最新广东省中考数学模拟试题及答案

合集下载

2024年广东省中考数学模拟卷答案

2024年广东省中考数学模拟卷答案

2024年广东省初中数学中考模拟卷(解析卷)(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.单项式-35ab³d²的系数是()A.-3 B.-5C.- 35D.35【答案】C2.已知点A(2,b)与点B(a,4)关于原点对称,则a﹣b=( )A.﹣2 B.2 C.-4 D.6【答案】B3.下列运算正确的是()A.2﹣=√3B.(a2)3=a5C.2a2•a=a3D.(a+1)2=a2+a+1【答案】A4.若点A(-1,a),B(1,b),C(2,c)在反比例函数y=-2xx的图象上,则a,b,c的大小关系是( ) A. a<b<c B. b<a<c C. b<c<a D. a<c<b【答案】C5.若关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9 B.94C.D.-94【答案】B6.如图所示,水平放置的几何体的俯视图是()A. B. C. D.【答案】C7.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是()A.60 B.60πC.120 D.120π【答案】B8.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是()A.29B.C.79D.59【答案】A9.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=3,则S△ABC=.A.12 B.6 C.9 D.10【答案】A10.如图,在菱形ABCD中,AB =4,BD=7.若M、N分别是边ADBC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为()A.3 B.√10 C.9√15D.√152【答案】D【详解】二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2xy2﹣2x=.【答案】2x(y+1)(y-1)12.如图,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上,若∠C =30°,则的∠AOB 度数为 .【答案】60°13.2023年第四季度,某中小企业实现营业收入1.48百万元,将“1.48百万”用科学计数法表示为 .【答案】1.48×10714.如图,直线//,130,240a b °°∠=∠=,且AD AC =,则3∠的度数是 .【答案】40°15.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB ∥x 轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点A 的坐标为 .【答案】(1,)三、解答题(本大题共9小题,满分75分.)16.(4分)计算:-|√3-5|+2sin60°-(π-6)0-4【答案】2√317.(5分)解不等式组�2(3xx −1)≤−2xx +7 ①3xx+52≥53+2xx ② 【答案】x ≤98【分析】先分别求出每个不等式得解集,然后根据夹逼原则求出不等式组的解集即可.【详解】解∶�2(3xx−1)≤−2xx+7①3xx+52≥53+2xx②解不等式①,得x≤98,解不等式②,得x≤53,∴不等式组的解集为x≤9818. (8分)先化简,再求值:(1+)÷,其中a=+1.解:原式=÷=•=,当a=+1时,原式==.19.(8分)2021年3月29日,卫建委发布了《新冠疫苗接种指南》,某中学为了解九年级学生对新冠疫苗知识的了解情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解:B类--比较了解;C类--一般了解;D类--不了解,现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;补全条形统计图;(2)D类所对应扇形的圆心角的大小为 ;若该校九年级学生共有1000名,根据以上抽样结果估计该校九年级学生对新冠疫苗知识非常了解的约有名.(3)已知调查的该班第一组学生中有2名男生1名女生,老师随机从该组中选取2名学生进一步了解其家庭成员接种情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率。

2024年广东省九年级数学中考模拟试卷答案

2024年广东省九年级数学中考模拟试卷答案

2024年中考模拟检测数学试题一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中只有一项符合题问要求,请将正确选项前的字母代号填在答题卡相应位置上)1. 实数2022−的绝对值是( )A. 2022−B. 2022C. 12022D. 12022− 2. 垃圾分类可以有效减少垃圾对环境的污染,因此我们应增强环保意识,积极参与垃圾分类,共享低碳生活.下列有关垃圾分类的图标,是轴对称图形的有( )A. B.C. D.3. 计算2212ac −的结果是() A. 2412a c − B. 2212a c C. 2414a c D. 2214a c 4. 为了发扬“中国航天精神”,年的4月24日设立为“中国航天日”.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A. 航B. 天C. 精D. 神5. 如图,A 、B 、C 是⊙O 上的点,OC AB ⊥,垂足为点D ,若OA =5,AB =8,则CD 的长为( ).A. 5B. 4C. 3D. 26. 一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是( )A. 49B. 59C. 23D. 457. 若2x =是关于x 的一元二次方程220x mx +−=的一个根,则m 的值为( )A. 1B. 3C. 1−D. 3−8. 方程231x x +=的根可视为函数3y x 的图象与函数1y x =的图象交点的横坐标,那么用此方法可推断出方程3223x x x −+=的实数根x 所在的范围是( )A. 12x <<B. 23x <<C. 34x <<D. 45x <<二、填空题(本大题共8小题,起小题!分,共24分,请将答案直接写在答题卡相应位置上)9. 我国的北斗卫星导航系统()BDS 星座已部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为________.10.在实数范围内有意义,则x 的取值范围是__________.11. 分解因式:2218m −=______. 12. 如图所示,在O 中,直径10AB =,弦DE AB ⊥于点C ,连接DO .若3OC =,则DE 长为 _____.的13. 如图,点A B C D ,,,在O 上,130AOC ∠=°,则ABC ∠=___________°.14. 如果所示的地板由15块方砖组成,每一块方砖除颜色外完全相同,小球自由滚动,随机停在黑色方砖的概率为_________.15. 小明参加“强国有我”主题演讲比赛,其演讲形象、内容、效果三项的成绩分别是70分、90分、80分.若将三项得分依次按2:4:4的比例确定最终成绩,则小明的最终比赛成绩为______分.16. 已知ABC ,动点P 从点A 出发,以每秒钟1个单位长度的速度沿A→B→C→A 方向运动到点A 处停止.设点P 运动的运动时间为t 秒,PAB 的面积S 关于t 的函数图象如图所示,则ABC 的边BC 上的高等于____________________.三、解答题(本大题共11小题,共102分.请在答题卡指定位置作答,解答时应写出必要的文字说明、满算步骤或推理过程)17. 计算:(()2023011−+−−° 18. 解不等式2732x x −−<,并把它的解集表示在数轴上.19. 先化简,再求值:()()()()232232x x x x x −++−+−,其中2x =−.20. 如图,在ABC 中,点D 为BC 边上中点,连接AD .(1)尺规作图:作射线BF ,使得CBF ∠=C ∠,且射线BF 交AD 的延长线于点E (不要求写作法,保留作图痕迹);(2)在(1)的条件下,连接CE ,若12AD BC =,求证:四边形ABEC 为矩形. 21. 某校为了了解家长和学生的参与“防疫教育”的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与,请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了 名学生?(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数 ;(3)根据抽样调查结果,估计该校3200名学生中“家长和学生都参与”的人数.22. 4月18日上午7:30,2021盐城马拉松在盐城市盐南体育中心正式鸣枪开跑,共吸引了来自全国各地的约15000名选手同台竞技.本次马拉松共设三个项目:全程马拉松、半程马拉松、迷你马拉松.小乐和小观参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组中的一个.(1)小乐被分配到半程马拉松项目组的概率为______.(2)用树状图或列表法求小乐和小观被分到同一个项目组概率.23. 在某市双城同创的工作中,某社区计划对1200m 2的区域进行绿化,经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为2300m 区域的绿化时,甲队比乙队少用3天.(1)甲、乙两施工队每天分别能完成绿化的面积是多少?的(2)若甲队每天绿化费用为0.4万元,乙队每天绿化费用为0.15万元,且甲、乙两队施工的总天数不超过14天,则如何安排甲、乙两队施工的天数,使施工费用最少?并求出最少费用.24. 如图,以AB 为直径作O ,在O 上取一点C ,延长AB 至点D ,连接DC ,DCB DAC ∠=∠,过点A 作AE AD ⊥交DC 的延长线于点E .(1)求证:CD 是O 的切线;(2)若4CD =,2DB =,求AE 的长.25. LED 感应灯是一种通过感应模块自动控制光源点亮的一种新智能照明产品,当人进入感应范围内灯自动亮,离开感应范围灯灭.若在感应范围内有多个感应灯装置,那么人离哪个感应灯更近,这个感应灯就会亮,其它感应灯就不亮,这样既方便又节能.(说明:人到两个感应灯距离相等时,两个灯都亮)(1)如图①,已知在ABC 中,906m 8m A AB AC ∠=°==,,,若在ABC 的其中两个顶点B 、C 处分别装有感应灯,EF 垂直平分BC ,垂足为点F ,交AC 于点E ,请求出在该三角形内能使感应灯C 亮的区域面积;(2)如图②,在ABC 中,5m 6m ABAC BC ===,,AD 为BC 边上的高,在ABC 的三个顶点处都装有感应灯,请求出在该三角形内能使感应灯B 亮的区域面积;(3)如图③,在平面内五个散点A 、B 、C 、D 、E 处装有自控灯,请用直尺和圆规在平面内作出能使感应灯上亮的区域图形.26. 定义:在平面内,将点A 关于过点B 的任意一条直线对称后得到点C ,称点C 为点A 关于点B 的线对称点.理解:在直角坐标系中,已知点()2,0A ,(1)点A 关于直线y x =对称的点的坐标为_______;(2)若点A 、B 关于直线2y x =对称,则OA 与OB 数量关系为________; (3)下列为点A 关于原点的线对称点是_______.(填写序号,可多选) ①()2,0−②(③(1, ④()1,2 运用: (4)已知直线y mx b =+经过点()2,4,当m 满足什么条件时,该直线上始终存在点()2,0关于原点的线对称点:(5)已知抛物线2182y x =−+,问:该抛物线上是否存在点()0,0关于()0,3线对称点,若存在请求出点坐标,若不存在请说明理由.27. 已知ABC 是等腰直角三角形,90C AC BC ∠=°=,.(1)当6AC BC ==时,①将一个直角的顶点D 放至AB 的中点处(如图①),两条直角边分别交AC BC 、于点E 、F ,请说明DEF 为等腰直角三角形;②将直角顶点D 放至AC 边的某处(如图②),与另两边的交点分别为点E 、F ,若DEF 为等腰直角三角形,且面积为4,求CD 的长.(2)若等腰Rt DEF △三个顶点分别在等腰Rt ABC △的三边上,等腰Rt DEF △的直角边长为1时,求等腰Rt ABC △的直角边长的最大值.的的。

2024年广东省广州市中考模拟数学试题

2024年广东省广州市中考模拟数学试题

2024年广东省广州市中考模拟数学试题一、单选题1.如图,几何体由5个相同的小正方体搭成.它的主视图是( )A .B .C .D .2.下列各式中运算正确的是( ) A .321a a -= B .()11a a --+=- C .()22330-+-=D .()3326a a -=3.石墨烯堪称目前世界上最薄的材料,约为0.3纳米(1纳米0.000000001=米).与此同时,石墨烯比金刚石更硬,是世界上最坚硬又最薄的纳米材料.0.3纳米用科学记数法可以表示为( )米. A .8310-⨯B .90.310-⨯C .9310-⨯D .10310-⨯4.不透明的盒子放有三张大小、形状及质地相同的卡片,卡片上分别写有李白《峨眉山月歌》,李白《渡荆门送别》和王维《寄荆州张丞相》三首诗,小明从盒子中随机抽取两张卡片,卡片上诗的作者都是李白的概率( ) A .13B .14C .15D .165.端午节,赛龙舟,小亮在点P 处观看400米直道竞速赛,如图所示,赛道AB 为东西方向,赛道起点A 位于点P 的北偏西30︒方向上,终点B 位于点P 的北偏东60︒方向上,400AB =米,则点P 到赛道AB 的距离为( )米.A .B .C .87D .1736.已知关于x 的一元二次方程()22110k k x x -++=有两个实数根1x ,2x ,且满足()()12112x x ++=,则k 的值是( )A .1k =-B .1k =C .2k =-D .1k =或2k =-7.若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7 B .-14 C .28 D .-568.如图,在等边ABC V 中,D 是边AC 上一点,连接BD ,将BCD △绕点B 按逆时针方向旋转60︒,得到BAE V ,连接ED ,若10BC =,9BD =,则四边形ADBE 的周长是( )A .19B .20C .28D .299.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则BC 的长为( )A .8B .10C .12D .1610.如图,正方形ABCD 的边长为4,点E ,F 分别在边DC BC ,上,且BF CE =,AE 平分CAD ∠,连接DF ,分别交AE AC ,于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN AC ⊥,垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM PN +的最小值为③2CF GE AE =⋅;④ADM S =△ )A .1B .2C .3D .4二、填空题11.因式分解:29x y y -=.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3=.13.如图,圆锥的侧面展开图是一个圆心角为120︒的扇形,若圆锥的底面圆半径是5,则圆锥的母线l 为.14.若关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根,则点(1, 3 )P a a +--在第象限.15.如图,在平面直角坐标系xOy 中,反比例函数(0)k y x x=>的图象与半径为10的O e 交于,A B 两点,若60AOB ∠=︒,则k 的值是.16.如图,已知正方形ABCD 的边长为2,E 为AB 的中点,F 是AD 边上的一个动点,连接EF ,将AEF △沿EF 折叠得HEF V ,若延长FH 交边BC 于点M ,则DH 的取值范围是.三、解答题17.计算:()11113tan303π-⎛⎫-+--︒ ⎪⎝⎭18.先化简,再求值:222211121x x x x x ++⎛⎫+÷ ⎪--+⎝⎭,其中4x =.19.为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.20.某文具店准备购进甲、乙两种圆规,若购进甲种圆规10个,乙种圆规30个,需要340元;若购进甲种圆规30个,乙种圆规50个,需要700元. (1)求购进甲、乙两种圆规的单价各是多少元;(2)文具店购进甲、乙两种圆规共100个,每个甲种圆规的售价为15元,每个乙种圆规的售价为12元,销售这两种圆规的总利润不低于480元,那么这个文具店至少购进甲种圆规多少个?21.如图,四边形ABCD 为正方形,点A 在y 轴上,点B 在x 轴上,且4OA =,2OB =,反比例函数()0ky k x=≠在第一象限的图象经过正方形的顶点C .(1)求点C 的坐标和反比例函数的解析式;(2)若点N 为直线OD 上的一动点(不与点O 重合),在y 轴上是否存在点M ,使以点A 、M 、C 、N 为顶点的四边形是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.22.如图是一个山坡的纵向剖面图,坡面DE 的延长线交地面AC 于点B ,点E 恰好在BD 的中点处,60CBD ∠=︒,坡面AE 的坡角为45°,山坡顶点D 与水平线AC 的距离,即CD 的长为.(1)求BE 的长度;(2)求AB 的长度.(结果保留根号)23.如图,在Rt ABC △中,90ABC ∠=︒,点P 是斜边AC 上一个动点,以BP 为直径作O e ,交BC 于点D ,与AC 的另一个交点为E ,连接DE ,BE .(1)当»»DPEP =时,求证:AB AP =; (2)当3AB =,4BC =时.①是否存在点P ,使得BDE V 是等腰三角形,若存在,求出所有符合条件的CP 的长;若不存在,请说明理由;②连接DP ,点H 在DP 的延长线上,若点O 关于DE 的对称点Q 恰好落在CPH ∠内,求CP 的取值范围.24.已知抛物线22y x mx n =-++经过点(2,23)m -. (1)用含m 的式子表示n ;(2)当0m <时,设该抛物线与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,ABC V 的外接圆与y 轴交于另一点D (点D 与点C 不重合),求点D 的坐标;(3)若点()13,E y -,()2,F t y ,()31,G m y -在该抛物线上,且当34t <≤时,总有123y y y <<,求3y 的取值范围.25.如图,在四边形ABCD 中,点N ,M 分别在边BC ,CD 上.连接AM ,AN ,MN ,45MAN ∠=︒.(1)【实践探究】如图①,四边形ABCD 是正方形. (ⅰ)若6CN =,10MN =,求CMN ∠的余弦值; (ⅱ)若1an 3t BAN =∠,求证:M 是CD 的中点;(2)【拓展】如图②,四边形ABCD 是直角梯形,AD BC ∥,90C ∠=︒,12CD =,16AD =,12CN =,求DM 的长.。

