2018年全国初中数学竞赛(初一组)初赛试题

合集下载

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。

第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。

如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。

第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。

(C) $-\frac{1}{3}$。

(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。

注:本题也可用特殊值法来判断。

2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。

(B) $1$。

(C) $0$。

(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。

2018初中数学竞赛(初一组)试卷初中数学竞赛

2018初中数学竞赛(初一组)试卷初中数学竞赛

初中数学竞赛(初一组)试卷 (试卷说明:考试时间:120分钟,试卷总分:150分)一、 选择题(本题共10小题,每小题3分,共30分)1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )A.-1B.0C.1D.22.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( )A 5B -5C 1D -13.如果 , , ,那么 , , 的大小关系为( )A .B .C .D .4.10个棱长为l 的小正方体木块,堆成如图所示的形状, 则它的表面积为( ).A . 30B .34C . 36D .485.电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )A. 0.81a 元 B .1.21a 元 C .21.1a 元 D. 81.0a 元 6.下面的正确结论的是 ( )A. 0不是单项式B. 52abc 是五次单项式C. -4和4是同类项D. 3m 2n 3-3m 3n 2=07、两个四次多项式的和的次数是( )A.八次 B.四次 C.不低于四次 D.不高于四次 8在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的( ) A 、南偏西50度方向 B 、南偏西40度方向C 、北偏东50度方向D 、北偏东40度方向9. 若m 为偶数时,()()n m y x y x -⋅-与()n m x y +-的关系为( )A. 相等B. 互为相反C. 不相等D. 以上说法都不对10. 已知a=1999x+2000,b =1999x+2001,c =1999x+2002,则多项式a 2+b 2+c 2一ab —bc-ac 的值为( ).A .0B .1C .2D .3D C B A 二.填空题(本题共10小题,每小题3分,共30分) 1、18.32634'_________'︒︒︒+=2.一列数71,72,73,…,72001,其中末位数是3的有 个.3.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需 元钱4.如果代数式ax 5+bx 3+cx-5当x=-2时的值是7,那么当x=2时该式的值是_________.5.已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.6如果(4a +4b +1)(4a +4b -1)=63,那么a +b 的值为_______________。

2018全国初中数学竞赛试题及参考答案

2018全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题<共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)qfRgF4dw271.设1a =,则代数式32312612a a a +--的值为( >.<A )24 <B )25 <C )10 <D )122.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:<a b ,)△<c d ,)=<ac bd ad bc ++,).如果对于任意实数u v ,, 都有<u v ,)△<x y ,)=<u v ,),那么<x y ,)为( >.qfRgF4dw27<A )<0,1) <B )<1,0) <C )<﹣1,0) <D )<0,-1)3.若1x >,0y >,且满足3y y x xy x x y==,,则x y +的值为( >.<A )1 <B )2 <C )92<D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( >.<A )1324S S S S < <B )1324S S S S = <C )1324S S S S > <D )不能确定5.设3333111112399S =++++,则4S 的整数部分等于( >. <A )4 <B )5 <C )6 <D )7 二、填空题<共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .NW2GT2oy018.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=<x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .NW2GT2oy019.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .NW2GT2oy01三、解答题<共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线<第8题)<第10题)<第12题)223y x =于P ,Q 两点. <1)求证:∠ABP =∠ABQ ;<2)若点A 的坐标为<0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解读式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案 一、选择题1.A解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得<x y ,)=<1,0).3.C<第13题)<第14题)解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEF S S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即 ()2121242x x x x +-<,164m ∆=-≥0,所以1642m -<, 164m ∆=-≥0,<第4题)解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:<1,4),<2,3),<2,3),<4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=.NW2GT2oy01 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又因为2BD AC =,于是 22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+. 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故22b =. 所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则<第8题)22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AF CB AC =,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(), 解得a +b =49<另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. <第10题)因为AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:<1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , .设点A 的坐标为<0,t ),则点B 的坐标为<0,-t ).设直线PQ 的函数解读式为y kx t =+,并设P Q,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是 222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P QQ P Q Q Q P x x x x x x x x x x x x x x --===--- 又因为PQx PCQD x =-,所以BC PC BDQD=.因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .<第12题)<第13题)<2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由<1)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以AC 2-,AD =2.因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PCACDQAD =,即a b =,所以a b +=.由<1)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=, 于是可求得2a b =将2b =代入223y x =,得到点Q 的坐标,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解读式为1y x =+.根据对称性知,所求直线PQ 的函数解读式为1y x =+,或1y +. 解法二 设直线PQ 的函数解读式为y kx t =+,其中1t =. 由<1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x = 将223Q Q y x =代入上式,平方并整理得4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1>得3322P Q x x t =-=-,32P Q x x k +=.若32Q x =,代入上式得 3P x =-, 从而 23()33P Q k x x =+=-.同理,若3Q x =, 可得32P x =-, 从而 23()33P Q k x x =+=.所以,直线PQ 的函数解读式为313y x =-+,或313y x =+. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP . 由于2AB AC =,所以相似比为2. 于是22324AQ AP BQ CP ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ .故 213673sin 60282ABC S AB AC AB ∆+=⋅︒==. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2018年“数学周报杯”全国初中数学竞赛初赛试卷(PDF版,含解析)

