初中几何知识点总结非常全
初中数学几何的总结知识点
初中数学几何的总结知识点一、几何基本概念1. 点、线、面的基本概念2. 线段、射线、角的基本概念3. 有向线段,边界二、角的性质1. 同位角、余角、邻补角、对顶角2. 锐角、直角、钝角、平角3. 角的度量、角的度分秒制三、相交线和平行线1. 同位角相等2. 对顶角相等3. 垂直线、垂直平行线的判定4. 平行线的性质:平行线性质的等价命题、平行线的性质四、三角形1. 三角形的分类2. 三角形内角和定理3. 三角形的边对角和定理4. 三角形的外角和定理5. 三角形的相似性质6. 相似三角形的判定、相似三角形的性质7. 角平分线定理、中位线定理五、全等三角形1. 全等三角形的对应角、对应边性质2. 全等三角形的判定六、直角三角形1. 勾股定理2. 直角三角形的性质和判定七、平行四边形1. 平行四边形的性质2. 矩形、正方形、菱形、长方形的性质3. 平行四边形的判定八、多边形1. 多边形的命名和分类2. 多边形内角和定理3. 多边形外角和定理4. 等边多边形的性质5. 正多边形的性质九、圆1. 圆的基本概念2. 圆的性质3. 圆周角和圆心角4. 弧长和面积5. 切线和切点6. 相交弦定理7. 立体几何体的基本概念8. 空间直角坐标系与距离十、空间图形1. 空间的基本概念2. 空间图形的基本元素3. 空间图形的分类4. 体积的计算5. 柱、锥、台、球的表面积和体积以上是初中数学几何的基本知识点,同学们要在平时多加强练习,掌握这些知识点,从而提高数学水平。
初中几何知识点总结非常全
初中几何知识点总结非常全几何是数学的一个分支,主要研究图形的性质、变换和计算。
初中阶段的几何知识点较为基础,但是也是打牢中学数学基础的重要一环。
下面是初中几何知识点的总结:一、线段、射线和直线1.线段是由两个端点确定的线段。
线段的长度等于两个端点之间的距离。
2.射线是由起点和无限延伸的一端确定的线段。
射线的起点称为原点,无限延伸的一端称为方向点。
3.直线是无限延伸的两个方向相同的线段。
二、角1.角是由两条射线共享一个端点而形成的。
2.角的度量用角度来表示,记作∠ABC,其中B是角的顶点。
3.角的度量有度、分和秒三种单位,例如30°表示30度。
4.角根据其度量可以分为锐角(0°到90°)、直角(90°)、钝角(大于90°小于180°)和平角(180°)四种。
三、三角形1.三角形是由三条线段组成的图形。
2.三角形根据边的长度可以分为等边三角形(三条边的长度相等)、等腰三角形(两条边的长度相等)和一般三角形(三条边的长度都不相等)。
3.三角形根据角的大小可以分为锐角三角形(三个角都是锐角)、直角三角形(一个角是直角)和钝角三角形(一个角是钝角)。
4.三角形的内角和为180°。
四、四边形1.四边形是由四条线段组成的图形。
2.四边形根据边的长度和角的大小可以分为平行四边形(对边平行)、矩形(四个角都是直角)、正方形(四个角都是直角且四条边的长度相等)和菱形(四个边的长度相等)。
五、平行线和垂直线1.平行线是不相交的两条直线,其间的距离恒定。
2.垂直线是相交角度为90°的两条直线。
六、相似1.相似是指两个图形形状相同但大小不同,它们的对应边成比例。
2.相似可以通过比较对应边的长度或对应角的度量来判断。
3.相似的图形的比例因子等于对应边的长度之比。
七、圆1.圆是平面上一组离给定点相等的点的集合。
2.圆由中心和半径来确定,中心是离所有点的距离相等的点,半径是中心到圆上任意点的距离。
初中几何知识点总结
初中几何知识点总结
一、线
1、平行线:平行线指的是在同一平面上,不经过同一点的两条直线,它们的斜率相同,距离一定,不断重合且不相交。
2、垂直线:垂直线是指垂直位置的两条直线,它们的角度为90度,斜率无穷大,不相交且会以一定的距离重合。
3、异面直线:异面直线是指两条直线虽然都位于一个平面,但是从某种角度看是不会相交的。
二、圆
1、直径:指由圆心到圆周所围的最长线段叫做圆的直径。
2、弦:指圆心到圆周之间的某个点,从圆心出发到这个点的线段叫做弦。
3、圆心:指顶点的圆心是圆的特殊点,任意点到圆心的距离都相等,这个距离叫做圆的半径。
三、三角形
1、角:指三角形每个顶点与与其相邻顶点连线组成的棱叫做角。
2、边:三角形内任意两点之间连线组成的部分叫做边,有直角、锐角和钝角三种。
3、角平分线:指从三角形三边中任意一点出发,经过该角对边的延长线,与另外一边相交于某点,这条线段叫做角平分线。
四、椭圆
1、长轴:椭圆的长轴是从椭圆的两个顶点开始,看起来和椭圆略有不同的椭圆。
2、短轴:椭圆的短轴是从椭圆的两个非顶点开始,形成和椭圆比较一致的的椭圆。
3、离心率:椭圆的离心率指的是椭圆的长轴与短轴之间的比值,它可以表明椭圆的形状程度,值越大椭圆形状越扁。
五、其它
1、锐角三角形:指三角形内任意两条边和它们之间的角小于90度的三角形叫作锐角三角形。
2、三角形的类型:根据三角形三边长度相等、两边之和大于第三边或相等三种情况
来分别确定三角形的类型。
3、两点距离:计算两点之间的距离,可以使用勾股定理或斜率的计算方式进行计算。
初中几何知识点(全)
