第四讲_雷达杂波.ppt
合集下载
电子对抗原理--雷达系统结构和工作原理 ppt课件
频率源分类
自激振荡源 晶体振荡器、腔体振荡器 介质振荡器、压控振荡器等 合成频率源
直接模拟式:对基准频率进行各种各样的 加减乘除 间接模拟式:利用模拟锁相环锁定VCO 来实现频率合成 直接数字式:使用数字技术完成频率和波 形的合成 间接数字式:由数字锁相环构成,包含数 字分频器和数字鉴相器
DBF系统的基本原理图
天线单元阵列 A/D变换器
接收模块 数字波束形成器
稀布阵雷达
VHF波段 发射1个圆阵(25个窄带全向发射天线,每个10KHz带宽,共250KHz) 接收1个圆阵,48个全向接收天线,带宽250KHz
RIAS* / SIAR** by Jaques Dorey (1986) – «Space Frequency »orthogonal coding
数字中频接收机原理框图
中频 信号 中频 滤波器
低通滤波、抽 取
cos(2f I nT )
A/D
I
低通滤波、抽 取
Q
sin( 2f I nT )
问题:上图有什么问题?
数字中频接收机原理框图
中频 信号 中频 滤波器
低通滤波、抽 取
cos(2f I nT )
A/D
I
低通滤波、抽 取
Q
sin(2f I nT )
大气吸收与频率的关系
大气天顶衰减与地面水汽密度的关系
斜路径大气衰减 f=23.75GHz
发射电磁波
脉冲
目标反射电磁波
雷达系统 结构与工作原理
雷达系统结构和基本工作原理 频率综合器 发射机 天线 接收机 信号处理机 雷达终端 监控设备
雷达回波的识别技术优秀课件.ppt
雷达回波的识别技术优秀
(二)风速不变、风向随高度变化的各种图象
当风速随高度保持不变时,各种颜色的多普勒速度带 都收敛于显示区的中心,即雷达所在处。多普勒速度 零值带的曲率表明了风向随高度的变化,逆转风产生 一个反型S的零值带而顺转风产生一个S型的零值带。 当风向随高度先顺转后逆转时,S 型带随雷达距离的 增加(高度增加)而转变为反S带。
一、回波强度分析技术
由雷达反射率因子Z值大小即可判别回波强弱.
瑞利散射
另外,回波形态特征、回波特殊结构和形态、 回波移动特点可知回波强度
雷达回波的识别技术优秀
二、脉冲多普勒天气雷达径向速度场分析技术与方法
对多普勒径向速度场基本特征的研究,可按
•零径向速度线; •朝向雷达分量(负)、离开雷达分量(正)范围、分布及中心; •强多普勒径向速度梯度带
Perpendicular
(a)环境风场的平面图:固定风速为40海里/小时,风向在地面为 南风(图象中心),均匀地经西南风变为图象边缘处的西风。(b) 相应的单多普勒速度图象。(c)说明如何利用多普勒零值曲线来解 释水平均匀流场的风向。(a)中的箭头长度正比于风速。颜色表示 多普勒速度值:正值(红色,桔黄色)表示离开雷达,负值(绿色, 兰色)表示朝向雷达。
雷达回波的识别技术优秀
风速随高度增加(地面为0)、风向随高度顺转的垂直风廓线(左图) 以及相应的多普勒速度图象(右图)。多普勒速度负值是朝向雷达 而正值是离开雷达,图象东部和西部边缘的颜色突变代表了己被了 混淆的更大的速度值,因为它们超出了±50海里/小时的奈科斯特速 度间隔。雷达位于图象中心。
雷达回波的识别技术优秀
雷达回波的识别技术优秀
Single Doppler Interpretation
(二)风速不变、风向随高度变化的各种图象
当风速随高度保持不变时,各种颜色的多普勒速度带 都收敛于显示区的中心,即雷达所在处。多普勒速度 零值带的曲率表明了风向随高度的变化,逆转风产生 一个反型S的零值带而顺转风产生一个S型的零值带。 当风向随高度先顺转后逆转时,S 型带随雷达距离的 增加(高度增加)而转变为反S带。
一、回波强度分析技术
由雷达反射率因子Z值大小即可判别回波强弱.
瑞利散射
另外,回波形态特征、回波特殊结构和形态、 回波移动特点可知回波强度
雷达回波的识别技术优秀
二、脉冲多普勒天气雷达径向速度场分析技术与方法
对多普勒径向速度场基本特征的研究,可按
•零径向速度线; •朝向雷达分量(负)、离开雷达分量(正)范围、分布及中心; •强多普勒径向速度梯度带
Perpendicular
(a)环境风场的平面图:固定风速为40海里/小时,风向在地面为 南风(图象中心),均匀地经西南风变为图象边缘处的西风。(b) 相应的单多普勒速度图象。(c)说明如何利用多普勒零值曲线来解 释水平均匀流场的风向。(a)中的箭头长度正比于风速。颜色表示 多普勒速度值:正值(红色,桔黄色)表示离开雷达,负值(绿色, 兰色)表示朝向雷达。
雷达回波的识别技术优秀
风速随高度增加(地面为0)、风向随高度顺转的垂直风廓线(左图) 以及相应的多普勒速度图象(右图)。多普勒速度负值是朝向雷达 而正值是离开雷达,图象东部和西部边缘的颜色突变代表了己被了 混淆的更大的速度值,因为它们超出了±50海里/小时的奈科斯特速 度间隔。雷达位于图象中心。
雷达回波的识别技术优秀
雷达回波的识别技术优秀
Single Doppler Interpretation
雷达系统原理PPT课件
旁瓣旁瓣电平为主瓣电平与最大旁瓣电平之差脉冲波束宽度脉冲宽度是指在主瓣中辐射功率密度为最大辐射功率密度3db的一半的角也被称为半值宽度雷达无线电波特性雷达的无线电波略沿地表方向传播主要视线
雷达系统原理
什么是雷达系统?
• 雷达是从天线发射称为微波的甚高频无线电波的导航设备。发射 的无线电波经过 目标(如其他船,浮标,小岛等)反射回来,并 通过相同的天线接受后转换为电 信号。再将这些电信号发送给显 示单元进行显示。雷达使在夜晚或大雾的情况下 发现视线以外的 目标成为可能,并可以使船避免一些潜在的危险。 由于天线发射 的同时在旋转,这样就使本船周边的情况便一目了然。 雷达发射 的微波信号被称为脉冲信号,发射和接收这些信号是交替进行的。 一次 360 度的旋转就有上千的脉冲信号被发射和接收。
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
关于 SART雷达应答器
• 根据 GMDSS(全球遇险与安全系统)要求,IMO/SOLAS 类型的 船必须配备 SART。当船遇险时,SART 可以自动发出信号,所以 其他船或飞机就可以确定 遇险船的位置。若本船配备了波段的雷 达,并且 8 英里内有船遇险,SART 可以 指引雷达回波到遇险船。 该信号包括了 12 扫频,并在 9.2 到 9.5GHz 的频段传输。 根据距 离的不同,SART 具有 2 种扫频时间,由慢(7.5μs)到快(0.4μs) 扫描或反 之亦然。当接收到该信号时,屏幕上出现一条总长为 0.64 海里被 12 个点平均的 线。最近的 SART 的光点指示遇险船 的位置。当本船接近 SART 1 海里以内时, 雷达上显示快速闪烁 的扫描信号,并有一根单薄的线连接 12 个光点。
弱反射目标
• 目标反射的回波强度不仅取决于与目标间的距离,目标的高度或 尺寸,还要取决 于目标的材料和特性。具有低发射或入射角的目 标,如 FRP(纤维增强复合材料) 船和木制船发射的都不好。所以, 必须注意 FRP 船,木船或沙,沙洲,泥礁等 物体都是弱反射目 标。 由于与海岸线的距离等,本船在雷达图像上看起来比实际的 海岸线要远,当船周 围有弱反射目标时,应更加谨慎。
雷达系统原理
什么是雷达系统?