2024年广东省广州市中考三模数学试题及答案

2024年广东省广州市中考三模数学试题及答案

2024年广东省广州市中考数学三模训练试卷试卷满分120分.考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上.写在本试卷上无效.4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.写在本试卷上无效.5.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题的四个选项中,只有一项符合题目要求)1. 2025的相反数是( )A. 2025−B. 12025−C. 2025D. 12025 2. 5G 是第五代移动通信技术,5G 网络理论下载速度可以达到每秒1300000KB 以上.用科学记数法表示1300000是( )A 51310× B. 51.310× C. 61.310× D. 71.310× 3. 中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形是( )A. B.C. D..的4. 下列运算,与()43a 计算结果相同的是( ) A. 52a a +B. 26a a ⋅C. ()2420a a a ÷≠D. ()244a a 5. 方程3111x x x −=−+的解是( ) A. 2x =B. 2x =−C. 3x =−D. 3x = 6. 关于一次函数24y x =−+,下列说法不正确的是( ) A. 图象不经过第三象限B. y 随着x 的增大而减小 C 图象与x 轴交于()2,0− D. 图象与y 轴交于()0,47. 如图为商场某品牌椅子的侧面图,120DEF ∠=°,DE 与地面平行,50ABD ∠=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°8. 港珠澳大桥是世界上最长跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60°,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30°,则该主塔的高度是( )A. 80米B. 米C. 160米D.9. 如图,在四边形ABCD 中,90A ∠=°,4AB =,M ,N 分别是边BC ,AB 上的动点(含端点,但点M 不与点B 重合)点E ,F 分别是线段DM ,MN 的中点,若线段EF 的最大值为2.5,则AD 的长为( ).的A 5B. C. 2.5 D. 310. 已知:ABC 中,AD 是中线,点E 在AD 上,且,CE CD BAD ACE =∠=∠.则CE AC的值为( )A.B. C. 23D. 第二部分非选择题(共90分)二、填空题(本题有6个小题,每小题3分,共18分)11. 因式分解:34a a −=_______________________. 12. 一个袋子中装有4个黑球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到白球的概率为35,则白球的个数n 为_______. 13. 若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y __________2y (选填:﹥,﹤,=) 14. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.15. 某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l分别表示去年、今年水.费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.16. 数学课上,老师让同学们以“矩形的折叠”为主题开展数学活动.如图,小明把矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F处,其中DE =,且4sin 5DFA ∠=,则矩形ABCD 的面积为______.三.解答题(共9小题,满分72分)17. 解不等式组12(23)5133x x x x −<+ + ≥+ ,并写出满足条件的正整数解. 18. 如图,在ABCD 中,点E ,F 在对角线BD 上,BE DF =,求证:AE CF =.19. 近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC =18cm ,灯臂CD =33cm ,灯罩DE =20cm ,BC ⊥AB ,CD ,DE 分别可以绕点C ,D 上下调节一定的角度.经使用发现:当∠DCB =140°,且ED ∥AB 时,台灯光线最佳.求此时点D 到桌面AB 的距离.(精确到0.1cm ,参考数值:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)20. 先化简,再求值:22111x x x x x +− −÷ − ,其中1x =.21. 中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.22. 已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=m x图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx+b ﹣m x>0的解集.23. 如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:①过点A 作切线AC ,且4AC =(点C 在A 的上方);②连接OC ,交O 于点D ;③连接BD ,与AC 交于点E .(1)求证:BD 为O 的切线;(2)求AE 的长度.24. 已知二次函数2y ax bx c ++的图像经过()()2,1,2,3−−两点.(1)求b 的值.(2)当1c >−时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m −<<时,结合函数的图像,直接写出a 的取值范围.25. 如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AG BE 的值为 : (2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH,则BC=.2024年广东省广州市中考数学三模训练试卷试卷满分120分.考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上.写在本试卷上无效.4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.写在本试卷上无效.5.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题的四个选项中,只有一项符合题目要求)1. 2025的相反数是()A. 2025− B.12025− C. 2025 D.12025【答案】A【解析】【分析】根据相反数的定义进行求解即可.【详解】解:2025的相反数是2025−,故选A.【点睛】本题主要考查了求一个数的相反数,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.2. 5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上.用科学记数法表示1300000是()A. 51310× B. 51.310× C. 61.310× D. 71.310×【答案】C【解析】【分析】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.详解】解:61300000 1.310=×,故选:C .3. 中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°后,能够与原图形重合,那么这个图形就叫做中心对称图形,熟练掌握中心对称图形的概念,是解题的关键.【详解】解:A 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意; B 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意;C 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意;D 、绕某一点旋转180°后,能够与原图形重合,故是中心对称图形,故符合题意;故选:D .4. 下列运算,与()43a 计算结果相同的是( ) A. 52a a +B. 26a a ⋅C. ()2420a a a ÷≠D. ()244a a 【答案】D【解析】【分析】本题考查同底数幂相乘除、幂的乘方等幂的有关运算及合并同类项.根据同底数幂相乘除、幂的乘方等幂的有关运算及合并同类项分别计算各式子,即可解答.【【详解】解:()4312a a =,A 选项:5a 与2a 不是同类项,无法合并,故计算结果与()43a 不相同; B 选项:268a a a ⋅=,故计算结果与()43a 不相同;C 选项:24222a a a ÷=,故计算结果与()43a 不相同; D 选项:()2444812a a a a a =⋅=故计算结果与()43a 相同. 故选:D5. 方程3111x x x −=−+的解是( ) A. 2x =B. 2x =−C. 3x =−D. 3x = 【答案】A【解析】【分析】两边都乘以()()11x x −+,化整式方程求解,然后检验即可. 【详解】3111x x x −=−+, 两边都乘以()()11x x −+,得()()()()13111x x x x x +−−=+−,整理,得24x −=−,∴2x =.检验:当2x =时,()()110x x −+≠,∴原方程的解为2x =.故选A .【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.6. 关于一次函数24y x =−+,下列说法不正确的是( ) A. 图象不经过第三象限B. y 随着x 的增大而减小C. 图象与x 轴交于()2,0−D. 图象与y 轴交于()0,4 【答案】C 为【解析】【分析】由20k =−<,40b =>,可得图象经过一、二、四象限,y 随x 的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵24y x =−+,20k =−<,4>0b =,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;当0y =时,240x −+=,解得2x =,∴图象与x 轴交于()2,0,故C 符合题意;当0x =时,4y =,∴图象与y 轴交于()0,4,故D 不符合题意;故选C .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.7. 如图为商场某品牌椅子的侧面图,120DEF ∠=°,DE 与地面平行,50ABD ∠=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°【答案】A【解析】 【分析】根据平行得到50ABD EDC ∠=∠=°,再利用外角的性质和对顶角相等,进行求解即可.【详解】解:由题意,得:DE AB ∥,∴50ABD EDC ∠=∠=°,∵120DEF EDC DCE ∠=∠+∠=°,∴70DCE ∠=°,∴70ACB DCE ∠∠°==; 故选A .【点睛】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键. 8. 港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60°,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30°,则该主塔的高度是( )A. 80米B. 米C. 160米D.【答案】B【解析】 【分析】过点A 作AD CB ⊥于点D ,先根据三角形的外角性质可得A ACB ∠=∠,从而可得160AB BC ==米,然后在Rt △ABD 中,利用锐角三角函数的定义求出AD 的长,即可解答.【详解】解:如图,过点A 作AD CB ⊥于点D ,根据题意得:60,30ABD ACB ∠=°∠=°,∵ABD A ACB ∠=∠+∠,∴30A ∠=°,∴A ACB ∠=∠,∴160AB BC ==米,在Rt △ABD 中,sin 60160AD AB =⋅°=即该主塔的高度是米. 故选:B【点睛】本题考查了解直角三角形的应用——仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9. 如图,在四边形ABCD 中,90A ∠=°,4AB =,M ,N 分别是边BC ,AB 上的动点(含端点,但点M 不与点B 重合)点E ,F 分别是线段DM ,MN 的中点,若线段EF 的最大值为2.5,则AD 的长为( )A. 5B.C. 2.5D. 3【答案】D【解析】 【分析】根据三角形的中位线定理,可得EF =12 DN ,DN =2EF =5,利用勾股定理求出AD 的长,即得结论.【详解】解:∵点E 、F 分别为DM 、MN 的中点,∴EF =12 DN ,∵EF 最大值为2.5,∴当DN 最大,即当N 与B 重合时,有DN =2EF =5,∴5DN =,∴解得AD =3,故选:D .【点睛】本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想.10. 已知:ABC 中,AD 是中线,点E 在AD 上,且,CE CD BAD ACE =∠=∠.则CE AC的值为( )A. B. C. 23 D. 【答案】B【解析】【分析】本题主要考查了相似三角形、等腰三角形的性质、三角形外角与内角的关系等知识点,先利用等腰三角形的性质及外角与内角的关系说明B DAC ∠=∠,再判断ABC DAC △∽△,利用相似三角形的性质用CE 表示出AC ,最后代入比例可得结论.【详解】解: AD 是ABC 的中线,∴BC CD =,CE CD =,∴CED ADC ∠=∠,∴DAC ACE B BAD ∠+∠=∠+∠,ACE BAD ∠=∠,∴DAC B ∠=∠,又 ACD BCA ∠=∠,∴ABC DAC △∽△, ∴BC AC AC CD=, ∴22222AC BC CD CD CE =⋅==, ∴AC =,∴CE AC = 故选B .第二部分非选择题(共90分)二、填空题(本题有6个小题,每小题3分,共18分)11. 因式分解:34a a −=_______________________.【答案】(2)(2)a a a +−【解析】【分析】先提公因式,再用平方差公式分解.【详解】解:()3244(2)(2)a a a a a a a −−+−【点睛】本题考查因式分解,掌握因式分解方法是关键.12. 一个袋子中装有4个黑球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到白球的概率为35,则白球的个数n 为_______. 【答案】6【解析】【分析】本题考查利用概率求个数,根据白球概率求出黑球概率,黑球共有4个,就可以求出球的总数,再减去黑球个数即可解答,熟练掌握简单概率公式是解决问题的关键. 【详解】解:∵摇匀后随机摸出一个,摸到白球的概率为35, ∴摸到黑球的概率为25, ∵袋子中有4个黑球和n 个白球, ∴由简单概率公式可得4245n =+,解得6n =, ∴白球有6个,故答案为:6.13. 若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y __________2y (选填:﹥,﹤,=)【答案】<【解析】【分析】本题考查了二次函数的图象与性质,根据二次函数的对称轴和开口方向,判断所给点到对称轴的距离大小即可求解.【详解】解:∵二次函数2y x k =+的对称轴为直线0x =,且图象开口向上,又()011−−=,303−=,13<,∴1y 2y <故答案为:<14. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.【答案】43π##43π 【解析】【分析】延长F A 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =360606°=°,再求出正六边形内角∠F AB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长F A 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =360606°=°, ∠F AB =180°-∠GAB =180°-60°=120°, ∴2120443603603FAB n r S πππ××===扇形, 故答案为43π. 【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.15. 某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l 分别表示去年、今年水费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.【答案】210.【解析】【分析】根据函数图象中的数据可以求得120x >时,2l 对应的函数解析式,从而可以求得150x =时对应的函数值,由1l 的的图象可以求得150x =时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.【详解】设当120x >时,2l 对应的函数解析式为y kx b =+, 120480160720k b k b += +=,得6240k b = =− , 即当120x >时,2l 对应的函数解析式为6240y x =−, 当150x =时,6150240660y =×−=, 由图象可知,去年的水价是4801603÷=(元/3m ),故小雨家去年用水量为1503m ,需要缴费:1503450×=(元), 660450210−=(元), 即小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多210元,故答案为210.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16. 数学课上,老师让同学们以“矩形的折叠”为主题开展数学活动.如图,小明把矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F 处,其中DE =,且4sin 5DFA ∠=,则矩形ABCD 的面积为______.【答案】80【解析】【分析】首先根据折叠的性质得到90DFC C ∠=∠=°,然后根据同角的余角相等得到DFA BEF ∠=∠,进而得到4sin sin 5BEF DFA ∠=∠=,设4BF x =,5EF x =,则3BE x =,5CE FE x ==,根据定理求出88AD x ==,1010DC DF x ===,最后利用矩形面积公式求解即可.【详解】解:∵矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F 处,∴90DFC C ∠=∠=°,∴90DFA BFE ∠+∠=°,∵四边形ABCD 是矩形,∴90A B ∠=∠=°,∴90BEF BFE∠+∠=°, ∴DFA BEF ∠=∠, ∴4sin sin 5BEF DFA ∠=∠=, ∴设4BF x =,5EF x =,则3BE x =,5CE FE x ==,∴8AD BC x ==, ∵4sin 5DFA ∠=, ∴10DF x =,∵90DFC C ∠=∠=°,DE =∴222DF EF DE +=,即()()(222105x x +, ∴解得:1x =,负值舍去,∴88AD x ==,1010DC DF x ===,∴矩形ABCD 面积81080AD CD =⋅=×=.故答案为:80的三.解答题(共9小题,满分72分)17. 解不等式组12(23)5133x x x x −<+ + ≥+ ,并写出满足条件的正整数解. 【答案】不等式组的解集为1−<2x ≤,正整数解为1,2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:12(23)5133x x x x −<+ +≥+①② 解不等式①,得:x >﹣1,解不等式②,得:2x ≤,∴不等式组的解集为1−<2x ≤,则不等式组的正整数解为1,2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. 如图,在ABCD 中,点E ,F 在对角线BD 上,BE DF =,求证:AE CF =.【答案】见解析【解析】【分析】先根据平行四边形的性质得到AB CD =,AB CD ∥,再证明ABE CDF ∠=∠,即可利用SAS 证明C ABE DF ≌△△,即可证明AE CF =.【详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,AB CD ∥,∴ABE CDF ∠=∠∵BE DF =,∴()SAS ABE CDF △△≌,∴AE CF =.【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,熟知平行四边形对边相等且平行是解题的关键19. 近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC=18cm,灯臂CD=33cm,灯罩DE=20cm,BC⊥AB,CD,DE分别可以绕点C,D上下调节一定的角度.经使用发现:当∠DCB=140°,且ED∥AB时,台灯光线最佳.求此时点D到桌面AB的距离.(精确到0.1cm,参考数值:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【答案】点D到桌面AB的距离约为43.4cm【解析】【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数,即可得到DF的长,再根据FG=CB,即可求得DG的长,从而可以解答本题.【详解】解:过点D作DG⊥AB,垂足为G,过点C作CF⊥DG,垂足为F,如图所示,∵CB⊥AB,FG⊥AB,CF⊥FG,∴∠B=∠BGF=∠GFC=90°,∴四边形BCFG为矩形,∴∠BCF=90°,FG=BC=18cm,又∵∠DCB=140°,∴∠DCF=50°,∵CD=33cm,∠DFC=90°,∴DF=CD•sin50°≈33×0.77=25.41(cm),∴DG ≈25.41+18≈43.4(cm ),答:点D 到桌面AB 的距离约为43.4cm .【点睛】本题考查的是矩形的判定与性质,解直角三角形的应用,掌握作出适当的辅助线构建直角三角形是解题的关键.20. 先化简,再求值:22111x x x x x +− −÷ −,其中1x =.【答案】11x −+, 【解析】【分析】先根据分式的混合运算法则化简,然后再将1x=−代入计算即可解答.【详解】解:22111x x x x x +− −÷ − 22111x x xx x +− =−⋅ −()()()()1111x x x x xx x −+−⋅+−11xx x =−⋅+11x =−+.当1x =−时,原式 【点睛】本题主要考查了分式的基本性质及其运算、分母有理化,正确的化简分式是解答本题的关键. 21. 中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.【答案】(1)1,2;(2)72°;(3)见解析;(4)见解析,1 4【解析】【分析】(1)先根据调查的总人数,求得2部对应的人数,进而得到本次调查所得数据的众数以及中位数;(2)根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“4部”所在扇形的圆心角;(3)根据2部对应的人数,即可将条形统计图补充完整;(4)根据列表所得的结果,可判断他们选中同一名著的概率.【详解】解:(1)调查的总人数为:10÷25%=40,∴2部对应的人数为40-2-14-10-8=6,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部.故答案为:1,2(2)扇形统计图中“4部”所在扇形的圆心角为:8360?=72? 40×故答案为:72°.(3)2部对应的人数为:40-2-14-10-8=6人补全统计图如图所示.(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:由图可知,共有16种等可能结果,其中选中同一名著的有4种,()41 164P∴==选中同一部.故答案为:14.【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.22. 已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.的【答案】(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x ﹣2;(2)6;(3)x <﹣4或0<x <2. 【解析】【分析】(1)先把点A 的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B 的坐标代入反比例函数解析式,即可求出n=2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=﹣x ﹣2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x <﹣4或0<x <2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【详解】(1)把A (﹣4,2)代入my x=,得m=2×(﹣4)=﹣8, 所以反比例函数解析式为8y x=−, 把B (n ,﹣4)代入8y x=−, 得﹣4n=﹣8 解得n=2,把A (﹣4,2)和B (2,﹣4)代入y=kx+b ,得: 4224k b k b −+= +=− ,解得:12k b =− =− , 所以一次函数的解析式为y=﹣x ﹣2; (2)y=﹣x ﹣2中,令y=0,则x=﹣2, 即直线y=﹣x ﹣2与x 轴交于点C (﹣2,0),∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6; (3)由图可得,不等式kx +b−mx>0的解集为:x <−4或0<x <2.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.解决问题的关键是掌握用待定系数法确定一次函数的解析式.23. 如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:①过点A 作切线AC ,且4AC =(点C 在A 的上方); ②连接OC ,交O 于点D ; ③连接BD ,与AC 交于点E . (1)求证:BD 为O 的切线; (2)求AE 的长度.【答案】(1)画图见解析,证明见解析 (2)32AE = 【解析】【分析】(1)根据题意作图,首先根据勾股定理得到5OC ==,然后证明出()SAS AOC DOB ≌,得到90OAC ODB ∠=∠=°,即可证明出BD 为O 的切线;(2)首先根据全等三角形的性质得到4BD AC ==,然后证明出BAE BDO ∽,利用相似三角形的性质求解即可. 【小问1详解】 如图所示,∵AC 是O 的切线, ∴OA AC ⊥, ∵3OA =,4AC =,∴5OC ==,∵3OA =,2AB =, ∴5OB OA AB =+=, ∴OB OC =,又∵3==OD OA ,AOC DOB ∠=∠, ∴()SAS AOC DOB ≌, ∴90OAC ODB ∠=∠=°, ∴OD BD ⊥, ∵点D 在O 上, ∴BD 为O 的切线; 【小问2详解】 ∵AOC DOB ≌, ∴4BD AC ==,∵ABE DBO ∠=∠,BAE BDO ∠=∠,∴BAE BDO ∽,∴AE ABOD BD =,即234AE =, ∴解得32AE =.【点睛】此题考查了格点作图,圆切线的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.24. 已知二次函数2y ax bx c ++的图像经过()()2,1,2,3−−两点. (1)求b 的值.(2)当1c >−时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m −<<时,结合函数的图像,直接写出a 的取值范围.【答案】(1)1b =-;(2)1;(3)a<0或45a >. 【解析】【分析】(1)将点()()2,1,2,3−−代入求解即可得;(2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;(3)分a<0和0a >两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得. 【详解】解:(1)将点()()2,1,2,3−−代入2y ax bx c ++得:421423a b c a b c −+=++=− , 两式相减得:44b −=, 解得1b =-;(2)由题意得:0a ≠,由(1)得:2211()24yax x c a x c a a=−+=−+−, 则此函数的顶点的纵坐标为14c a−, 将点()2,3−代入2y ax x c =−+得:423a c −+=−, 解得41a c −=+, 则1141c c a c −=++,下面证明对于任意的两个正数00,x y ,都有00x y +≥2000x y =+−≥ ,00x y ∴+≥(当且仅当00x y =时,等号成立),当1c >−时,10c +>,则11111111c c c c +=++−≥−=++(当且仅当111c c +=+,即0c =时,等号成立), 即114c a−≥, 故当1c >−时,该函数的图像的顶点的纵坐标的最小值是1; (3)由423a c −+=−得:41c a =−−,则二次函数的解析式为241(0)y ax x a a =−−−≠, 由题意,分以下两种情况:①如图,当a<0时,则当=1x −时,0y >;当3x =时,0y <,即141093410a a a a +−−>−−−<,解得a<0;②如图,当0a >时,当=1x −时,14130y a a a =+−−=−<,∴当3x =时,93410y a a =−−−>,解得45a >, 综上,a 的取值范围为a<0或45a >. 【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(3),熟练掌握函数图象法是解题关键.25. 如图(1),已知点G 在正方形ABCD 对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 :的(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG =6,GH ,则BC = .【答案】(1)①四边形CEGF ;(2)线段AG 与BE 之间的数量关系为AG BE ;(3)【解析】【分析】(1)①由GE BC ⊥、GF CD ⊥结合90BCD ∠= 可得四边形CEGF 是矩形,再由45ECG ∠= 即可得证;②由正方形性质知90CEG B ∠∠== 、45ECG ∠= ,据此可得CGCE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽BCE 即可得;(3)证AHG ∽CHA 得AGGH AH ACAH CH ==,设BC CD AD a ===,知AC =,由AG GHAC AH=得23AH a =、13DH a =、CH ,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形, ∴∠BCD =90°,∠BCA =45°, ∵GE ⊥BC 、GF ⊥CD , ∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°, ∴EG =EC ,∴四边形CEGF 是正方形;。

广东省2024届九年级下学期中考模拟数学试卷(含部分解析)

广东省2024届九年级下学期中考模拟数学试卷(含部分解析)

2024年广东省中考数学模拟试题学校:______姓名:______班级:______考号:______一、单选题(共10小题,每题3分,满分30分)1.―(―2021)=( )A.―2021B.2021C.―12021D.120212.从正面、左面、上面观察一个几何体得到的形状图如图所示,则这个几何体是( )A.三棱锥B.三棱柱C.圆柱D.长方体3.某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛.为此,七年级(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两名同学的平均分都是96分,甲成绩的方差是0.2,乙成绩的方差是0.8.根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定4.下列计算正确的是( )A.a―1÷a―3=a2B.(13)0=0C.(a2)3=a5D.(12)―2=145.不等式组{3(x―2)≥x―43x>2x―2的解集在数轴上表示正确的是( )A. B. C. D.6.已知反比例函数y=―5x,则下列结论错误的是( )A.图象必经过点(―1,5)B.图象的两个分支分布在第二、四象限C.y随x的增大而增大D.若x>1,则―5<y<07.甲、乙两人同时从A地出发,骑自行车到B地.已知A、B两地的距离为30km,甲每小时比乙多走3km,并且比乙先到40分钟.设乙每小时走xkm,则可列方程为( )A.30x ―30x―3=23B.30x―30x+3=23 C.30x+3―30x=23D.30x―3―30x=238.若关于x的一元二次方程(m―2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠29.如图,某海监船以20海里/时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30∘方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为( )A.40海里B.60海里C.203海里D.403海里10.如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E.要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是( )A.DE=DOB.AB=ACC.CD=DBD.AC/\/OD二、填空题(共6小题,每题3分,满分18分)11.高速公路便捷了物流和出行,构建了我们更好的生活.交通运输部的数据显示,截止去年底,我国高速公路通车里程161000公里,稳居世界第一.161000这个数据用科学记数法可表示为 .12.若二次函数y=2x2―5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).13.某校随机调查了若干名学生和家长对中学生带手机进校园的态度,并将调查结果绘制成如图的不完整的统计图.已知调查家长的人数与调查学生的人数相等,则家长反对学生带手机进校园的人数为.学生及家长对中学生带手机进校园的态度统计图14.如图,已知M,N两点在正方形ABCD的对角线BD上移动,∠MCN=45∘,连接AM,AN,并延长分别交BC,CD于E,F两点,则∠CME+∠CNF=.15.如图,在Rt△ABC中,∠C=90∘,D,E分别是BC,AC的中点,AD=4,BE=3,则AB=.16.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线y=ax2―4ax―5a运动.若机器人在运动过程中只触发一次报警,则a的取值范围是.三、解答题(共9小题,满分72分)17.解下列方程:(1)2(x―3)2=x2―9;(2)3x(x―1)+2x=2.18.如图点A,F,C,D在同一条直线上,已知AF=DC,∠A=∠D,BC//EF.试说明:AB=DE.19.如图,A,B是⊙O上两点,且AB=OA,连接OB并延长到点C,使BC=OB,连接AC.(1)求证:AC是⊙O的切线;(2)D,E分别是AC,OA的中点,DE所在直线交⊙O于点F,G,OA=4,求GF的长.20.观察下面分解因式的过程:x2―4y2―2x+4y=(x+2y)(x―2y)―2(x―2y)=(x―2y)(x+2y―2),这种分解因式的方法叫分组分解法。

2024年广东省广州市中考数学模拟试卷(含答案)

2024年广东省广州市中考数学模拟试卷(含答案)

2024年广东省广州市中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.舟山市体育中考,女生立定跳远的测试中,以1.97m 为满分标准,若小贺跳出了2.00m ,可记作+0.03m ,则小郑跳出了1.90m ,应记作( )A. ―0.07mB. +0.07mC. +1.90mD. ―1.90m2.设计师石昌鸿耗时两年,将34个省市的风土人情、历史典故转化为形象生动的符号,别具一格.石昌鸿设计的以下省市的简称标志中,是轴对称图形的是( )A.B. C. D.3.下列运算正确的是( )A. x 2⋅x 3=x 6B. 5x ―2x =3C. x 6÷x 2=x 4D. (―2x 2)3=―6x 64.如图,由5个完全相同的小正方体组合成一个立体图形,它的主视图为( )A.B.C.D.5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到正方形OA 2024B 2024C 2024,那么点A 2024的坐标是( )A. ( 22,― 22)B. (― 22, 22)C. (1,0)D. (0,1)6.如图,将△ABC沿CB向左平移3cm得到△DEF,AB,DF相交于点G,如果△ABC的周长是12cm,四边形ACED周长为( )A. 12cmB. 15cmC. 18cmD. 24cm7.若关于x的一元二次方程x2―3x+m=0有两个不相等的实数根,则实数m的值可以是( )A. 5B. 4C. 3D. 28.在正方形网格中,△ABC的位置如图所示,则tanB的值为( )A. 2B. 12C. 22D. 19.如图所示,二次函数y=ax2+bx+c(a,b,c常数,a≠0)的图象与x轴交于点A(―3,0),B(1,0).有下列结论:①abc>0;②若点(―2,y1)和(―0.5,y2)均在抛物线上,则y1<y2;③9a―3b+c=0;④4a+2b+c>0.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图,在正方形ABCD中,点P是对角线BD上一点(点P不与B、D重合),连接AP并延长交CD于点E,过点P作PF⊥AP交BC于点F,连接AF、EF,AF交BD于点G,给出四个结论:①AB2+BF2=2AP2;②BF+ DE=EF;③PB―PD=2BF;上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共6小题,每小题3分,共18分。

2023年广东中考数学模拟试题(含答案)

2023年广东中考数学模拟试题(含答案)

2023年广东中考数学模拟试题(含答案)第一部分:选择题1. 下列选项中,哪一组数互为倒数?- A. 2和1/2- B. 3和1/3- C. 4和5/4- D. 5和5/6答案:A2. 若a+b=1,a-b=3,则a的值是多少?- A. 2- B. 3/2- C. 1/2- D. 1/3答案:C3. 求方程5x - 7 = 23的解。

- A. x = 6- B. x = 7- C. x = 8- D. x = 9答案:D4. 若甲数是乙数的30%,且甲数是12,求乙数。

- A. 36- B. 48- C. 40- D. 32答案:B5. 下列选项中,哪个是一个负整数?- A. 0- B. 1- C. -1- D. 2答案:C第二部分:填空题6. 两数的和是25,差是5,求这两个数分别是多少。

答案:15, 107. 若二次项系数为1,x^2 - 5x + k = 0的一个根是x = 2,则k 的值是多少?答案:68. 若平行四边形ABCD的边长分别是a, b, c, d,则它的周长是多少?答案:a + b + c + d9. 甲数是乙数的2倍,乙数是丙数的3倍,已知丙数是12,求甲数。

答案:7210. a:b = 3:5,b:c = 4:7,求a:b:c的比值。

答案:12:20:35第三部分:解答题11. 某奶茶店周末一共卖出20杯奶茶,卖出的奶茶中有大杯的和小杯的,大杯奶茶的价格是小杯奶茶的2倍,收入一共是110元,求大杯和小杯奶茶各卖出多少杯。

答案:大杯奶茶卖出10杯,小杯奶茶卖出10杯。

12. 有一个矩形花坛,长和宽的比是3:2,已知花坛的周长是40米,求花坛的面积是多大。

答案:花坛的面积是72平方米。

13. 已知三角形的两个边长分别是5cm和7cm,两边夹角是60°,求该三角形的面积。

答案:该三角形的面积是10.39平方厘米。

14. 有一根高16米的旗杆,旗杆的下底边与地面的夹角是30°,求旗杆到地面的距离。

2024年广东省九年级中考数学模拟试卷(含答案及部分题解析)

2024年广东省九年级中考数学模拟试卷(含答案及部分题解析)