2018年“数学周报杯”全国初中数学竞赛初赛试卷(PDF版,含解析)
∴EM= ,
∴CM=CE+EM=(a﹣b)+ = ,
∵S△ACF=S△ACM+S△CMF, ∴S△ACF= CM•AD+ CM•EF

•(a+b)
=, ∴△ACF 的面积只与 a 的大小有关系. 故选:A.
24.解:因为


即当 x 分别取值 ,n(n 为正整数)时,计算所得的代数式的值之和为 0;
A.4 组
B.5 组
C.6 组
D.无数组
9.(3 分)某班数学活动小组 7 位同学的家庭人口数分别为:3,2,3,3,4,3,3.设这
组数据的平均数为 a,中位数为 b,众数为 c,则下列各式正确的是( )
A.a=b<c
B.a<b< c
C.a<b=c
D.a=b=c
10.(3 分)如图,方格图中小正方形的边长为 1,将方格中阴影部分图形剪下来,再把剪下
D.5
参考答案
一、选择题(共 30 小题,每小题 3 分,满分 90 分) 1.解:A、2×1=2≠﹣2,故不在函数图象上;
B、 ×3=2≠﹣2,故不在函数图象上;
C、(﹣2)×(﹣1)=2≠﹣2,故不在函数图象上;
D、(﹣1)×2=﹣2,故在函数图象上.
故选:D.
2.解:A、正确,( )﹣2=
= =9;
2018 年“数学周报杯”全国初中数学竞赛初赛试卷
一、选择题(共 30 小题,每小题 3 分,满分 90 分)
1.(3 分)下列各点中,在反比例函数
图象上的是( )
A.(2,1)
B.( ,3)
C.(﹣2,﹣1) D.(﹣1,2)
2.(3 分)下列各式中,正确的是( )

2018七年级上数学竞赛试题

2018七年级上数学竞赛试题

七年级(上)数学竞赛试题班级姓名得分:一、填空题(每小题 3 分,共 30 分)1、有理数在数轴上的位置如图 1 所示,化简2、已知: | a| 5 ,且 a b0 ,则 a b _______ ;3、若 3a 2 a 2 0,则5 2a 6a 2______4、已知 x=5 时,代数式 ax 3 + bx-5 的值是 10,当 x= -5 时,代数式 ax 3+bx+5= 。

1 7 24 3 55.(-2 24 + 113 ÷113 -8)÷ 112 = 。

6. 已知与是同类项,则=__。

7、.有一列数,按照下列规律排列:1,2, 2, 3, 3, 3,4, 4, 4,4,5,5,5,5,5,6,6,6,6,6,6,7,⋯⋯这列数的第200 个数是 __________.8、12 2 131 1 _______ .1 3 4 2018 20199、某班学生去参加义务劳动,其中一组到一果园去摘梨子,第一个进园的学生摘了 1 个梨子,第二个学生摘了 2 个,第三个学生摘了 3 个,⋯⋯以此类推,后来的学生都比前面的学生多摘 1 个梨子,这样恰好平均每个学生摘了 6 个梨子,请问这组学生的人数为人。