初中几何知识点1过两点有且只有一条直线2 两点之间线段最短3同角或等角的补角相等4 同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短【平行】7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补【三角形基础】15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1直角三角形的两个锐角互余19 推论2三角形的一个外角等于和它不相邻的两个内角的和20 推论3三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等【角平分线】27 定理1在角的平分线上的点到这个角的两边的距离相等28 定理2到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合【等腰三角形】30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)【等边三角形】35 推论1三个角都相等的三角形是等边三角形36 推论2有一个角等于60°的等腰三角形是等边三角形【直角三角形】37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合【对称图形】42 定理1关于某条直线对称的两个图形是全等形43 定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称【直角三角形的勾股定理】46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形【四边形和多边形】48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°【平行四边形】52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形【矩形】60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形【菱形】64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形【正方形】69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角【中心对称】71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称【等腰梯形】74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形【特殊定理】78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×3 h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例【相似三角形】90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2相似三角形周长的比等于相似比98 性质定理3相似三角形面积的比等于相似比的平方【三角函数】99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值【圆】101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k ×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d-(R-r)外公切线长= d-(R+r )。
初中几何知识点总结大全
初中几何知识点总结大全一、点、线、面、体及其性质1.点点是几何的基本要素,它表示空间中的一个位置,可以用字母表示。
点没有长度、宽度和高度,是一个零维的对象。
2. 线线是由一系列相互连接的点构成的,它没有宽度,是一个一维的对象。
根据线的位置关系,可以分为平行线、相交线和垂直线等。
3. 面面是由一条封闭的线构成的,它有面积,是一个二维的对象。
根据平面的性质,可以分为平行四边形、三角形、正方形、矩形、菱形等。
4. 体体是由一条封闭的面构成的,它有体积,是一个三维的对象。
根据体的性质,可以分为立方体、长方体、圆柱体、圆锥体、球等。
二、角及其性质1. 角的概念在平面内,由两条射线所夹的部分称为角。
夹角的两条射线称为角的两边,它们的公共端点称为角的顶点。
2. 角的分类根据夹角的大小和位置关系,可以将角分为锐角、直角、钝角、平角等。
锐角是小于90度的角,直角是等于90度的角,钝角是大于90度小于180度的角,平角是等于180度的角。
3. 角的性质(1)对顶角在两条相交直线上,来自同一侧的两个相邻角叫做对顶角。
对顶角的特点是大小相等。
(2)补角两个角互为补角,如果它们的和等于90度。
(3)余角两个角互为余角,如果它们的和等于180度。
三、直线和角的关系1. 平行线平行线是永远不相交的两条直线,它们的斜率相等。
平行线之间的距离是恒定的。
