2 - θ) = sinθ ;cos(π/2 + θ) = -sinθ- 符号关系式:cos(-θ) = cosθ ;cos(θ + 2πn) = cosθ (n 为任意整数)三角和差化简公式:- 和差化简:cos(α ± β) = cosα * cosβ ∓ sinα * sinβ- 差和化简:cosα + cosβ = 2 * cos((α + β) / 2) * cos((α - β) / 2)- 和差化简:cosα - cosβ = -2 * sin((α + β) / 2) *sin((α - β) / 2)3. 正切函数(tangent function):正切函数用tan表示,定义域为实数集,值域为整个实数集。

基本关系式:tanθ = opposite/adjacent基本恒等式:- 余角关系式:tan(π/2 - θ) = 1/tanθ ;tan(π/2 + θ) = -1/tanθ三角和差化简公式:- 和差化简:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanα * tanβ)- 和差化简:tanα + tanβ = sin(α + β) / cosα * cosβ- 和差化简:tanα - tanβ = sin(α - β) / cosα * cosβ4. 正割函数(secant function):正割函数用sec表示,定义域为除了θ = π/2 + πn (n为任意整数)的实数集,值域为实数集的负数和正数。

高中三角函数公式大全

高中三角函数公式大全

高中三角函数公式大全1. 正弦函数的基本公式。

正弦函数是三角函数中的一种基本函数,其定义域是全体实数,值域是[-1,1]。

其基本公式如下:\[y = A\sin(Bx + C) + D\]其中,A表示振幅,B表示周期,C表示初相位,D表示纵向位移。

2. 余弦函数的基本公式。

余弦函数也是三角函数中的一种基本函数,其定义域是全体实数,值域是[-1,1]。

其基本公式如下:\[y = A\cos(Bx + C) + D\]其中,A表示振幅,B表示周期,C表示初相位,D表示纵向位移。

3. 正切函数的基本公式。

正切函数是另一种常见的三角函数,其定义域是全体实数,值域是全体实数。

其基本公式如下:\[y = A\tan(Bx + C) + D\]其中,A表示振幅,B表示周期,C表示初相位,D表示纵向位移。

4. 余切函数的基本公式。

余切函数是正切函数的倒数,其定义域是全体实数,值域是全体实数。

其基本公式如下:\[y = A\cot(Bx + C) + D\]其中,A表示振幅,B表示周期,C表示初相位,D表示纵向位移。

5. 正割函数和余割函数的基本公式。

正割函数和余割函数分别是余弦函数和正弦函数的倒数,其定义域和值域与余弦函数和正弦函数相对应。

其基本公式分别如下:\[y = A\sec(Bx + C) + D\]\[y = A\csc(Bx + C) + D\]其中,A表示振幅,B表示周期,C表示初相位,D表示纵向位移。

通过以上公式的介绍,我们可以看到不同的三角函数在其基本公式中都有着振幅、周期、初相位和纵向位移这几个重要的参数。

掌握了这些公式,我们就能够更好地理解和分析三角函数的性质,从而更好地应用到实际问题中去。

除了基本公式外,三角函数还有一些重要的性质和公式,如和差化积、倍角公式、半角公式等,这些公式和性质也是我们在学习和应用三角函数时不可或缺的重要内容。

希望大家在学习三角函数的过程中能够认真掌握这些知识点,从而更好地理解和运用三角函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学知识点之三角函数公式大全
为高三同学总结归纳高三数学知识点之三角函数公式大全。

