初中课本几何知识点归纳
初中数学几何知识点整理
初中数学几何知识点整理
一、平面几何基本概念
1.点、线、面、角的定义和性质
2.相交线、平行线、垂直线的关系
3.线段的长度、角的度量和角的分类
4.三角形的分类和性质
5.四边形的分类和性质
6.正多边形和圆的性质
二、平面图形的性质和计算
1.三角形内角和定理
2.三角形外角和定理
3.三角形的相似性质
4.三角形的全等性质
5.直角三角形的勾股定理
6.三角形的中线、高线、角平分线等的性质
7.四边形的对角线、角平分线等的性质
8.圆的圆心角、弧、弦等的性质
9.弧长、扇形面积、圆周角等的计算
三、空间几何基本概念
1.空间的基本概念和几何图形的投影
2.空间几何体的表达和展开图
3.空间的点、线、面、体的关系
4.空间角、棱、面、顶点等的定义和性质
5.空间直角坐标系和向量的性质和运算
6.空间几何体的视图、投影和尺寸关系
四、平面图形的位置关系和计算
1.直线和平面的位置关系
2.点和直线的距离、点和平面的距离
3.直线和平面的夹角和包含关系
4.直线与直线、直线与平面的位置关系
5.各种图形之间的位置关系和投影关系
6.平面图形的面积、周长和体积的计算
五、解题方法与应用
1.图形分析法
2.推理证明法
3.运动解法
4.化归为已知
5.整体几何法
6.利用几何工具求解
7.几何建模
以上是初中数学几何知识点的整理,对于学生来说,掌握这些知识有助于提高解决几何问题的能力,同时也为将来进一步学习更高级数学打下坚实的基础。
希望同学们认真学习,勤加练习,掌握好这些知识点,提高自己的数学水平。
初中数学几何知识点总结5篇
初中数学几何知识点总结初中数学几何知识点总结(精选10篇)总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,不妨坐下来好好写写总结吧。
那么你真的懂得怎么写总结吗?以下是小编整理的初中数学几何知识点总结,希望对大家有所帮助。
初中数学几何知识点总结 11、四边形的.面积公式⑴、S□ABCD=a·h⑵、S菱形=1/2a·b(a、b为对角线)⑶、S梯形=1/2(a+b)·h=m·h(m为中位线)2、三角形的面积公式⑴、S△=1/2·a·h⑵、S△=1/2·P·r(P为三角形周长,r为三角形内切圆的半径)3、S正多边形=1/2·Pn·rn=1/2·nan·rn4、S圆=πR25、S扇形=nπ=1/2LR6、S弓形=S扇-S△初中数学几何知识点总结 21、三角形、平行四边形和梯形的计算用到的定理主要有三角形全等定理,中位线定理,等腰三角形、直角三角形、正三角形及各种平行四边形的性质等定理。
关于梯形中线段计算主要依据梯形中位线定理及等腰梯形、直角梯形的性质定理等。
2、有关圆的线段计算的主要依据⑴、切线长定理⑵、圆切线的性质定理。
⑶、垂径定理。
⑷、圆外切四边形两组对边的和相等。
⑸、两圆外切时圆心距等于两圆半径之和,两圆内切时圆心距等于两半径之差。
3、直角三角形边的`计算直角三角形边长的计算应用最广,其理论依据主要是勾股定理和特殊角三角形的性质及锐角三角函数等。
4、成比例线段长度的求法⑴、平行线分线段成比例定理;⑵、相似形对应线段的比等于相似比;⑶、射影定理;⑷、相交弦定理及推论,切割线定理及推论;⑸、正多边形的边和其他线段计算转化为特殊三角形。
初中数学几何知识点总结 31、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的'所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角初中数学几何知识点总结 41、掌握最基本的五种尺规作图⑴、作一条线段等于已知线段。
初中几何知识点总结
初中几何知识点总结
一、线
1、平行线:平行线指的是在同一平面上,不经过同一点的两条直线,它们的斜率相同,距离一定,不断重合且不相交。
2、垂直线:垂直线是指垂直位置的两条直线,它们的角度为90度,斜率无穷大,不相交且会以一定的距离重合。
3、异面直线:异面直线是指两条直线虽然都位于一个平面,但是从某种角度看是不会相交的。
二、圆
1、直径:指由圆心到圆周所围的最长线段叫做圆的直径。
2、弦:指圆心到圆周之间的某个点,从圆心出发到这个点的线段叫做弦。
3、圆心:指顶点的圆心是圆的特殊点,任意点到圆心的距离都相等,这个距离叫做圆的半径。
三、三角形
1、角:指三角形每个顶点与与其相邻顶点连线组成的棱叫做角。
2、边:三角形内任意两点之间连线组成的部分叫做边,有直角、锐角和钝角三种。
3、角平分线:指从三角形三边中任意一点出发,经过该角对边的延长线,与另外一边相交于某点,这条线段叫做角平分线。
四、椭圆
1、长轴:椭圆的长轴是从椭圆的两个顶点开始,看起来和椭圆略有不同的椭圆。
2、短轴:椭圆的短轴是从椭圆的两个非顶点开始,形成和椭圆比较一致的的椭圆。
3、离心率:椭圆的离心率指的是椭圆的长轴与短轴之间的比值,它可以表明椭圆的形状程度,值越大椭圆形状越扁。
五、其它
1、锐角三角形:指三角形内任意两条边和它们之间的角小于90度的三角形叫作锐角三角形。
2、三角形的类型:根据三角形三边长度相等、两边之和大于第三边或相等三种情况
来分别确定三角形的类型。
3、两点距离:计算两点之间的距离,可以使用勾股定理或斜率的计算方式进行计算。
初中几何部分知识点总结