2. 垂直线垂直线是两条相交直线之间的夹角为90度的直线。
3. 直角三角形直角三角形是一个内角为90度的三角形。
直角三角形的斜边长度等于两条直角边长度的平方和的平方根。
四、相似与全等1. 相似如果两个图形的形状相同,但大小不同,那么这两个图形是相似的。
相似图形的对应边成比例,对应角相等。
2. 全等如果两个图形的形状和大小都相同,那么这两个图形是全等的。
全等图形的对应边和对应角都相等。
五、多边形的性质1. 多边形的概念由三条以上的线段构成的封闭图形称为多边形。
多边形由顶点、边和内角构成。
初中数学几何知识点归纳
初中数学几何知识点归纳一、几何基础知识1. 点、线、面- 点:没有大小,只有位置。
- 线:由无数个点组成,有长度,没有宽度。
- 面:由无数条线组成,有长度和宽度。
2. 直线、射线、线段- 直线:无限延伸,没有端点。
- 射线:有一个端点,向一个方向无限延伸。
- 线段:有两个端点,长度有限。
3. 角- 邻角:有共同顶点和边的两个角。
- 对顶角:两条射线共享一个公共点,形成的两个角。
- 平行线:在同一平面内,永不相交的两条直线。
二、平面图形1. 三角形- 等边三角形:三条边长度相等。
- 等腰三角形:至少有两条边长度相等。
- 直角三角形:有一个90度的角。
- 钝角三角形:有一个大于90度的角。
- 锐角三角形:所有角都小于90度。
2. 四边形- 正方形:四条边长度相等,四个角都是直角。
- 长方形:对边平行且相等,四个角都是直角。
- 平行四边形:对边平行。
- 梯形:至少有一组对边平行。
3. 圆- 圆心:圆的中心点。
- 半径:圆心到圆上任意一点的距离。
- 直径:通过圆心的最长线段,等于半径的两倍。
三、几何图形的性质1. 三角形的性质- 内角和:三角形内角和为180度。
- 海伦公式:已知三边长度,可以计算三角形的面积。
2. 四边形的性质- 正方形的性质:对角线相等且互相平分。
- 长方形的性质:对角线相等且互相平分。
- 平行四边形的性质:对角线互相平分。
3. 圆的性质- 圆周率:圆的周长与直径的比值,用π表示。
- 圆的面积:π乘以半径的平方。
四、几何图形的计算1. 面积计算- 三角形面积:底乘高除以2。
- 四边形面积:长乘宽(正方形和长方形);梯形的上下底之和乘高除以2。
- 圆的面积:π乘以半径的平方。
2. 周长计算- 三角形周长:三边之和。
- 四边形周长:四边之和(正方形和长方形);梯形的上下底之和加上两腰之和。
- 圆的周长:2π乘以半径。
3. 体积计算- 圆柱体积:底面积乘以高。
- 圆锥体积:1/3乘以底面积乘以高。
初中几何知识点总结非常全
初中几何知识点总结非常全几何学是研究空间形状、大小、相对位置和变形等几何对象的一种数学学科,与代数学相辅相成,在数学中占据重要的地位。
初中阶段的几何学主要涉及平面几何和立体几何两方面的知识,下面将对这些知识点进行详细总结。
1.平面几何知识点:1.1点、线、面:点是几何学的基本概念,线是由无数个点组成的,面是由无数个线组成的。
1.2线段、直线、射线:线段是两个端点确定的一段线,直线是没有端点的线段,射线是一个端点的线段。
1.3角:由两条射线和它们的公共端点组成的图形叫做角。
1.4三角形:由三条线段组成的图形叫做三角形,三角形是平面几何中最简单的多边形。
1.5直角、钝角、锐角:直角是90°的角,钝角是大于90°小于180°的角,锐角是小于90°的角。
1.6相交线:两条不在同一直线上的线交于一点称为相交,相交点叫做交点。
1.7平行线:在同一个平面内,永远不会相交的两条线叫做平行线。
1.8平行四边形:具有两组对边平行的四边形叫做平行四边形。
1.9正方形、矩形、菱形:正方形是四条边相等,四个内角都是直角的四边形;矩形是四条边相等的四边形;菱形是四条边相等的四边形且对角线相互垂直。
1.10五边形、六边形:五边形和六边形分别由五条和六条线段组成的图形。
1.11相似:两个图形形状相同但大小不同,则称这两个图形相似。
2.立体几何知识点:2.1立体:具有三个维度的几何图形称为立体。
2.2长方体:所有的面都是矩形的立体叫做长方体。
2.3正方体:所有的面都是正方形的立体叫做正方体。
2.4直方体:前后两个面是矩形,上下两个面是正方形的立体叫做直方体。
2.5球体:所有点到一个给定点的距离相等的图形叫做球体。
2.6圆锥:一个顶点和一个底面是圆的立体叫做圆锥。
2.7圆柱:两个底面是圆,侧面是矩形的立体叫做圆柱。
2.8圆台:一个面是圆,另一个面是平行于它的圆的截面,侧面是梯形的立体叫做圆台。
初中几何知识点总结
初中几何知识点总结1.通过两点只能画出一条直线。
2.两点之间的线段是最短的。
3.同角或等角的补角相等。
4.同角或等角的余角相等。
5.经过一点且垂直于已知直线的直线只有一条。
6.直线外一点与直线上各点连接的所有线段中,垂线段最短。
7.平行公理:经过直线外一点,只有一条直线与这条直线平行。
8.如果两条直线都与第三条直线平行,则这两条直线互相平行。
9.如果同位角相等,则两条直线平行。
10.如果内错角相等,则两条直线平行。
11.如果同旁内角互补,则两条直线平行。
12.如果两条直线平行,则同位角相等。