2023—2024学年度九年级数学模拟试卷(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.156000000用科学记数法表示为( )A.156×106 B.1.56×107 C.1.56×108 D.1.6×1082.将点A(-4,6)向右平移2个单位,向上平移3个单位得到点B,则点B 的坐标是( ) A.(-2,4) B.(-2,9) C.(-1,4) D.(-2,3)3.下列运算正确的是( )A.(-a³)²=a6 B.(a2)3=a5C.2a2•a=a D.2﹣=334.某种商品原来每件售价为230元,经过连续两次降价后,该种商品每件售价为196元,设平均每次降价的百分率为x,根据题意,所列方程正确的是( )A.230(1﹣x2)=196 B.230(1﹣x)=196 C.230(1﹣2x)=196 D.230(1﹣x)2=1965.分别标有数字π,,-2,0,-4的五张卡片中,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.25B.15C.35 D.456.下列图形中是中心对称图形的是( )A. B.C. D.7.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是( )A.29B.C.79 D.598.若菱形中两个相邻内角的度数比是2:3,那其中较大的角的度数是( )A.72°B.108° C.120° D.135°9.一个多边形的内角和为1080°,则这个多边形是( )A.七边形B.八边形 C.九边形 D.十边形10.如图,在矩形纸片ABCD中,点E在BC边上,将△CDE沿DE翻折得到△FDE,点F落在AE上.若CE=3cm,AF=2EF,则AB=( )cm.A.3B.3 C.3 D.25 二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2ab 2﹣2a = .12.已知反比例函数y =﹣的图象经过点(12,a ),则a 的值为 .13.实数-9的相反数数等于 .14.如图,在△ABC 中,AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长为 .15.如图是二次函数y=ax²+bx+c 的图像,对称轴是直线x=2,则下列说法:①a-b+c-0;②4a+b=0;③ab c ﹥0;④16a+5b+2c ﹥0,其中正确的是 .三、解答题(一)(本大题共3小题,每小题7分,共21分)16. 解不等式组 .17.先化简,再求值:x +1x 2−2x +1÷(2x−1+1),其中x=3+1.18.如图,AD 是△ABC 的角平分线,过点D 分别作AC 、AB 的平行线,交AB 于点E ,交AC 于点F(1)求证:四边形AEDF 是菱形(2)若AF=13,AD=24.求四边形AEDF 的面积四、解答题(二)(本大题共3小题,每小题10分,共30分)19. 如图,在▱ABCD 中,AC ,BD 交于点O ,点E ,F 在AC 上,AE =CF .(1)求证:四边形EBFD 是平行四边形;(2)若∠BAC =∠DAC ,求证:四边形EBFD 是菱形.20.为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t (单位:分钟).按照完成时间分成五组:A 组“t ≤45”,B 组“45<t ≤60”,C 组“60<t ≤75”,D 组“75<t ≤90”,E 组“t >90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是 ,请补全条形统计图;(2)在扇形统计图中,A 组的圆心角是 度,本次调查数据的中位数落在 组内;(3)若该校有1900名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.21.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且;支架BC 与水平线AD 垂直.,,,另一支架AB 与水平线夹角,求OB 的长度(结果精确到1cm ;温馨提示:,,)五.解答题(三)(本大题共2小题,每小题12分,共24分)22.【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,E 是BC 的中点,AE ⊥EP ,EP 与正方形的外角∠DCG 的平分线交于P 点.试猜想AE 与EP 的数量关系,并加以证明;【思考尝试】:(1)同学们发现,取AB 的中点F ,连接EF 可以解决这个问题.请在图1中补全图形,解答老师提出的问题.【实践探究】:(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD 中,E 为BC边上一动点(点E ,B 不重合),△AEP 是等腰直角三角形,∠AEP =90°,连接CP ,可以求出∠DCP 的大小,请你思考并解答这个问题.OB OE =40cm AC =30ADE ∠=︒190cm DE =65BAD ∠=︒sin650.91︒≈cos650.42︒≈tan65 2.14︒≈23.如图1,在平面直角坐标系中,直线与抛物线交于A 、B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C .(1) 求该抛物线的解析式;(2) 若点M 是抛物线对称轴上的一个动点,当的值最小时,求点M 的坐标;(3) P 是抛物线上一动点(不与点A 、B 重合),如图2,若点P 在直线上方,连接交于点D ,求的最大值;2023—2024学年度九年级数学模拟试卷(解析卷)(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.156000000用科学记数法表示为( )A .156×106B .1.56×107C .1.56×108D .1.6×108【答案】C2.将点A (-4,6)向右平移2个单位,向上平移3个单位得到点B ,则点B 的坐标是( )A .(-2,4)B .(-2,9)C .(-1,4)D .(-2,3)【答案】B3.下列运算正确的是( )A .(-a³)²=a 6B .(a 2)3=a 5C .2a 2•a =aD .2﹣=33【答案】A4.某种商品原来每件售价为230元,经过连续两次降价后,该种商品每件售价为196元,设平均每次降价的4y x =+212y x bx c =-++MC MB +AB OP AB PD OD百分率为x,根据题意,所列方程正确的是( )A.230(1﹣x2)=196 B.230(1﹣x)=196 C.230(1﹣2x)=196 D.230(1﹣x)2=196【答案】D5.分别标有数字π,,-2,0,-4的五张卡片中,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.25B.15C.35 D.45【答案】C6.下列图形中是中心对称图形的是( )A. B.C. D.【答案】C7.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是( )A.29B.C.79 D.59【答案】A8.若菱形中两个相邻内角的度数比是2:3,那其中较大的角的度数是( )A.72°B.108° C.120° D.135°【答案】B9.一个多边形的内角和为1080°,则这个多边形是( )A.七边形B.八边形 C.九边形 D.十边形【答案】B10.如图,在矩形纸片ABCD中,点E在BC边上,将△CDE沿DE翻折得到△FDE,点F落在AE上.若CE=3cm,AF=2EF,则AB=( )cm.A.3B.3 C.3 D.25 【答案】A【详解】二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2ab2﹣2a= .【答案】2a(b+1)(b-1)12.已知反比例函数y=﹣的图象经过点(12,a),则a的值为.【答案】-1213.实数-9的相反数数等于 .【答案】914.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为 .【答案】215.如图是二次函数y=ax²+bx+c的图像,对称轴是直线x=2,则下列说法:①a-b+c-0;②4a+b=0;﹥0;④16a+5b+2c﹥0,其中正确的是 .③abc【答案】①②③【详解】由图象知,抛物线过点(5,0),对称轴为直线x =2,∴抛物线过点(-1,0)∴a-b+c=0故①正确;抛物线的对称轴为直线 x =2,∴-b2a=2,∴4a+b=0,故②正确;由图象知,抛物线开口向上,∴a >0,∵4a+b= 0,∴b<0,而抛物线与y轴的交点在y轴的负半轴上,∴c﹤0,故③正确;∵4a+b= 0,∴b=-4a,∵a-b+c=0,∴c=-5a,∴16a+5b+2c=16a-20a-10a=-14a <0,故④错误三、解答题(一)(本大题共3小题,每小题7分,共21分)16. 解不等式组 .【答案】2<x≤3【详解】解:,解不等式①,得:x>2,解不等式②,得:x≤3,∴原不等式组的解集是2<x≤3.17.先化简,再求值:x+1x2−2x+1÷(2x−1+1),其中x=3+1.【答案】3318.如图,AD是△ABC的角平分线,过点D分别作AC、AB的平行线,交AB于点E,交AC于点F(1)求证:四边形AEDF是菱形(2)若AF=13,AD=24.求四边形AEDF的面积【答案】(1)证明:∵AB//DF,AC//DE∴四边形AEDF 是平行四边形∵AD 是△ABC 的角平分线∴∠BAD=∠DAC又∵AC//DE,∴∠ADE=∠DAC∴∠ADE=∠BAD∴EA=ED∴四边形AEDP 是菱形(2)连接EF 交AD 于点O∵四边形AEDF 是菱形∴EF=2FO∴AO=12AD = 12.∵AD ⊥EF.在Rt △AOF 中,由勾股定理得OF=AF 2−AO 2=132−122=5∴OE=OF=5∴四边形AEDF 的面积=12AD ×OF+12AD ×OE=12×24×5+12×24×5=120四、解答题(二)(本大题共3小题,每小题10分,共30分)19. 如图,在▱ABCD 中,AC ,BD 交于点O ,点E ,F 在AC 上,AE =CF .(1)求证:四边形EBFD 是平行四边形;(2)若∠BAC =∠DAC ,求证:四边形EBFD 是菱形.【答案】证明:(1)在▱ABCD中,OA=OC,OB=OD,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∴▱ABCD是菱形∴DB⊥AC,即DB⊥EF,又∵四边形EBFD是平行四边形∴四边形EBFD是菱形20.为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t(单位:分钟).按照完成时间分成五组:A组“t≤45”,B组“45<t≤60”,C组“60<t≤75”,D组“75<t≤90”,E组“t>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是 ,请补全条形统计图;(2)在扇形统计图中,A组的圆心角是 度,本次调查数据的中位数落在 组内;(3)若该校有1900名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.【答案】解:(1)这次调查的样本容量是:25÷25%=100,D组的人数为:100﹣10﹣20﹣25﹣5=40,补全的条形统计图如下图所示:故答案为:100;(2)在扇形统计图中,B 组的圆心角是:360°×10100=36°,∵本次调查了100个数据,第50个数据和51个数据都在C 组,∴中位数落在C 组, 故答案为:36,C ;(3)1900×=1805(人),答:估计该校每天完成书面作业不超过90分钟的学生有1805人.21. 某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且;支架BC 与水平线AD 垂直.,,,另一支架AB 与水平线夹角,求OB 的长度(结果精确到1cm ;温馨提示:,,)【答案】.【详解】设,∴,∵ ,∴,∴,∵,OB OE =40cm AC =30ADE ∠=︒190cm DE =65BAD ∠=︒sin650.91︒≈cos650.42︒≈tan65 2.14︒≈OB 19cm ≈OE OB 2x ==OD DE OE 1902x =+=+ADE 30∠=︒1OC OD 95x 2==+BC OC OB 95x 2x 95x =-=+-=-BC tan BAD AC∠=∴,解得:,∴.8≈19 cm五.解答题(三)(本大题共2小题,每小题12分,共24分)22.【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,E 是BC 的中点,AE ⊥EP ,EP 与正方形的外角∠DCG 的平分线交于P 点.试猜想AE 与EP 的数量关系,并加以证明;【思考尝试】:(1)同学们发现,取AB 的中点F ,连接EF 可以解决这个问题.请在图1中补全图形,解答老师提出的问题.【实践探究】:(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD 中,E 为BC边上一动点(点E ,B 不重合),△AEP 是等腰直角三角形,∠AEP =90°,连接CP ,可以求出∠DCP 的大小,请你思考并解答这个问题.【答案】解:(1)AE =EP ,理由如下:取AB 的中点F ,连接EF ,∵F 、E 分别为AB 、BC 的中点,∴AF =BF =BE =CE ,∴∠BFE =45°,∴∠AFE =135°,∵CP 平分∠DCG ,∴∠DCP =45°,∴∠ECP =135°,95x 2.1440-=x=9.4OB 2x 18==∴∠AFE =∠ECP ,∵AE ⊥PE ,∴∠AEP =90°,∴∠AEB +∠PEC =90°,∵∠AEB +∠BAE =90°,∴∠PEC =∠BAE ,∴△AFE ≌△ECP (ASA ),∴AE =EP ;(2)在AB 上取AF =EC ,连接EF ,由(1)同理可得∠CEP =∠FAE ,∵AF =EC ,AE =EP ,∴△FAE ≌△CEP (SAS ),∴∠ECP =∠AFE ,∵AF =EC ,AB =BC ,∴BF =BE ,∴∠BEF =∠BFE =45°,∴∠AFE =135°,∴∠ECP =135°,∴∠DCP =45°,23.如图1,在平面直角坐标系中,直线与抛物线交于A 、B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C.4y x =+212y x bx c =-++(2) 求该抛物线的解析式;(2) 若点M 是抛物线对称轴上的一个动点,当的值最小时,求点M 的坐标;(3) P 是抛物线上一动点(不与点A 、B 重合),如图2,若点P 在直线上方,连接交于点D ,求的最大值;【答案】(1) (2) (3)【详解】(1)解: 直线与坐标轴交于A 、B 两点,当时,,当时,,,,将A 、B 代入抛物线,得 ,解得 ,抛物线的解析式为:.(2)∵抛物线的解析式为:.∴当时,解得,∴,∴抛物线的对称轴为,∵点关于对称,连接交对称轴于点M ,MC MB +AB OP AB PD OD2142y x x =--+()1,3M -124y x =+0x =4y =0y =4x =-(40A ∴-,)()0,4B 212y x bx c =-++()210=4424b c c ⎧-⨯--+⎪⎨⎪=⎩14b c =-⎧⎨=⎩∴2142y x x =--+2142y x x =--+0y =124,2=-=x x ()()4,0,2,0A C -4212x -+==-()()4,0,2,0A C -=1x -AB∴,此时取得最小值,∴当时,,∴;(3)过点P 作交直线于点E ,则,设点 , ,,, 代数式,当时有最大值 ,的最大值为.MB MC MB MA AB +=+=MC MB +=1x -143y =-+=()1,3M -PE OB ∥AB PDE ODB ∽PD PE DO OB∴=21(,4)(40)2P m m m m --+-<<(,4)E m m ∴+221144222PE m m m m m ∴=--+--=--21224m m PD DO --∴= 2122m m --22122m -=-=-⎛⎫⨯- ⎪⎝⎭PD DO ∴()()212221242-⨯--⨯-=。