• 雷达是从天线发射称为微波的甚高频无线电波的导航设备。发射 的无线电波经过 目标(如其他船,浮标,小岛等)反射回来,并 通过相同的天线接受后转换为电 信号。再将这些电信号发送给显 示单元进行显示。雷达使在夜晚或大雾的情况下 发现视线以外的 目标成为可能,并可以使船避免一些潜在的危险。 由于天线发射 的同时在旋转,这样就使本船周边的情况便一目了然。 雷达发射 的微波信号被称为脉冲信号,发射和接收这些信号是交替进行的。 一次 360 度的旋转就有上千的脉冲信号被发射和接收。
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
关于 SART雷达应答器
• 根据 GMDSS(全球遇险与安全系统)要求,IMO/SOLAS 类型的 船必须配备 SART。当船遇险时,SART 可以自动发出信号,所以 其他船或飞机就可以确定 遇险船的位置。若本船配备了波段的雷 达,并且 8 英里内有船遇险,SART 可以 指引雷达回波到遇险船。 该信号包括了 12 扫频,并在 9.2 到 9.5GHz 的频段传输。 根据距 离的不同,SART 具有 2 种扫频时间,由慢(7.5μs)到快(0.4μs) 扫描或反 之亦然。当接收到该信号时,屏幕上出现一条总长为 0.64 海里被 12 个点平均的 线。最近的 SART 的光点指示遇险船 的位置。当本船接近 SART 1 海里以内时, 雷达上显示快速闪烁 的扫描信号,并有一根单薄的线连接 12 个光点。
弱反射目标
• 目标反射的回波强度不仅取决于与目标间的距离,目标的高度或 尺寸,还要取决 于目标的材料和特性。具有低发射或入射角的目 标,如 FRP(纤维增强复合材料) 船和木制船发射的都不好。所以, 必须注意 FRP 船,木船或沙,沙洲,泥礁等 物体都是弱反射目 标。 由于与海岸线的距离等,本船在雷达图像上看起来比实际的 海岸线要远,当船周 围有弱反射目标时,应更加谨慎。
第四讲雷达杂波.ppt
Vw/6--以节表示的风速
f
2v
0.14 Vw
f--频谱标准差
二. 海杂波频谱
例:X波段( = 3.2cm),风速10节
f =43.75Hz
➢ 包络检波: ➢ 相参检波:
1 V 6 Vw
(实测)
V 0.14Vw
可见: f包络2 = 2f相参2
三. 气象杂波的频谱
➢ 四种主要因素决定
(一)风的切变,即风速随高度的梯度分布
a s 5.35qAZ (Hz)
一. 地物杂波
➢ 高斯型 ➢ 立方型
(一)高斯型
S(f )
PC 2f
exp
f2 2f2
f
,频2谱v 方差
,有经验公式
以米表示,Vw以节表示; v为速度标准差;PC为杂波功率
f 0.0066Vw1.261
一. 地物杂波
(二)立方型 (由Fishbein建立)
三. 海杂波
0=(f, 极化, , SS, 风向) SS-海情
➢ 实测所得规律 (一) 20°
400MHz f 50GHz -90dB 0 -30dB
例:t=1s, =10, R=20浬, 得S0=105 m2 1× 10-4 m2 e 100 m2 范围极大!
(一) 20°
于f的某一函数。 ➢ 雨、雪、冰雹, Di大, 大=> e 大; ➢ 云层 Di小=> 小=> e 小。 ➢ 可查表
五. 鸟群杂波
e m 0
其中: ➢ m:雷达分辨单元中飞鸟数 ➢ 0 :单个飞鸟的等效反射面, 0 可查表,用低于
1m2的dB表示
例: 0= -30dB,分辨单元中1000只鸟,可产生 1m2的等效反射面, e= 1m2
雷达杂波处理
Pf u U T
UT
pu du
虚警概率为门限电平的函数。
按概率论的中心极限定理,由大量作用比较均匀的随机分量合成的 随机量服从正态分布,正态分布的包络(检波后的视频信号)服从 瑞利(Rayleigh)分布: 2 2为方差。 瑞利分布特征量:
均值 方差 中值
u u p u) 噪声的基本特性 噪声服从瑞利分布,概率密度函数为:
u2 u pu 2 exp 2 2
2为方差。 噪声在脉冲——脉冲间统计独立,非相关。 (2) 雨雪杂波的基本特性 雨雪杂波由大量散射单元形成,服从瑞利分布,概率密度函数为:
2为方差。
u2 u pu 2 exp 2 2
k 1 k 1
n
n
u t ux cos t u y sin t
按中心极限定理,ux和uy服从正态分布:
p ux
2 ux exp 2 2 x 2 x
1
2 u 1 y p uy exp 2 2 y 2 y
2 均值: exp 2
方差: 中值:
ln u 2 1 exp 2 2 2u
e
2
1 exp 2 2
与瑞利分布相比,对数正态 分布出现“长尾”。 lnu 符合正态分布。
e
对数正态分布
噪声在脉冲——脉冲间统计独立,非相关。
2
0.43 2
1.17
x=[-3:0.1:8]; y1=raylpdf(x,2); y2=normpdf(x,2,1.4); plot(x,y1,'red',x,y2,'blu');
雷达基础知识:杂波
雷达基础知识:杂波
雷达中的“杂波”通常表示不需要的回波,包括来自地面及建筑物、海洋、雨雪天气、鸟群昆虫等。
虽然这些杂波功率有时会比目标的回波还要强的多,这就使得雷达对目标回波的检测产生了很大的检测困难。
通过天线主瓣进入雷达的杂波称为主瓣杂波,否则称为旁瓣杂波。
杂波通常是随机的,具有类似热噪声的特性。
由于杂波强度往往要比接收机内部噪声大,雷达在强杂波背景下检测目标的能力主要取决于信号杂波比(信杂比SCR)。
杂波通常在一定的空间范围内分布,其物理尺寸比雷达分辨单元要大的多,常分为两大类:面杂波和体杂波。
当然,也有“点”或离散的杂波,例如电视塔、建筑物等特殊结构。
说到“杂波”,你可能想到的就是如何去抑制它,去减少它在雷达回波中的分量,在很多情况是这样的。
但自然环境中的雷达回波并非都是不希望的,我们也可以加以利用。
例如,气象雷达和合成孔径雷达等。
云雨的反射对飞机雷达来说是不希望,但气象雷达喜欢,可以用来测量降雨率,提升天气预报的准确性。
地面上的后向散射杂波或许会干扰很多地面雷达和机载雷达,但是合成孔径雷达喜欢,通过对不同地物回波的分析,可以掌握大量的
信息。
因此,同一种自然环境的回波在一种应用中是不需要的杂波,而在另一种应用中可能就是提取的关键信号。
杂波与雷达目标的回波相似,杂波功率也可以用杂波散射截面积(RCS)来描述,杂波的平均RCS为:
杂波散射系数无量纲,它与雷达系统参数有关,例如雷达波长、极化特性,照射区域和照射方向等;地杂波还与地表面的参数有关,例如地面形状、粗糙度、覆盖层的复介电常数等;海杂波与风速、风向和海面蒸发等参数有关。
雷达信号处理PPT电子教案-第四讲雷达杂波
四. 箔条杂波的频谱
与气象杂波频谱的四项完全相同
v2 sheal2 + turb2 + beam2 + fall2 sheal = 0.42 K R EL K 6 米/ 秒 turb = 1.0 m/s (低于12000呎) = 0.7 m/s (高于12000呎) fall = 0.45 sin (m/s) beam = 0.42 V0 EL sin
(一)杂波类型
• 面杂波: 地、海 – 小俯角 – 大俯角
e 0S 0
0为面杂波单位面积的反射系数
俯仰角
入射角
擦地角(掠射角)
俯仰角、擦地角和入射角
R
h
ct/ 2
Y
ct sec(Y)/2
t c S R q sec 0 AZ 2
qAZ
杂波区 R RqAZ
总数 当箔条长度与/2无关系时, e迅速
§3 杂波频谱
影响杂波频谱的因素
• • • • 幅度起伏 天线扫掠 风速变化 鸟群飞翔速度等
例. 天线波束为高斯形, qAZ,转速a (弧度/秒),则
a (Hz ) s 5 .35 q AZ
一. 地物杂波
高斯型 立方型
(一)高斯型
二. 地杂波强度
(三) 的影响
=0.5°~10°内, 0 > 10°, 0随 变化小
(四)f 的影响
较小时, 0随f 略有; 较大时, 0与f 无关
三. 海杂波
0=(f, 极化, , SS, 风向) SS-海情
实测所得规律 (一) 20°
400MHz f 50GHz -90dB 0 -30dB
:目前已发展了K分布等新分布。
杂波
谢谢观看
影响地杂波的因素有系统参数,包括波长、照射面积、照射方位角和俯仰角、极化方式,还有地物参数,包括 复介电常数、地面粗糙度、次表层或幅度衰减可忽略的深度覆盖面的不均匀性,雷达波能够透入地物和植被的表 层,因此,地物回波是表面散射和次表层再反射回波的合成,对田地和草地的衰减测量表明,植被不密时,绝大部 分回波来自地表顶层,次表层回波可忽略,与地杂波的散射特性相比,海杂波的散射特性有其特殊性,不仅会因海 情的不同而表现出不同的散射系数,而且海浪是运动的,即使对于固定的雷达平台,海浪也会表现出多谱勒展宽,而 且成片海杂波散射单元之间的相关性也比地杂波强。
在杂波性质的研究中,后向散射系数是一个重要和基础的概念,它是杂波特性分析中一个非常关键的指标。杂 波后向散射系数是指散射体表面反射特性和后向散射特性的乘积按空间范围(面积或体积)的归一化或平均(其中, 反射特性表明了既没有被表面吸收又不穿过表面的那一部分入射功率,而后向散射特性则表明沿入射角反向辐射的 那一部分反射功率)。或者说,后向散射系数就是单位面积(或体积)的平均雷达截面,与离散性的目标相比,对海 洋、陆地、大气等一类散射体来说,由于其具有延伸性!大面(体)积的特点,雷达截面就应该是平均意义上的,实 际上,对早期的低分辨力雷达而言,由于一个被照射的雷达分辨单元中可能包括了多个散射中心,这种将杂波散射 用面积或体积来平均的办法有着较强的物理背景;然而,对于许多现代高分辨力的雷达来说,它们能够发现杂波单 元中相当数量的非均匀结构,此时的杂波特性接近于单个点目标特性,因此,这样的做法不一定能较好地代表真实 的情况,换句话说,这就揭示了后向散射系数定义和使用中的局限性或前提:只有被雷达照射到的空间范围呈现均 一特性时,它才是一个十分精确的物理量,从而,我们就能使来自于一部雷达的归一化测量结果用于其它雷达,另 一方面,在大面积上,即使是在非高分辨条件下,也可能不是常数,在进行分析时,如果用单值的而又没有对整个情 况作出正确的解释,就会导致不正确的结果,由杂波的产生过程我们可以理解,是两种参数的函数,一是雷达设备 参数,如信号形式(脉冲宽度、波束宽度、极化、频率等)及入射角等:二是散射单元本身物理和结构等方面的参数, 如介电常数、几何特性等,各种雷达设备参数对杂波的影响,定性的描述和结论已比较充分,而定量的研究则有待 深入,的定义所指出的是按空间范围归一化的结果和决定于两种参数的特性,是我们在杂波性质研究中所必须把握 的两个基本观点,在杂波性质的研究中,后向散射系数是一个重要和基础的概念,它是杂波特性分析中一个非常关 键的指标,杂波后向散射系
雷达基本工作原理ppt课件
3 对方位分辨率和测方位精度的关系
工作波长越短,天线水平波束宽度越窄,方位分辨率和测方位进 度越高
4 抗杂波干扰能力的关系
工作波长越短,雨雪海浪等对雷达波德反射越强,干扰越大
29
5.2 脉冲宽度对使用性能影响
1 对最大作用距离的影响
脉冲宽度越大,能量越大,作用距离越大
2 对最小作用距离的关系
固定距标圈 荧光屏边缘
10
1.4 雷达的测距与测向原理
1. 雷达测距原理 Δ t: 往返于天线与目标的时间, C: 电磁波在空间传播速度3×108m/s。
R
=
1 C
×Δ
t
2
2. 雷达测向原理 借助于定向天线 - 扫描.
11
2 雷达基本组成
微波传输线 发射脉冲
发射机
天线
回波 T/R
触发器
接收机
电源
测 (2)
无视线限制
测量目标参数 距离,方位,速度,航向...
导航 (1) 避碰
(2) 定位
7
雷达/ARPA, ECDIS, GPS/DGPS和自动舵构成的自动 船桥系统是未来主要的导航系统
8
1.3雷达考核内容
雷达结构及其工作原理 雷达影像失真的特点及其产生原因 影响雷达正常观测的诸要素 雷达测距/测方位 雷达定位与导航 雷达航标
28
5.1 工作波长对使用性能影响
1 对最大作用距离的影响
正常天气观测较小的物标时,3cm雷达的rmax要比10cm的大 雨雪天,则10cm雷达的rmax要比3cm雷达的大得多
2 对距离分辨率和测距精度的关系
工作波长越短,脉冲前沿越短,测距精度高;脉冲前沿越短,有 利于缩短脉冲宽度,提高距离分辨率
工作波长越短,天线水平波束宽度越窄,方位分辨率和测方位进 度越高
4 抗杂波干扰能力的关系
工作波长越短,雨雪海浪等对雷达波德反射越强,干扰越大
29
5.2 脉冲宽度对使用性能影响
1 对最大作用距离的影响
脉冲宽度越大,能量越大,作用距离越大
2 对最小作用距离的关系
固定距标圈 荧光屏边缘
10
1.4 雷达的测距与测向原理
1. 雷达测距原理 Δ t: 往返于天线与目标的时间, C: 电磁波在空间传播速度3×108m/s。
R
=
1 C
×Δ
t
2
2. 雷达测向原理 借助于定向天线 - 扫描.