13.如果两条直线平行,则内错角相等。
14.如果两条直线平行,则同旁内角互补。
15.定理:三角形两边之和大于第三边。
16.推论:三角形两边之差小于第三边。
17.三角形内角和定理:三角形三个内角的和等于180°。
18.推论1:直角三角形的两个锐角互余。
19.推论2:三角形的一个外角等于和它不相邻的两个内角的和。
20.推论3:三角形的一个外角大于任何一个和它不相邻的内角。
21.全等三角形的对应边和对应角相等。
22.边角边公理(SAS):如果两边和它们的夹角对应相等,则两个三角形全等。
23.角边角公理(ASA):如果两角和它们的夹边对应相等,则两个三角形全等。
24.推论(AAS):如果两角和其中一角的对边对应相等,则两个三角形全等。
25.边边边公理(SSS):如果三边对应相等,则两个三角形全等。
26.斜边、直角边公理(HL):如果斜边和一条直角边对应相等,则两个直角三角形全等。
27.定理1:在角的平分线上的点到这个角的两边的距离相等。
28.定理2:到一个角的两边的距离相同的点在这个角的平分线上。
29.角的平分线是到角的两边距离相等的所有点的集合。
30.等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。
31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。
32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
初中数学几何知识点总结7篇
初中数学几何知识点总结7篇初中数学几何知识点总结7篇良好的知识积累和传承是推动文明延续和发展的重要保障。
教育公平和机会平等是实现知识人才培养和利用的重要前提。
下面就让小编给大家带来初中数学几何知识点总结,希望大家喜欢!初中数学几何知识点总结1一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。
心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。
连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。
由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角则两个钝角之和180°与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
初中几何定理大全初中数学几何121个定理总结
初中几何定理大全初中数学几何121个定理总结
一、三角形定理:
1、直角三角形三边定理:在直角三角形中,两个直角对边的平方和等于斜边的平方。
2、勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方。
3、余弦定理:在任意三角形中,每条边的平方等于其他两条边平方之和减去两倍乘积的余弦值。
4、正弦定理:在任意三角形中,每条边的平方等于其他两条边平方之和加上两倍乘积的正弦值。
5、比例定理:在任意三角形中,斜边的平方等于两条边的乘积除以其外角的余弦值的平方。
6、外接圆定理:任意三角形的外接圆半径等于其三边长的和除以4
7、外切圆定理:任意三角形的外切圆半径等于其两边长的乘积除以4倍其近角的正弦值。
8、锐角三角形边长定理:在锐角三角形中,一条边大于另外两条边的和,小于他们的差。
9、内切圆定理:任意三角形的内切圆半径等于其两边长的乘积除以4倍其外角的正弦值。
10、锐角三角形的内接圆定理:任意锐角三角形内接圆半径等于其三边长乘积除以4其外角的余弦值。
二、平行线定理:
1、平行线定理:平行线与平行线之间分别成等腰角和相邻角成等式。
2、垂线定理:垂线与平行线之间相邻角成等式。
初中数学几何知识点总结大全
初中数学几何知识点总结大全几何是数学中的一个重要分支,是研究图形、形状和空间关系的学科。
以下是初中数学几何的知识点总结:一、点、线、面的基本概念和性质1.点:几何中最基本的元素,没有大小和形状。
2.线:由无数个点连成的轨迹,有无限延伸性。
3.面:由无数个点和线围成的平面,有无限的扩展性。
4.直线:在平面上连续伸展无限延长的轨迹。
5.线段:由两个不同的点A、B之间的有限点组成的部分。
6.直角:两条互相垂直的线段所围成的角度为90°。
7.平行线:在同一个平面上永远不会相交的线。
8.垂直线:两条直线互相垂直相交所形成的角度为90°。
9.线面交角:直线与平面的交点所形成的角度。
二、平面几何的基本性质1.平行公理:通过直线外的一点,可以引一条与该直线平行的直线。
2.垂直公理:通过直线外的一点,可以引一条与该直线垂直的直线。
3.同位角的性质:同位角对应的两条直线平行。
4.三角形的内角和:任意三角形内角和为180°。
5.垂心、重心、外心和内心:三角形的特殊点。
6.中垂线定理:三角形中垂线相交于一点,该点到三角形三顶点的距离相等。
7.三角形相似性质:AAA相似、AA相似和SAS相似。
三、三角形的性质与判定1.等边三角形:三边相等的三角形。