希望对高三考生在备考中有所帮助,欢迎大家阅读作为参考。

锐角三角函数公式
sin =的对边 / 斜边
cos =的邻边 / 斜边
tan =的对边 / 的邻边
cot =的邻边 / 的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A))
三倍角公式
sin3=4sinsin(/3+)sin(/3-)
cos3=4coscos(/3+)cos(/3-)
tan3a = tan a tan(/3+a) tan(/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
辅助角公式
Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B 降幂公式
sin^2()=(1-cos(2))/2=versin(2)/2
cos^2()=(1+cos(2))/2=covers(2)/2
tan^2()=(1-cos(2))/(1+cos(2))
考动态信息:
高考各月大事汇总
高考语文560个常考易错成语总结
本周六升学网高考公益讲座
高考数学难点总结:圆锥曲线技巧归纳
高考数学知识点之不等式解法
数学不等式证明之放缩法
高考数学之反证法的不同应用
推导公式
tan+cot=2/sin2
tan-cot=-2cot2
1+cos2=2cos^2
1-cos2=2sin^2
1+sin=(sin/2+cos/2)^2
=2sina(1-sina)+(1-2sina)sina
=3sina-4sina
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cosa-1)cosa-2(1-sina)cosa
=4cosa-3cosa
sin3a=3sina-4sina
=4sina(3/4-sina)
=4sina[(3/2)-sina]
=4sina(sin60-sina)
=4sina(sin60+sina)(sin60-sina)
=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]co s[(60-a)/2]
=4sinasin(60+a)sin(60-a)
cos3a=4cosa-3cosa
=4cosa(cosa-3/4)
=4cosa[cosa-(3/2)]
=4cosa(cosa-cos30)
=4cosa(cosa+cos30)(cosa-cos30)
=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2] sin[(a-30)/2]}
=-4cosasin(a+30)sin(a-30)
=-4cosasin[90-(60-a)]sin[-90+(60+a)]
=-4cosacos(60-a)[-cos(60+a)]
=4cosacos(60-a)cos(60+a)
上述两式相比可得
tan3a=tanatan(60-a)tan(60+a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
考动态信息:
高考各月大事汇总
高考语文560个常考易错成语总结
本周六升学网高考公益讲座
高考数学难点总结:圆锥曲线技巧归纳
高考数学知识点之不等式解法
数学不等式证明之放缩法
高考数学之反证法的不同应用
三角和
sin(++)=sincoscos+cossincos+coscossin-sinsinsin cos(++)=coscoscos-cossinsin-sincossin-sinsincos tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-ta ntan)
两角和差
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
sin()=sincoscossin
tan(+)=(tan+tan)/(1-tantan)
tan(-)=(tan-tan)/(1+tantan)
和差化积
sin+sin = 2 sin[(+)/2] cos[(-)/2]
sin-sin = 2 cos[(+)/2] sin[(-)/2]
cos+cos = 2 cos[(+)/2] cos[(-)/2]
cos-cos = -2 sin[(+)/2] sin[(-)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差
sinsin = [cos(-)-cos(+)] /2
coscos = [cos(+)+cos(-)]/2
sincos = [sin(+)+sin(-)]/2
cossin = [sin(+)-sin(-)]/2
诱导公式
sin(-) = -sin
cos(-) = cos
tan (a)=-tan
sin(/2-) = cos
cos(/2-) = sin
sin(/2+) = cos
cos(/2+) = -sin
sin() = sin
cos() = -cos
sin() = -sin
cos() = -cos
tanA= sinA/cosA
tan(/2+)=-cot
tan(/2-)=cot
tan()=-tan
tan()=tan
诱导公式记背诀窍:奇变偶不变,符号看象限考动态信息:
高考各月大事汇总
高考语文560个常考易错成语总结
本周六升学网高考公益讲座
高考数学难点总结:圆锥曲线技巧归纳
高考数学知识点之不等式解法
数学不等式证明之放缩法
高考数学之反证法的不同应用
万能公式
sin=2tan(/2)/[1+tan^(/2)]
cos=[1-tan^(/2)]/1+tan^(/2)]
tan=2tan(/2)/[1-tan^(/2)]
其它公式
(1)(sin)^2+(cos)^2=1
(2)1+(tan)^2=(sec)^2
(3)1+(cot)^2=(csc)^2
证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=-C
tan(A+B)=tan(-C)
(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC) 整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nZ)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C /2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n -1)/n]=0
cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1) /n]=0 以及
sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
以上就是高三数学知识点之三角函数公式大全,希望能帮助到大家。

相关文档
最新文档