初中几何部分知识点总结几何是数学的一个重要分支,它研究的是空间和图形的性质、关系和运动规律。
在初中阶段,学习几何知识是非常重要的,因为它对于学生后续学习数学和物理等科目都有着重要的影响。
下面我们就来总结一下初中几何部分的知识点。
一、平面几何1. 点、线、面点是几何的基本概念,用于表示位置。
线是由一系列点组成的,它没有宽度,但有长度。
面是由一系列线组成的,它没有厚度,但有面积。
2. 角角是由两条射线共同起点所形成的图形,一般用大写拉丁字母表示,如∠ABC。
角可以分为锐角、直角、钝角和平角。
3. 三角形三角形是由三条边和三个角组成的平面图形,按照边长可以分为等边三角形、等腰三角形和普通三角形。
4. 四边形四边形是由四条边组成的平面图形,按照边长和角度可以分为矩形、平行四边形、菱形、梯形等。
5. 多边形多边形是由多条边组成的平面图形,按照边的数量可以分为三角形、四边形、五边形等。
6. 圆圆是由一个固定点到平面上所有点的距离都相等的点构成的图形,半径是圆的半径长度,直径是圆的直径长度。
7. 相似和全等当两个图形的对应角相等,且对应边成比例时,这两个图形是相似的。
当两个图形的对应边和对应角都相等时,这两个图形是全等的。
8. 三角形的面积三角形的面积可以使用底边和高来计算,公式为S=1/2*底*高。
9. 四边形的面积四边形的面积可以使用对角线和夹角来计算,公式为S=1/2*对角线之积*sin夹角。
10. 圆的面积圆的面积可以使用半径来计算,公式为S=πr²。
11. 圆的周长圆的周长可以使用直径或半径来计算,公式为C=2πr或C=πd。
二、空间几何1. 空间图形空间图形是三维空间中的图形,常见的空间图形有立方体、正方体、棱柱、棱锥、圆柱、圆锥等。
2. 空间角空间角是三维空间中的角度,在计算时需要考虑三维空间的性质和关系。
3. 空间坐标空间坐标是三维空间中的坐标系,它包括x轴、y轴和z轴,以及这三个坐标轴之间的关系。
初中数学知识点总结(几何)
初中数学知识点总结(几何)1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360° 49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质如果a /b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理 2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离d﹥r 122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论 2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r ②两圆外切d=R+r ③两圆相交R-r﹤d﹤R+r(R﹥r) ④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r) 136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的内角都等于(n-2)×180°/n 140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式:L=n∏R/180 145扇形面积公式:S扇形=n∏R/360=LR/2 146内公切线长= d-(R-r) 外公切线长= d-(R+r)。
初中几何常用知识点总结
初中几何常用知识点总结一、点、线、面1. 点:初中几何中,点是最基本的几何概念,它是没有大小和形状的。
2. 线:是由点无限延伸而成的,它是几何中的另一个基本概念。
3. 面:是由线无限延伸而成的,面是几何中的重要概念。
二、角1. 角的定义:是由两条射线共同端点形成的图形。
2. 角的度量:常用的角的度量单位有度和弧度。
一度等于360分之一的周角,弧度是一个弧长等于半径长的角。
3. 角的分类:根据角的大小,可以把角分为锐角、直角、钝角和平角。
三、三角形1. 三角形的定义:是由三条线段所围成的,是最基本的多边形。
2. 三角形的分类:根据三角形的边长和角度,可以将三角形分为等腰三角形、等边三角形、直角三角形、锐角三角形和钝角三角形。
3. 三角形的性质:三角形的内角和为180度,等边三角形的内角都是60度。
4. 三角形的周长和面积的计算:三角形的周长等于三条边长之和,而三角形的面积等于底边乘以高再除以2。
四、四边形1. 四边形的定义:四边形是由四条线段所围成的图形。
2. 四边形的分类:根据四边形的性质,可以将四边形分为平行四边形、矩形、菱形、正方形和梯形。
3. 四边形的性质:一般情况下,四边形的内角和为360度,平行四边形的对角线相互平分,正方形的对角线相等且垂直,矩形和菱形的对角线相等。
五、圆1. 圆的定义:是由一个定点到平面上任意一点的距离等于给定长度的所有点所构成的图形。
2. 圆的性质:圆的半径、直径、周长和面积的计算公式如下:半径:r直径:d=2r周长:C=2πr面积:S=πr²六、相似1. 相似的定义:两个或两个以上的图形,如果它们的形状相同但大小不同,就称为相似的。
2. 相似的判定:两个三角形相似,有相似三角形的三边成比例同比例,则它们相似;有两条边分别成等比倍相似,则它们相似;角相等或成对应相等,则它们相似。