10、某班 45 人参加一次数学比赛,结果有 35 人答对了第一题,有 27 人答对了第二题,有41 人答对了第三题,有 38 人答对了第四题,则这个班四道题都对的同学至少有人.二、选择题(每小题 3 分,共 24 分)11、(- 0.125)2018×(- 8)2019 的值为()(A)-4 (B)4 (C)-8 (D)812、若a, b, c, m 是有理数,且a 2b 3c m,a b 2c m ,那么 b 与 c()(A)互为相反数(B)互为倒数(C)互为负倒数(D)相等13.有理数 a 等于它的倒数,则a2016是()A.最大的负数B.最小的非负数C.绝对值最小的整数D.最小的正整数14、- | -3| 的相反数的负倒数是()1 1(A)-3(B)3(C)-3 (D)315、已知一个多项式与3x 29x 的和等于 3x 24x 1,则这个多项式是 ( )A、5x 1B、 5x 1C、13x 1D、 13x 116、把 14 个棱长为 1 的正方体,在地面上堆叠成如图所示的立方体,然后将露出的表面部分涂成红色,那么红色部分的面积为()(A)21 (B)24 (C)33 (D)3717、如图,点 C, D,E,F 都在线段 AB 上,点 E 是 AC 的中点,点 F 是 BD 的中点,若 EF=18,······AEC D F B CD=6,则线段 AB 的长为()A.24 B.12 C.30 D.4218、请从备选的图形中选择一个正确的(a,b,c,d)填入空白方格中()三、解答题(共 66 分)19、(8 分)计算: [( 2) 3( 1)21] ( 11)2[( 1) ( 1) 1]2( 8)2 3 3(8分)化简求值: 2xy 3 x2 y3 1 xy 1 x 2 y35 xy 1,其中x=-,。

2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)

2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)
所以, ( x, y, z ) (2,2,0) 或 (2,0,2) 或 (0,2,2) 或 (0,0,0) ,故共有 4 个符合要求的整数组. 2018 年初中数学联赛试题参考答案及评分标准 第 2 页(共 10 页)
6.设 M A.60. 【答】B. 因为 M
1 1 1 1 1 ,则 的整数部分是 2018 2019 2020 2050 M
二、填空题: (本题满分 28 分,每小题 7 分) CE AB 于 E ,F 为 AD 的中点, 1. 如图, 在平行四边形 ABCD 中,BC 2 AB , 若 AEF 48 , 则 B _______. 【答】 84 . F A 设 BC 的中点为 G ,连结 FG 交 CE 于 H ,由题设条件知 FGCD 为菱形. 由 AB // FG // DC 及 F 为 AD 的中点,知 H 为 CE 的中点. 又 CE AB ,所以 CE FG ,所以 FH 垂直平分 CE ,故 E H DFC GFC EFG AEF 48 . B G 所以 B FGC 180 2 48 84 . 2.若实数 x, y 满足 x 3 y 3 【答】3.
2 2
即 (a b) 2[(a b) 4ab] (a b)[(a b) 3ab] 0 , 又 a b 2 ,所以 2 2[4 4ab] 2[4 3ab] 0 ,解得 ab 1.所以 a b (a b) 2ab 6 ,
a2 ) .设 B( x1 ,0) , C ( x2 ,0) ,二次函数的图象的对称轴与 x 轴的交点为 D ,则 2
BC | x1 x2 | ( x1 x2 ) 2 4 x1 x2 4a 2 4

2018年全国中学生数学能力竞赛(初赛)试题(七年级)

2018年全国中学生数学能力竞赛(初赛)试题(七年级)

2018年全国中学生数学能力竞赛(初赛)试题七年级(初一)组(试题总分120分;答题时间120分钟)一、画龙点晴(本大题共8小题,每小题3分,总计24分)1.南海是我国的固有领土,我国南海某海域探明可燃冰储量约有194亿立方米。

194亿立方米用科学记数法表示为()立方米。

2.当式子|x+1|+|x-2|取最小值时,相应的x的取值范围是(),式子的最小值是()。

3.已知a+b+c=0,a2+b2+c2=1,则代数式a(b+c)+b(a+c)+c(a+b)的值为()。

4.如图下,已知三棱柱有5个面6个顶点9条棱,四棱柱有6个面8个顶点12条棱,五棱柱有7个面10个顶点15条棱,…,由此可以推测n棱柱有()个面,有()个顶点,有()条棱.第4题图5.在一次剪纸活动中,小聪依次剪出6张正方形纸片拼成如图所示的图形,若小聪所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③面积相等,那么正方形⑤的面积为第5题图6.若一个五位的正整数a被4,5,…,9这六个自然数除,所得的余数都为3,则a的最小值是()。

7.对一切正整数n,有f(n+1)=f(n)+n,且f(1)=1,则f(n)=()。

8.如图所示,在各个手指间标记字母A,B,C,D。

请你按图中箭头所指方向(即A=>B=>C=>D=>C=>B=>A=>B=>C=>…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到15时,对应的字母是();当字母B第2001次出现时,恰好数到的数是()。