11
2 雷达基本组成
微波传输线 发射脉冲
发射机
天线
回波 T/R
触发器
接收机
电源
测 (2)
无视线限制
测量目标参数 距离,方位,速度,航向...
导航 (1) 避碰
(2) 定位
7
雷达/ARPA, ECDIS, GPS/DGPS和自动舵构成的自动 船桥系统是未来主要的导航系统
8
1.3雷达考核内容
雷达结构及其工作原理 雷达影像失真的特点及其产生原因 影响雷达正常观测的诸要素 雷达测距/测方位 雷达定位与导航 雷达航标
28
5.1 工作波长对使用性能影响
1 对最大作用距离的影响
正常天气观测较小的物标时,3cm雷达的rmax要比10cm的大 雨雪天,则10cm雷达的rmax要比3cm雷达的大得多
2 对距离分辨率和测距精度的关系
工作波长越短,脉冲前沿越短,测距精度高;脉冲前沿越短,有 利于缩短脉冲宽度,提高距离分辨率
(完整版)04(雷达方程)
R4LS LAKT0BF
PT = 发射的峰值功率
G = 天线增益
σ = 目标的雷达散射截面积
λ= 波长
R = 雷达到目标的单程距离
Ls = 系统损耗
LA = 传播损耗
K = Bolzmann常数 (1.38 × 10-23 ) T0 = 290˚K
B = 带宽
F = 接收机噪声系数
点目标
分类
• 点目标:目标位于雷达的分辨单元内 • 低角度面目标:比雷达分辨单元大,擦地角小。其 雷达散射截面积正比于分辨单元内的面积。
X
'EL
R EL DEL
面目标干扰中的点目标
S
/ C(Low)
2 BCosG 0c3( AZ ) R
S
/ C(High)
4 CosG 0c3( AZ ) 3(EL) R2
S
/ C(Low)
2 BCosG 0c3( AZ ) R
MTI-I
S
/ C(High)
4 CosG 0c3( AZ ) 3(EL) R2
PT G22 GP
)3 PI LS LALGP S
I min
例题:如果最小检测信噪比为16dB,要使上例中的雷 达能发现10m2的目标,最大距离为多少?(a)利用 单个脉冲;(b)2048个脉冲
答案:28.8公里;176.8公里Fra bibliotek信噪比
空间增益/损失
S / I PTG2 GP 2 PI LS LALGP (4 )3 R4
积累时间由信号处理机或伺服带宽决定
NE PRF Td PRF / BS
S / NPC
PT G22 (4 )3 R4KT0BFLS LALGP
PRF BS Li
PT = 发射的峰值功率
G = 天线增益
σ = 目标的雷达散射截面积
λ= 波长
R = 雷达到目标的单程距离
Ls = 系统损耗
LA = 传播损耗
K = Bolzmann常数 (1.38 × 10-23 ) T0 = 290˚K
B = 带宽
F = 接收机噪声系数
点目标
分类
• 点目标:目标位于雷达的分辨单元内 • 低角度面目标:比雷达分辨单元大,擦地角小。其 雷达散射截面积正比于分辨单元内的面积。
X
'EL
R EL DEL
面目标干扰中的点目标
S
/ C(Low)
2 BCosG 0c3( AZ ) R
S
/ C(High)
4 CosG 0c3( AZ ) 3(EL) R2
S
/ C(Low)
2 BCosG 0c3( AZ ) R
MTI-I
S
/ C(High)
4 CosG 0c3( AZ ) 3(EL) R2
PT G22 GP
)3 PI LS LALGP S
I min
例题:如果最小检测信噪比为16dB,要使上例中的雷 达能发现10m2的目标,最大距离为多少?(a)利用 单个脉冲;(b)2048个脉冲
答案:28.8公里;176.8公里Fra bibliotek信噪比
空间增益/损失
S / I PTG2 GP 2 PI LS LALGP (4 )3 R4
积累时间由信号处理机或伺服带宽决定
NE PRF Td PRF / BS
S / NPC
PT G22 (4 )3 R4KT0BFLS LALGP
PRF BS Li
《雷达回波识别分析》ppt课件
回波性质: 根据回波的外形、构造特征、强度、高度等
对回波进展识别。回波分降水回波、非 降水回 波两类。 降水回波:层状云降水、对流云降水、雷雨、阵
雨、冰雹、龙卷、混合型降水、雪等。 非降水回波:地物、超折射、烟、奇特回波等。
回波的移向、移速
移向:回波移去的方向
移速:每小时挪动的间隔。 Km / h 移向、移速光凭眼睛看是不行的。
回波强度:是指回波区的平均强度,而 不是只测定某一点的强度〔用dBz表 示〕。
强中心位置:是指本次观测中回波区内 最强回波的位置。回波区中如出现多 个较分散的强回波中心,应同时求取。
回波外形:
回波的外形直接与天气系统和降水性质 相联络。回波的外形常有:涡旋状、 弧状、人字形、带状、絮状、均匀片 状、块状、零散孤立等,观测时应根 据显示器上显示出的实践图像和构造 情况进展区分。
对电磁的反射作用约强了五倍; 2、冰晶、雪花在转化的过程中,碰并的时机添
加,构成大的颗粒,加强了反射作用; 3、雪花、冰晶转化成水滴时,外形由不规那么
外形变成了近似球形,反射作用添加; 4、水滴的下降末速度要比雪花、冰晶大得多,
在雪花、冰晶完全变成水滴后,由于速度添 加,反射作用又迅速的减小,呵斥亮带以下 回波变弱。 这四种缘由综合的结果,在0℃附近的回波 比上面和下面都强,构成了亮带。
当降水回波和地物回波混杂在一同,不 容易区分,新一代天气雷达〔抬高仰角〕 与气候回波混在一同不好区分。
非气候回波
超折射回波
非气候回波
奇特回波: 层状奇特回波 点状奇特回波 窄带状奇特回波 蜂窝状奇特回波 波状奇特回波
层状奇特回波
景象:出现高度在摩擦层内几百米-1千 米回波很弱,有时出现多层构造。
《雷达导论概论》课件
《雷达导论概论》
雷达是一种广泛应用于多领域的无线电系统,通过发射和接收无线电波来探 测目标物体并获取相关信息。
雷达基线电波并接收其反射波来感知目标物体。
2
时延测量
雷达利用测量无线电信号的往返时间来计算目标物体与雷达之间的距离。
3
频率变化
雷达通过观察无线电波的频率变化来检测目标物体的速度。
脉冲雷达系统
发射脉冲
脉冲雷达系统通过发射短脉冲来探测目标并测量其回波。
脉冲压缩
脉冲雷达系统使用脉冲压缩技术来提高距离分辨率和目标检测能力。
脉冲多普勒
脉冲雷达系统利用脉冲多普勒技术来测量运动目标的速度和方向。
连续波雷达系统
连续波发射
连续波雷达系统通过持续发射连续波来探测目 标并测量其回波。
频率调制
1 增加功率
增加发射功率可以提 高雷达的最大探测范 围。