七、射影1. 射影的定义:一个几何图形在与之相交的直线或平面上投影的图形。
2. 射影的分类:射影可以分为平行投影和中心投影。
初中几何知识点总结大全
初中几何知识点总结大全一、点、线、面、体及其性质1.点点是几何的基本要素,它表示空间中的一个位置,可以用字母表示。
点没有长度、宽度和高度,是一个零维的对象。
2. 线线是由一系列相互连接的点构成的,它没有宽度,是一个一维的对象。
根据线的位置关系,可以分为平行线、相交线和垂直线等。
3. 面面是由一条封闭的线构成的,它有面积,是一个二维的对象。
根据平面的性质,可以分为平行四边形、三角形、正方形、矩形、菱形等。
4. 体体是由一条封闭的面构成的,它有体积,是一个三维的对象。
根据体的性质,可以分为立方体、长方体、圆柱体、圆锥体、球等。
二、角及其性质1. 角的概念在平面内,由两条射线所夹的部分称为角。
夹角的两条射线称为角的两边,它们的公共端点称为角的顶点。
2. 角的分类根据夹角的大小和位置关系,可以将角分为锐角、直角、钝角、平角等。
锐角是小于90度的角,直角是等于90度的角,钝角是大于90度小于180度的角,平角是等于180度的角。
3. 角的性质(1)对顶角在两条相交直线上,来自同一侧的两个相邻角叫做对顶角。
对顶角的特点是大小相等。
(2)补角两个角互为补角,如果它们的和等于90度。
(3)余角两个角互为余角,如果它们的和等于180度。
三、直线和角的关系1. 平行线平行线是永远不相交的两条直线,它们的斜率相等。
平行线之间的距离是恒定的。
2. 垂直线垂直线是两条相交直线之间的夹角为90度的直线。
3. 直角三角形直角三角形是一个内角为90度的三角形。
直角三角形的斜边长度等于两条直角边长度的平方和的平方根。
四、相似与全等1. 相似如果两个图形的形状相同,但大小不同,那么这两个图形是相似的。
相似图形的对应边成比例,对应角相等。
2. 全等如果两个图形的形状和大小都相同,那么这两个图形是全等的。
全等图形的对应边和对应角都相等。
五、多边形的性质1. 多边形的概念由三条以上的线段构成的封闭图形称为多边形。
多边形由顶点、边和内角构成。
初中数学几何知识点归纳
初中数学几何知识点归纳一、几何基础知识1. 点、线、面- 点:没有大小,只有位置。
- 线:由无数个点组成,有长度,没有宽度。
- 面:由无数条线组成,有长度和宽度。
2. 直线、射线、线段- 直线:无限延伸,没有端点。
- 射线:有一个端点,向一个方向无限延伸。
- 线段:有两个端点,长度有限。
3. 角- 邻角:有共同顶点和边的两个角。
- 对顶角:两条射线共享一个公共点,形成的两个角。
- 平行线:在同一平面内,永不相交的两条直线。
二、平面图形1. 三角形- 等边三角形:三条边长度相等。
- 等腰三角形:至少有两条边长度相等。
- 直角三角形:有一个90度的角。
- 钝角三角形:有一个大于90度的角。
- 锐角三角形:所有角都小于90度。
2. 四边形- 正方形:四条边长度相等,四个角都是直角。
- 长方形:对边平行且相等,四个角都是直角。
- 平行四边形:对边平行。
- 梯形:至少有一组对边平行。
3. 圆- 圆心:圆的中心点。
- 半径:圆心到圆上任意一点的距离。
- 直径:通过圆心的最长线段,等于半径的两倍。
三、几何图形的性质1. 三角形的性质- 内角和:三角形内角和为180度。
- 海伦公式:已知三边长度,可以计算三角形的面积。
2. 四边形的性质- 正方形的性质:对角线相等且互相平分。
- 长方形的性质:对角线相等且互相平分。
- 平行四边形的性质:对角线互相平分。
3. 圆的性质- 圆周率:圆的周长与直径的比值,用π表示。
- 圆的面积:π乘以半径的平方。
四、几何图形的计算1. 面积计算- 三角形面积:底乘高除以2。
- 四边形面积:长乘宽(正方形和长方形);梯形的上下底之和乘高除以2。
- 圆的面积:π乘以半径的平方。
2. 周长计算- 三角形周长:三边之和。
- 四边形周长:四边之和(正方形和长方形);梯形的上下底之和加上两腰之和。
- 圆的周长:2π乘以半径。
3. 体积计算- 圆柱体积:底面积乘以高。
- 圆锥体积:1/3乘以底面积乘以高。
初中几何知识点总结归纳
初中几何知识点总结归纳几何学是数学的一个重要分支,研究平面图形、空间图形以及它们的性质、关系和变换等。
在初中阶段,学生将会学习到许多几何概念和知识,下面是对一些常见的初中几何知识点进行了总结归纳。
一、基本概念1.点:几何中的最基本单位,没有大小,用大写字母表示。
2.线段:由两个端点确定的线段,可以用一条直线表示。
3.直线:无限延长又无限窄的线段,用小写字母表示。
4.射线:由一个端点和延伸出的一段部分组成的线段。
5.角度:由两条不同的线段(称为边)组成的形状,有角心和两个端点。
用大小写字母表示,如∠ABC。
6.平行线:在同一平面上,永远不会相交的线段。
7.垂直线:两条直线相交时,形成的四个角度中有两个角度互为补角,被称为垂直线。
8.对称:一个图形相对于条线或中心点形成的镜像图形。
9.相似:两个图形的对应角相等,对应边成比例。
10.全等:两个图形的对应边和对应角都相等。
二、图形的性质1.三角形:由三条线段组成的图形,其中最常见的三种三角形是等边三角形、等腰三角形和直角三角形。
2.正方形:具有四条边相等且四个角都为直角的四边形。