(第8题图)二、一锤定音(本大题共4道小题,每小题3分,总计12分)9.已知a<0,-1<b<0,则a,ab,ab2由小到大排列的顺序是()。

A. a<ab<ab2B. ab<ab2<aC. ab2<ab<aD. a<ab2<ab10.五位朋友a,b,c,d,e在公园聚会,见面时握手问候。

2018年七年级数学竞赛

2018年七年级数学竞赛

12018年七年级数学竞赛考试时间:120分钟,满分:150分一、选择题(每小题5分,共50分).1.在(-1)2017,3-1, -(-1)2018,-(-2018)这四个有理数中,负数共有( )A.1个B.2个C.3个D.4个2.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为( )A .5.5×106千米 B .5.5×107千米 C .55×106千米 D .0.55×108千米3.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n +q =0,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( A ) A .p B .q C .m D .n4.当代数式x 2+3x +5的值等于7时,代数式3x 2+9x -2的值等于( )A .4 B.0 C.-2 D .-45.若a<0 , ab<0 , 那么51---+-b a a b 等于( ) A . 4 B .-4 C . -2a+2b+6 D.66. 如图,宽为50 cm 的长方形图案由10个全等的小长方形拼成, 其小长方形的面积( )A .400 cm 2B .500 cm 2C .600 cm 2D .4000 cm 27.某商店出售某种商品每件可获利m 元,利润率为20%。

若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润为( ) A.25% B.20% C.16% D.12.5%8.对任意四个有理数a ,b ,c ,d 定义新运算:a b c d=ad-bc ,已知241x x-=18,则x=( )A.-1B.2C.3D.4 9.如图,若AB ∥DE,则∠B ,∠C ,∠D 三者之间的关系是( )A 、∠B+∠C+∠D=180°B 、 ∠B+∠C-∠D=180°C 、∠B+∠D-∠C=180°D 、 ∠C+∠D-∠B=180°10.若a b c d 、、、四个数满足20191201812017120161+=-=+=-d c b a ,则a b c d 、、、四个数的大小关系为( )A 、a c b d >>>B 、b d a c >>>C 、d b a c >>>D 、c a b d >>> 二.填空题(每小题5分,共30分)11.如果2017m -与(n-2018)2互为相反数,那么(m-n)2019= 。

2018年全国初中数学竞赛(初一组)初赛试题参考答案

2018年全国初中数学竞赛(初一组)初赛试题参考答案

第1页(共1页)一、1.A 2.C 3.B 4.D 5.B 6.D二、7.-18.30°9.3或-110.221三、11.(1)19×11=12×æèöø19-111;………………………………………………………………………………5分(2)1()2n -1()2n +1;12×æèöø12n -1-12n +1;…………………………………………………………………………………………………………10分(3)a 1+a 2+a 3+…+a 100=12×æèöø1-13+12×æèöø13-15+12×æèöø15-17+12×æèöø17-19+⋯+12×æèöø1199-1201=12×æèöø1-13+13-15+15-17+17-19+⋯+1199-1201……………………………………………15分=12×æèöø1-1201=12×200201=100201.…………………………………………………………………………………………………20分四、12.(1)130°.…………………………………………………………………………………………………5分(2)∠APC =∠α+∠β.理由:过点P 作PE ∥AB ,交AC 于点E .……………………………………………………………10分因为AB ∥CD ,所以AB ∥PE ∥CD .所以∠α=∠APE ,∠β=∠CPE .所以∠APC =∠APE +∠CPE =∠α+∠β.…………………………………………………………15分(3)当点P 在BD 延长线上时,∠APC =∠α-∠β;……………………………………………………20分当点P 在DB 延长线上时,∠APC =∠β-∠α.……………………………………………………25分五、13.(1)根据题意,得t =æèöø120-12050×550+5×2+12050≈6.3()h .答:三人都到达B 地所需时间约为6.3h.………………………………………………………………5分(2)有,设甲从A 地出发将乙载到点D 行驶x 千米,放下乙后骑摩托车返回,此时丙已经从A 地出发步行至点E ,继续前行后与甲在点F 处相遇,甲骑摩托车带丙径直驶向B,恰好与乙同时到达.…………………………………………………………………………………………………………10分根据题意,得2∙x -x 50∙550+5+120-x 50=120-x 5.…………………………………………………………15分解得x ≈101.5.…………………………………………………………………………………………20分则所用总时间为t =101.550+120-101.55≈5.7()h .答:有,方案如下:甲从A 地出发载乙,同时丙步行前往B 地,甲载乙行驶101.5千米后放下乙,乙步行前往B 地,并甲骑摩托车返回,与一直步行的丙相遇.随后甲骑摩托车载丙径直驶向B 地,恰好与步行的乙同时到达,所需时间为5.7h.………………………………………………………………………25分。