2 提高灵敏度
提高接收灵敏度可以 增加雷达对小目标的 探测能力。
3 减小目标截面积
减小目标的雷达截面 积可以降低探测距离。
雷达降频与运动目标
多普勒效应
雷达利用多普勒效应来检测运动目标的速度和 方向。
运动目标
雷达可以追踪运动目标并提供其位置和运动信 息。
速度测量
雷达信号处理可用于测量目标的速度和方 向。
距离测量
雷达信号处理可用于测量目标与雷达之间 的精确距离。
目标辨别
雷达信号处理可以帮助识别不同的目标类 型。
雷达系统杂波
雷达系统杂波包括来自不同来源的无用无线电信号,可能干扰目标信号导致误测和错误分析。
类型 云杂波 地面杂波 回波杂波
杂散辐射
描述 来自云层和降水的散射无线电波干扰。 来自地面反射的散射无线电波干扰。 来自雷达周围环境中的多次反射导致的杂 波。 来自雷达系统本身的散射无线电波干扰。
雷达是一种广泛应用于多领域的无线电系统,通过发射和接收无线电波来探 测目标物体并获取相关信息。
雷达基线电波并接收其反射波来感知目标物体。
2
时延测量
雷达利用测量无线电信号的往返时间来计算目标物体与雷达之间的距离。
3
频率变化
雷达通过观察无线电波的频率变化来检测目标物体的速度。
脉冲雷达系统
发射脉冲
脉冲雷达系统通过发射短脉冲来探测目标并测量其回波。
脉冲压缩
脉冲雷达系统使用脉冲压缩技术来提高距离分辨率和目标检测能力。
脉冲多普勒
脉冲雷达系统利用脉冲多普勒技术来测量运动目标的速度和方向。
连续波雷达系统
连续波发射
连续波雷达系统通过持续发射连续波来探测目 标并测量其回波。
频率调制
1 增加功率
增加发射功率可以提 高雷达的最大探测范 围。
2 提高灵敏度
提高接收灵敏度可以 增加雷达对小目标的 探测能力。
3 减小目标截面积
减小目标的雷达截面 积可以降低探测距离。
雷达降频与运动目标
多普勒效应
雷达利用多普勒效应来检测运动目标的速度和 方向。
运动目标
雷达可以追踪运动目标并提供其位置和运动信 息。
速度测量
雷达信号处理可用于测量目标的速度和方 向。
距离测量
雷达信号处理可用于测量目标与雷达之间 的精确距离。
目标辨别
雷达信号处理可以帮助识别不同的目标类 型。
雷达系统杂波
雷达系统杂波包括来自不同来源的无用无线电信号,可能干扰目标信号导致误测和错误分析。
类型 云杂波 地面杂波 回波杂波
杂散辐射
描述 来自云层和降水的散射无线电波干扰。 来自地面反射的散射无线电波干扰。 来自雷达周围环境中的多次反射导致的杂 波。 来自雷达系统本身的散射无线电波干扰。
雷达一些基本原理ppt课件
雷达方程的推导过程
通过电磁波传播、目标反射、接收处理等过程,推导出雷达方程的 具体形式。
雷达方程的意义
为雷达系统设计、性能分析和优化提供了理论依据,有助于指导雷 达系统的实际应用。
最小可检测信号计算
最小可检测信号的定义
在给定虚警概率和检测概率条件下,雷达系统能够检测到的最小 目标回波信号。
最小可检测信号的计算方法
根据雷达方程和噪声特性,通过理论计算或仿真实验确定最小可检 测信号的大小。
影响最小可检测信号的因素
包括雷达系统参数、目标特性、传播环境等,需要综合考虑各种因 素进行优化设计。
系统性能评估指标
探测距离
衡量雷达系统对远距离目标的 探测能力,与发射功率、天线 增益、目标反射截面等因素有
关。
分辨率
表征雷达系统区分相邻目标的 能力,包括距离分辨率、方位 分辨率和俯仰分辨率等。
02
电磁波与天线
电磁波特性与传播方式
电磁波基本特性
电磁波是一种横波,具有电场和 磁场分量,可以在真空中传播,
速度等于光速。
电磁波谱
电磁波谱包括无线电波、微波、红 外线、可见光、紫外线、X射线和 伽马射线等,不同波段的电磁波具 有不同的特性。
电磁波传播方式
电磁波传播方式包括直射、反射、 折射、衍射和散射等,这些传播方 式决定了雷达探测的基本原理。
雷达一些基本原理ppt课件
目录
பைடு நூலகம்
• 雷达概述 • 电磁波与天线 • 雷达信号处理 • 雷达测距测速原理 • 雷达方程与性能分析 • 现代雷达技术发展趋势
01
雷达概述
雷达定义与发展历程
雷达定义
利用电磁波的反射特性来探测目 标的位置、速度等信息的电子设 备。
通过电磁波传播、目标反射、接收处理等过程,推导出雷达方程的 具体形式。
雷达方程的意义
为雷达系统设计、性能分析和优化提供了理论依据,有助于指导雷 达系统的实际应用。
最小可检测信号计算
最小可检测信号的定义
在给定虚警概率和检测概率条件下,雷达系统能够检测到的最小 目标回波信号。
最小可检测信号的计算方法
根据雷达方程和噪声特性,通过理论计算或仿真实验确定最小可检 测信号的大小。
影响最小可检测信号的因素
包括雷达系统参数、目标特性、传播环境等,需要综合考虑各种因 素进行优化设计。
系统性能评估指标
探测距离
衡量雷达系统对远距离目标的 探测能力,与发射功率、天线 增益、目标反射截面等因素有
关。
分辨率
表征雷达系统区分相邻目标的 能力,包括距离分辨率、方位 分辨率和俯仰分辨率等。
02
电磁波与天线
电磁波特性与传播方式
电磁波基本特性
电磁波是一种横波,具有电场和 磁场分量,可以在真空中传播,
速度等于光速。
电磁波谱
电磁波谱包括无线电波、微波、红 外线、可见光、紫外线、X射线和 伽马射线等,不同波段的电磁波具 有不同的特性。
电磁波传播方式
电磁波传播方式包括直射、反射、 折射、衍射和散射等,这些传播方 式决定了雷达探测的基本原理。
雷达一些基本原理ppt课件
目录
பைடு நூலகம்
• 雷达概述 • 电磁波与天线 • 雷达信号处理 • 雷达测距测速原理 • 雷达方程与性能分析 • 现代雷达技术发展趋势
01
雷达概述
雷达定义与发展历程
雷达定义
利用电磁波的反射特性来探测目 标的位置、速度等信息的电子设 备。
雷达原理ppt课件
l 波形条件――信号调制参数在侦察设备的检 测能力之内。
雷达干扰的基本原理
雷达发射
传播
目标
雷达接收
空间
干扰机
雷达干扰的机理和途径:
l 破坏电波传播路径
l 产生干扰信号进入雷达接收机,破坏 目标检测
l 减小目标的雷达截面积
雷达对抗的主要技术特点
1) 宽频带、大视场 雷达侦察系统的频率覆盖范围为:10~40GHz, 75~140GHz 具备陆、海、空、天全空域、全方位、全高度 的对抗能力 2) 瞬时信号检测、测量和高速信号处理 适应传统脉冲雷达、捷变频雷达、低辐射雷达 信号的检测与识别能力,对雷达参数的测量实时 完成,信号的处理必须是高速实现。
雷达干扰的分类