2024年广东省中考数学模拟试卷试题及答案详解

2024年广东省中考数学模拟试卷试题及答案详解

广东广州市中考适应性练习九年级数学一、选择题(本大题共10小题,共30分)1x的取值范围是()A .1x ≥B .1x >C .0x ≥D .1x ≤2.已知点(2,1)A a a -+在第一象限,则a 的取值范围是()A .2a >B .1a 2-<<C .21a -<<-D .1a <3.下列运算中,正确的是()A .336x x x ⋅=B .235()x x =C .232x x x ÷=D .222()x y x y -=-4.下列说法中,正确的是()A .为了解长沙市中学生的睡眠情况实行全面调查B .一组数据1-,2,5,5,7,7,4的众数是7C .明天的降水概率为90%,则明天下雨是必然事件D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则乙组数据更稳定5.如图,AC 是O 的直径,点B 、D 在O 上,AB AD ==60AOB ∠=︒,则CD 的长度是()A B .C .3D .66.将等腰直角三角形纸片和长方形纸片按如下图方式叠放,若125∠=︒,则2∠的度数为()A .45︒B .30︒C .25︒D .20︒7.如图,在ABC 中,90C ∠=︒,点D 和点E 分别是边BC 和AB 上的点,DE AB ⊥,4sin 5B =,8AC =,2CD =,则DE 的长为()A .4.8B .4.5C .4D .3.28.已知,如图,点C 是以AB 为直径的半圆O 上一点,过点C 作⊙O 的切线CD ,BD ⊥CD 于点D ,若∠DCB =50°,则∠ABC 的度数是()A .25°B .40°C .45°D .50°9.如图,点A 是反比例函数y =1x(x >0)上的一个动点,连接OA ,过点O 作OB ⊥OA ,并且使OB =2OA ,连接AB ,当点A 在反比例函数图象上移动时,点B 也在某一反比例函数y =kx图象上移动,则k 的值为()A .﹣4B .4C .﹣2D .210.如图,直角三角形BEF 顶点F 在矩形ABCD 的对角线AC 上运动,连接AE .EBF ACD ∠=∠,6AB =,8BC =,则AE 的最小值为().A .5425B .125C .145D .7225二、填空题(本大题共6小题,共18分)11.某芯片每个探针单元的面积为20.0000064cm ,0.0000064用科学记数法可表示为.12.分解因式:2x 2﹣8=13.已知一个多边形的每一个外角都等于72︒,则这个多边形的边数是.14.某中学开展劳动实习,学生到教具加工厂制作圆锥,他们制作的圆锥,母线长为30cm ,底面圆的半径为10cm ,这种圆锥的侧面展开图的圆心角度数是.15.已知a ,b ,是方程2370x x +-=的两个实数根,则232023a b -+的值是.16.如图,BC =,点D 是线段BC 上的一点,分别以BD 、CD 为边在BC 的同侧作等边三角形ABD 和等边三角形CDE ,AC 、BE 相交于点P ,则点D 从点B 运动到点C 时,点P 的运动路径长(含与点B 、C 重合)为.三、解答题(本大题共9小题,共72.0分.解答应写出文字说明,证明过程或演算步骤)17.解不等式组:21452x x x -≤⎧⎨+>+⎩,并把解集在数轴上表示出来.18.已知:如图,E 为BC 上一点,AC ∥BD .AC=BE .BC=BD .求证:AB=DE .19.先化简,再求值:21211m mm m -+⎛⎫-÷ ⎪⎝⎭,其中1m =+.20.某学校为满足学生多样化学习需求,准备组建美术、劳动、科普、阅读四类社团.学校为了解学生的参与度,随机抽取了部分学生进行调查,将调查结果绘制成如图所示的不完整的统计图.请根据图中的信息,解答下列问题:(1)求本次调查的学生人数,并补全条形统计图;(2)若全校共有学生3600人,求愿意参加劳动类社团的学生人数;(3)甲、乙两名同学决定在阅读、美术、劳动社团中选择参加一种社团,请用树状图或列表法表示出所有等可能结果,并求出恰好选中同一社团的概率.21.五一节前,某商店拟用1000元的总价购进A B 、两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台.已知购进3台A 种品牌电风扇所需费用与购进2台B 种品牌电风扇所需费用相同,购进1台A 种品牌电风扇与2台B 种品牌电风扇共需费用400元.(1)求A 、B 两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A 种品牌电风扇定价为180元/台,B 种品牌电风扇定价为250元/台,为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?22.如图:BD 为O 的直径,点A 是BC 弧的中点,AD 交BC 于点E ,2AE =,4ED =.(1)求证:ABE ADB ;(2)求tan ADB ∠的值.23.如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.(1)求一次函数和反比例函数的表达式;(2)求OCD 的面积.24.如图,在Rt ABC △中,90,5cm,3cm ACB AB BC ∠=︒==,将ABC 绕点A 按逆时针方向旋转90︒得到ADE V ,连接CD .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AD 方向匀速运动,速度为1cm/s .PQ 交AC 于点F ,连接,CP EQ .设运动时间为(s)(05)t t <<.解答下列问题:(1)当EQ AD ⊥时,求t 的值;(2)设四边形PCDQ 的面积为()2cm S ,求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PQ CD ∥若存在,求出t 的值;若不存在,请说明理由.25.已知抛物线21(0)y x tx t t =+-->过点(,4)h -,交x 轴于A ,B 两点(点A 在点B 左侧),交y 轴于点C ,且对于任意实数m ,恒有214m tm t +--≥-成立.(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点M ,使得BMC BAC ∠=∠,若存在,求出点M 的坐标,若不存在,请说明理由;(3)若11(2,)P n y -,22(,)P n y ,33(2,)P n y +三点都在抛物线上且总有312y y y >>,请直接写出n 的取值范围.1.A【分析】根据二次根式有意义的条件“被开方数为非负数”解答即可.∴10x -≥,∴1x ≥.故选A .【点睛】本题考查二次根式有意义的条件.掌握二次根式被开方数为非负数是解题关键.2.B【分析】根据点在第一象限的条件是:横坐标是正数,纵坐标是正数求解即可.【详解】解:∵点(2,1)A a a -+在第一象限,∴2010a a ->⎧⎨+>⎩解得:1a 2-<<.故选:B .【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围.3.A【分析】根据同底数幂的乘法,幂的乘方,单项式除以单项式,完全平方公式,逐项分析计算即可求解.【详解】解:A.336x x x ⋅=,故该选项正确,符合题意;B.236()x x =,故该选项不正确,不符合题意;C.23322x x x ÷=,故该选项不正确,不符合题意;D.222()2x y x xy y -=-+,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,幂的乘方,单项式除以单项式,完全平方公式,熟练掌握运算运算法则是解题的关键.4.D【分析】利用概率的意义,全面调查与抽样调查,中位数,众数,以及方差的定义判断即可.【详解】解:A 、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B 、一组数据1-,2,5,5,7,7,4中,5和7出现的次数最多,都是2次,故这组数据的众数是5和7,故原说法错误,不符合题意;C 、明天的降水概率为90%,则明天下雨的概率更大些,是随机事件,不符合题意;D 、若甲组数据的方差20.3s =甲,乙组数据的方差20.02s =乙,则乙组数据比甲组数据稳定,符合题意;故选:D .【点睛】此题考查了概率的意义,全面调查与抽样调查,众数以及方差,熟练掌握各自的定义是解本题的关键.5.C【分析】先根据圆周角定理求得C ∠,然后解直角三角形即可.【详解】∵AB AD =,∴60AOD AOB ∠=∠=︒∵OD OC =,∴1302ODC OCD AOD ∠=∠=∠=︒,在Rt ACD △中,tan ADACD CD∠=,=∴3CD =,故选:C .【点睛】本题主要考查了圆周角定义及其推论,以及解直角三角形,解题的关键是掌握同弧所对的圆周角是圆心角的一半,直径所对的圆周角为直角,以及解直角三角形的方法和步骤.6.D【分析】根据等腰直角三角形的性质可得45ACB ∠=︒,再根据平行线的性质可知125ACE ∠=∠=︒,然后由2ACB ACE ∠=∠-∠即可求出答案.【详解】解:如图,由题意可知,ABC 是等腰直角三角形,90BAC ∠=︒,∴1(180)452ACB ABC BAC ∠=∠=⨯︒-∠=︒,又∵由题意可知,AD CE ∥,125∠=︒,∴125ACE ∠=∠=︒,∴2452520ACB ACE ∠=∠-∠=︒-︒=︒.故选:D .【点睛】本题考查了平行线的性质、等腰直角三角形的性质以及三角形内角和定理等知识,熟练掌握平行线的性质和等腰直角三角形的性质是解题的关键.7.D【分析】先根据锐角三角函数求出10AB =,再根据勾股定理求出6BC =,最后根据三角形的面积求出ED 的长即可.【详解】解:4sin 5AC B AB == ,8AC =,8104sin 5AC AB B ∴===,90C ∠=︒,6BC ∴===,DE AB ⊥,ABC ACD ABD S S S ∴=+ ,111222AC BC AC CD AB DE ∴⨯⋅=⨯⋅+⨯⋅,868210DE ∴⨯=⨯+⨯,3.2DE ∴=,故选:D .【点睛】本题主要考查了锐角三角函数、勾股定理、三角形的面积,熟练掌握锐角三角函数、勾股定理是解题的关键.8.B【分析】连接OC ,根据切线的性质定理确定∠OCD =90°,根据角的和差关系求出∠OCB ,最后根据等边对等角即可求解.【详解】解:如下图所示,连接OC .∵CD 是O 的切线,∴OC ⊥CD .∴∠OCD =90°.∵∠DCB =50°,∴∠OCB =∠OCD -∠DCB =40°.∵OB =OC ,∴∠ABC =∠OCB =40°.故选:B .【点睛】本题考查切线的性质定理,角的和差关系,等边对等角,熟练掌握这些知识点是解题关键.9.A【详解】解:∵点A 是反比例函数1y x =(x >0)上的一个动点,∴可设A (x ,1x),∴OC =x ,AC =1x,∵OB ⊥OA ,∴∠BOD +∠AOC =∠AOC +∠OAC =90°,∴∠BOD =∠OAC ,且∠BDO =∠ACO ,∴△AOC ∽△OBD ,∵OB =2OA ,∴12AC OC AO OD BD BO ===,∴OD =2AC =2x,BD =2OC =2x ,∴B (﹣2x ,2x ),∵点B 反比例函数k y x =图象上,∴k =﹣2x•2x =﹣4,故选A .点睛:本题主要考查反比例函数图象上点的坐标特征,利用条件构造三角形相似,用A 点坐标表示出B 点坐标是解题的关键.10.D【分析】过点B 作BH AC ⊥于点H ,连接EH ,由90BEF BHF ∠=∠=︒,推出E 、B 、F 、H 四点共圆,再证AHE ACD ∠=∠为定值,推出点E 在射线HE 上运动,当AE EH ⊥时,AE 的值最小,然后求出AH 与sin AHE ∠,即可解决问题.【详解】解:过点B 作BH AC ⊥于点H ,连接EH ,如图所示:90BEF BHF ∴∠=∠=︒,E ∴、B 、F 、H 四点共圆,EHB EFB ∴∠=∠,90AHE EHB ∠+∠=︒ ,90EBF EFB ∠+∠=︒,AHE EBF ∴∠=∠,EBF ACD ∠=∠ ,AHE ACD ∴∠=∠,∴点E 在射线HE 上运动,当AE EH ⊥时,AE 的值最小,四边形ABCD 是矩形,6,8,90AB CD BC AD D ∴====∠=︒,10AC ∴===,4sin sin 5AD AHE ACD AC ∴∠=∠==,1122ACB S AB CB AC BH ∆=⋅=⋅ ,即11681022BH ⨯⨯=⨯⨯,245BH ∴=,在Rt AHB △中,由勾股定理得:185AH ===,AE ∴的最小值4sin 55251872AH AHE =⋅∠=⨯=.故选:D .【点睛】本题考查了矩形的性质、解直角三角形、勾股定理、四点共圆、圆周角定理,熟练掌握矩形的性质,利用垂线段最短解决最值问题是解题的关键.11.66.410-⨯【分析】本题考查用科学记数法表示较小的数.一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.【详解】解:0.0000064用科学记数法可表示为:66.410-⨯,故答案为:66.410-⨯.12.2(x +2)(x ﹣2)【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x +2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.13.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.14.120︒【分析】设这种圆锥的侧面展开图的圆心角度数为n ,30210180n =⨯⨯ππ,进行解答即可得.【详解】解:设这种圆锥的侧面展开图的圆心角度数为n°,30210180n =⨯⨯ππ120n =︒故答案为:120︒.【点睛】本题考查了圆锥侧面展开图的圆心角,解题的关键是掌握扇形的弧长公式.15.2039【分析】将代数式同时加上和减去3a ,根据一元二次方程的解及根与系数的关系直接求解即可得到答案.【详解】解:∵a ,b ,是方程2370x x +-=的两个实数根,∴2370a a +-=,331a b +=-=-,223202333()20237920232039a b a a a b -+=+-++=++=,故答案为:2039;【点睛】本题考查一元二次方程的解及根与系数的关系,解题的关键是熟练掌握12b x x a+=-,12c x x a=.16.163π【分析】作△BCP 的外接圆⊙O ,过点O 作OF ⊥BC 于F ,延长OF 交⊙O 于G ,连接BG ,CG ,OB ,OC ,根据等边三角形的性质和角的和差关系可得∠BDE=∠ADC ,∠ABD=∠EDC=60°,可得AB//DE ,根据平行线的性质可得∠ABE=∠BED ,利用SAS 可证明△BDE ≌△ADC ,可得∠BED=∠ACD ,进而可证明∠EBD+∠ACD=∠ABD=60°,根据三角形内角和定理可得∠BPC=120°,根据圆周角定理可得点P 在△BCP 的外接圆上,∠BPC=∠BGC=120°,可得点D 从点B 运动到点C 时,点P 的运动路径长(含与点B 、C重合)为 BC的长,根据圆周角定理可得∠BOC=120°,根据垂径定理可得BF 的长,利用勾股定理即可求出OB 的长,利用弧长公式求出 BC的长即可得答案.【详解】作△BCP 的外接圆⊙O ,过点O 作OF ⊥BC 于F ,延长OF 交⊙O 于G ,连接BG ,CG ,OB ,OC ,∵△ABD 和△CDE 是等边三角形,∴∠ABD=∠EDC=60°,∴AB//DE ,∠ABD+∠ADE=∠EDC+∠ADE ,∴∠ABE=∠BED ,∠BDE=∠ADC ,在△BDE 和△ADC 中,BD AD BDE ADC DE DC =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△ADC ,∴∠BED=∠ACD ,∴∠ACD=∠ABE ,∴∠ACD+∠EBC=∠ABE+∠EBC=∠ABD=60°,∴∠BPC=180°-(∠ACD+∠EBC )=120°,∴点D 从点B 运动到点C 时,点P 的运动路径长(含与点B 、C 重合)为 BC的长,∵OG ⊥BC ,∠BGC=∠BPC=120°,∴BF=12BC=12OGB=12∠BGC=60°,∵OB=OG ,∴△OBG 是等边三角形,∴∠BOG=60°,∴∠BOC=2∠BOG=120°,∠OBF=30°,∴OF=12OB ,∴OB 2=OF 2+BF 2,即OB 2=(12OB)22,解得OB=8,(负值舍去),∴ BC =1208180π⨯=163π,故答案为:163π【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、圆周角定理及垂径定理,根据圆周角定理确定点P 的运动轨迹是解题关键.17.13x -<≤,数轴见解析【分析】本题考查了求不等式组的解集;首先解出不等式组中每个不等式的解集,然后找出每个不等式的解集的公共部分,最后把不等式组的解集在数轴上表示出来即可.【详解】解:21452x x x -≤⎧⎨+>+⎩,解不等式21x -≤得3x ≤,解不等式452x x +>+得1x >-,∴不等式组的解集为13x -<≤,不等式组的解集在数轴上表示为.18.详见解析【分析】由AC 、BD 平行,可知∠ACB =∠DBC ,再根据已知条件,即可得到△ABC ≌△EDB ,即得结论AB =DE .【详解】证明:∵AC ∥BD ,∴∠ACB =∠DBC ,∵AC =BE ,BC =BD ,∴△ABC ≌△EDB ,∴AB =DE .【点睛】本题主要考查全等三角形的判定,涉及到平行线的性质知识点,比较简单.19.11m -,3【分析】先利用分式的运算法则对原式进行化简,再把1m =+代入化简结果计算即可.【详解】解:21211m m m m -+⎛⎫-÷ ⎪⎝⎭()211m m m m--=÷()211m m m m -=⨯-11m =-当1m =时,原式3=【点睛】此题考查了分式的化简求值,还考查二次根式的混合运算,熟练掌握分式的运算法则和二次根式的运算法则是解题的关键.20.(1)调查学生人数200人,补图见解析(2)愿意参加劳动社团的学生人数900人(3)作图见解析,P (同一社团)13=【分析】(1)用愿意参加阅读类社团的学生人数除以其所占的百分比,可得总人数,再用总人数乘以科普类所占的百分比,即可求解;(2)用3600乘以愿意参加劳动社团的学生人数所占的百分比,即可求解;(3)根据题意,画出树状图,可得共有9种等可能的结果,选中同一社团的结果有3种.再根据概率公式,即可求解.【详解】(1)解:调查学生人数:8040%200÷=人,科普类人数:20040508030---=人,补全条形统计图,如图:(2)解:愿意参加劳动社团的学生人数:503600900200⨯=人;(3)解:根据题意,画出树状图,如下图:共有9种等可能的结果,选中同一社团的结果有3种.∴恰好选中同一社团的概率为3193=.【点睛】本题主要考查了用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)A 、B 两种品牌电风扇每台的进价分别是100元、150元.(2)采用购进A 种品牌的电风扇7台,购进B 种品牌的电风扇2台.【分析】(1)设A 种品牌电风扇每台进价x 元,B 种品牌电风扇每台进价y 元,根据题意即可列出关于x 、y 的二元一次方程组,解出x 、y 即可.(2)设购进A 品牌电风扇a 台,B 品牌电风扇b 台,根据题意可列等式1001501000a b +=,由a 和b 都为整数即可求出a 和b 的值的几种可能,然后分别算出每一种情况的利润进行比较即可.【详解】(1)设A 、B 两种品牌电风扇每台的进价分别是x 元、y 元,由题意得:322400x y x y =⎧⎨+=⎩,解得:100150x y =⎧⎨=⎩,∴A 、B 两种品牌电风扇每台的进价分别是100元、150元;(2)设购进A 种品牌的电风扇a 台,购进B 种品牌的电风扇b 台,由题意得:1001501000a b +=,其正整数解为:16a b =⎧⎨=⎩或44a b =⎧⎨=⎩或72a b =⎧⎨=⎩当16a b ==,时,利润()()18010012501506680=-⨯+-⨯=(元),当44a b ==,时,利润()()18010042501504720=-⨯+-⨯=(元),当72a b ==,时,利润()()18010072501502760=-⨯+-⨯=(元),∵680720760<<,∴当72a b ==,时,利润最大,答:为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A 种品牌的电风扇7台,购进B 种品牌的电风扇2台.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意找出等量关系列出等式是解答本题的关键.22.(1)见解析【分析】(1)先根据圆周角定理可得ABE ADB ∠=∠,再根据相似三角形的判定即可得证;(2)先根据相似三角形的性质可得AB 的长,再根据圆周角定理可得90DAB ∠=︒,然后根据正切的定义即可得.【详解】(1)证明:∵点A 是弧BC 的中点,AB AC ∴=,ABE ADB ∴∠=∠,又BAE DAB ∠=∠ ,ABE ADB ∴ .(2)解:2AE = ,4ED =,6AD AE ED ∴=+=,ABE ADB ,AB AE AD AB ∴=,即26AB AB=,解得AB =AB =-(不符合题意,舍去),经检验,AB =BD Q 为O 的直径,90DAB ∴∠=︒,tan AB ADB AD ∴∠==【点睛】本题考查了相似三角形的判定与性质、圆周角定理、正切,熟练掌握相似三角形的判定与性质是解题关键.23.(1)28y x =-+,6y x=(2)8【分析】(1)根据tan 2BAO ∠=,可得出B 点的坐标,运用待定系数法即可求出AB 的解析式;再通过比例关系解出点C 的坐标,可得反比例函数表达式;(2)过D 作DF y ⊥轴,垂足为点F ,联列方程组解出点D 的坐标,再根据OCD AOB ODB OAC S S S S =--△△△△即可求出OCD 的面积.【详解】(1)在Rt AOB 中,∵tan 2BAO ∠=,∴2BO OA =,∵()40A ,,∴()08B ,,∵A 、B 两点在函数y ax b =+上,将()40A ,、()08B ,代入y ax b =+得408a b b +=⎧⎨=⎩解得2a =-,8b =,∴28y x =-+设()11C x y ,,过点C 作CE x ⊥轴,垂足为E ,则CE BO ,∴AC CE AB BO=,又∵3BC AC =,∴14AC CE AB BO ==,即184CE =,2CE =,即12y =,∴1282x -+=,∴13x =,∴()32C ,∴11326k x y ==⨯=,∴6y x=;(2)解方程组286y x y x =-+⎧⎪⎨=⎪⎩,得1116x y =⎧⎨=⎩,2232x y =⎧⎨=⎩∴()32C ,,()16D ,过D 作DF y ⊥轴,垂足为点F∵OCD AOB ODB OACS S S S =--△△△△∴111222OCD S OA OB BO DF OA CE =⋅-⋅-⋅△()14881422=⨯-⨯-⨯8=.【点睛】本题考查反比例函数的性质,涉及反比例函数与一次函数的交点问题,反比例函数中的面积问题,熟练运用反比例函数的性质,以及灵活运用面积计算的方法是解题的关键.24.(1)16s 5(2)213714210S t t =-+(3)存在,65s 29t =【分析】(1)利用AQE AED △∽△得AQ AE AE AD=,即445t =,进而求解;(2)分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N ,证ABC CAM △∽△得,AB BC AC CA AM CM ==,求得121655AM CM ==,,再证BPN BAC △∽△得BP PN BA AC=,得出45PN t =,根据ABC ACD APQ BPC PCDQ S S S S S S ==+-- 四边形即可求出表达式;(3)当PQ CD ∥时AQP ADC ∠=∠,易证APQ MCD △∽△,得出AP AQ MC MD =,则5161355t t -=,进而求出t 值.【详解】(1)解:在Rt ABC △中,由勾股定理得,4AC =∵ABC 绕点A 按逆时针方向旋转90︒得到ADEV ∴5349090AD DE AE AED BAD ︒===∠=∠=︒,,,,∵EQ AD⊥∴90AQE AED ∠=∠=︒又EAQ DAE∠=∠∴AQE AED△∽△∴AQ AE AE AD =∴445t =∴165t =答:当EQ AD ⊥时,t 的值为16s 5.(2)解:分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N∵90,90B BAC CAM BAC ∠+∠=∠+∠=︒︒∴B CAM∠=∠又90BCA AMC ∠=∠=︒∴ABC CAM△∽△∴AB BC AC CA AM CM ==∴5344AM CM==∴121655AM CM ==,∵90B B BNP BCA ∠∠︒=∠∠==,∴BPN BAC△∽△∴BP PN BA AC=∴54t PN =∴45PN t =∴111116346,5822225ABC ACD S BC AC S AD CM =⋅⋅=⨯⨯==⋅⋅=⨯⨯=△△1146113,(5)225522PBC APQ S BC PN t t S AQ AP t t =⋅⋅=⨯⨯==⋅⋅=-△△∴ABC ACD APQ BPCPCDQ S S S S S S ==+-- 四边形1668(5)25t t t =+---213714210t t =-+∴213714210S t t =-+(3)解:假设存在某一时刻t ,使PQ CD∥∵125,5AD AM ==∴1213555DM AD AM =-=-=∵PQ CD∥∴AQP ADC∠=∠又90PAQ CMD ∠=∠=︒∴APQ MCD△∽△∴AP AQ MC MD=∴5161355t t -=∴6529t =∴存在时刻65s 29t =,使PQ CD ∥.【点睛】本题考查了旋转与相似,利用勾股定理求线段长,平行线的性质,根据旋转的性质,找到相似图形是解决问题的关键,是中考中的常考题.25.(1)223y x x =+-(2)存在,点(1,15)M --或(1,15)--(3)10n -<<【分析】(1)由214m tm t +--≥-成立,得到顶点的纵坐标为4-,即可求解;(2)由45BAC BMC ∠=︒=∠,得到点M 在ABC ∆的外接圆上,进而求解;(3)根据函数的对称性,点2P 不可能在对称轴上,当2P 在对称轴右侧时,则3P 在对称轴的右侧,1P 必然在对称轴的左侧,此时,3P 、1P 、2P 离对称轴的距离依次减小,即可求解;当2P 在对称轴左侧时,列出的表达式和2P 在对称轴右侧完全一致,即可求解.【详解】(1) 对于任意实数m ,恒有214m tm t +--≥-成立,∴顶点的纵坐标为4-,即2144t t ---=-,解得:6t =-(舍去)或2,故抛物线的表达式为:223y x x =+-;(2)存在,理由如下:对于223y x x =+-,当0x =时,=3y -,令2230y x x =+-=,则3x =-或1,即点A 、B 的坐标分别为:(3,0)-、(1,0),3OA OC == ,则45BAC BMC ∠=︒=∠,则点M 在ABC ∆的外接圆上,作AC 的中垂线l 交抛物线的对称轴于点R ,则点R 是ABC ∆的外接圆的圆心,则点H 是A 、C 的中点,则点H 的坐标为3(2-,32-,且直线l 经过点O ,则直线l 的表达式为:y x =,由抛物线的表达式知,其对称轴为=1x -,当=1x -时,1y x ==-,则点(1,1)R --,设点(1,)M m -,则MR AR =,即2222(11)(1)(13)(01)m -+++=-+++,解得:1m =-即点(1,1M --或(1,1--+;(3)由抛物线的图象知,当1x >-时,y 随x 的增大而增大,当1x <-时,y 随x 的增大而减小,根据函数的对称性,点2P 不可能在对称轴上,312y y y >> ,当2P 在对称轴右侧时,则3P 在对称轴的右侧,1P 必然在对称轴的左侧,此时,3P 、1P 、2P 离对称轴的距离依次减小,即2(1)1(2)n n +-->---且1(2)(1)n n --->--,解得:10n -<<;当2P 在对称轴左侧时,列出的表达式和2P 在对称轴右侧完全一致,故10n -<<.【点睛】本题考查了二次函数综合运用,涉及到圆的基本知识、解不等式、一次函数的性质等,熟练运用二次函数的增减性是解题的关键.。

2024年广东省名校中考模拟数学试题及答案

2024年广东省名校中考模拟数学试题及答案

广 东 省 名 校 中 考 模 拟数 学本试卷共4页,23题,满分120分,考试用时90分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上,用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案。

4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.5的相反数是…………………………………………………………………………( ) A .5B .15C .5−D .15−2.中国古典花窗图案丰富多样,极具观赏价值.下列各图是中国古典花窗基本图案,其中是轴对称图形的为……………………………………………………………………( )A .B .C .D .3.2023年春运,于2023年1月7日正式启动,截止2023年2月15日春运结束,全国预计发送旅客15.95亿人次.用科学计数法表示15.95亿为……………………… ( ) A .815.9510× B .81.59510× C .91.59510× D .100.159510×4.如图,将直角三角形的直角顶点放在直尺的一边BC 上(AD BC ∥).若135∠=°,则2∠的度数为…………………………………………………………………………………( )A .65°B .55°C .45°D .35°5.计算22411x x −−−的结果等于…………………………………………………………( ) A .21x −− B .21x − C .21x −+ D .21x + 6.对于数据:2、2、2、4、5、6、8、8、9、100,能较好反映这组数据平均水平的是( ) A .这组数据的平均数 B .这组数据的中位数 C .这组数据的众数 D .这组数据的标准差7.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是…………………………………………………………………………( ) A .14B .13C .12D .348.已知k 为整数,关于x ,y 的二元一次方程组2232x y k x y k −=− −=的解满足20222024x y <−<,则整数k 值为……………………………………………………………………………( )A .2022B .2023C .2024D .20259.如图,O 半径长2cm ,点A 、B 、C 是O 三等分点,D 为圆上一点,连接AD ,且=AD ,CD 交AB 于点E ,则BED ∠………………………………………………………………( )第9题图 第10题图 A .75° B .65° C .60° D .55°10.如图,已知抛物线3(1)(9)16y x x =−−−与x 轴交于A 、B 两点,对称轴与抛物线交于点C ,与x 轴交于点D ,C 半径为2,G 为C 上一动点,P 为AG 的中点,则DP 的最大值为( )A .2.5B .3.5 C.D.二、填空题:本大题共5小题,每小题3分,共15分. 11.分解因式:9mn m −= . 12= .13.如图,已知ABC 是等腰直角三角形,4OA =,2OB =,若双曲线ky x=经过点C ,k = .第13题图 第15题图14.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的8折销售.若打折后每件服装仍能获利30%,则这批服装每件的标价为 元. 15.如图,正方形ABCD 的边长为4,对角线AC BD 、相交于点O ,将ABD △绕着点B 顺时针旋转45°得到EBF △,点A ,D 的对应点是点E ,F ,EF 交CD 于点G ,连接BG 交AC 于点H ,连接EH .则EH 的长 .三、解答题(一):本答题共3小题,第16题10分,第17、18题各7分,共24分.16.(1)计算:02tan 601(π2)+−++°;(2)解不等式组:()2731223132x x x x −<−−≤+.17.随着3D 打印技术越来越成熟,家用3D 打印机也逐步走进各家各户.某公司根据市场需求代理甲、乙两种型号的家用3D 打印机,每台甲型打印机比每台乙型打印机进价高1000元,若购买3台甲型打印机和2台乙型打印机共花费1.8万元.求每台甲型、乙型打印机的进价各是多少元?18.到省体育馆打球后的小李要经过人行道(1号人行道)到来福士广场用餐,路线为A B C D →→→,因18号线修建维修封路,他只能改道经数码广场F 口的人行道(2号人行道)去用餐,路线为:A F E D →→→,已知BC EF ∥,BF CE ,AB BF ⊥,CD DE ⊥,270AB =米,240BC =米,37AFB ∠=°,30CED ∠=°.请你计算小李去用餐的路程因改道加了多少?(结果精确到0.1.参考数据:sin 370.60°≈,cos370.80°≈,tan 370.75°≈ 1.73≈.)四、解答题(二):本大题共3小题,每小题9分,共27分.19.如图,在Rt ABC 中,90ACB ∠=°.(1)利用尺规作图,在BC 边上求作一点P ,使得点P 到AB 的距离等于PC 的长;(2)若60CAB ∠=°,3AC =,求点P 到AB 的距离?20.问题呈现: 如图1,在边长为1的正方形网格中,分别连接格点A ,B 和C ,D ,AB 和CD 相交于点P ,求tan ∠BPD 的值.方法归纳: 利用网格将线段CD 平移到线段BE ,连接AE ,得到格点△ABE ,且AE ⊥BE ,则∠BPD 就变换成Rt △ABE 中的∠ABE . 问题解决:(1)图1中tan ∠BPD 的值为________;(2)如图2,在边长为1的正方形网格中,分别连接格点A ,B 和 C ,D ,AB 与CD 交于点P ,求cos ∠BPD 的值; 思维拓展:(3)如图3,AB ⊥CD ,垂足为B ,且AB =4BC ,BD =2BC ,点E 在AB 上,且AE =BC ,连接AD 交CE 的延长线于点P ,利用网格求sin ∠CPD .21.某校为加强学生的消防意识,开展了“消防安全知识“宣传活动,并分别在七、八年级中各随机抽取10名学生的消防知识成绩进行了统计(成绩用x 表示,共分为三个等级:合格8085x ≤<,良好8595x ≤<,优秀95)x ≥,下面给出了部分信息: 10名七年级学生的成绩:83,84,84,88,89,89,95,95,95,98 10名八年级学生中“良好”等级包含的所有数据为:85,90,90,90,94抽取的八年级10名学生的成绩扇形统计图抽取的七、八年级学生成绩统计表年级平均数 中位数 众数 “优秀”等级所占百分比七年级 90 89 a 40% 八年级 90b9030%(1)八年级10名学生中“合格”等级的人数在扇形统计图中所占圆心角的度数为 度; (2)填空:=a ,b = ;(3)根据以上数据,你认为该校七八年级中,哪个年级学生对消防知识掌握得更好?请说明理由。

2024年广东省九年级数学中考模拟试卷1(解析版)

2024年广东省九年级数学中考模拟试卷1(解析版)