2.等腰三角形:两边相等的三角形。
3.直角三角形:其中一个角度为90°的三角形。
4.锐角三角形:三个角度都小于90°的三角形。
5.钝角三角形:其中一个角度大于90°的三角形。
6.判定两个三角形是否全等的条件:SSS全等、SAS全等、ASA全等、AAS全等和HL全等。
7.三角形的中线、孤儿线、高线:三角形内部特殊线段。
四、四边形和多边形的性质1.平行四边形:具有相对平行的两对边的四边形。
2.矩形、正方形:具有相等对角线、四个直角的四边形。
3.菱形、正菱形:具有两对相等的边的四边形。
4.梯形:具有两对平行边的四边形。
5.钝角梯形:一个内角大于90°的梯形。
初中几何基本知识汇总
初中几何基本知识汇总一、线和角1、线段、射线、直线(略)①过二点有且只有一条直线。
②所有连接二点的线中,线段最短,叫二点间的距离。
2、同位角、内错角、同旁内角(略)3、互为补角(两角的和是一个平角),互为余角(两角的和为直角)。
①同角或等角的补角相等。
②同角或等角的余角相等。
4、平行线:①平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
②推论:两条直线都和弟三条直线平行,则两直线平行性质①两直线平行,同位角相等②两直线平行,内错角相等③两直线平行,同旁内角互补判定:①公理:同位角相等,两直线平行②内错角相等,两直线平行③同旁内角互补,两直线平行5、线段的垂直平分:①定理:线段垂直平分线上的点到线段两个端点的距离相等②逆定理:到线段两个端点的距离相等的点在线段的垂直平分线上。
6、对称轴:定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
二、三角形、四边形、多边形6、三角形的内角和、外角、中线、中位线、高①三角形三个角平分线交于一点:内心(该点到三角形三边距离相等)②三条边的垂直平分线相交于一点:外心(该点到三角形三个顶点的距离相等)③三角形中线相交于一点:重心(这点到顶点的距离是它到对边中点距离的两倍)④三角形三条高交于一点:垂心7、三角形两边之和大于弟三边,两边之差小于弟三边8、三角形的一个外角等于与它不相邻的两个内角和,大于和它不相邻的恣意内角。
9、三角形的判定:①边角边(SAS)②角边角(ASA)③边边边(SSS)④斜边直角边公理(HL)10、角平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到角的两边的距离相等的点在角的平分线上。
11、等腰三角形:⑴性质定理:等边对等角(两底角相等)①推论1:等腰三角形顶角的平分线平分底边且垂直底边。
初中几何知识点总结非常全
证明(一)简单说成:内错角相等,两直线平行。
3、平行线的性质定理 1、本套教材选用如下命题作为公理:公理(1)、两条直线被第三条直线所截,如果同位角相等,那么这两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
两条直线平行。
定理、两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
2()3)、两边及其夹角对应相等的两个三角形全等。
简单说成:两直线平行,内错角相等。
(定理、两角及其夹边对应相等的两个三角形全等。
(4)两条平行线被第三条直线所截,同旁内角互补。
、三边对应相等的两个三角形全等。
简单说成:两直线平行,同旁内角互)(5补。
( 6)、全等三角形的对应边相等、对应角相等。
如果两条直线都和第三条直线平行,那么这两条直线也互相平此外,等式的有关性质和不等式的有关性质都可以看做公理。
行。
2、平行线的判定定理4、三角形内角和定理三角形三个内角的和等于公理两条直线被第三条直线所截,如果同位角相等,那么。
1805这两条直线平行。
、三角形内角和定理的推论三角形的一个外角等于和它不相邻的两个内角的和。
同位角相等,简单说成:两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那定理三角形的一个外角大于任何一个和它不相邻的内角。
证明(二)么这两条直线平行。
一、公理(1)三边对应相等的两个三角形全等(可简写成“边边简单说成:同旁内角互补,两直线平边”或“”)。
行。
(2两条直线被第三条直线所截,如果内错角相等,那么定理)两边及其夹角对应相等的两个三角形全等(可简写成“边。
)角边”或“”这两条直线平行。
.(3)两角及其夹边对应相等的两个三角形全等(可简写成“角相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形边角”或“”)。
.三、等边三角形)全等三角形的对应边相等、对应角相等。
(4性质:(推论:两角及其中一角的对边对应相等的两个三角形全等(可1)等边三角形的三个角都相等,并且每个角都等于60)。
初三数学几何知识点归纳
初三数学几何知识点归纳一、三角形1. 三角形的基本概念- 三角形由不在同一直线上的三条线段首尾顺次相接所组成。
- 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