3.长方形:具有相对边相等且四个角都为直角的四边形。
4.平行四边形:具有两对平行边的四边形。
5.梯形:具有一对平行边的四边形。
6.圆:平面上所有离圆心的距离都相等的点的集合。
7.弧:圆上两个点间的部分称为弧,圆上一个点所对应的弧称为圆心角。
8.弦:圆上连接两个点的线段。
9.切线:与圆只有一个公共点的直线。
三、图形的计算1.周长:图形的边长总和,矩形、正方形和长方形的周长可以通过边长相加得到。
2.面积:图形所占的二维空间大小,矩形、正方形和长方形的面积可以通过底边乘以高得到。
3.体积:三维图形所占的空间大小。
4.高度:从底边到顶点的垂直距离。
5.半径:从圆心到圆上特定点的距离。
6.直径:穿过圆心的线段的长度,是半径的两倍。
四、相关定理和公式1.垂直角定理:如果两条直线相交,形成的四个角中,两个互为补角。
初中数学几何知识点归纳
初中数学几何知识点归纳关于初中数学几何知识点归纳1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2、多边形的内角:多边形相邻两边组成的角叫做它的内角。
3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。
多边形还可以分为正多边形和非正多边形。
正多边形各边相等且各内角相等。
6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
8、公式与性质多边形内角和公式:n边形的内角和等于(n-2)·180°9、多边形外角和定理:(1)n边形外角和等于n·180°-(n-2)·180°=360°(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°10、多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形(2)n边形共有n(n-3)/2条对角线圆知识点、概念总结1、不在同一直线上的三点确定一个圆。
2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2圆的两条平行弦所夹的弧相等3、圆是以圆心为对称中心的中心对称图形4、圆是定点的距离等于定长的点的集合5、圆的内部可以看作是圆心的距离小于半径的点的集合6、圆的外部可以看作是圆心的距离大于半径的点的集合7、同圆或等圆的半径相等8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
初中几何知识点总结
初中几何知识点总结1.通过两点只能画出一条直线。
2.两点之间的线段是最短的。
3.同角或等角的补角相等。
4.同角或等角的余角相等。
5.经过一点且垂直于已知直线的直线只有一条。
6.直线外一点与直线上各点连接的所有线段中,垂线段最短。
7.平行公理:经过直线外一点,只有一条直线与这条直线平行。
8.如果两条直线都与第三条直线平行,则这两条直线互相平行。
9.如果同位角相等,则两条直线平行。
10.如果内错角相等,则两条直线平行。
11.如果同旁内角互补,则两条直线平行。
12.如果两条直线平行,则同位角相等。
13.如果两条直线平行,则内错角相等。
14.如果两条直线平行,则同旁内角互补。
15.定理:三角形两边之和大于第三边。
16.推论:三角形两边之差小于第三边。
17.三角形内角和定理:三角形三个内角的和等于180°。
18.推论1:直角三角形的两个锐角互余。
19.推论2:三角形的一个外角等于和它不相邻的两个内角的和。
20.推论3:三角形的一个外角大于任何一个和它不相邻的内角。
21.全等三角形的对应边和对应角相等。
22.边角边公理(SAS):如果两边和它们的夹角对应相等,则两个三角形全等。
23.角边角公理(ASA):如果两角和它们的夹边对应相等,则两个三角形全等。
24.推论(AAS):如果两角和其中一角的对边对应相等,则两个三角形全等。
25.边边边公理(SSS):如果三边对应相等,则两个三角形全等。
26.斜边、直角边公理(HL):如果斜边和一条直角边对应相等,则两个直角三角形全等。
27.定理1:在角的平分线上的点到这个角的两边的距离相等。
28.定理2:到一个角的两边的距离相同的点在这个角的平分线上。
29.角的平分线是到角的两边距离相等的所有点的集合。
30.等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。
31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。
32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
初中几何知识点总结大全
初中几何知识点总结几何就是研究空间结构及性质的一门学科。