2024年广东省九年级数学中考模拟试卷(解析卷)本练习卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,完卷时间120分钟,满分120分.第I卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a与c互为相反数,a≠0且,那么下列关系式正确的是( )A.a·c=1B.a+c=1C.aa cc=1D.a+c=0【答案】D2. 如图,已知直线a∥b,∠1=100º,则教∠2等于()A. 100ºB. 80ºC. 90ºD. 110º【答案】B3.不等式-2x+8>3x+18的解集为4.将点A(-2,3)先向右平移4个单位长度,再向下平移2个单位长度,得到点A',再将点B(5,4)先向上平移2个单位长度,再向左平移3个单位长度,得到点B',则B'与A'相距( )A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度【答案】C5.如图是由一个长方体和一个三棱柱组成的几何体,则它的俯视图是()A. B.C. D.【答案】A6. 下列运算正确的是()A. a²·a=a²B. (-2a²)³=-6aa5C. 2a³+a³=3a³D. 3a+4a=7a²【答案】C7.如图,正五边形ABCDE内接于⊙O,点F是弧DE上的动点,则AFC∠的度数为()A.144ºB. 108º C.72ºD.随着点F的变化而变化【答案】C8.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC∆中,90ACB∠=°,分别以ABC∆的三条边为边向外作正方形.连接EB,CM,DG,CM分别与AB,BE相交于点P,Q.若30ABE∠=°,则DGQM的值为()A B1−C.45D 【答案】B【解答】解: 四边形AEDC和AMNB为正方形,AE AC ∴=,AB AM =,90EAC MAB ∠=∠=°EAB CAM ∴∠=∠,∴在EAB ∆和CAM ∆中,AE AC EAB CAM AB AM = ∠=∠ =, ()EAB CAM SAS ∴∆≅∆,30EBA CMA ∴∠=∠=°,60BPQ APM ∴∠=∠=°,90BQP ∴∠=°,12PQ PB ∴=, 设1AP =,则AM =,2PM =,1PB =,PQ =2QM QP PM ∴=+=+= 在Rt ACB ∆和Rt DCG ∆中,CG BC AC CD = =, Rt ACB Rt DCG(HL)∴∆≅∆,DG AB ∴=,∴1DG QM =−.9.如图,BD 是Rt ABC ∆斜边AC 上的中线.AC=13,AB=5,点P 是BC 上一个动点,过点P 分别作AC 和BD 的垂线,垂足为E 、F .则PE PF +的值是( )A. 4B. 5C. 6013D. 6513 【答案】C【解答】解:连接DP ,在Rt ABC ∆中,AC=13,AB=5,∴BC=√AAAA 2−AAAA 2=12,BD 是斜边AC 上的中线, ∴BD=AC=CD=12AC=132BDC ∴∆的面积ABD =∆的面积12ABC =∆的面积=12·12·AB ·BC=12×12×5×12=15 PE CD ⊥ ,PF BD ⊥, BDP ∆ 的面积CDP +∆的面积BDC =∆的面积, ∴112422BD PF CD PE ⋅+⋅=,∴12BD ·PF+12CD ·PE=15 ∴PF+PE=6013 10. 如图,P 为⊙O 的直径BA 延长线上的一点,PC 与⊙O 相切,切点为C ,点D 是⊙O 上一点,连结PD.已知PC =PD =BC.下列结论:与⊙O 相切;(2)四边形PCBD 是菱形;(3)PO =AB ;(4)∠PDB =130°.其中正确的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C 【详解】(1)连接CO 、DO ,PC 与O 相切,切点为C ,∴90PCO ∠=°,在PCO △和PDO △中,CO DO PO PO PC PD = = =,∴PCO PDO ≌(SSS ),∴90PCO PDO ∠=∠=°,∴PD 与O 相切,故(1)正确;(2)由(1)得:CPB BPD ∠=∠,在CPB △和DPB 中,PC PD CPB DPB PB PB = ∠=∠ =, ∴CPB DPB ≌(SAS ),∴BC BD =,∴PC PD BC BD ===,∴四边形PCBD 是菱形,故(2)正确;(3)连接AC ,PC CB =,∴CPB CBP ∠=∠,AB 是O 直径,∴90ACB ∠=°,在PCO △和BCA 中,CPO CBP PC BCPCO BCA ∠=∠ = ∠=∠, ∴PCO BCA ≌(ASA ),∴AC CO =,∴AC CO AO ==,∴60COA ∠=°,∴30CPO ∠=°,∴1122CO PO AB ==, ∴PO AB =,故(3)正确;(4) 四边形PCBD 是菱形,30CPO ∠=°, ∴ DP DB =,则30DPB DBP ∠=∠=°,∴ 120PDB ∠=°,故(4)错误;正确个数有3个.第Ⅱ卷二、填空题(本题共5小题,每小题3分,共15分.)11. 计算:|﹣5|+(-3+π)0-2sin30°= .【答案】512. 据统计,我国2023年全年的人口出生率为902万人,“902万”用科学计数法表示为 .【答案】9.02×10613. 如图,小明和小刚分别设计了两个转盘(每一个转盘中的扇形面积均相等),两人利用设计出的两个转盘进行“配紫色”游戏,即每人将两个转盘各转动一次,如果红色和蓝色分别出现在两个转盘上,那就说明可以配成紫色,那么小明出紫色的概率是 .【答案】12 14.如图,BD 是ABC 的中线,AB=8,BC=5,ABD △和BCD △的周长差为______.【答案】315.二次函数()20y ax bx c a ++≠的大致图象如图所示,顶点坐标为(2−,9a −),下列结论:①abc<0;②16a-4b+c>0;③若方程21ax bx c ++=−有两个根12,x x ,且12x x <,则1251x x −<<<;④若抛物线与y 轴的交点在(0,2−)与(0,3−)之间,则a 的取值范围是2355a <<.其中正确结论的是____________.【答案】①③④【详解】∵抛物线的开口向上,对称轴在y 轴的左侧,交y 轴的负半轴,∴0a >,0b >,0c <,∴<0abc ,故①正确;∵抛物线的顶点坐标(2−,9a −), ∴22b a −=−,2494ac b a a−=−, ∴4b a =,5c a =−,∴1641616550a b c a a a a −+=−−=−<,故②错误;∴抛物线的解析式为245y ax ax a =+−,当0y =时,2450ax ax a +−=,解得:15x =−,21x =,∴抛物线245y ax ax a =+−交x 轴于(5−,0),(1,0),∵若方程(5)(1)1a x x +−=−有两个根1x 和2x ,且12 x x <, ∴1251x x −<<<,故③正确;∵抛物线与y 轴的交点在(0,2−)与(0,3−)之间,∴32c −<<−,∵5c a =−,∴352a −<−<−, 解得:2355a <<,故④正确. 三、解答题(本题共8小题,75分.)16.(6分)先化简,再求值:232(1)11x x x x x +−−÷++,其中x=-1. 【答案】解:原式213(2)()111x x x x x x −+=−÷+++ (2)(2)11(2)x x x x x x +−+⋅++ 2x x−=, 当x=-1时,原式=−1−2−1=317.(7分)解方程组:�2xx +5yy =45xx +yy =6【答案】�xx =−5yy =11 18.(9分)我国为了维护对钓鱼岛P 的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同()AP BD ∥,当轮船航行到距钓鱼岛20km 的A 处时,飞机在B 处测得轮船的俯角是45°;当轮船航行到C 处时,飞机在轮船正上方的E 处,此时EC=6km .轮船到达钓鱼岛P 时,测得D 处的飞机的仰角为30°.试求飞机的飞行距离BD (结果保留1位小数).【详解】解:作AF BD ⊥,PG BD ⊥,垂足分别为F 、G ,由题意得:AF=PG=CE=6km ,20FGAP km ==, 在Rt AFB 中,45B ∠=°,则45BAF ∠=°,∴BF=AF=6(km) .AP BD ∥ ,30D DPH ∴∠=∠=°,在Rt PGD 中,tan GP D GD∠=,即tan30°=6GGGG , ∴GD=6√3(km ). 则BD=BF+FG+GD=6+20+6√3≈36.4(km ). 答:飞机的飞行距离BD 约为36.4km .19.(9分)已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥,垂足为P ,过点P 作AB 的垂线分别交AB ,DC 于点H ,M .求证:(1)M 是CD 的中点(2)若2PD =,HP =3BP =,求MH 的长.【解答】(1)证明:AC BD ⊥ ,90APB CPD ∴∠=∠=°,90ABP BAP ∴∠+∠=°,PH AB ⊥ ,90BAP APH ∴∠+∠=°,ABP APH ∴∠=∠,MPC APH ∴∠=∠,AD AD =,ABP ACD ∴∠=∠,PCM MPC ∴∠=∠,PM MC ∴=,同理可得,PM DM =,DM CM ∴=,M ∴是CD 的中点;(2)解:3BP = ,HP =BH ∴,sin HBP ∴∠, ABP PCD ∠=∠ , ∴23DP CD CD==,CD ∴,M 是CD 的中点,12PM CD ∴==,MH ∴.20.(10分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城3月份销售自行车64辆,5月份销售了100辆.(1)若该商城3至5少?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A 型车的进价为500元/辆,售价为700元/辆,B 型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A 型车不少于B 型车的2倍,但不超过B 型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?【详解】解:(1)设平均增长率为x ,根据题意得:64(1+x )2=100解得:x =0.25=25%或x =﹣2.25(舍去).答:该商城自行车销量的月平均增长率是25%.(2)设购进A 型车y 辆,则购进B 型车30000500y 1000−辆,根据题意得:30000500y 30000500y 2y 2.810001000−−⋅≤≤⋅, 解得:30≤y≤35. 利润()()30000500y W 700500y 1300100050y 9001000−=−+−=+, ∵50>0,∴W 随着y 的增大而增大.当y =35时,30000500y 1000−不是整数,故不符合题意, 当y =34时,30000500y 1000−=13,符合题意. 答:为使利润最大,该商城应购进34辆A 型车和13辆B 型车.21.(10分)学习习近平总书记关于生态文明建设重要讲话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到学校,某校李老师为了了解本班学生4月植树成活情况,对本班全体学生进行了调查,并将调查结果分为了三类:A :好,B :中,C :差.请根据图中信息,解答下列问题:(1)求全班学生总人数;(2)将上面的条形统计图与扇形统计图补充完整;(3)张老师在班上随机抽取了4名学生,其中A 类2人,B 类1人,C 类1人,若再从这4人中随机抽取2人,请用画树状图或列表法求出一个A 类,一B 类学生的概率.【详解】(1)全班学生总人数为1025%40÷=(人);(2)C 类人数为()4010246−+=, C ∴类所占百分比为6100%15%40×=,B 类百分比为24100%60%40×=, 补全图形如下:(3)画树状图如下:由图可知,共有12种等可能结果,其中一个A类,一B类学生的有4种情况,所以全是B类学生的概率为412=13.22.(12分)如图,已知矩形ABCD中,(1)=>,2AB a aBC=,点O是BC边的中点,点E是矩形内一个动点,且1OE=.(1)当OE BC∠的度数;⊥时,连接BE、,直接写出BEC(2)当a=DE,若DE OE⊥,求BE的长;(3)当2a=时,将线段DE绕点D逆时针旋转90°后,得到线段DF,点P是线段DF的中点,当点E在矩形ABCD内部运动时,求点P运动路径的长度.【解答】解:(1)如图1,是BC的中点,O1∴==,OB OC,1OE=OB OC OE∴==,∠,∠=∴∠=∠,CEO ECOBEO EBO,⊥OE BCBOE COE∴∠=∠=°,90∠=∠=°,∠=∴∠=BEO EBO CEO ECO45∴∠=°;90BEC(2)如图2,连接OD,==,OD OD=,OE C,1DEO C∠=∠=°90∴∆≅∆,Rt DEO Rt DCO(HL)∴∠=∠,DOE DOCOC=,CD=,∠=°,190C∴∠tan COD∴∠=°,COD60∴∠=°,60DOE∴∠=°−∠−∠=°,BOE COD DOE18060==,OB OE1∴∆是等边三角形,BOE∴==;1BE OE(3)如图3,连接OD ,将DOE ∆绕点D 逆时针旋转90°至△DO F ′,取O D ′的中点I ,连接IP , 1O F OE ∴′==,点P 是DF 的中点,1122IF O F ∴=′=, ∴点P 的运动轨迹是在以I 为圆心,12为半径的半圆, ∴点P 运动路径的长度12π=.23.(12分)如图,抛物线2y x bx c =−++经过(1,0)A −,(0,3)C 两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与y 轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【解答】解:(1) 抛物线2y x bx c =−++经过(1,0)A −,(0,3)C 两点,∴103b c c −−+= =, 解得:23b c = =, ∴该抛物线的表达式为223y x x =−++; (2)2223(1)4y x x x =−++=−−+ ,∴顶点(1,4)M ,设直线AM 的解析式为y kx d =+,则40k d k d += −+=, 解得:22k d = =, ∴直线AM 的解析式为22y x =+, 当0x =时,2y =,(0,2)D ∴,作点D 关于x 轴的对称点(0,2)D ′−,连接D M ′,D H ′,如图,则DH D H =′,MH DH MH D H D M ∴+=+′′ ,即MH DH +的最小值为D M ′,D M ′ ,MH DH ∴+(3)对称轴上存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形. 由(2)得:(0,2)D ,(1,4)M ,点P 是抛物线上一动点,∴设2(,23)P m m m −++,抛物线223y x x =−++的对称轴为直线1x =, ∴设(1,)Q n ,当DM 、PQ 为对角线时,DM 、PQ 的中点重合,∴20112423m m m n +=+ +=−+++, 解得:03m n = = , (1,3)Q ∴;当DP 、MQ 为对角线时,DP 、MQ 的中点重合,∴20112234m m m n +=+ −++=+, 解得:21m n = =, (1,1)Q ∴;当DQ 、PM 为对角线时,DQ 、的中点重合,∴20112423m n m m +=+ +=−++, 解得:05m n = =, (1,5)Q ∴;综上所述,对称轴上存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形,点Q 的坐标为(1,3)或(1,1)或(1,5).。

2024年广东省深圳市中考数学模拟考试卷及答案

2024年广东省深圳市中考数学模拟考试卷及答案

2024年中考数学模拟卷数学说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好。

2.全卷共6页。

考试时间90分钟,满分100分。

3.作答选择题1-10,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案。

作答非选择题11-22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内。

写在本试卷或草稿纸上,其答案一律无效。

4.考试结束后,请将答题卡交回。

第一部分选择题一.选择题(共10小题,满分30分,每小题3分)1.(3分)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的从正面、左面、上面三个不同的方向观察看到的平面图形,下列说法正确的是()A.从正面看与从左面看到的图形相同B.从正面看与从上面看到的图形相同C.从左面看与从上面看到的图形相同D.从正面、左面、上面看到的图形都相同2.(3分)若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=3,则m的值是()A.﹣6B.﹣3C.3D.63.(3分)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.23B.20C.15D.104.(3分)将方程x2﹣4x﹣3=0化成(x﹣m)2=n(m、n为常数)的形式,则m、n的值分别为()A.m=2,n=7B.m=﹣2,n=1C.m=2,n=4D.m=﹣2,n=45.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为20的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量重复实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此二维码中黑色阴影的面积为()A.8B.12C.0.4D.0.66.(3分)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BE的长为()A.B.4C.D.67.(3分)如图是小明实验小组成员在小孔成像实验中的影像,蜡烛在刻度尺50cm处,遮光板在刻度尺70cm处,光屏在刻度尺80cm处,量得像高3cm,则蜡烛的长为()A.5cm B.6cm C.4cm D.4.5cm8.(3分)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平均每月降低的百分率为x,根据题意列出的方程是()A.2500(1+x)2=3200B.2500(1﹣x)2=3200C.3200(1﹣x)2=2500D.3200(1+x)2=25009.(3分)喜迎二十大,“龙舟故里”赛龙舟,小亮在龙舟竞渡中心广场点P处观看400米直道竞速赛,如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30°方向上,终点B位于点P的北偏东60°方向上,AB=400米,求点P到赛道AB的距离()(结果保留整数,参考数据:)A.B.C.87D.17310.(3分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△F AB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A.1B.2C.3D.4第二部分非选择题二.填空题(共5小题,满分15分,每小题3分)11.(3分)若3m=7n,则=.12.(3分)2011年3月11日13:46日本发生了震惊世界的大地震,近期国际机构将日本核电事故等级上调至国际核能事件分级表(INES)中最严重的7级,据估算其向大气排放的放射性物质量约为630000太贝克,用科学记数法表示为:.13.(3分)五一期间,小明和小亮分别从三部影片《飞驰人生2》、《热辣滚烫》、《九龙城寨之围城》、《维和防暴队》中随机选择一部观看,则他们选择的影片相同的概率为.14.(3分)如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣4,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为.15.(3分)如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.第14题第15题三.解答题(共7小题,满分55分)16.(5分)解方程:x2+2x﹣8=0.17.(7分)班级开展迎新年联欢晚会时,在教室悬挂了如图所示的四个福袋A,B,C,D.在抽奖时,每次随机取下一个福袋,且取A之前需先取下B,取C之前需先取下D,直到4个福袋都被取下.(1)第一个取下的是D福袋的概率为;(2)请用画树状图或列表的方法,求第二个取下的是A福袋的概率.18.(8分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.19.(8分)某景区在2024年“五一”小长假期间,接待游客达2万人次,预计在2022年“五一”小长假期间,接待游客2.88万人次,该景区一家特色小面店希望在“五一”小长假期间获得好的收益,经测算知,该小面成本价为每碗10元,借鉴以往经验,若每碗卖15元,平均每天将销售120碗,若价格每提高0.5元,则平均每天少销售4碗,每天店面所需其他各种费用为168元.(1)求出2020至2022年“五一”小长假期间游客人次的年平均增长率;(2)为了更好地维护景区形象,物价局规定每碗售价不得超过20元,当每碗售价定为多少元时,店家才能实现每天净利润600元?(净利润=总收入﹣总成本﹣其它各种费用)20.(8分)如图,点E是矩形ABCD对角线AC上的点(不与A,C重合),连接BE,过点E作EF⊥BE交CD于点F.连接BF交AC于点G,BE=AD.(1)求证:∠FEC=∠FCE;(2)试判断线段BF与AC的位置关系,并说明理由.21.(9分)【建立模型】(1)在数学课上,老师出示这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,AD⊥l,BE⊥l,垂足分别为点D和点E,求证:△ADC≌△CEB,请你写出证明过程:【类比迁移】(2)勤奋小组在这个模型的基础上,继续进行探究问题;如图2,在平面直角坐标系中,直线y=﹣3x+3的图象与y轴交于点A,与x轴交于点C,将线段AC绕点C顺时针旋转90°得到线段CB,反比例函数的图象经过点B,请你求出反比例函数的解析式;【拓展延伸】(3)创新小组受到勤奋小组的启发,结合抛物线的图象继续深入探究:如图3,一次函数y=﹣3x+3的图象与y轴交于点A,与x轴交于点C,创新小组的同学发现在第一象限的抛物线y=﹣x2+2x+3的图象上存在一点P,连接PA,当∠PAC=45°时,请你和创新小组的同学一起求出点P的坐标.22.(10分)如图①,点D为△ABC上方一动点,且∠BDC=60°.(1)在BD左侧构造△BDE∽△BCA,连接AE,请证明△BAE∽△BCD;(2)如图②,在BD左侧构造△BDE∽△BCA,在CD右侧构造△CDF∽△CBA,连接AF,AE,求证:四边形AFDE是平行四边形;(3)如图③,当△ABC满足∠A=150°,,AC=2.运用(2)中的构造图形的方法画出四边形AFDE;(Ⅰ)求证:四边形AFDE是矩形;(Ⅱ)直接写出在点D运动过程中线段EF的最大值.2024年中考模拟考试参考答案及评分标准一、选择题题号12345678910答案A D B A B A B C D D 二、填空题题号1112131415答案 6.3×10514﹣4﹣5 16.解:x2+2x﹣8=0(x﹣2)(x+4)=0-------------------------------------------------------------------------------3分x﹣2=0或x+4=0x1=2,x2=﹣4-----------------------------------------------------------------------------------5分17.解:(1);-----------------------------------------------------------------------------------2分(2)由题意,画树状图为:---------------------------------------------------------------------------------5分共有4种等可能的结果,其中第二个取下的是A福袋的结果数有1种,∴第二个摘下A灯笼的概率为.------------------------------------------------------------------7分18.(8分)解:(1)∵抽样调查的家庭总户数为:80÷8%=1000(户),-----------1分∴m%==20%,m=20,---------------------------------------------------------------------2分n%==6%,n=6.----------------------------------------------------------------------------3分(2)C类户数为:1000﹣(80+510+200+60+50)=100,-----------------------------------4分条形统计图补充如下:--------------------------------6分(3)180×10%=18(万户)若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.----8分19.(8分)解:(1)可设年平均增长率为x,依题意有2(1+x)2=2.88,--------------------------------------------2分解得:x1=0.2=20%,x2=﹣2.2(舍去).-------------------3分答:年平均增长率为20%;--------------------------------------4分(2)设每碗售价定为y元时,店家才能实现每天利润600元,依题意得:(y﹣10)[120﹣(y﹣15)]﹣168=600,----------------------6分解得y1=18,y2=22,----------------------------------------------7分∵每碗售价不得超过20元,∴y=18.答:当每碗售价定为18元时,店家才能实现每天利润600元-----------------8分.20.(8分)(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠DCB=90°,----------------------------------------------------------------------1分∵BE=AD,∴BC=BE,∴∠BEC=∠BCE,-----------------------------------------------------------------------------------2分∵EF⊥BE,∴∠BEF=∠DCB=90°,∴∠FEC=∠FCE;------------------------------------------------------------------------------------4分(2)解:BF⊥AC.------------------------------------------------------------------------------------5分理由:∵∠FEC=∠FCE,∴EF=CF,--------------------------------------------------------------------------------------------6分∵BE=BC,∴BF垂直平分CE,即BF⊥AC.--------------------------------------------------------------------------------------------8分21.(9分)(1)证明:如图1,∵AD⊥l,BE⊥l,∴∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,---------------------------------------------------------1分∵∠ACB=90°,AC=BC,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE,---------------------------------------------------------------------2分∴△ACD≌△CBE(AAS);---------------------------------------------------------3分(2)如图2,过点B作BG⊥x轴于点G,则∠CGB=∠AOC=90°,∴∠ACO+∠CAO=90°,∵将线段AC绕点C顺时针旋转90°得到线段CB,∴AC=CB,∠ACB=90°,∴∠ACO+∠BCG=90°,∴∠CAO=∠BCG,∴△ACO≌△CBG(AAS),----------------------------------------------------------------------4分∴OA=CG,OC=BG,∵直线y=﹣3x+3与y轴交于点A,与x轴交于点C,∴A(0,3),C(1,0),∴OA=3,OC=1,∴CG=3,BG=1,∴OG=OC+CG=1+3=4,∴B(4,1),---------------------------------------------------------------------------------------5分将B(4,1)代入y=,得1=,∴k=4,∴反比例函数的解析式为y=;-------------------------------------------------------------------6分(3)如图3,过点C作CE⊥AC,且CE=AC,连接AE交抛物线于P,过点E作EF⊥x轴于点F,则∠CFE=∠ACE=∠AOC=90°,∴∠ACO+∠CAO=∠ACO+∠ECF=90°,∴∠CAO=∠ECF,∴△ACO≌△CEF(AAS),------------------------------------------------------------------------7分∴OA=CF=3,OC=EF=1,∴OF=OC+CF=1+3=4,∴E(4,1),设直线AE的解析式为y=kx+b,将E(4,1),A(0,3)代入得:,解得:,∴直线AE的解析式为y=﹣x+3,----------------------------------------------------------------8分联立方程组得,解得:(舍去),,∴点P的坐标为(,).------------------------------------------------------------------------9分22.(10分)(1)证明:∵△EBD∽△ABC,∴∠EBD=∠ABC,,-----------------------------------------------------------------1分∴∠EBD+∠ABD=∠ABC+∠ABD,∴∠EBA=∠DBC,∴△BAE∽△BCD;----------------------------------------------------------------------------------2分(2)证明:由(1)得:△BAE∽△BCD,∴,∵△CDF∽△CBA,∴,∴,∴AE=DF,-----------------------------------------------------------------------------------------3分同理(1)可得△CFA∽△CDB,∴,∵△BDE∽△BAC,∴∴∴DE=AF,---------------------------------------------------------------------------------------------4分∴四边形AFDE是平行四边形;---------------------------------------------------------------------5分(3)(Ⅰ)证明:由(1)知:△BAE∽△BCD,∴∠AEB=∠BDC=60°,---------------------------------------------------------------------------6分∵△EBD∽△ABC,∴∠BED=∠BAC=150°,∴∠AED=∠BED﹣∠AEB=150°﹣60°=90°,-------------------------------------------7分∴▱AFDE是矩形;-------------------------------------------------------------------------------------8分(Ⅱ)解:如图,EF的最大值为:,-------------------------------------------------------10分理由如下:作△BCD的外接圆,圆心为O,连接OA并延长交⊙O于D,此时AD最大,作BG⊥AC,交CA的延长线于G,∵∠BAC=150°,∴∠BAG=30°,∴BG=AB=,AG=AB=,∴CG=AC+AG=5,∴BC=,∴⊙O的直径为:,连接OB,OC,作OQ⊥BC于Q,作AT⊥OQ于T,∴OB=OC=,CQ=BQ=,∵∠CDB=60°∴∠BOC=2∠CDB=120°,∴∠OBC=∠OCB=30°,∴OQ=OB=,=,∵S△ABC∴AH=,∴CH===,∴AT=QH=CQ﹣CH==,∵OT=OQ﹣TQ=OQ﹣AH=﹣=,∴OA===,∴AD=OA+OD=,最大∵四边形AEDF是矩形,∴EF=AD=,∴EF的最大值为:.。