2018年全国初中数学联赛试题-含详细解析

2018年全国初中数学联赛试题-含详细解析

2018年初中数学联赛试题(北京)2018年初中数学联赛试题及答案详解说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第 二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答 不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相 应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当ABC △为等边三角形时,其边长为()A ..D .【答】C.由题设知2(,)2a A a --,设(,0),(,0)B x C x ,二次函数的图象的对称轴与x 轴的交点为D ,则12||BC x x =-=又AD =,则2||2a -=26a =或20a =(舍去)所以△ABC 的边长BC ==. 2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,115AB CAE =∠=︒,,则BE =()A .C 1D 1 【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得∠BAF = ∠F AD = ∠AFB = ∠HEF =45︒,BF =AB =1,∠EBH = ∠ACB =30︒.设BE =x ,则HF =HE =2x,BH因为BF=BH+HF ,所以12x=,解得1BE x ==. 3.设p q ,均为大于3的素数,则使2254p pq q ++为完全平方数的素数对(p ,q )的个数为()A .1B .2C .3D .4 答案:B设22254p pq q m ++=(m 为自然数),则22(2)p q pq m ++=,即(2)(2)m p q m p p pq --++= 由于p ,q 为素数,且2,2m q p p m q p q ++>++>,所以21m q p --=,2m q p pq ++=,从而2410pq p p ---=,即(4)(2)9p q --=,所以(p ,q )=(5,11)或(7,5).所以,满足条件的素数对(p ,q )的个数为2. 4.若实数a ,b 满足2a b -=,()()22114a b ba-+-=,则55a b -=()A .46B .64C .82D .128【答】C.由条件()()22114a b ba-+-=得22332240a b a b ab a b ----+-=,即22()2[()4]()[()3]0a b a b ab a b a b ab ---++--+=又2a b -=,所以22[44]2[43]0ab ab -+++=,解得1ab =,所以222()26a b a b ab +=-+=33255223322()[()3]14,()()()82a b a b a b ab a b a b a b a b a b -=--+=-=+---=. 5.对任意的整数x ,y ,定义@x y x y xy =+-,则使得()()@@@@x y z y z x ++()@@0z x y =的整数组(x ,y ,z )的个数为() A .1B .2C .3D .4 答案:D()()()(@@@)x y z x y xy z x y xy z x y xy z x y z xy yz zx xyz =+-=+-+-+-=++---+,由对称性,同样可得()()@@@@.y z x x y z xy yz zx xyz z x y x y z xy yz zx xyz =++---+=++---+,所以,由已知可得0111 1.()()()x y z xy yz zx xyz x y z ++---+=---=-,即所以,x,y,z 为整数时,只能有以下几种情况:111111x y z -=⎧⎪-=⎨⎪-=-⎩,或111111x y z -=⎧⎪-=-⎨⎪-=⎩,或111111x y z -=-⎧⎪-=⎨⎪-=⎩或111111x y z -=-⎧⎪-=-⎨⎪-=-⎩所以,(x ,y ,z )=(2,2,0)或(2,0,2)或(0,2,2)或(0,0,0),故共有4个符合要求的整数组. 6.设11112018201920202050M =++++,则1M的整数部分是() A .60B .61C .62D .63 答案:B 因为1120185336120183333M M <⨯⇒>= 又111111()()201820192030203120322050M =+++++++11134513202030205083230>⨯+⨯=所以18323011856113451345M <=,故的整数部分为61.二、填空题:(本题满分28分,每小题7分)7.如图,在平行四边形ABCD 中,2BC AB CE AB =⊥,于E ,F 为AD 的中点,若AEF ∠48=︒,则B ∠=. 【答】84°.设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形由AB ∥FG ∥DC 及F 为AD 的中点,知H 为CE 的中点. 又CE ⊥AB ,所以CE ⊥FG ,所以FH 垂直平分CE ,故∠DF =∠GFC =∠EFG =∠AEF =48°.所以∠B =∠FGC =180248=84-⋅8.若实数x y ,满足()3311542x y x y+++=,则x y +的最大值为.【答】3.