今天小编为大家整理了一篇初中几何知识点总结大全的相关内容,以供大家阅读!1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于18018推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于6034等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于(n-2)18051推论任意多边的外角和等于36052平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS) 94判定定理3三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的.点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积3a/4a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4 144弧长计算公式:L=nR/180145扇形面积公式:S扇形=nR/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)。
初中数学几何知识点总结大全
初中数学几何知识点总结大全几何是数学中的一个重要分支,是研究图形、形状和空间关系的学科。
以下是初中数学几何的知识点总结:一、点、线、面的基本概念和性质1.点:几何中最基本的元素,没有大小和形状。
2.线:由无数个点连成的轨迹,有无限延伸性。
3.面:由无数个点和线围成的平面,有无限的扩展性。
4.直线:在平面上连续伸展无限延长的轨迹。
5.线段:由两个不同的点A、B之间的有限点组成的部分。
6.直角:两条互相垂直的线段所围成的角度为90°。
7.平行线:在同一个平面上永远不会相交的线。
8.垂直线:两条直线互相垂直相交所形成的角度为90°。
9.线面交角:直线与平面的交点所形成的角度。
二、平面几何的基本性质1.平行公理:通过直线外的一点,可以引一条与该直线平行的直线。
2.垂直公理:通过直线外的一点,可以引一条与该直线垂直的直线。
3.同位角的性质:同位角对应的两条直线平行。
4.三角形的内角和:任意三角形内角和为180°。
5.垂心、重心、外心和内心:三角形的特殊点。
6.中垂线定理:三角形中垂线相交于一点,该点到三角形三顶点的距离相等。
7.三角形相似性质:AAA相似、AA相似和SAS相似。
三、三角形的性质与判定1.等边三角形:三边相等的三角形。
2.等腰三角形:两边相等的三角形。
3.直角三角形:其中一个角度为90°的三角形。
4.锐角三角形:三个角度都小于90°的三角形。
5.钝角三角形:其中一个角度大于90°的三角形。
6.判定两个三角形是否全等的条件:SSS全等、SAS全等、ASA全等、AAS全等和HL全等。
7.三角形的中线、孤儿线、高线:三角形内部特殊线段。
四、四边形和多边形的性质1.平行四边形:具有相对平行的两对边的四边形。
2.矩形、正方形:具有相等对角线、四个直角的四边形。
3.菱形、正菱形:具有两对相等的边的四边形。
4.梯形:具有两对平行边的四边形。
5.钝角梯形:一个内角大于90°的梯形。
初中数学必背几何知识点总结归纳
初中数学必背几何知识点总结归纳在初中数学中,几何是一个重要的内容,几何知识点的掌握对于学生的数学素养和解题能力起着重要的作用。
下面是初中数学必背的几何知识点的总结归纳,希望对同学们的学习有所帮助。
1.平面几何基本概念直线、射线、线段、平行线、相交线、平面等基本概念,以及常见的几何图形:三角形、四边形、圆等。
2.角的概念和性质角的定义和记法,对顶角、邻补角、互补角、对角线角等常见角类型的性质的理解,如同位角相等、对顶角相等、内切圆的切线垂直于半径等。
3.三角形的性质三角形的定义,三角形的分类(按边长、按角度),三角形的内角和等于180°,三角形的角平分线、高、中线、中线相交于三角形的重心等。
4.圆的性质圆的定义、圆心、半径、弧长、圆周角等概念的理解,弧长公式、圆周角的性质,切线与半径的垂直关系,切线段定理等。
5.四边形的性质四边形的分类(按边长、按角度),平行四边形的性质,矩形、正方形、菱形、长方形的性质,等腰梯形、直角梯形的性质等。
6.相似三角形相似三角形的定义,相似三角形的判定(AAA、相似比、SAS),相似三角形的性质和应用,如比例线、高的比例、面积的比例等。
7.内切圆和外接圆定义和性质的理解,内切圆的性质,如半径垂直于切线,圆心在角平分线上等,外接圆的性质,如半径垂直于弦,角在同一弧上的两条弦所对的角相等等。
8.直角三角形和勾股定理直角三角形的定义和性质,勾股定理的理解与应用,以及勾股定理的逆定理:两边平方之和等于第三边平方。
9.坐标平面与图形的坐标表示直角坐标系的构建和使用,点的坐标表示,如在平面坐标系中,点P 的坐标为(x,y),线段的斜率公式,如直线的斜率为k,则其斜率公式为y=kx+b。
10.三角比的概念和性质正弦、余弦、正切的定义和图示理解,三角比的相互关系,如正弦定理、余弦定理、正切定理等。
以上是初中数学必背的几何知识点的总结归纳,学好几何知识需要掌握这些基本概念和性质,并能够在解题中灵活运用,实践出真知。
初中数学几何知识点总结7篇
初中数学几何知识点总结7篇初中数学几何知识点总结7篇良好的知识积累和传承是推动文明延续和发展的重要保障。
教育公平和机会平等是实现知识人才培养和利用的重要前提。
下面就让小编给大家带来初中数学几何知识点总结,希望大家喜欢!初中数学几何知识点总结1一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。
心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。