最新广东中考模拟检测《数学试题》含答案解析

最新广东中考模拟检测《数学试题》含答案解析

广 东 中 考 全 真 模 拟 测 试数 学 试 卷一、选择题1.下列各数中,是无理数的一项是( )A. 0B. ﹣1C. 0.101001D. 39 2. 由5个大小相同的正方体组成的几何体如图所示,其主视图是( )A.B. C. D. 3.下列运算正确的是( )A. 2x +3y =5xyB. 5x 2•x 3=5x 5C. 4x 8÷2x 2=2x 4D. (﹣x 3)2=x 5 4.如图由正三角形和正方形拼成的图形中,不是中心对称图形的是( )A.B. C.D. 5.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(x ,y)在平面直角坐标系中的位置是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 6.如图,直线l 1、l 2被直线l 3所截,下列选项中哪个不能得到l 1∥l 2?( )A. ∠1=∠2B. ∠2=∠3C. ∠3=∠5D. ∠3+∠4=180° 7.3个旅游团游客年龄的方差分别是:2S 甲=1.4,2S 乙=18.8,2S 丙=2.5,导游小方喜欢带游客年龄相近的团队,则他应该选择( )A . 甲团 B. 乙团 C. 丙团 D. 哪一个都可以 8.如图,PA ,PB 切⊙O 于点A ,B ,点C 是⊙O 上一点,且∠P =36°,则∠ACB =( )A. 54°B. 72°C. 108°D. 144° 9.若mn <0,则正比例函数y =mx 与反比例函数y =n x 在同一平面直角坐标系中的大致图象可能是( ) A. B.C. D. 10.如图,在正方形ABCD 中,E ,F 分别为BC ,CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA延长于点Q ,下列结论正确的有( )个.①AE ⊥BF ;②QB =QF ;③AG 4FG 3=;④S ECPG =3S △BGE A. 1 B. 4 C. 3 D. 2二、填空题 11.4的算术平方根是 .12.我国首部国产科幻灾难大片《流浪地球》于2019年2月5日在我国内地上映,自上映以来票房累计突破46.7亿元,将46.7亿元用科学记数法表示为__元13.因式分解:m 3n ﹣9mn =______.14.3a -+(b+4)2=0,那么点(a ,b )关于原点对称点坐标是_____.15.如图,在正六边形ABCDEF 外侧,作正方形EFGH ,则∠DFH 的度数为____.16.如图,两个直角三角板ABC 与CDE 按如图所示的方式摆放,其中30B D ∠=∠=︒,90ACB ECD ∠=∠=︒,3AC CE ==,且A C D 、、共线,将DCE 沿DC 方向平移得到D C E '''△,若点E '落在AB 上,则平移的距离为 _______ .17.如图,AC ⊥BC ,AC =BC =2,以BC 为直径作半圆,圆心为O ,以点C 为圆心,BC 为半径作弧AB ,过点O 作AC 的平行线交两弧于点D 、E ,则阴影部分的面积是___.三、解答题18.011(32)()4cos304234--+-+︒-- 19.先化简,再求值:2121x x x +-+÷2(1)1x +-,其中x =3. 20.如图,△ABC 中,∠C =90°,∠A =30°.(1)用尺规作图作AB 边上的垂直平分线DE ,交AC 于点D ,交AB 于点E .(保留作图痕迹,不要求写作法和证明)(2)连接BD ,求证:DE =CD .21.为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.分数段频数频率74.5~79.5 2 0.0579.5~84.5 m 0.284.5~89.5 12 0.389.5~94.5 14 n94.5~99.5 4 0.1(1)表中m=,n=;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各2人,学校从中随机确定2名选手参加全市决赛,恰好是一名男生和一名女生的概率是.22.如图所示,要在某东西走向的A、B两地之间修一条笔直的公路,在公路起点A处测得某农户C在A的北偏东68°方向上.在公路终点B处测得该农户c在点B的北偏西45°方向上.已知A、B两地相距2400米.(1)求农户c到公路B的距离;(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)(2)现在由于任务紧急,要使该修路工程比原计划提前4天完成,需将该工程原定的工作效率提高20%,求原计划该工程队毎天修路多少米?23.如图,在四边形ABCD 中,AB ∥DC ,AB =AD ,对角线AC .BD 交于点O ,AC 平分∠BAD ,过点C 作CE ⊥AB 交AB 的延长线于点E .连接OE .(1)求证:四边形ABCD 是菱形;(2)若AB =5.OE =2,求线段CE 的长.24.如图,在ABC 中,AB =BC ,以BC 为直径的⊙O 交AC 于点D ,过点D 作DE⊥AB,DF⊥BC,垂足分别为E 、F ,①求证:ED 是⊙O 的切线;②求证:DE 2=BF•AE ;③若DF =35,cosA =23,求⊙O 的直径.25.如图,抛物线215222y x x =-+-与x 轴交于A 、B 两点,与y 轴交于点C ,四边形OBHC 为矩形,CH 的延长线交抛物线于点D(5,-2),连接BC 、AD .(1)将矩形OBHC 绕点B 按逆时针旋转90°后,再沿x 轴对折到矩形GBFE(点C 与点E 对应,点O 与点G 对应),求点E的坐标;(2)设过点E的直线交AB于点P,交CD于点Q.①当四边形PQCB为平行四边形时,求点P 的坐标;②是否存在点P,使直线PQ分梯形ADCB的面积为1∶3两部分?若存在,求出点P坐标;若不存在,请说明理由.答案与解析一、选择题1.下列各数中,是无理数的一项是( )A. 0B. ﹣1C. 0.101001D. 39【答案】D【解析】【分析】根据无理数的定义逐一判断即可.【详解】A.0是有理数,A选项不符合题意;B.-1是有理数,B选项不符合题意;C.0.101001是有理数,C选项不符合题意;D.39是无理数,D选项符合题意;故选D.【点睛】本题主要考查无理数的概念,解题的关键是掌握无理数的定义是:无限不循环小数是无理数.2. 由5个大小相同的正方体组成的几何体如图所示,其主视图是()A. B. C. D.【答案】A【解析】分析:从正面看到的图叫做主视图.根据图中正方体摆放的位置判定则可.解答:解:左面可看见一个小正方形,中间可以看见上下各一个,右面只有一个.故选A.3.下列运算正确的是()A. 2x+3y=5xyB. 5x2•x3=5x5C. 4x8÷2x2=2x4D. (﹣x3)2=x5【答案】B【解析】试题分析:A.2x+3y是最简,不能合并同类项,本选型错误;B .5x 2·x 3=5x 5,本选型正确;C .4x 8÷2x 2=2x 6,本选型错误;D .(-x 3)2=-x 5,本选型错误.故选B .考点:1.整式的加减2.整式的乘除.4.如图由正三角形和正方形拼成的图形中,不是中心对称图形的是( ) A. B. C. D.【答案】C【解析】【分析】根据中心对称的概念即可作答.【详解】解:A 、旋转180°后与原图形重合,故是中心对称图形;B 、旋转180°后与原图形重合,故是中心对称图形;C 、旋转180°后不能与原图形重合,故不是中心对称图形;D 、旋转180°后与原图形重合,故是中心对称图形;故选:C .【点睛】此题考查了轴对称图形的概念与中心对称的概念,掌握好中心对称图形与轴对称图形的概念是解题的关键.5.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(x ,y)在平面直角坐标系中的位置是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】A【解析】2,1.y x y x =-+⎧⎨=-⎩①②, ①+②得,2y=1,解得,y=12.把y=12代入①得, 12=−x+2, 解得x=32. ∵32>0, 12>0,根据各象限内点的坐标特点可知, 点(x,y)在平面直角坐标系中的第一象限.故选A.点睛:此题考查二元一次方程组的解法及象限的符号特征:利用代入消元或加减消元求得方程组的解,第一象限横纵坐标都为正,第二象限横坐标为负,纵坐标为正;第三象限横坐标都为负;第四象限横坐标为正,纵坐标为负.6.如图,直线l 1、l 2被直线l 3所截,下列选项中哪个不能得到l 1∥l 2?( )A. ∠1=∠2B. ∠2=∠3C. ∠3=∠5D. ∠3+∠4=180°【答案】C【解析】【分析】 分别根据平行线的判定定理对各选项进行逐一判断即可. 【详解】解:A 、12∠=∠,12//l l ∴,故本选项不合题意;B 、23∠=∠,12//l l ∴,故本选项不合题意;C 、35∠=∠不能判定12l l //,故本选项符合题意;D 、34180∠+∠=︒,12//l l ∴,故本选项不合题意.故选C .【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.7.3个旅游团游客年龄的方差分别是:2S 甲=1.4,2S 乙=18.8,2S 丙=2.5,导游小方喜欢带游客年龄相近的团队,则他应该选择( )A. 甲团B. 乙团C. 丙团D. 哪一个都可以【答案】A【解析】【分析】根据方差越小数据越稳定可做出决定.【详解】∵S 甲2=1.4,S 乙2=18.8,S 丙2=2.5,∴S 甲2<S 丙2<S 乙2,∴他应该选择甲团.故选A .考点:方差.8.如图,PA ,PB 切⊙O 于点A ,B ,点C 是⊙O 上一点,且∠P =36°,则∠ACB =( )A. 54°B. 72°C. 108°D. 144° 【答案】B【解析】 连接AO,BO ,∠P =36°,所以∠AOB =144°,所以∠ACB =72°.故选B. 9.若mn <0,则正比例函数y =mx 与反比例函数y =n x 在同一平面直角坐标系中的大致图象可能是( ) A. B.C. D.【答案】B【解析】【分析】 根据mn <0,可得m 和n 异号,然后对m 的符号进行讨论,根据正比例函数和反比例函数的性质判断. 【详解】解:∵mn <0, ∴当m >0时,n <0,此时正比例函数y=mx 经过第一、三象限,反比例函数图象在二、四象限,没有符合条件的图象; 当m <0时,n >0,此时正比例函数y=mx 经过第二、四象限,反比例函数图象经过一、三象限,B 符合条件. 故选B .【点睛】本题考查了反比例函数和正比例函数的性质,在()0ky kx=≠中,当k>0时,函数的图象在一、三象限,当k<0时,反比例函数的图象在二、四象限10.如图,在正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长于点Q,下列结论正确的有( )个.①AE⊥BF;②QB=QF;③AG4FG3=;④S ECPG=3S△BGEA. 1B. 4C. 3D. 2 【答案】C【解析】【分析】①首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到AE⊥BF;②△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB;③证明△BEG∽△ABG∽△AEB,得出GEBG=BGAG=BEAB=12,设GE=x,则BG=2x,AG=4x,所以BF=AE=AG+GE=5x,所以FG=BF-BG=3x,得出AG4=FG3,即可得出结论;④可证△BGE与△BMC相似,进一步得到相似比,再根据相似三角形的性质和三角形的面积关系即可求解.【详解】解:①∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD,AB∥CD,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,AB BCABE BCF BE CF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,AE=BF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故①正确;②由折叠的性质得:FP=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QB=QF,故②正确;③∵AE⊥BF,∠ABE=90°,∴△BEG∽△ABG∽△AEB,∴GEBG=BGAG=BEAB=12,设GE=x,则BG=2x,AG=4x,∴BF=AE=AG+GE=5x,∴FG=BF﹣BG=3x,∴AG4=FG3,故③正确;④如图所示:∵PC⊥BF,AE⊥BF,∴PC∥AE,△BGE∽△BMC,∵E 是BC 的中点,∴BE =CE ,∴△BGE 的面积:△BMC 的面积=1:4,∴△BGE 的面积:四边形ECMG 的面积=1:3,连接CG ,则△PGM 的面积=△CGM 的面积=2△CGE 的面积=2△BGE 的面积,∴四边形ECPG 的面积:△BGE 的面积=5:1,∴S 四边形ECFG =5S △BGE ,故④错误.综上所述,共有3个结论正确.故选:C .【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、折叠的性质、勾股定理等知识;熟练掌握正方形和折叠变换的性质,证明三角形全等和三角形相似是解题关键.二、填空题11.4的算术平方根是 .【答案】2.【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.12.我国首部国产科幻灾难大片《流浪地球》于2019年2月5日在我国内地上映,自上映以来票房累计突破46.7亿元,将46.7亿元用科学记数法表示为__元【答案】4.67×109 【解析】【分析】根据科学记数法的定义即可得.【详解】科学记数法的定义:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法则46.7亿894.671010 4.6710=⨯⨯=⨯故答案为:94.6710⨯.【点睛】本题考查了科学记数法的定义,熟记定义是解题关键.13.因式分解:m3n﹣9mn=______.【答案】mn(m+3)(m﹣3)【解析】分析:原式提取mn后,利用平方差公式分解即可.详解:原式=mn(m2-9)=mn(m+3)(m-3).故答案为mn(m+3)(m-3).点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.若3a-+(b+4)2=0,那么点(a,b)关于原点对称点的坐标是_____.【答案】(﹣3,4);【解析】分析:首先根据非负数的性质可得a-3=0,b+4=0,再解出a、b的值.进而得到点的坐标,然后再根据关于原点对称点的坐标特点可得答案.a-+(b+4)2=0,详解:∵3∴a-3=0,b+4=0,解得:a=3,b=-4,∴点(a,b)的坐标为(3,-4),∴关于原点对称点的坐标是(-3,4),故答案为(-3,4);点睛:此题主要考查了非负数的性质、关于原点对称的点的坐标,关键是掌握两个点关于原点对称时,它们的坐标符号相反.15.如图,在正六边形ABCDEF的外侧,作正方形EFGH,则∠DFH的度数为____.【答案】75°【解析】试题分析:△EFH是等腰直角三角形,可求∠EFH的度数,△DEF是等腰三角形,只要求出顶角∠DEF的度数就可以求出∠EFD 的度数,再把两个角的度数相加即可求解.观察图形可知,△EFH 是等腰直角三角形,则∠EFH=45°,△DEF 是等腰三角形,∵∠DEF=120°, ∴∠EFD=(180°﹣120°)÷2=30°, ∴∠DFH=45°+30°=75°.考点:多边形内角与外角16.如图,两个直角三角板ABC 与CDE 按如图所示的方式摆放,其中30B D ∠=∠=︒,90ACB ECD ∠=∠=︒,3AC CE ==,且A C D 、、共线,将DCE 沿DC 方向平移得到D C E '''△,若点E '落在AB 上,则平移的距离为 _______ .31【解析】【分析】 根据平移的性质可知3C E CE ''==,设平移的距离为x ,则可表示出3AC x '=,再根据含30角的Rt AC E ''3C E '''=,从而列出含x 的方程,解方程即可得解. 【详解】解:∵将DCE 沿DC 方向平移得到D C E '''△∴3C E CE ''==∵若设平移的距离为x ,则CC x '=∴3AC x '= ∵90E C D ECD '''∠=∠=︒∴//C E CB ''∴30AE C B ''∠=∠=︒∴在Rt AC E ''3C E '''= )333x =∴31x =31.故答案是:31-【点睛】本题考查了平移的性质、含30角的直角三角形的性质以及平行线的性质,此题还可有其他方法来解决比如锐角三角函数、相似三角形以及列一元二次方程等,但因是八年级试题故选择的是列一元一次方程求得最后结论.17.如图,AC ⊥BC ,AC =BC =2,以BC 为直径作半圆,圆心为O ,以点C 为圆心,BC 为半径作弧AB ,过点O 作AC 的平行线交两弧于点D 、E ,则阴影部分的面积是___.【答案】5312π-. 【解析】【分析】连接CE ,如图,利用平行线的性质得∠COE =∠EOB =90°,再利用勾股定理计算出OE 3的定义得到∠OCE =60°,然后根据扇形面积公式,利用S 阴影部分=S 扇形BCE ﹣S △OCE ﹣S 扇形BOD 进行计算即可.【详解】连接CE ,如图,∵AC ⊥BC ,∴∠ACB =90°,∵AC ∥OE ,∴∠COE =∠EOB =90°,∵OC =1,CE =2, ∴221213,cos 2OE OCE =-=∠=, ∴∠OCE =60°,∴S 阴影部分=S 扇形BCE ﹣S △OCE ﹣S 扇形BOD2260π2190π113,3602360⋅⋅⋅⋅=-⨯ 53π12=故答案为53π.122- 【点睛】 本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.三、解答题 18.011(32)()4cos304234-+-+︒-- 【答案】437【解析】【分析】先计算零指数幂、负整数指数幂、特殊角的余弦值、绝对值运算,再计算二次根式的混合运算即可得. 【详解】原式31(4)4(423)=+-+-- 1423423=-++437=.【点睛】本题考查了零指数幂、负整数指数幂、特殊角的余弦值、绝对值运算、二次根式的混合运算,熟记各运算法则是解题关键.19.先化简,再求值:2121x x x +-+÷2(1)1x +-,其中x 3 【答案】11x -;312. 【解析】 【分析】 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】原式=2112(1)1x x x x +-+÷-- =211(1)1x x x x +-⋅-+=11 x-,当x=3时,原式=131-=312+.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)(2)连接BD,求证:DE=CD.【答案】(1)作图见解析;(2)证明见解析.【解析】【分析】(1)分别以A、B为圆心,以大于12AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠DBA=∠A=30°,然后求出∠DBC=30°,从而得到BD平分∠ABC,再根据角平分线的性质即可得.【详解】(1)如图,DE为所作;(2)如图,∵DE垂直平分AB,∴DA=DB,∴∠DBA=∠A=30°,∵∠ABC=90°﹣∠A=60°,∴∠CBD=30°,即BD平分∠ABC,而DE⊥AB,DC⊥BC,∴DE=DC.【点睛】本题考查了线段垂直平分线的作法、线段垂直平分线上的点到线段两端点的距离相等的性质、角平分线的性质,熟练掌握作图方法以及相关性质是解题的关键.21.为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.分数段频数频率74.5~79.5 2 0.0579.5~84.5 m 0.284.5~89.5 12 0.389.5~94.5 14 n94.5~99.5 4 0.1(1)表中m=,n=;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各2人,学校从中随机确定2名选手参加全市决赛,恰好是一名男生和一名女生的概率是.【答案】(1)m=8,n=0.35;(2)详见解析;(3)84.5~89.5;(4)2 3【解析】【分析】(1)根据频率=频数÷总数求解可得;(2)根据所求结果即可补全图形;(3)根据中位数的概念求解可得;(4)首先根据题意画出树状图,然后由表格即可求得所有等可能的结果与挑选的两位学生恰好是一男一女的情况,再利用概率公式求解即可求得答案.【详解】解:(1)m=40×0.2=8,n=14÷40=0.35,故答案为:8,0.35;(2)补全图形如下:(3)由于40个数据的中位数是第20、21个数据的平均数,而第20、21个数据均落在84.5~89.5,∴测他的成绩落在分数段84.5~89.5内,故答案为:84.5~89.5.(4)选手有4人,2名是男生,2名是女生.,恰好是一名男生和一名女生的概率为:82123P==.【点睛】此题考查了列表法或树状图法求概率、频数分布直方图、扇形统计图以及众数与中位数的定义.用到的知识点为:概率=所求情况数与总情况数之比.22.如图所示,要在某东西走向的A、B两地之间修一条笔直的公路,在公路起点A处测得某农户C在A的北偏东68°方向上.在公路终点B处测得该农户c在点B的北偏西45°方向上.已知A、B两地相距2400米.(1)求农户c到公路B的距离;(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)(2)现在由于任务紧急,要使该修路工程比原计划提前4天完成,需将该工程原定的工作效率提高20%,求原计划该工程队毎天修路多少米?【答案】(1)农户C到公路的距离48007米;(2)原计划该工程队毎天修路100米.【解析】【分析】(1)农户C到公路的距离,也就是求C到AB的距离.要构造直角三角形,再解直角三角形;(2)设原计划y天完成,则由等量关系“原工作效率×(1+25%)=提前完成时的工作效率”列方程求解.【详解】(1)如图,过C作CH⊥AB于H.设CH=x,由已知有∠EAC=68°,∠FBC=45°,则∠CAH=22°,∠CBA=45°.在Rt△BCH中,BH=CH=x,Rt△HAC中,tan∠HAC=CH HA,∴HA=5 tan222 CH x,∵AH+HB=AB,∴x+52x=2400,解得x=48007,∴农户C到公路的距离48007米.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y﹣4)天.根据题意得:14y=(1+20%)×1y,解得:y=24.经检验知:y=24是原方程的根,2400÷24=100(米).答:原计划该工程队毎天修路100米.【点睛】考查了构造直角三角形通过解直角三角形的方法解决问题,通过找到等量关系利用分式方程解决问题.23.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE.(1)求证:四边形ABCD是菱形;(2)若AB5.OE=2,求线段CE的长.【答案】(1)证明见解析;(2)55.【解析】【分析】(1)先根据题意得出∠OAB=∠DCA,然后进一步证明出∠DCA=∠DAC,得出CD=AD=AB,然后接着进一步证明即可;(2)先根据题意得出OE=OA=OC=2,再进一步得出OB=1,通过证明△AOB∽△AEC然后利用相似三角形性质进一步求解即可.【详解】(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴平行四边形ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC.∵CE⊥AB,∴OE=OA=OC=2,∴OB=22AB AO-=1,AC=OA+OC=4,∵∠AOB=∠AEC=90°,∠OAB=∠EAC,∴△AOB∽△AEC,∴AB OB AC CE=,∴5=1CE,∴CE=45.【点睛】本题主要考查了菱形的判定及性质与相似三角形的综合运用,熟练掌握相关概念是解题关键. 24.如图,在ABC中,AB=BC,以BC为直径的⊙O交AC于点D,过点D作DE⊥AB,DF⊥BC,垂足分别为E、F,①求证:ED是⊙O的切线;②求证:DE2=BF•AE;③若DF=35,cosA=23,求⊙O的直径.【答案】(1)证明见解析(2)证明见解析(3)272【解析】【分析】(1)根据圆周角定理由BC为⊙O的直径得到∠BDC=90°,再根据等腰三角形的性质得AD=CD,即D点为AC的中点,则可判断OD为△ABC的中位线,所以OD∥AB,而DE⊥AB,则DE⊥OD,然后根据切线的判定定理即可得到DE是⊙O的切线;(2)根据等腰三角形的性质得BD平分∠ABC,则利用角平分线性质得DE=DF,再证明Rt△AED∽Rt△DFB,根据相似的性质得DE:BF=AE:DF,用DE代换DF根据比例的性质即可得到DE2=BF•AE;(3)由于∠A=∠C,则cosA=cosC=23,在Rt△CDF中,利用余弦的定义得cosC=23CFDC,设CF=2x,则DC=3x,根据勾股定理计算得DF=5x,所以5x=35,解得x=3,于是得到DC=9,在Rt△CBD中根据余弦的定义可计算出BC.【详解】(1)证明:∵BC为⊙O的直径,∴∠BDC=90°,即BD⊥AC,∵BA=BC,∴AD=CD,即D点为AC的中点,∵点O为BC的中点,∴OD为△ABC的中位线,∴OD∥AB,而DE⊥AB,∴DE⊥OD,∴DE是⊙O的切线;(2)证明:连接BD、OD,∵BA=BC,BD⊥AC,∴BD平分∠ABC,∴DE=DF,∵∠ADE+∠BDE =90°,∠BDE+∠BDO =90°, ∴∠ADE =∠BDO ,而OB =OD ,∴∠BDO =∠OBD ,∴∠ADE =∠OBD ,∴Rt △AED ∽Rt △DFB ,∴DE :BF =AE :DF ,∴DE :BF =AE :DE ,∴DE 2=BF•AE ;(3)解:∵∠A =∠C ,∴cosA =cosC =23, 在Rt △CDF 中,cosC =23CF DC =, 设CF =2x ,则DC =3x ,∴DF =,而DF ==x =3,∴DC =9,在Rt △CBD 中,cosC =23DC BC =, ∴BC =32×9=272, 即⊙O 的直径为272. 【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了相似三角形的判定与性质、锐角三角函数的定义.25.如图,抛物线215222y x x =-+-与x 轴交于A 、B 两点,与y 轴交于点C ,四边形OBHC 为矩形,CH 的延长线交抛物线于点D(5,-2),连接BC 、AD .(1)将矩形OBHC 绕点B 按逆时针旋转90°后,再沿x 轴对折到矩形GBFE(点C 与点E 对应,点O 与点G 对应),求点E 的坐标;(2)设过点E 的直线交AB 于点P ,交CD 于点Q .①当四边形PQCB 为平行四边形时,求点P 的坐标;②是否存在点P ,使直线PQ 分梯形ADCB 的面积为1∶3两部分?若存在,求出点P 坐标;若不存在,请说明理由.【答案】(1)E(3,1);(2)①P(52,0);②存在,(94,0)或(134,0) 【解析】【分析】(1)由于旋转翻折只是图形的位置有变化,而大小不变,因此:△BCH ≌△BEF ,OC=BF ,CH=EF ,OC 的长可以通过C 点的坐标得出,求CH 即OB 的长,要先得出B 点的坐标,可通过抛物线的解析式来求得,这样可得出E 点的坐标,然后代入抛物线的解析式即可判断出E 是否在抛物线上;(2)①设P (m ,0),根据四边形PQCB 为平行四边形,BP ∥CQ ,得到BC//PQ ,故可得出△EFP ∽△BHC ,所以2EF BH PF CH ==,从而得123m=-,解得m 的值后即可求得点P 的坐; ②可先设出P 点的坐标如:(n ,0),由于直线PQ 过E 点,因此可根据P ,E 的坐标用待定系数法表示出直线PQ 的解析式,进而可求出Q 点的坐标,这样就能表示出BP ,AP ,CQ ,DQ 的长,也就能表示出梯形BPQC 和梯形APQD 的面积,然后分类进行讨论:梯形BPQC 的面积:梯形APQD 的面积=1:3,梯形APQD 的面积:梯形BPQC 的面积=1:3,根据上述两种不同的比例关系式,可求出各自的n 的取值,也就能求出不同的P 点的坐标,综上所述可求出符合条件的P 点的坐标.【详解】解:(1)令y=0,得2152022x x -+-=, 解得x 1=1,x 2=4,∴A(4,0),B(1,0),∴OA=4,OB=1,由矩形的性质知:CH=OB=1,BH=OC=2,∠BHC=90°,由旋转、对折性质可知:EF=1,BF=2,∠EFB=90°,∴E (3,1);(2)①设P(m ,0),∵四边形PQCB 为平行四边形,BP ∥CQ ,∴BC ∥PQ , ∴2EF BH PF CH==, ∴123m=-, 解得:52m =, ∴P(52,0); ②存在;设点P(n ,0),延长EF 交CD 于点R ,易得OF=CR=3,PB=n -1.∵S 梯形BCRF =5,S 梯形ADRF =3,记S 梯形BCQP =S 1,S 梯形ADQP =S 2, 下面分两种情况: 第一种情况,当S 1:S 2=1:3时,()15312242S +=⨯⨯=)<5, ∴此时点P 在点F(3,0)的左侧,则PF=3-n ,由△EPF ∽△EQR ,得13PF EF QR ER ==, 则QR=9-3n ,∴CQ=3n -6,由S 1=2,得()1136222n n -+-⨯=, 解得9n 4=; ∴点P 的坐标为(94,0), 第二种情况,当S 1:S 2=3:1时,()25332642S +=⨯⨯=)>5, ∴此时点P 在点F(3,0)的右侧,则PF=n -3,由△EPF ∽△EQR ,得QR=3n -9,∴CQ=3n -6,由S 1=6,得()1136262n n -+-⨯=, 解得134n =, ∴点P 的坐标为(134,0) 综上所述,所求点P 的坐标为(94,0)或(134,0). 【点睛】本题着重考查了二次函数、图形旋转翻折变换、矩形的性质等重要知识点,综合性强,考查学生分类讨论数形结合的数学思想方法,掌握知识点是解题关键.。