例如,若三角形三边为a、b、c,则a + b>c,a - b<c。
2. 三角形的分类- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形,直角三角形中斜边最长,两直角边的平方和等于斜边的平方(勾股定理a^2+b^2=c^2,其中c为斜边,a、b为两直角边)。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类:- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等腰三角形两底角相等(等边对等角),等腰三角形三线合一(底边上的高、底边上的中线、顶角平分线互相重合)。
- 等边三角形:三边都相等的三角形,等边三角形三个角都是60^∘,等边三角形是特殊的等腰三角形。
3. 三角形的内角和与外角- 三角形内角和定理:三角形三个内角的和等于180^∘。
- 三角形的外角:三角形的一边与另一边的延长线组成的角。
三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
二、四边形1. 平行四边形- 定义:两组对边分别平行的四边形叫做平行四边形。
- 性质:- 平行四边形的对边平行且相等。
- 平行四边形的对角相等,邻角互补。
- 平行四边形的对角线互相平分。
- 判定:- 两组对边分别平行的四边形是平行四边形。
- 两组对边分别相等的四边形是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 两组对角分别相等的四边形是平行四边形。
- 对角线互相平分的四边形是平行四边形。
2. 矩形- 定义:有一个角是直角的平行四边形叫做矩形。
- 性质:- 矩形具有平行四边形的所有性质。
初中几何图形知识点整理
初中几何图形知识点整理一、线与角1、直线直线没有端点,可以向两端无限延伸,是不可度量的。
2、射线射线只有一个端点,可以向一端无限延伸,也是不可度量的。
3、线段线段有两个端点,不可以延伸,是可以度量的。
4、角的定义从一点引出的两条射线所组成的图形叫做角。
这个点叫做角的顶点,这两条射线叫做角的边。
5、角的度量角的度量单位是度,用符号“°”表示。
把半圆平均分成 180 等份,每一份所对的角的大小是 1 度,记作 1°。
6、角的分类(1)锐角:小于 90 度的角。
(2)直角:等于 90 度的角。
(3)钝角:大于 90 度小于 180 度的角。
(4)平角:等于 180 度的角。
(5)周角:等于 360 度的角。
7、角的性质(1)角的大小与边的长短无关,与两条边张开的大小有关。
(2)两条直线相交,相对的角相等。
二、三角形1、三角形的定义由三条线段围成的图形叫做三角形。
2、三角形的特性三角形具有稳定性。
3、三角形的分类(1)按角分:锐角三角形:三个角都是锐角的三角形。
直角三角形:有一个角是直角的三角形。
钝角三角形:有一个角是钝角的三角形。
(2)按边分:等腰三角形:有两条边相等的三角形。
等边三角形:三条边都相等的三角形。
4、三角形的内角和三角形的内角和是 180 度。
5、三角形的三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边。
三、四边形1、平行四边形(1)定义:两组对边分别平行的四边形叫做平行四边形。
(2)特性:平行四边形具有不稳定性。
(3)面积:平行四边形的面积=底×高2、长方形(1)定义:有一个角是直角的平行四边形叫做长方形。
(2)特性:长方形的对边相等,四个角都是直角。
3、正方形(1)定义:四条边都相等,四个角都是直角的四边形叫做正方形。
(2)特性:正方形的四条边都相等,四个角都是直角。
4、梯形(1)定义:只有一组对边平行的四边形叫做梯形。
(2)等腰梯形:两腰相等的梯形叫做等腰梯形。
初中数学(几何)知识点总结
初中数学(几何)知识点总结图形的初步认识考点一、直线、射线和线段1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、直线的概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
4、射线的概念:直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
5、线段的概念:直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
8、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
初二几何知识点总结
初二几何知识点总结一、三角形1. 三角形的基本概念- 三角形由不在同一直线上的三条线段首尾顺次相接所组成的图形。
- 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
- 三角形的内角和为180°;三角形的外角和为360°。
三角形的一个外角等于与它不相邻的两个内角之和。