连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。
由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角则两个钝角之和180°与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
(完整版)初中几何知识点总结非常全
证明(一)1、本套教材选用如下命题作为公理:(1)、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
(2)、两条平行线被第三条直线所截,同位角相等。
(3)、两边及其夹角对应相等的两个三角形全等。
(4)、两角及其夹边对应相等的两个三角形全等。
(5)、三边对应相等的两个三角形全等。
(6)、全等三角形的对应边相等、对应角相等。
此外,等式的有关性质和不等式的有关性质都可以看做公理。
2、平行线的判定定理公理两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
定理两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
定理两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3、平行线的性质定理公理两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
定理两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
定理两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
4、三角形内角和定理三角形三个内角的和等于ο180。
5、三角形内角和定理的推论三角形的一个外角等于和它不相邻的两个内角的和。
三角形的一个外角大于任何一个和它不相邻的内角。
证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
初中几何知识点总结归纳
初中几何知识点总结归纳
以下是初中几何知识点总结归纳:
1. 基础几何概念:包括点、线、面、角等基本概念,以及它们的性质和定理。
2. 平行线和相似图形:理解平行线的性质和判定方法,掌握相似图形的概念和性质,了解相似三角形的判定和性质。
3. 三角形:掌握三角形的性质和定理,包括全等三角形和等腰三角形。
了解三角形的内心、外心、重心等概念。
4. 四边形:理解四边形的性质和定理,包括平行四边形、矩形、菱形等。
5. 圆:理解圆的基本性质和定理,包括圆周角定理、切线定理等。
掌握与圆有关的角和线段的性质。
6. 轴对称和中心对称:理解轴对称和中心对称的概念,掌握它们的性质和判定方法。
7. 角度和弧度制:理解角度和弧度的概念,掌握它们之间的转换方法。
8. 投影与视图:了解投影的概念,掌握三视图的基本原理和应用。
9. 面积和体积:掌握各种平面图形和立体图形的面积和体积计算公式。
10. 数学思想方法:了解并掌握一些基本的数学思想方法,如分类讨论、数
形结合等。
以上知识点都是初中几何中的重要内容,希望对你有帮助。
初中几何图形知识点整理
初中几何图形知识点整理关键信息1、三角形三角形的定义三角形的分类(按角分类、按边分类)三角形的内角和定理三角形的外角性质三角形的三边关系三角形的中线、高线、角平分线全等三角形的判定(SSS、SAS、ASA、AAS、HL)相似三角形的判定(AA、SAS、SSS)三角形的面积公式2、四边形平行四边形的定义、性质和判定矩形的定义、性质和判定菱形的定义、性质和判定正方形的定义、性质和判定梯形的定义、分类(等腰梯形、直角梯形)等腰梯形的性质和判定3、圆圆的定义圆的有关概念(弦、直径、弧、半圆、优弧、劣弧)垂径定理及其推论圆心角、弧、弦的关系定理圆周角定理及其推论圆内接四边形的性质直线与圆的位置关系(相离、相切、相交)切线的性质和判定切线长定理三角形的内切圆和外接圆圆的周长和面积公式弧长和扇形面积公式4、多边形多边形的内角和公式多边形的外角和定理正多边形的定义和性质11 三角形111 三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
112 三角形的分类按角分类:锐角三角形、直角三角形、钝角三角形。
按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。
113 三角形的内角和定理三角形的内角和等于 180°。
114 三角形的外角性质三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于任何一个与它不相邻的内角。
115 三角形的三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边。
116 三角形的中线、高线、角平分线中线:连接三角形的一个顶点和它所对边的中点的线段叫做三角形的中线。
三角形的三条中线相交于一点,这点称为三角形的重心。
高线:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
三角形的三条高线所在直线相交于一点。