2023-2024学年广东省九年级数学中考一模模拟卷(解析版)

2023-2024学年广东省九年级数学中考一模模拟卷(解析版)

2023-2024学年广东省九年级数学中考一模模拟卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填在()内)1.下列函数中,y 是x 的二次函数的是( )A .y =3xB .y =-x 2C .y =x 1+5 D .y =x 2-3x +5【答案】D2.下列图形中,既是是中心对称图形的是( )A. B. C. D.【答案】B3.下列运算正确的是( )A. xx 2+xx 3=xx 5B. ()()22x y x y x y +−=−C. (xx 4)4=xx 8D. ()222x y x y +=+【答案】B4.如图是一个正方体的展开图,则与“养”字相对的是( )A. 核B. 心C. 数D. 养【答案】C5.如图是某几何体的三视图,则该几何体的面积是( )A .16πcm 2B .(16+165)πcm 2C .165πcm 2D .(16+323)πcm 2【答案】B6.已知点A (-3,a ),()1,B b ,C (5,c )在反比例函数ky x =(k<0)的的图像上,下列结论正确的是()A. a b c <<B. a c b <<C. b<c<aD. c b a <<【答案】C 7.若△ABC ∽△DEF ,面积比为25∶9,则△ABC 与△DEF 的周长比为( )A .5∶3B .25∶9C .9∶25D .3∶5【答案】A8.如图,平行于主光轴MN 的光线AB 和CD 经过凹透镜的折射后,折射光线BE DF 、的反向延长线交于主光轴MN 上一点P .若∠CDF=135°,∠ABE=150°,则EPF ∠的度数是( )A. 60°B. 70°C. 75°D. 80°【答案】C 9.古秤是一种人类智慧的产物,也是华夏文明的瑰宝之一.如图,我们可以用秤砣到秤纽(秤杆上手提的部分)的水平距离得出秤钩上所挂物体的重量,称重时,若秤钩所挂物重为x (斤),秤砣到秤纽的水平距离为()cm y .下表中为若干次称重时所记录的一些数据:当x 为11斤时,对应的水平距离y 为( )A. 3cmB. 3.25cmC.3.5cmD.3.75cm【答案】B 【详解】解:设y kx b =+, 把(2,1)和(6,2)代入得:2162k b k b +=+= ①②, ②−①得:41k =,解得:14k =,把14k =代入①得:1214b ×+=, 解得:12b =, 1142y x ∴=+, 把x=11代入得:y=114+12=134=3.25.10.如图,在钝角三角形ABC 中,AB=4cm,AC=10cm ,动点D 从点A 出发沿AB 以1cm/s 的速度向点B 运动,同时动点E 从点C 出发沿CA 以2cm/s 的速度向点A 运动,当以,,A D E 为顶点的三角形与ABC 相似时,运动时间约是( )A .2.2s 或4.5sB .4.2sC .3sD .2.2s 或4.2s【答案】D二、填空题(本大题共5小题,每小题3分,共15分.不需写出解答过程,请把答案直接填写在题中横线上)11.因式分解:3ab-4a 2b= .【答案】ab(3-4a)12.西太湖是苏南仅次于太湖的第二大湖泊,南接宜兴,北通长江,东濒太湖,西接长荡湖,水域面积约164000000平方米,164000000这个数用科学记数法可表示为 .【答案】1.64×10813.若反比例函数y=kk+4xx 的图象分布在第二、四象限,则k 的取值范围是 .【答案】k<-4 14. 如图,平行四边形ABCD 中以点B 为圆心,适当长为半径作弧,交AB 、BC 于F 、G ,分别以点F 、G 为圆心,大于12FG 长为半径作弧,两弧交于点H ,连接BH 并延长,与AD 交于点E ,若AB=5,CE=4,DE=3,则BE 的长为_________.【答案】4√515.在平面直角坐标系中,已知A ()0,2,B ()4,0,点P 在x 轴上,把AP 绕点P 顺时针旋转90°得到线段A P ′,连接A B ′.若A PB ′△是直角三角形时,则点P 的横坐标为____________.【答案】2或1−+或1−【详解】解:∵()0,2A ,()4,0B ,∴2OA =,4OB =,设点(),0P m ,∵点P 、B 都在x 轴上,∴点P 不能为直角顶点,①如图,当点P 在x 轴的正半轴上,且90A BP ′∠=°时,由旋转可知,PA PA =′,∴90APO BPA ∠′+∠=°,90OAP APO ∠+∠=°,∴OAP BPA ′∠=∠,∴()AAS OAP BPA ′ ≌,∴2PB OA ==,∴482OP OB PB =−=−=,∴点P 的横坐标为2;②如图,当点P 在x 轴的正半轴上,且90PA B ′∠=°,过点A ′作A D PB ′⊥于点D ,则()0OP m m =>,由旋转可知,PA PA ′=,∴90APO DPA ′∠+∠=°,90OAP APO ∠+∠=°,∴OAP DPA ′∠=∠,∴()AAS OAP DPA ′ ≌,∴2PD OA ==,A D OP m ′==,∴422BD OB PD OP m m =−−=−−=−,∵90PA B A DB A DP ′′′∠=∠=∠=°, ∴90A PB PBA ∠′+∠=′°,90A PB PA D ′′∠+∠=°,∴PBA PA D ∠=′∠′,∴tan tan PBA PA D ∠=′∠′, ∴A D PD BD A D′=′,即22m m m =−,则2240m m +−=,解得:11m =−+21m =−(不合题意,舍去)∴点P 的横坐标为1−+;③如图,当点P 在x 轴的负半轴上,则90PA B ′∠=°,则OP m =−,过点A ′作A D PB ′⊥于点D ,同理可得()AAS OAP DPA ′ ≌,∴2PD OA ==,A D OP m ′==−,∴4PB OP OB m =+=−,422BD PB PD m m =−=−−=−,同理可得PBA PA D ∠=′∠′,∴tan tan PBA PA D ∠=′∠′, ∴A D PD BD A D′=′,即22m m m −=−−,解得11m =−21m =−(不合题意,舍去)∴点P 的横坐标为1−−综上所述,点P 的横坐标为2或1−或1−三、解答题(本大题共8小题,共75分)16.(8分)计算(1)2sin60°-tan45°+12cos30°+tan30°(2)(1-2024π)0 + √12 + 2sin60°-(-3)【答案】(1)19√312−12 (2)5-2√3 17.(5分)解不等式方程组:()33121318x x x x − +>+ −−≤−【答案】-2≤x<118.(9分)如图,线段AB ,CD 分别表示甲、乙建筑物的高,AB ⊥MN 于点B ,CD ⊥MN 于点D ,两座建筑物间的距离BD 为35 m .若甲建筑物的高AB 为20 m ,在点A 处测得点C 的仰角α为45°,则乙建筑物的高CD 为多少 m ?【答案】解:由题意得:AB =DE =20m ,AE =BD =35m ,∠CAE =45°,∠AEC =90°,在Rt △AEC 中,CE =AE •tan45°=35(m ),∴ CD =DE+CE =20+35=55(m ),答:乙建筑物的高CD 为55m.19.(9分)2020年我国进行了第七次全国人口普查,佛山市近五次人口普直常住人口分布情况如图所示,根据第七次全国人口普查结果,佛山市常住人口年龄构成情况如图所示,(1)佛山市2020年常住人口1559−岁段的占比是_______%;(2)根据普查结果显示,2020年60岁以上的人口约99.645万人,求2020年佛山市城镇人口有多少万人,并补全条形图;(3)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,1990年佛山市的城镇化率是_____%(结果精确到1%);(4)根据佛山市近五次人口普查统计图(常住人口),用一句话描述佛山市城镇化的趋势.【答案】(1)74.4%(2)949万,补全图形见解析(3)33(4)见解析【详解】(1)解:110.5%15.1%74.4%−−=,答:佛山市2020年常住人口1559−岁段的占比是74.4%,(2)佛山市常住人口总数为99.64510.5%949÷=(万人), 由统计图可知,乡村人口为45万人,∴城镇人口为94945904−=(万人), 补全统计图如图所示;.(3)由统计图可知,1900年城镇人口有100万人,常住人口总数为300万人, ∴1990年佛山市的城镇化率是 100100%33%300×≈, (4)随着年份的增加,佛山市城镇化率越来越高.20.(10分)如图,已知OA 是O 的半径,过OA 上一点D 作弦BE 垂直于OA ,连接AB ,AE .线段BC 为O 的直径,连接AC 交BE 于点F .(1)求证:ABE C ∠=∠;(2)若AC 平分OAE ∠,求AFFC 的值【答案】(1)见解析 (2)12【详解】(1)证明:∵OA BE ⊥,∴ AB AE =,∴ABE C ∠=∠;(2)解:∵AC 平分OAE ∠,∴OAC EAC ∠=∠,∵EAC EBC ∠=∠,∴OAC EBC ∠=∠,∵OA OC =,∴OAC C ∠=∠,∴EBC C ∠=∠,∴BF CF =,由(1)ABE C ∠=∠,∴ABE C EBC ∠=∠=∠,∵BC 为直径,∴90BAC ∠=°,∴90ABE C EBC ∠+∠+∠=°,∴30ABE ∠=°,∴12AF BF =, ∴12AF CF =, 即12AF CF =. 21.(10分)如图,反比例函数1k y x=的图象与一次函数2y k x b =+的图象交于(1,2)A −、14,2B −两点.(1)求函数1k y x =和2y k x b =+的表达式;(2)若在x 轴上有一动点C ,当S △ABC =4S △AOB 时,求点C 的坐标.【答案】(1)2y x =−,1322y x =−+(2)(3,0)−或(9,0)【详解】(1)解:将点(1,2)A −代入反比例函数1k y x =中,得,1122k =−×=−; 将点1(1,2),4,2A B−− 分别代入一次函2y k x b =+的解析式,得,222142k b k b −+= +=− ,21232k b =− ∴ = ;∴反比例函数的解析式为:2y x =−,一次函数的解析式为:1322y x =−+. (2)解:如图,设AB 与y 轴交于点D ,过点C 作CE y ∥轴交AB 于点E 设(0)C m ,,13,,22E m m ∴−+1322CE m ∴=−+ 令0x =,则2,3y = 30,,2D ∴ 32OD ∴=, ∴S △AOB=12OOOO ·(x B -x A )=12×32×[4-(-1)]=154.∵S △ABC =4S △AOB ,∴12·CE·(x B -x A )=15即12×�−12mm +32�×5=15 解得m=-9或m=15,∴点C 的坐标为(-9,0)或(15,0).22.(12分)如图,抛物线2y x bx c =−++经过(1,0)A −,(0,3)C 两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与y 轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【解答】解:(1) 抛物线2y x bx c =−++经过(1,0)A −,(0,3)C 两点,∴103b c c −−+= =, 解得:23b c = =, ∴该抛物线的表达式为223y x x =−++; (2)2223(1)4y x x x =−++=−−+ ,∴顶点(1,4)M ,设直线AM 的解析式为y kx d =+,则40k d k d += −+=, 解得:22k d = =, ∴直线AM 的解析式为22y x =+, 当0x =时,2y =,(0,2)D ∴,作点D 关于x 轴的对称点(0,2)D ′−,连接D M ′,D H ′,如图,则DH D H =′,MH DH MH D H D M ∴+=+′′ ,即MH DH +的最小值为D M ′,D M ′ ,MH DH ∴+(3)对称轴上存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形.由(2)得:(0,2)D ,(1,4)M ,点P 是抛物线上一动点,∴设2(,23)P m m m −++,抛物线223y x x =−++的对称轴为直线1x =, ∴设(1,)Q n ,当DM 、PQ 为对角线时,DM 、PQ 的中点重合,∴20112423m m m n +=+ +=−+++, 解得:03m n = =, (1,3)Q ∴;当DP 、MQ 为对角线时,DP 、MQ 的中点重合,∴20112234m m m n +=+ −++=+, 解得:21m n = = , (1,1)Q ∴;当DQ 、PM 为对角线时,DQ 、PM 的中点重合,∴20112423m n m m +=+ +=−++, 解得:05m n = =, (1,5)Q ∴;综上所述,对称轴上存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形,点Q 的坐标为(1,3)或(1,1)或(1,5).23.(12分)综合与实践数学活动课上,同学们用尺规作图法探究在菱形内部作一点到该菱形三个顶点的距离相等.【动手操作]如图,已知菱形ABCD ,求作点E ,使得点E 到三个顶点A ,D ,C 的距离相等.小红同学设计如下作图步骤∶①连接BD ;②分别以点A ,D 为圆心,大于12AD 的长为半径分别在AD 的上方与下方作弧:AD 上方两弧交于点M ,下方两弧交于点N ,作直线MN 交BD 于点E . ③连接AE ,EC ,则EA ED EC ==.(1)根据小红同学设计的尺规作图步骤,在题图中完成作图过程(要求∶用尺规作图并保留作图痕迹)(2)证明:EA ED EC ==.(3)当72ABC ∠=°时,求EBC 与EAD 的面积比.【详解】(1)解:根据小红同学设计,作图如下:.(2)在菱形ABCD 中,ADE CDE ∠=∠,AD DC =,∵DE DE =,∴()SAS ADE CDE ≌,∴AE EC =,∵MN 垂直平分AD ,∴AE DE =,∴AE DE EC ==;(3 )∵在菱形ABCD 中,72ABC ∠=°,∴36ABD DBC ∠=∠=°,∵AD BC ∥,∴36ADB DBC ∠=∠=°,180108DAB ABC ∠=−∠=°, ∵AE DE =,∴36EAD ADB ∠=∠=°, ∴36EAD ABD ∠=∠=°, ∵ADE BDA ∠=∠,∴ADE BDA △△∽, ∴AD DE BD AD=,即2AD BD DE =⋅, ∵72BAE BAD EAD ∠=∠−∠=°,72BEA EAD ADE ∠=∠+∠=°, ∴BAE BEA ∠=∠,∴BE AB =,设AB x BE ==,DE a =(其中,0x a >),则AD x BD BE DE x a ==+=+,,∴()2x x a a =+⋅, ∴220x ax a −−=,解得x =或x =(舍去), ∴AB DE = ∴EBC ABE EDC ADE S S BE AB S S DE DE ==== .。