按作用原理分 遮盖性干扰
在雷达接收机中,干扰与目标回波叠 加在一起,使雷达难以从中检测目标信 息。 欺骗性干扰 在雷达接收机中,干扰与目标回波难以 区分,以假乱真,使雷达不能正确检测 目标信息。
雷达干扰的分类
按雷达、目标、干扰机相对位置分
远距离支援干扰(SOJ),干扰机远离目标,通过 辐射强干扰信号掩护目标,一般为遮盖性干扰,干 扰雷达旁瓣。
雷达 侦察 设备
干扰 决策
资源 管理
干扰 资源库
功率 合成
波束 形成
国外电子战装备技术发展现状与趋势
由于美国是当今世界最发达国家,其技术水平 代表了当今世界的最高水平,因此这里重点介绍 有关美国的电子战装备技术的发展现状与趋势。
美军“2010年联合设想”是其确定其装备技术 发展方向和未来高技术作战的基本出发点。以信 息技术为核心的高技术迅猛发展而引发的这场新 军事革命,将改变21世纪初叶的战场格局,并给 未来高技术局部战争带来深刻而深远的影响。为 了赢得高技术战争,迎接和推动新军事革命,美 国军方提出了“2010年联合设想”,为其武装部 队的发展,提供了作战标准,成为其三军设想的 基础。
雷达系统抗干扰技术ppt课件.ppt
多波束形成技术
减小主瓣干扰受影响范围
设置辅助天线与诱饵 降低雷达被精确定位的可能性
注:副瓣匿影:加装一个(或多个)辅助天线和接收机,通过将主天线信号与辅助天 线信号相减来对消旁瓣干扰信号。
雷达系统抗干扰技术
分类
抗干扰措施
主要作用
频率捷变
频率分集
频率域
宽带/超宽带雷达
(频率选择)
MTI、MTD、PD
雷达测速原理
依据多普勒效应,当目标与干扰杂波同时存在于雷达的同一空间分辨 单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测 和跟踪目标。
雷达系统抗干扰技术
2 干扰分类
雷达面临的复杂电磁环境如下图,雷达要在如下众多干扰中将反射回来 的目标信号分离出来,这关系到雷达的生存和性能。
雷达系统抗干扰技术
分类
抗干扰措施
宽动态范围接收机(如对数接收机、线 性-对数接收机)
主要作用
电路抗干扰 瞬时自动增益控制电路 近程增益控制电路(STC)
抗饱和过载
“宽-限-窄”电路
注:“宽-限-窄”电路包括:宽带放大器、限幅器和窄带放大器,综合利用了频域和时域 抗干扰原理,多次“整削”宽带噪声调频干扰的能量,同时又充分保护目标回波信号能量 不受损失,可极大地改善系统信干比,从而极大地降低雷达虚警概率、提高发现概率。
3 雷达抗干扰技术
雷达抗干扰的主要目标是在与敌方电子干扰对抗中保证己方雷达任务 的顺利完成。
雷达抗干扰措施可分为两大类:(1)技术抗干扰措施;(2)战术抗 干扰措施。
技术抗干扰措施又可分为两类: 一类是使干扰不进入或少进入雷达接 收机中; 另一类是当干扰进入接收机后,利用目标回波和干扰的各自 特性,从干扰背景中提取目标信息。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(四)降落速度分布,即不同直径的降落物速度不同,产 生方差 fall 1.0 sin 为天线仰角
三. 气象杂波的频谱
气象杂波总的速度方差为:
v2 sheal2 + turb2 + beam2 + fall2
四. 箔条杂波的频谱
➢ 与气象杂波频谱的四项完全相同
v2 sheal2 + turb2 + beam2 + fall2
S(f
)
1
P0 f
f
c
3
fc为特征频率,S(fc) = 0.5 P0。 P0为杂波功率。 fc与许多因素有关 ,由实测确定。
1
fc=10
0.9
fc=20
fc=50 0.8
0.7
0.6
S(f)
0.5
0.4
0.3
0.2
0.1
0 0 20 40 60 80 100 120 140 160 180 200 f
Vw/6--以节表示的风速
f
2v
0.14 Vw
f--频谱标准差
二. 海杂波频谱
例:X波段( = 3.2cm),风速10节
f =43.75Hz
➢ 包络检波: ➢ 相参检波:
1 V 6 Vw
(实测)
V 0.14Vw
可见: f包络2 = 2f相参2
三. 气象杂波的频谱
➢ 四种主要因素决定
(一)风的切变,即风速随高度的梯度分布
sheal = 0.42 K R EL turb = 1.0 m/s
= 0.7 m/s
K 6 米/ 秒 (低于12000呎) (高于12000呎)
fall = 0.45 sin (m/s) beam = 0.42 V0 EL sin
§4 杂波的幅度分布
一. 瑞利分布(包络检波后)
fv
令Pc=22,P=V2
(v)
v 2
exp
v2 22
则
fP (P)
1 Pc
exp
P Pc
➢ 适用于:相对独立、随机的小散射体群。低分辨雷达 的所有杂波,气象、鸟群、箔条、低海情时的海浪, 植被丰富的地杂波。
二. Rice分布
➢大量独立小散射体加上一个占主导成分的 稳定散射体。
( ) ( ) fP(P) Nhomakorabea1 m2 P
• SS => 0 0 =
+10dB/SS 0/SS
(低SS,低f) (高SS,高f)
三. 海杂波
(二) > 20,或30 90
准镜面区,0变化规律为
➢ =90
0 1/SS,且当SS=0时,0=0max +10dB(对所有
f)
=> 0
➢ 60
0 SS,当 ,SS => 0
第四讲 雷达杂波
➢1、引言 ➢2、杂波强度 ➢3、杂波频谱 ➢4、杂波的幅度分布
➢杂波:是雷达在所处环境中所收到的一个 或一群不需要的反射回波。
➢注意:对某部雷达而言的杂波可能是另外 一部雷达的目标。
§1. 引言
➢为抗杂波必须研究杂波特性 ➢杂波分类
自然杂波:地、气象、海浪、鸟群等 人为杂波:箔条、角反射器、假弹头等
a s 5.35qAZ (Hz)
一. 地物杂波
➢ 高斯型 ➢ 立方型
(一)高斯型
S(f )
PC 2f
exp
f2 2f2
f
,频2谱v 方差
,有经验公式
以米表示,Vw以节表示; v为速度标准差;PC为杂波功率
f 0.0066Vw1.261
一. 地物杂波
(二)立方型 (由Fishbein建立)
➢杂波三大特性
强度、频谱和幅度统计特性
§1. 引言
➢杂波的特点:有色、非平稳
– 空间分布上非均匀==>通过天线扫描==>时间 上的非平稳
– 各分辨单元本身杂波非平稳。因风速变化等 – 时间上有相关性,所以频谱宽度有限,为有色 – 杂波的若干特性主要靠实测来统计,并用数学
拟合法
§2. 杂波强度
一. 影响杂波强度的因素
六. 箔条杂波