角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
初中数学(几何)知识点总结
初中数学(几何)知识点总结图形的初步认识考点一、直线、射线和线段1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、直线的概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
4、射线的概念:直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
5、线段的概念:直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
8、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何部分课本知识点归纳七年级上几何图形初步相关概念:几何图形、立体图形、平面图形、展开图、点、线、面、体、相交、交点、尺规作图、角、度、角平分线1、经过两点有一条直线,并且只有一条直线。
(两点确定一条直线)2、两点中所有连线中,线段最短。
(两点之间线段最短)3、两点之间线段的长度,叫做这两点的距离。
(注:距离没有负值)4、一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。
5、同角(等角)的补角相等。
同角(等角)的余角相等。
七年级下相交线与平行线相关概念:邻补角、对顶角、垂直、垂线、垂足、同位角、内错角、同旁内角、平行、命题、真命题、假命题、定理、证明、平移1、在同一平面内,过一点有且只有一条直线与已知直线平行。
2、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短)3、直线外一点到这条直线的垂线段的长度,叫做点直线的距离。
4、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
5、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
6、平行线的判定方法:1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
(同位角相等,两直线平行.)2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
(内错角相等,两直线平行.)3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
(同旁内角互补,两直线平行.)4)平行公理的推论5)定义7、平行线的性质:1)两条平行线被第三条直线所截,同位角相等。
(两直线平行,同位角相等.)2)两条平行线被第三条直线所截,内错角相等。
(两直线平行,内错角相等.)3)两条平行线被第三条直线所截,同旁内角互补。
(两直线平行,同旁内角互补.)4)平行线间的距离处处相等。
八年级上三角形相关概念:三角形、高、中线、三角形的重心、角平分线、三角形的外角、多边形、对角线1、三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
2、三角形内角和定理:三角形三个内角的和等于180°.3、直角三角形两锐角互余。
4、有两个角互余的三角形是直角三角形。
5、外角定理:三角形的外角等于与它不相邻的两个内角和。
6、n边形内角和等于(n-2)×180°.7、多边形外角和等于360°.全等三角形相关概念:全等形、全等三角形、对应顶点、对应边、对应角1、全等三角形对应边相等,对应角相等,对应高、对应中线、对应角平分线、对应面积等都相等。
2、三角形全等的判定:1)三边分别相等的两个三角形全等。
(SSS)2)两边和它们的夹角分别相等的两个三角形全等。
(SAS)3)两角和它们的夹边分别相等的两个三角形全等。
(ASA)4)两角和其中一个角的对边分别相等的两个三角形全等。
(AAS)5)斜边和一条直角边分别相等的两个直角三角形全等。
(HL)3、角平分线的性质:角平分线上的点到角的两边的距离相等。
4、角的内部到角的两边的距离相等的点在角的平分线上。
轴对称相关概念:轴对称图形、对称轴、对称点、垂直平分线1、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
)2、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
3、与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
4、等腰三角形的性质:1)等腰三角形的两个底脚相等。
(等边对等角)2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)5、等腰三角形的判定方法:1)如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)2)有两边相等的三角形是等腰三角形。
(定义法)6、等边三角形:1)等边三角形三个内角都相等,并且每一个角都等于60°.2)三个角都相等的三角形是等边三角形。
3)有一个角是60°的等腰三角形是等边三角形。