2023年广东省中考数学模拟试卷(一)及答案解析

2023年广东省中考数学模拟试卷(一)及答案解析

2023年广东省中考数学模拟试卷(一)一、选择题(共30分)1.(3分)6﹣1=()A.﹣6B.6C.﹣D.2.(3分)下列各组数中互为相反数的是()A.与﹣2B.﹣1与﹣(+1)C.﹣(﹣3)与﹣3D.2与|﹣2| 3.(3分)如图是由6个相同的小正方体组成的几何体,其俯视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点(2,﹣1)关于x轴对称的点是()A.(2,1)B.(1,﹣2)C.(﹣1,2)D.(﹣2,﹣1)5.(3分)将一把直尺与一块直角三角板按如图所示的方式放置,若∠1=125°,则∠2的度数为()A.35°B.40°C.45°D.55°6.(3分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.则斜坡CD的长度为()米.A.80B.40﹣60C.120﹣60D.120﹣407.(3分)某公司今年1~6月份的利润增长率的变化情况如图所示.根据图示条件判断,下列结论正确的是()A.该公司1~6月份利润在逐渐减少B.在这六个月中,该公司1月份的利润最大C.在这六个月中,该公司每月的利润逐渐增加D.在这六个月中,该公司的利润有增有减8.(3分)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若AC=12,则在△ABD中AB边上的高为()A.3B.4C.5D.69.(3分)随着国产芯片自主研发的突破,某种型号芯片的价格经过两次降价,由原来每片a元下降到每片b元,已知第一次下降了10%,第二次下降了20%,则a与b满足的数量关系是()A.b=a(1﹣10%﹣20%)B.b=a(1﹣10%)(1﹣20%)C.a=b(1+10%+20%)D.a=b(1+10%)(1+20%)10.(3分)如图,在正方形ABCD中,F为CD上一点,AF交对角线BD于点E,点G是BC上的一点且AE=EG,连结AG,交BD于点H.满足AH2=HE•HD,现给出下列结论:①EG⊥AF;②BG+DF=FG;③若tan∠DAF=,则.其中正确的有()个.A.0B.1C.2D.3二、填空题(共15分)11.(3分)分解因式:2m3﹣8m=.12.(3分)一个不透明的口袋中,装有4个红球,2个黄球,1个白球,这些球除颜色外完全相同.从口袋中随机摸一个球,则摸到红球的概率是.13.(3分)如图是测量玻璃管内径的示意图,点D正对10mm刻度线,点A正对30mm刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为mm.14.(3分)已知x=m是一元二次方程x2﹣x+1=0的一个根,则代数式2m﹣2m2+2021的值为.15.(3分)已知在Rt△ABC中,∠C=90°,∠ABC=75°,AB=5.点E为边AC上的动点,点F为边AB上的动点,则线段FE+EB的最小值是.三、解答题(共75分)16.(8分)计算:(2022﹣π)0+3tan30°+|﹣3|﹣()﹣1.17.(8分)解不等式组:.18.(8分)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率.19.(9分)如图,四边形ABCD内接于⊙O,对角线AC,BD交于点E,过点A作⊙O的切线MN,若MN∥BD,CE=4,AC=5.(1)求证:∠ACD=∠ACB;(2)求AD的长.20.(9分)2019年10月1日是中华人民共和国成立70周年纪念日,某商家用3200元购进了一批纪念衫,上市后果然供不应求,商家又用7200元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但每件贵了10元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于3520元(不考虑其他因素),那么每件纪念衫的标价至少是多少元?21.(9分)如图,直线y=kx+b与双曲线y=相交于A(1,2),B两点,与x轴相交于点C(4,0).(1)分别求直线AC和双曲线对应的函数表达式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x>0时,关于x的不等式kx+b>的解集.22.(12分)在平面直角坐标系xOy中,已知抛物线y=mx2﹣3(m﹣1)x+2m﹣1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC 只有一个公共点,求m的取值范围.23.(12分)△ABC和△ADF均为等边三角形,点E、D分别从点A,B同时出发,以相同的速度沿AB、BC运动,运动到点B、C停止.(1)如图1,当点E、D分别与点A、B重合时,请判断:线段CD、EF的数量关系是,位置关系是;(2)如图2,当点E、D不与点A,B重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;(3)当点D运动到什么位置时,四边形CEFD的面积是△ABC面积的一半,请直接写出答案;此时,四边形BDEF是哪种特殊四边形?请在备用图中画出图形并给予证明.2023年广东省中考数学模拟试卷(一)参考答案与试题解析一、选择题(共30分)1.【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得答案.【解答】解:原式=,故选:D.【点评】此题主要考查了负整数指数幂,关键是掌握负整数指数幂计算公式.2.【分析】根据相反数的定义及符号的化简逐一进行判断即可得到答案.【解答】解:A、与﹣2互为倒数,不符合题意;B、﹣(+1)=﹣1与﹣1相同,不符合题意;C、﹣(﹣3)=3与﹣3是相反数,符合题意;D、|﹣2|=2与2相同,不符合题意;故选:C.【点评】本题考查了相反数,绝对值化简,掌握相反数的定义:只有符号不同的两个数叫做互为相反数是关键.3.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:由6个相同的小正方体组成的几何体,那么这个几何体的俯视图是:故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【分析】直接利用关于x轴对称点的性质进而得出答案.【解答】解:点(2,﹣1)关于x轴对称的点是:(2,1).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.5.【分析】由平行线的性质可得∠3=∠1=125°,再利用三角形的外角性质即可求解.【解答】解:如图,由题意得:∠E=90°,AB∥CD,∴∠3=∠1=125°,∵∠3是△ABE的外角,∴∠2=∠3﹣∠E=35°,故选:A.【点评】本题主要考查平行线的性质,熟记平行线的性质是解题的关键.6.【分析】在直角三角形ABC中,利用锐角三角函数定义求出AC的长,然后设CD=2x,则DE=x,CE=x,构建方程即可解决问题.【解答】解:在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,AC===20(米),∵∠DCE=30°,设CD=2x米,则DE=x米,CE=x米,在Rt△BDF中,∵∠BDF=45°,∴BF=DF,∴AB﹣AF=AC+CE,∴60﹣x=20+x,∴x=40﹣60,∴CD=2x=(80﹣120)(米),∴CD的长为(80﹣120)米.故选:A.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.7.【分析】根据折线统计图中数据的变化以及折线的变化情况进行分析即可.【解答】A.该公司1~4月份的利润率在逐渐减少,4~6月份的利润率在逐渐增加,则A选项错误,不合题意;B.在图中可以看出:在这六个月中,该公司1月份的利润率最大,不代表1月份的利润最大,则B选项错误,不合题意;C.在这6个月中,利润增长率为正数,说明利润每月在上月基础上都在增加,则C选项正确,符合题意,D有误,不合题意.故选:C.【点评】本题考查了折线统计图,准确识图分析是解题的关键.8.【分析】作DE⊥AB于E,利用BD是角平分线以及直角三角形30°所对的直角边是斜边的一半即可求解.【解答】解:作DE⊥AB于E.如图:由作图可知,BD是△ABC的角平分线,∴DE=CD,∵∠A=30°,∠AED=90°,∴AD=2DE,∵AC=12,∴AD+DC=2DE+DE=12,∴DE=4.故选:B.【点评】本题主要考查了含30°角的直角三角形,以及30°角的直角三角形三边的关系,解答本题的关键在于利用其性质进行解答.9.【分析】利用经过两次降价后的价格=原价×(1﹣第一次价格下降的百分率)×(1﹣第二次价格下降的百分率),即可找出a与b满足的数量关系.【解答】解:根据题意得:b=a(1﹣10%)(1﹣20%).故选:B.【点评】本题考查了列代数式,根据各数量之间的关系,找出a与b满足的关系式是解题的关键.10.【分析】①把它AH2=HE•HD化为=,证明△AHE∽△DHA,推出∠HAE=∠ADH,再根据正方形的性质得出∠ADH=45°,再根据AE=EG和三角形内角和求出∠AEG=90°,进而得出EG⊥AF;②将△ADF绕点A顺时针旋转90°到△ABM,推出AF=AM,DF=BM,∠DAF=∠BAM,进而证明△FAG≌△MAG(SAS),推出FG=MG,最后得出BG+DF=FG;③设正方形的边长为4,BG=a,根据tan∠DAF=,求出DF=FC=BM=2,进而得CG=4﹣a,MG=GF=2+a,根据勾股定理求出a,进而求出=.【解答】解:∵AH2=HE•HD,∴=,∵∠AHE=∠DHA,∴△AHE∽△DHA,∴∠HAE=∠ADH,∵四边形ABCD是正方形,∴∠ADC=90°,AC平分∠ADC,∴∠ADH=45°,∴∠HAE=∠EGA=45°,∵AE=EG,∴∠EAH=∠EGA=45°,∴∠AEG=90°,∴EG⊥AF,∴①正确;将△ADF绕点A顺时针旋转90°到△ABM,∴△ADF≌△ABM,∴AF=AM,DF=BM,∠DAF=∠BAM,∵∠FAG=45°,∠DAB=90°,∴∠DAF+∠GAB=45°,∴∠GAB+∠BAM=45°,∴∠FAG=∠MAG,在△FAG和△MAG中,,∴△FAG≌△MAG(SAS),∴FG=MG,∴MB+BG=FG,∴BG+DF=GF,∴②正确;设正方形的边长为4,BG=a,∵tan∠DAF=,∴DF=FC=BM=2,∴CG=4﹣a,MG=GF=2+a,在Rt△FCG中,CG2+CF2=GF2,∴(4﹣a)2+4=(a+2)2,解得:a=,即BG=,GC=,∴=,∴③错误.正确的有2个.故选:C.【点评】本题考查三角形相似的判定和性质、全等三角形的判定与性质、正方形的性质、解直角三角形,熟练掌握这四个知识点的综合应用,将△ADF绕点A顺时针旋转90°到△ABM是证明△FAG≌△MAG的解题关键.二、填空题(共15分)11.【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵袋子中共有4+2+1=7个球,其中红球有4个,∴摸到红球的概率是,故答案为:.【点评】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.【分析】直接利用相似三角形的判定与性质得出△CDE∽△CAB进而得出比例式求出答案.【解答】解:由题意可得:∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得:DE=2,故答案为:2.【点评】此题主要考查了相似三角形的应用,根据题意得出正确比例关系是解题关键.14.【分析】根据题意可得:把x=m代入方程x2﹣x+1=0中得:m2﹣m+1=0,从而可得m2﹣m=﹣1,然后代入式子中进行计算即可解答.【解答】解:由题意得:把x=m代入方程x2﹣x+1=0中得:m2﹣m+1=0,∴m2﹣m=﹣1,∴2m﹣2m2+2021=﹣2(m2﹣m)+2021=﹣2×(﹣1)+2021=2+2021=2023,故答案为:2023.【点评】本题考查了一元二次方程的解,一元二次方程的定义,熟练掌握一元二次方程的解的意义是解题的关键.15.【分析】作F关于AC的对称点F',延长AF'、BC交于点B',当B、E、F'共线且与AB'垂直时,求BD的长即可.【解答】解:作F关于AC的对称点F',延长AF'、BC交于点B',作BD⊥AB'于D,∴∠BAB'=30°,EF=EF',∴FE+EB=BE+EF',∴当B、E、F'共线且与AB'垂直时,BE+EF'长度最小,即求BD的长,在△ABD中,BD=AB=,故答案为:.【点评】本题主要考查轴对称﹣最短路线问题,将BE+EF转化为求线段BD是解题的关键.三、解答题(共75分)16.【分析】直接特殊角的三角函数值、零指数幂的性质、负整数指数幂的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=1+3×+3﹣﹣=1++3﹣﹣=.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.17.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:,解不等式①,得:x≥﹣1,解不等式②,得:x<2,∴原不等式组的解集为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】(1)由A的人数除以所占的百分比求出总人数,进而求出D的人数,得到C占的百分比,补全统计图即可;(2)根据题意列出算式,计算即可得到结果;(3)列表得出所有等可能的情况数,找出粽子馅料不同的结果,即可求出所求的概率.【解答】解:(1)根据题意得:6÷15%=40(人),D的人数为40×40%=16(人),C占的百分比为1﹣(10%+15%+40%)=35%,补全统计图,如图所示:(2)根据题意得:(6×4+4×5+14×6+16×7)÷40=6(个),则该班学生制作粽子个数的平均数是6个;故答案为:6个;(3)列表如下:M M N N M﹣﹣﹣(M,M)(N,M)(N,M)M(M,M)﹣﹣﹣(N,M)(N,M)N(M,N)(M,N)﹣﹣﹣(N,N)N(M,N)(M,N)(N,N)﹣﹣﹣所有等可能的情况有12种,其中粽子馅料不同的结果有8种,则P==.【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.19.【分析】(1)由切线的性质得到半径OA⊥MN,而MN∥BD,得到OA⊥BD,由垂径定理推出=,即可证明问题;(2)由圆周角定理推出△ADE∽△ACD,得到AD:AC=AE:AD,即可求出AD的长.【解答】(1)证明:连接OA,∵MN切⊙O于A,∴半径OA⊥MN,∵MN∥BD,∴OA⊥BD,∴=,∴∠ACD=∠ACB;(2)∵∠ADE=∠ACB,∠ACD=∠ACB,∴∠ADE=∠ACD,∵∠DAE=∠DAC,∴△ADE∽△ACD,∴AD:AC=AE:AD,∵AE=AC﹣CE=5﹣4=1,∴AD:5=1:AD,∴AD=.【点评】本题考查切线的性质,垂径定理,圆周角定理,相似三角形的判定和性质,熟练掌握以上知识点是解题的关键.20.【分析】(1)设该商家购进的第一批纪念衫单价是x元,则第二批纪念衫单价是(x+10)元,根据购进了第二批这种纪念衫数量是第一批购进量的2倍列出方程,求出方程的解即可得到结果;(2)根据(1)得:第一批数量为40件,第二批为80件,设每件纪念衫的标价是y元,由题意列出不等式,求出不等式的解集确定出y的最小值即可.【解答】解:(1)设该商家购进的第一批纪念衫单价是x元,则第二批纪念衫单价是(x+10)元,根据题意得:×2=,解得:x=80,经检验x=80是分式方程的解,且符合题意,则该商家购进的第一批纪念衫单价是80元;(2)根据(1)得:第一批数量为40件,第二批为80件,设每件纪念衫的标价是y元,根据题意得:40y﹣3200+60y+20×80%y﹣7200≥3520,解得:y≥120,则每件纪念衫的标价至少是120元.【点评】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.21.【分析】(1)将已知点坐标代入函数表达式,即可求解;(2)直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,联立方程组,求出点B的坐标为(3,),根据组合法(即基本图形面积的和差)即可以解决问题;(3)根据图象即可解决问题.【解答】解:(1)将A(1,2),C(4,0)代入y=kx+b,得,解得:,∴直线AC的解析式为y=﹣x+,将A(1,2)代入y=(x>0),得m=2,∴双曲线的解析式为y=(x>0);(2)∵直线AC的解析式为y=﹣x+与y轴交点D,∴点D的坐标为(0,),∵直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,∴,∴,,∴点B的坐标为(3,),∴△AOB的面积=4×﹣4×﹣×1=;(3)观察图象,∵A(1,2),B(3,),∴当x>0时,关于x的不等式kx+b>的解集是1<x<3.【点评】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求一次函数和反比例函数解析式、三角形面积等;解题时着重使用一次函数,体现了方程思想,综合性较强.22.【分析】(1)求出抛物线的解析式,由配方法可得出答案;(2)把x=1,y=2代入y=mx2﹣3(m﹣1)x+2m﹣1,可得出答案;(3)分三种情况:①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点,求出m=3;②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.解得m=,则当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得m=﹣3<0.则当﹣3<m<0时,抛物线与线段BC只有一个公共点.【解答】解:(1)把m=3代入y=mx2﹣3(m﹣1)x+2m﹣1中,得y=3x2﹣6x+5=3(x ﹣1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x=1时,y=m﹣3(m﹣1)+2m﹣1=m﹣3m+3+2m﹣1=2.∵点A(1,2),∴抛物线总经过点A.(3)∵点B(0,2),由平移得C(3,2).①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点.由(1)知,此时,m=3.②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.∴m=>0.此时抛物线开口向上(如图1).∴当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得9m﹣9(m﹣1)+2m﹣1=2.∴m=﹣3<0.此时抛物线开口向下(如图2).∴当﹣3<m<0时,抛物线与线段BC只有一个公共点.综上,m的取值范围是m=3或0<m<或﹣3<m<0.【点评】本题是二次函数综合题,考查了二次函数的图象及其性质,二次函数图象上点的坐标特征,平移的性质等知识,熟练利用数形结合的解题方法是解决本题的关键.23.【分析】(1)利用等边三角形的性质解决问题即可;(2)证明△FAB≌△DAC(SAS),推出BF=CD,∠ABF=∠ACD=60°,再证明△EFB 是等边三角形,可得结论;(3)当点D是BC的中点时,四边形EFDC的面积是△ABC的面积的一半.利用相似三角形的性质,等高模型解决问题.【解答】解:(1)∵△ABC,△ADF都是等边三角形,∴EF=AB=CD,∠ADC=∠FED,∴EF∥CD,故答案为:CD=EF,CD∥EF;(2)结论成立.理由:如图2中,连接BF.∵△ABC,△ADF都是等边三角形,∴∠FAD=∠BAC,AF=AD,AB=AC,∴∠FAB=∠DAC,∴△FAB≌△DAC(SAS),∴BF=CD,∠ABF=∠ACD=60°,∵AE=BD,AB=BC,∴BE=CD=BF,∴△EFB是等边三角形,∴EF=BF=CD,∠FEB=∠ABC=60°∴EF∥CD;证法二:先证△CAE≌△ABD,得到CE=AD=DF,再证明CE∥DF,即可得四边形CDFE是平行四边形,即可得出结论平行且相等.(3)当点D是BC的中点时,四边形EFDC的面积是△ABC的面积的一半.此时四边形BDEF是菱形.理由:如图3中,连接DF.由(2)可知,△BEF是等边三角形,BE=CD,∵BD=CD,∴BE=CB,∵△BEF∽△ABC,∴=()2=,∵EF∥CD,EF=CD,∴四边形EFDC是平行四边形,=2S△EFB,∴S平行四边形EFDC∴=.连接DE.∵BE=BD,∠EBD=60°,∴△BDE是等边三角形,∵△BEF是等边三角形,∴四边形BDEF是菱形.【点评】本题属于四边形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题。

2024年广东省中考数学模拟试卷(一)-普通用卷

2024年广东省中考数学模拟试卷(一)-普通用卷

2024年广东省中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.2024的倒数是()A.2024B.C.D.2.如图是一个正方体的展开图,则与“承”字相对的是()A.华B.文C.中D.化3.下列函数中,其图象一定不经过第二象限的是()A. B.C. D.4.如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A、B的坐标分别为、,则点D的坐标为()A.B.C.D.5.在比小的数中,最大的整数是()A. B.0 C.1 D.26.下列运算错误的是()A. B.C. D.7.如图,矩形ABCD中以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.8.如图,四边形ABCD内接于,连接若,,则的度数是()A.B.C.D.9.如图,万达广场主楼楼顶立有广告牌DE,小辉准备利用所学的三角函数知识估测该主楼的高度.由于场地有限,不便测量,所以小辉沿坡度:的斜坡从看台前的B处步行50米到达C处,测得广告牌底部D的仰角为,广告牌顶部E的仰角为小辉的身高忽略不计,已知广告牌米,则该主楼AD的高度约为结果精确到整数,参考数据:,,A.80mB.85mC.89mD.90m10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为小时,两车之间的距离为千米,图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1B.2C.3D.4二、填空题:本题共5小题,每小题3分,共15分。

11.农业生产保持稳中有进,粮食产量连续9年保持在万亿斤以上,将数据“万亿”用科学记数法表示为______.12.若分式的值为0,则______.13.方程的根为______.14.现有4张完全相同的卡片分别写着数字,1,3,将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线与x轴有交点的概率为______.15.如图,抛物线的对称轴是直线,下列结论:①;②;③;④,正确的是______.三、解答题:本题共8小题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省中考数学模拟试题及答案广东省中考数学模拟试题说明:1.全卷共4页,考试时间100分钟,满分为120分;2.答案必须写在答题卡各题目指定区域内相应位置上,不按以上要求作答的答案无效;3.考试结束时,将答题卡上交,试卷自己保管. 一、选择题(本大题5小题,每小题3分,共15分) 1.9的平方根是 ( )A 、3B 、-3C 、±3D 、±3 2.下列图形中,既是..轴对称图形又是..中心对称图形的是A B C D3.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克.某地今年计划种这种超级杂交稻3000亩,预计该地今年收获这种超级杂交稻的总产量(用科学记数法表示)是( )A.62.510⨯千克 B.52.510⨯千克C.62.4610⨯千克 D.52.4610⨯千克4.两圆的半径分别为53R r ==,,圆心距6d =,则这两圆的位置关系是( )A.外离B.外切C.相交D.内含5.从8,12,18,21( )A .14 B .21 C .43D .1 二、填空题(本大题5小题,每小题4分,共20分)6. 分解因式:xy y x 2422++-=________________________.7. 10b -=,那么2009)(b a +的值为___________.8. 若一组数据“-2,x ,3,0,2”的众数是2,则平均数与其中位数的和是 ______.9. 如图,在平行四边形ABCD 中,点E 、F 分别是AB 、ACEF 的长度为1,则边AD 的长为 ______.10.已知△ABC 是直角边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD Rt △ADE ,…,依此类推,第n 三、解答题(本大题5小题,每小题6分,共30分) 11.计算:2)21(31160sin 2--+-+︒12.解方程组⎩⎨⎧=+=++840122y x y x13. 先化简代数式211()1211a aa a a a ++÷--+-,然后选取一个使原式有意义的a 值代入求值.14. 如图,点A 、点B 是反比例函数ky x=的图象与一次函数y =x +1的图象的交点,AC 垂直x 轴于点C ,AD 垂直y 轴于点D ,且矩形OCAD 积.B15.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正东方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正东方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果精确到1米.732.13≈,414.12≈)四、解答题(本大题4小题,每小题7分,共28分)16.如图,点O B ,坐标分别为(00)(30),,,,将OAB △绕O 点按逆时针方向旋转90到OA B ''△.(1)画出OA B ''△,并写出点A '的坐标: ;(2)求在旋转过程中点B 所走过的路线长.17.已知21,x x 是关于x 的方程062=+-k x x 的两个实数根,且115212221=--x x x x ,求k 的值.1OBA18. 如图,已知AB 是⊙O 的直径,AC 是弦,D 为AB 延长线上一点,DC AC =,120ACD ∠=,10BD =.(1)判断DC 是否为⊙O 的切线,并说明理由; (2)求扇形BOC 的面积.19.初三(1)班男生一次50米短跑测验成绩如下.(单位:秒) 6.9 7.0 7.1 7.2 7.0 7.4 7.3 7.5 7.0 7.4 7.3 6.8 7.0 7.1 7.3 6.9 7.1 7.2 7.4 6.9 7.0 7.2 7.0 7.2 7.6体育老师按0.2秒的组距分段,统计每个成绩段出现的频数,填入频数分布表,并绘制了频数分布直方图.(1)求a 、b 值,并将频数分布直方图补充完整. (2)请计算这次短跑测验的合格率(7.5秒及7.5 秒以下)。

五、解答题(本大题3小题,每小题9分,共27分)20. 已知等腰ABC △中,AB AC =,AD 平分BAC ∠交BC 于D点,在线段AD 上任取一点P (A 点除外),过P 点作EF AB ∥,分别交AC BC ,于E F ,点,作PM AC ∥,交AB 于M 点,连结ME . (1)求证:四边形AEPM 为菱形;(2)当P 点在何处时,菱形AEPM 的面积为四边形EFBM(秒频数分布直方图21. 中国青少年发展基金会为某地“希望小学”捐赠物资,其中文具和食品共320件,文具比食品多80件.(1)求文具和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批文具和食品全部..运往该地.已知甲种货车最多可装文具40件和食品10件,乙种货车最多可装文具和食品各20件.则中国青少年发展基金会安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.应选择哪种方案可使运输费最少?最少运输费是多少元?22. 矩形OABC 在直角坐标系中的位置如图所示,A 、C 两点的坐标分别为A (6,0),C(0,3),直线34y x =与BC 边相交于点D(1)求点D 的坐标;(2)若抛物线y=2ax bx +经过D 、A 两点,试确定此抛物线的表达式;(3)设在(2)中抛物线的对称轴与直线OD 交于MO 、M 为顶点的三角形与△OCD 相似,求符合条件的Q广东省中考数学模拟试题答案一、选择题1.D2.B3.C4.C5.C二、填空题 6. )2)(2(-+++y x y x 7.-1 8. 3 9.2 10.n )2( 三、解答题 11.解:原式=4331232+-+⨯┅┅┅┅ 4分 =3325+┅┅┅┅ 6分 12.解:由①式得1--=x y 代入②得┅┅┅┅ 1分 8)1(422=--+x x 解得 52,221=-=x x ┅┅┅┅3分 当2-=x 时,1=y ┅┅┅┅ 4分 当52=x 时,57-=y ┅┅┅┅ 5分 原方程组的解为 ⎩⎨⎧=-=12y x ,⎪⎪⎩⎪⎪⎨⎧-==5752y x ┅┅┅┅ 6分13.解:原式2111[]1(1)a a a a a+-=+--┅┅┅┅2分 221(1)a a a a -=-┅┅┅┅ 3分 1aa =-.┅┅┅┅ 4分 例如,当2a =时,原式2=.┅┅┅┅ 6分 14.设A 点坐标为(a,b ),依题意知,矩形OCAD 的面积=a b=2 ┅┅┅┅ 1分 因为A (a,b )在ky x=的图象上,所以k =a b=2,┅┅┅┅3分 联立方程组⎪⎩⎪⎨⎧+==12x y xy ,解得:⎩⎨⎧==21y x 或⎩⎨⎧-=-=12y x ┅┅┅┅ 4分 所以A (1,2),B (-2,-1),┅┅┅┅ 5分 又点 E (-1,0)所以△AOB 的面积=233121=⨯⨯┅┅┅┅ 6分15.解:楼房最高2413340130tan 40≈+=+︒米 ………6分 16.解:(1)图略 ┅┅┅┅2分 (2))4,2(- ┅┅4分(3)π23┅┅┅ 6分17. k=-11………7分18.解:(1)DC 是⊙O 的切线. ……………………………… 1分 理由:DC AC =,CAD D ∴∠=∠. ……………………………………………… 2分又120ACD ∠=,()1180302CAD ACD ∴∠=-∠=. ………………………… 3分 OC OA =,30A ACO ∴∠=∠=. ………………………………………………4分60COD ∴∠=,又30D ∠=,18090.OCD COD D ∴∠=-∠-∠=∴DC 是⊙O 的切线. …………………………………………………………………… 5分(2)设⊙O 的半径为r ,在Rt OCD ∆中,sin OC rD OD r BD∠==+, …………… 6分 30D ∠=,10BD =,1102r r ∴=+ ……………………………………………7分解得10r =. …………………………………………………………………………… 8分∴扇形BOC 的面积22601050.3603603n r s πππ⨯⨯=== ……………………………… 9分 19.解:(1)a = 4 ,b =0.16; ……………3分 (2)达到7.5秒的男生共有24人, ……………5分2524×100%=96% ,这次短跑测验的合格率为96% ……7分 20.解:(1)EF AB PM AC ∥,∥,∴四边形AEPM 为平行四边形.………… 2分 AB AC AD =,平分CAB CAD BAD AD BC ∠∴∠=∠,,⊥,BAD EPA CAD EPA ∠=∠∴∠=∠,,…………4分 EA EP =∴,四边形AEPM 为菱形.………… 5分 (2)当AP=2PD 时,12EFBMAEPM S S=四边形菱形.………… 6分 四边形AEPM 为菱形,AD EM AD BC EM BC ∴∴⊥,⊥,∥,………… 7分又EF AB ∥∴,四边形EFBM 为平行四边形.………… 8分易证:AB=3PF=3AM ,所以PF=AM=PE作EN AB ⊥于N ,则1122EFBM AEPM S EP EN EF EN S ===四边形菱形.……… 9分 21.解:(1)设打包成件的文具有x 件,则320)80(=-+x x (或80)320(=--x x ) …………………………2分解得200=x ,12080=-x答:打包成件的文具和食品分别为200件和120件. …………………………3分 方法二:设打包成件的文具有x 件,食品有y 件,则⎩⎨⎧=-=+80320y x y x …………………………2分 解得⎩⎨⎧==120200y x答:打包成件的文具和食品分别为200件和120件. …………………………3分 (注:用算术方法做也给满分.)(2)设租用甲种货车x 辆,则⎩⎨⎧≥-+≥-+120)8(2010200)8(2040x x x x …………………………4分 解得42≤≤x …………………………5分 ∴x =2或3或4,民政局安排甲、乙两种货车时有3种方案. 设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆. …………………………6分(3)3种方案的运费分别为: ①2×4000+6×3600=29600;②3×4000+5×3600=30000; ③4×4000+4×3600=30400. (8)分∴方案①运费最少,最少运费是29600元. …………………………9分 (注:用一次函数的性质说明方案①最少也不扣分.)22.(1)点D 坐标为(4,3);…………2分精品好文档,推荐学习交流仅供学习与交流,如有侵权请联系网站删除 谢谢7 (2)x x y 49832+-= …………5分 (3)点Q 的坐标为(3,0)或(3,-4)…………9分。

相关文档
最新文档