2. 三角形的分类- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形。
直角三角形的两个锐角互余。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类:- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形。
等腰三角形的两腰相等,两底角相等。
- 等边三角形:三边都相等的三角形,等边三角形是特殊的等腰三角形,它的三个角都是60°。
3. 三角形中的重要线段- 中线:连接三角形一个顶点和它对边中点的线段。
三角形的三条中线相交于一点,这点叫做三角形的重心,重心到顶点的距离是它到对边中点距离的2倍。
- 角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。
三角形的三条角平分线相交于一点。
- 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段。
锐角三角形的三条高都在三角形内部;直角三角形的两条直角边互为高,斜边上的高在三角形内部;钝角三角形的高,钝角所对边上的高在三角形内部,另两条高在三角形外部。
二、全等三角形1. 全等三角形的概念与性质- 概念:能够完全重合的两个三角形叫做全等三角形。
- 性质:全等三角形的对应边相等,对应角相等。
2. 全等三角形的判定- SSS(边边边):三边对应相等的两个三角形全等。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。
初中数学几何知识点总结
初中数学几何知识点总结初中数学几何知识点提纲1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角几何作图1、掌握最基本的五种尺规作图⑴、作一条线段等于已知线段。
⑵、作一个角等于已知角。
⑶、平分已知角。
⑷、经过一点作已知直线的垂线。
⑸、作线段的垂直平分线。
2、掌握课本中各章要求的作图题⑴、根据条件作任意的三角形、等要素那角性、直角三角形。
⑵、根据给出条件作一般四边形、平行四边形、矩形、菱形、正方形、梯形等。
⑶、作已知图形关于一点、一条直线对称的图形。
⑷、会作三角形的外接圆、内切圆。
⑸、平分已知弧。
⑹、作两条线段的比例中项。
⑺、作正三角形、正四边形、正六边形等。
几何计算(一)、角度与弧度的计算1、三角形和四边形的角的计算主要依据⑴、三角形的内角和定理及推论。
⑵、四边形的内角和定理及推论。
⑶、圆内接四边形性质定理。
2、弧和相关的角的计算主要依据⑴、圆心角的度数等于它所对的弧的度数。
⑵、圆周角的度数等于它所对的弧的度数的一半。
⑶、弦切角的度数等于所夹弧度数的一半。
3、多边形的角的计算主要依据⑴、n边形的内角和=(n-2)180°⑵、正n边形的每一内角=(n-2)180°÷n⑶、正n边形的任一外角等于各边所对的中心角且都等于长度的计算1、三角形、平行四边形和梯形的计算用到的定理主要有三角形全等定理,中位线定理,等腰三角形、直角三角形、正三角形及各种平行四边形的性质等定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明(一)1、本套教材选用如下命题作为公理:(1)、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
(2)、两条平行线被第三条直线所截,同位角相等。
(3)、两边及其夹角对应相等的两个三角形全等。
(4)、两角及其夹边对应相等的两个三角形全等。
(5)、三边对应相等的两个三角形全等。
(6)、全等三角形的对应边相等、对应角相等。
此外,等式的有关性质和不等式的有关性质都可以看做公理。
2、平行线的判定定理公理两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
定理两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
定理两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3、平行线的性质定理公理两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
定理两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
定理两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
4、三角形内角和定理三角形三个内角的和等于180。
5、三角形内角和定理的推论三角形的一个外角等于和它不相邻的两个内角的和。
三角形的一个外角大于任何一个和它不相邻的内角。