7、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
八年级下勾股定理相关概念:原命题、逆命题1、勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a²+b²=c².2、勾股定理的逆定理:如果三角形的三边a,b,c满足a²+b²=c²,那么这个三角形是直角三角形.平行四边形相关概念:平行四边形、两条平行线之间的距离、中位线、矩形、菱形、正方形1、平行四边形:定义:两组对边分别平行的四边形叫做平行四边形.性质:1)平行四边形的对边相等。
2)平行四边形的对角相等。
3)平行四边形的对角线互相平分。
4)平行四边形的邻角互补。
判定:1)两组对边分别相等的四边形是平行四边形。
2)两组对角分别相等的四边形是平行四边形。
3)对角线互相平分的四边形是平行四边形。
4)一组对边平行且相等的四边形是平行四边形。
2、三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
3、矩形:定义:有一个角是直角的平行四边形叫做矩形.性质:1)矩形的四个角都是直角。
2)矩形的对角线相等。
3)还具有平行四边形的所有性质。
判定:1)对角线相等的平行四边形是矩形。
2)对角线相等且互相平分的四边形是矩形。
3)有三个角是直角的四边形是平行四边形是矩形。
4)定义法:有一个角是直角的平行四边形是矩形。
4、直角三角形斜边上的中线等于斜边的一半。
5、菱形:定义:有一组邻边相等的平行四边形是菱形。
性质:1)菱形的四条边都相等。
2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
3)还具有平行四边形的所有性质。
判定:1)对角线互相垂直的平行四边形是菱形。
2)四条边都相等的四边形是菱形。
3)对角线相互平分且互相垂直的四边形是菱形。
4)定义法:有一组邻边相等的平行四边形是菱形。
6、正方形:定义:有一个角是直角的菱形叫做正方形。
性质:具有平行四边形、矩形、菱形所有的性质。
判定:1)有一个角是直角的菱形是正方形。
2)邻边相等的矩形是正方形。
3)对角线相等且互相垂直平分的四边形是正方形。
4)对角线相等且互相垂直的平行四边形是矩形。
九年级上旋转相关概念:旋转、旋转中心、旋转角、对应点、对称中心、对称点、中心对称图形圆相关概念:圆、圆心、半径、弦、直径、圆弧(弧)、半圆、等圆、等弧、圆心角、圆周角、圆内接多边形、多边形的外接圆、外接圆、外心、反证法、相交、割线、相切、切线、切点、相离、内切圆、内心、相离、外离、内含、相切、外切、内切、相交、扇形、母线1、圆是轴对称图形,任何一条直径所在直线都是圆的对称轴。
2、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
3、垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
4、在同圆或等圆中,相等的圆心所对的弧相等,所对的弦也相等。
5、在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
6、在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优弧和劣弧分别相等。
7、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论:同弧或等弧所对的圆周角相等。
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
8、圆内接四边形的对角互补。
9、不在同一条直线上的三个点确定一个圆。
10、经过半径的外端并且垂直于这条半径的直线是圆的切线。
11、圆的切线垂直于过切点的半径。
12、切线长定理:从圆外一点可以引圆的两条切线,他们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
13、外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。
14、内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
九年级下册相似相关概念:相似图形、相似多边形、相似比平行线分线段成比例:1、两条直线被一组平行线所截,所得的对应线段成比例。
2、平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
相似三角形的判定:1、平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
2、三边成比例的两个三角形相似。
(SSS)3、两边成比例且夹角相等的两个三角形相似。
(SAS)4、两角分别相等的两个三角形相似。
(AA)相似三角形的性质:1、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。
2、相似三角形对应线段的比等于相似比。
3、相似三角形面积的比等于相似比的平方。
位似1、两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这点叫位似中心。