➢ 当箔条长度正好为半波偶极子时,即长度=/2时, e= 0.18 2N,其中,N为雷达分辨单元中箔条 总数
➢ 当箔条长度与/2无关系时, e迅速
§3 杂波频谱
➢影响杂波频谱的因素
• 幅度起伏 • 天线扫掠 • 风速变化 • 鸟群飞翔速度等
例. 天线波束为高斯形, qAZ,转速a (弧度/秒),则
于f的某一函数。 ➢ 雨、雪、冰雹, Di大, 大=> e 大; ➢ 云层 Di小=> 小=> e 小。 ➢ 可查表
五. 鸟群杂波
e m 0
其中: ➢ m:雷达分辨单元中飞鸟数 ➢ 0 :单个飞鸟的等效反射面, 0 可查表,用低于
1m2的dB表示
例: 0= -30dB,分辨单元中1000只鸟,可产生 1m2的等效反射面, e= 1m2
• f => 0 且0 f m,m =
3,f 2GHz, 1, SS 3级 0,f , , SS 时
• => 0 且0 n,n =
3, 1, f 2GHz, SS 3级 0, , f , SS 时
• SS一定, 0V > 0H 且当SS, , f 时,0VH= (0V - 0H )
ct 2
RqAZ
体杂波分辨单元体积计算
(二)雷达参数
➢ 分辨单元S0 :高分辨雷达, S0 => e
➢ 波长 (或频率f)
均与强度有关,后面介绍
➢ 极化方式
近掠入射区 0
平直区
近垂直入射区
0度
俯仰角
90度
0和俯仰角的依从关系
二. 地杂波强度
(一)地物类型是影响0的关键因素
沙漠、农田、山地、植被、城市, 0均各不相同
(二) > 20,或30 90
➢ 90
0 与极化无关(不同SS均成立),即垂直下视时, 0 与
极化和SS无关
0V 0H
(中等海情以下)
(即<90 时),
0V 0H
(高海情时)
➢ 较小时,即 20 30
0与风向关系密切,上风0>下风0 ,垂直风0最小 当 60,0 与风向关系小;
向和俯角向波瓣角;-天线俯仰角
RqAZ
S0 R2ELqAZ (sin )
Y R ELCSC(Y)
大俯仰角面杂波的分辨单元面积计算 R-作用距离;qAZ和 EL为天线波束的方位 向和俯角向波瓣角;-天线俯仰角
• 体杂波
气象、箔条等。
e S0
为体杂波单元的反射系数。
ct/2
REL
S0
4
R 2ELqAZ
sheal 0.42(Vr ) 0.42KREL
其中,K=4.0~4.5 米/秒
(二)风的扰动, 即不同高度的梯度平均值有起伏, 形成 扰动 turb=1.0 米/秒
三. 气象杂波的频谱
(三)波束展宽 beam 0.42 V0 EL sin V0 为波束中心点风速; 为波束中心点风向与波束方位的夹角。
(一)杂波类型
• 面杂波: 地、海
– 小俯角 – 大俯角
e 0 S0
0为面杂波单位面积的反射系数
俯仰角
入射角 擦地角(掠射角)
俯仰角、擦地角和入射角
h
R
ct/2
Y
ct sec(Y)/2
S0
RqAZ
ct 2
sec
R qAZ
杂波区 RqAZ
小俯仰角面杂波的分辨单元面积计算 R-作用距离;qAZ和 EL为天线波束的方位
90,0 与风向无关。
四. 云雨杂波
e
4
R
2 q AZ EL
ct 2
体杂波
的表示方法一:
dB 93 40 log(fGHz 3) 17 log(r)
其中,r为降雨率,mm/hr,可查表。
的表示方法二:
= i
其中, ➢ i 为每一小质点的反射系数; ➢ i Di6 , (f),即i正比于质点直径Di的六次方;也正比
杂波的立方谱结构示意图
二. 海杂波频谱
➢ 谱宽f ➢ 平均多普勒频移f0
(一) f0:与风速、浪高、极化方式有关 水平极化:f0取决于风速及浪高 垂直极化:f0仅取决于浪高
: f0 = (风速, 极化方式, 浪高),可查曲线
二. 海杂波频谱
(二) f :与海情有关 测试得:海杂波谱接近高斯谱
v=0.42 V, V= Vw/6 (包络检波后) v --速度标准差; V --半功率点速度谱宽度;
2
)
ym为y的中值,为标准差。两个变化参数,可 以更好地拟合实验数据。特别是具有大的拖尾的 分布的情况。
四. Weibull分布
➢ 杂波分布拖尾处于瑞利和Log-Normal之间,广
泛适用于海杂波。
f
(A)
u
A
u 1
exp
A
u
V V
V
V-强度参数,u-形状参数。
当u=2时,Weibull => 瑞利分布。
改变u,即改变了分布的拖尾长短。
:目前已发展了K分布等新分布。
对数正态分布
韦布尔分布
附录:一些参考数据
1节 ---- 1海里 ---- 1英尺 ---- 1英寸 ----
约0.5 m/s 约1.85 km 约30 cm 2.54 cm
exp( m2 ) exp
P P
1 m2
I0
2m
1 m2 P P
m2 S2 P0
P S2 P0
其中,S2为稳定散射体功率,P0为分布部分的功率
三. 气象杂波的频谱
气象杂波总的速度方差为:
v2 sheal2 + turb2 + beam2 + fall2
四. 箔条杂波的频谱
➢ 与气象杂波频谱的四项完全相同
v2 sheal2 + turb2 + beam2 + fall2
S(f
)
1
P0 f
f
c
3
fc为特征频率,S(fc) = 0.5 P0。 P0为杂波功率。 fc与许多因素有关 ,由实测确定。
1
fc=10
0.9
fc=20
fc=50 0.8
0.7
0.6
S(f)
0.5
0.4
0.3
0.2
0.1
0 0 20 40 60 80 100 120 140 160 180 200 f
Vw/6--以节表示的风速
f
2v
0.14 Vw
f--频谱标准差
二. 海杂波频谱
例:X波段( = 3.2cm),风速10节
f =43.75Hz
➢ 包络检波: ➢ 相参检波:
1 V 6 Vw
(实测)
V 0.14Vw
可见: f包络2 = 2f相参2
三. 气象杂波的频谱
➢ 四种主要因素决定
(一)风的切变,即风速随高度的梯度分布
sheal = 0.42 K R EL turb = 1.0 m/s
= 0.7 m/s
K 6 米/ 秒 (低于12000呎) (高于12000呎)
fall = 0.45 sin (m/s) beam = 0.42 V0 EL sin
§4 杂波的幅度分布
一. 瑞利分布(包络检波后)
fv
令Pc=22,P=V2
(v)
v 2
exp
v2 22
则
fP (P)
1 Pc
exp
P Pc
➢ 适用于:相对独立、随机的小散射体群。低分辨雷达 的所有杂波,气象、鸟群、箔条、低海情时的海浪, 植被丰富的地杂波。