证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则2b<a④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=2180A∠-︒2、等腰三角形的判定方法(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形.三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一判定方法:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3)有一个角是60°的等腰三角形是等边三角形。
四、直角三角形(一)、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°4、直角三角形斜边上的中线等于斜边的一半5、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即222cba=+其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。
2、常用关系式:由三角形面积公式可得:两直角边的积=斜边与斜边上的高的积(等面积法)(二)、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a,b,c有关系222cba=+,那么这个三角形是直角三角形。
(三)直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)五、角的平分线及其性质与判定1、角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
2、角的平分线的性质定理:角平分线上的点到这个角的两边的距离相等。
定理:三角形的三条角平分线相交于一点(三角形的内心),并且这一点到三条边的距离相等。
3、角的平分线的判定定理:在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。
六、线段垂直平分线的性质与判定1、线段的垂直平分线:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
定理:三角形三条边的垂直平分线相交于一点(三角形的外心),并且这一点到三个顶点的距离相等。
线段垂直平分线的判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
七、反证法八、互逆命题、互逆定理1、在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
2、如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
证明(三)一、平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、平行四边形的面积S平行四边形=底边长×高=ah二、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab三、菱形1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S 菱形=底边长×高=两条对角线乘积的一半 四、正方形 (3~10分) 1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)正方形四条边都相等,对边平行 (2)正方形的四个角都是直角(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。
3、正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证它是菱形。
先证它是菱形,再证它是矩形。
4、正方形的面积设正方形边长为a ,对角线长为bS 正方形=222b a =五、等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形。
(选择题和填空题可直接用) 六、三角形中的中位线1、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
3、常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
七、有关四边形四边中点问题的知识点:(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形; (2)顺次连接矩形的四边中点所得的四边形是菱形; (3)顺次连接菱形的四边中点所得的四边形是矩形;(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形; (6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;解直角三角形 知识点总结考点一、直角三角形的性质 (3~5分) 1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得: AB •CD=AC •BC考点二、直角三角形的判定 (3~5分)1、有一个角是直角的三角形是直角三角形。