二. Rice分布
➢大量独立小散射体加上一个占主导成分的 稳定散射体。
( ) ( ) fP(P) Nhomakorabea1 m2 P
• SS => 0 0 =
+10dB/SS 0/SS
(低SS,低f) (高SS,高f)
三. 海杂波
(二) > 20,或30 90
准镜面区,0变化规律为
➢ =90
0 1/SS,且当SS=0时,0=0max +10dB(对所有
f)
=> 0
➢ 60
0 SS,当 ,SS => 0
第四讲 雷达杂波
➢1、引言 ➢2、杂波强度 ➢3、杂波频谱 ➢4、杂波的幅度分布
➢杂波:是雷达在所处环境中所收到的一个 或一群不需要的反射回波。
➢注意:对某部雷达而言的杂波可能是另外 一部雷达的目标。
§1. 引言
➢为抗杂波必须研究杂波特性 ➢杂波分类
自然杂波:地、气象、海浪、鸟群等 人为杂波:箔条、角反射器、假弹头等
a s 5.35qAZ (Hz)
一. 地物杂波
➢ 高斯型 ➢ 立方型
(一)高斯型
S(f )
PC 2f
exp
f2 2f2
f
,频2谱v 方差
,有经验公式
以米表示,Vw以节表示; v为速度标准差;PC为杂波功率
f 0.0066Vw1.261
一. 地物杂波
(二)立方型 (由Fishbein建立)
➢杂波三大特性
强度、频谱和幅度统计特性
§1. 引言
➢杂波的特点:有色、非平稳
– 空间分布上非均匀==>通过天线扫描==>时间 上的非平稳
– 各分辨单元本身杂波非平稳。因风速变化等 – 时间上有相关性,所以频谱宽度有限,为有色 – 杂波的若干特性主要靠实测来统计,并用数学
拟合法
§2. 杂波强度
一. 影响杂波强度的因素
六. 箔条杂波
➢ 当箔条长度正好为半波偶极子时,即长度=/2时, e= 0.18 2N,其中,N为雷达分辨单元中箔条 总数
➢ 当箔条长度与/2无关系时, e迅速
§3 杂波频谱
➢影响杂波频谱的因素
• 幅度起伏 • 天线扫掠 • 风速变化 • 鸟群飞翔速度等
例. 天线波束为高斯形, qAZ,转速a (弧度/秒),则
于f的某一函数。 ➢ 雨、雪、冰雹, Di大, 大=> e 大; ➢ 云层 Di小=> 小=> e 小。 ➢ 可查表
五. 鸟群杂波
e m 0
其中: ➢ m:雷达分辨单元中飞鸟数 ➢ 0 :单个飞鸟的等效反射面, 0 可查表,用低于
1m2的dB表示
例: 0= -30dB,分辨单元中1000只鸟,可产生 1m2的等效反射面, e= 1m2
• f => 0 且0 f m,m =
3,f 2GHz, 1, SS 3级 0,f , , SS 时
• => 0 且0 n,n =
3, 1, f 2GHz, SS 3级 0, , f , SS 时
• SS一定, 0V > 0H 且当SS, , f 时,0VH= (0V - 0H )
ct 2
RqAZ
体杂波分辨单元体积计算
(二)雷达参数
➢ 分辨单元S0 :高分辨雷达, S0 => e
➢ 波长 (或频率f)
均与强度有关,后面介绍
➢ 极化方式
近掠入射区 0
平直区
近垂直入射区
0度
俯仰角
90度
0和俯仰角的依从关系
二. 地杂波强度
(一)地物类型是影响0的关键因素
沙漠、农田、山地、植被、城市, 0均各不相同
(二) > 20,或30 90
➢ 90
0 与极化无关(不同SS均成立),即垂直下视时, 0 与
极化和SS无关
0V 0H
(中等海情以下)
(即<90 时),
0V 0H
(高海情时)
➢ 较小时,即 20 30
0与风向关系密切,上风0>下风0 ,垂直风0最小 当 60,0 与风向关系小;
向和俯角向波瓣角;-天线俯仰角
RqAZ
S0 R2ELqAZ (sin )
Y R ELCSC(Y)
大俯仰角面杂波的分辨单元面积计算 R-作用距离;qAZ和 EL为天线波束的方位 向和俯角向波瓣角;-天线俯仰角
• 体杂波
气象、箔条等。
e S0
为体杂波单元的反射系数。
ct/2
REL
S0
4
R 2ELqAZ
sheal 0.42(Vr ) 0.42KREL
其中,K=4.0~4.5 米/秒
(二)风的扰动, 即不同高度的梯度平均值有起伏, 形成 扰动 turb=1.0 米/秒
三. 气象杂波的频谱
(三)波束展宽 beam 0.42 V0 EL sin V0 为波束中心点风速; 为波束中心点风向与波束方位的夹角。
(一)杂波类型
• 面杂波: 地、海
– 小俯角 – 大俯角
e 0 S0
0为面杂波单位面积的反射系数
俯仰角
入射角 擦地角(掠射角)
俯仰角、擦地角和入射角
h
R
ct/2
Y
ct sec(Y)/2
S0
RqAZ
ct 2
sec
R qAZ
杂波区 RqAZ
小俯仰角面杂波的分辨单元面积计算 R-作用距离;qAZ和 EL为天线波束的方位
90,0 与风向无关。
四. 云雨杂波
e
4
R
2 q AZ EL
ct 2
体杂波
的表示方法一:
dB 93 40 log(fGHz 3) 17 log(r)
其中,r为降雨率,mm/hr,可查表。
的表示方法二:
= i
其中, ➢ i 为每一小质点的反射系数; ➢ i Di6 , (f),即i正比于质点直径Di的六次方;也正比
杂波的立方谱结构示意图
二. 海杂波频谱
➢ 谱宽f ➢ 平均多普勒频移f0
(一) f0:与风速、浪高、极化方式有关 水平极化:f0取决于风速及浪高 垂直极化:f0仅取决于浪高
: f0 = (风速, 极化方式, 浪高),可查曲线
二. 海杂波频谱
(二) f :与海情有关 测试得:海杂波谱接近高斯谱
v=0.42 V, V= Vw/6 (包络检波后) v --速度标准差; V --半功率点速度谱宽度;
2
)
ym为y的中值,为标准差。两个变化参数,可 以更好地拟合实验数据。特别是具有大的拖尾的 分布的情况。
四. Weibull分布
➢ 杂波分布拖尾处于瑞利和Log-Normal之间,广
泛适用于海杂波。
f
(A)
u
A
u 1
exp
A
u
V V
V
V-强度参数,u-形状参数。
当u=2时,Weibull => 瑞利分布。
改变u,即改变了分布的拖尾长短。
:目前已发展了K分布等新分布。
对数正态分布
韦布尔分布
附录:一些参考数据
1节 ---- 1海里 ---- 1英尺 ---- 1英寸 ----
约0.5 m/s 约1.85 km 约30 cm 2.54 cm
exp( m2 ) exp
P P
1 m2
I0
2m
1 m2 P P
m2 S2 P0
P S2 P0
其中,S2为稳定散射体功率,P0为分布部分的功率