由3115()42x y x y 3+++=可得22115()()()42x y x xy y x y +-+++=,即22115()()42x y x xy y +-++= 令x y k +=,注意到2222131()04244y x xy y x y -++=-++>,故0x y k +=> 又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以3115423k k xy k+==于是,x ,y 可看作关于t 的一元二次方程321154203k k t kt k+=-+=的两根,所以 化简得3211542()403k k k k+=∆=--⋅≥,化简得3300k k +-≤,即2(3)(310)003k k k k -++≤⇒<≤ 故x + y 的最大值为3.思路:从目标出发,判别式法,因式分解 9.没有重复数字且不为5的倍数的五位数的个数为.【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为87876⨯⨯⨯⨯=18816个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选,十位有6个数可选.所以,此时满足条件的五位数的个数为8876⨯⨯⨯=2688个.所以,满足条件的五位数的个数为18816+2688=21504(个).10. 已知实数a b c ,,满足0a b c ++=,2221a b c ++=,则555a b c abc++=.答案:52由已知条件可得222233311[()()],322ab bc ac a b c a b c a b c abc ++=++-++=-++=,所以555222333233233233()()[()()()]a b c a b c a b c a b c b a c c a b ++=++++-+++++ 2222222222223[()()()]3()abc a b a b a c a c b c b c abc a b c a c b b c a =-+++++=+++3()abc abc ab bc ca =+++.所以55552a b c abc ++=第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足()2211x x x ++-=的整数x 的个数为()A .1B .2C .3D .4 答案:C当20x +=且210x x +-≠时,2x =- 当211x x +-=时,2x =-或1x = 当211x x +-=-且2x +为偶数时0x = 所以,满足条件的整数x 有3个 2.已知123x x x ,,(123x x x <<)为关于x 的方程()32320x x a x a -++-=的三个实数根,则22211234x x x x -++=() A .5B .6C .7D .8解析:方程即2(1)(2)0x x x a --+=,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2131,2x x x =+=,故222112331311314()()412()15x x x x x x x x x x x -++=+-++=++=3. 已知点E F ,分别在正方形ABCD 的边CD ,AD 上,4CD CE EFB FBC =∠=∠,,则t a n ABF ∠=() A .12B .35C .D解析:不妨设4CD =,则1,3CE DE ==设DF x =,则4,AF x EF =-作BH EF ⊥与点H ,因为,90,EFB FBC AFB BAF BHF BF ∠=∠=∠∠==∠公共,所以BAF BHF ∆≅∆,所以4BH BA ==由ABF BEF DEF BCE ABCD S S S S S ∆∆∆∆=+++四边形得2111144(4)43412222x x =⋅⋅-+⋅⋅⋅+⋅⋅,解得85x =所以1245AF x =-=,3tan 5AF ABF AB ∠==.4.方程()A .0B .1C .2D .3解析:令y 0y ≥,且29x y =- 解得1,6y or y ==,从而8x =-或27x =检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为() A .4B .5C .6D .7解析:由已知得, 201720182017201820172018a bc b ac c ab +=+=+=,,,两两作差,可得12017012()()()(0170120170)(.)()a b c b c a c a b --=--=--=,, 由120()()170a b c --=,可得1,2017a b or c ==(1)当a b c ==时,有2201720180a a +-=,解得a =1,或20182017a =- (2)当 abc =≠时,解得12017a b ==,120182017c =- (3)当a b ≠时,12017c =,此时有:12017a =,120182017b =-,或120182017a =-,12017b = 故这样的三元数组(a ,b ,c )共有5个. 6.已知实数a ,b 满足3232351355a a a b b b -+=-+=,,则a b +=()A .2B .3C .4D .5【答】A.有已知条件可得331212()()()(1212)a a b b -+-=--+-=,,两式相加得33121121()()()()0a a b b -+-+-+-=,因式分解得22211()[()()()2()11]0a b a a b b +-----+-+=因为2222()()()()[13111121(1)(1)4(202)a a b b a b b ----+-+=---+-+>所以20a b +-=,因此2a b +=.二、填空题:(本题满分28分,每小题7分) 7.已知p q r ,,为素数,且pqr 整除1pq qr rp ++-,则p q r ++=.【答】10. 设11111pq qr rp k pqr p q r pqr ++-==++-,由题意知k 是正整数,又,,2p q r ≥,所以32k < 而1k =,即有1pq qr rp pqr ++-=,于是可知,,p q r 互不相等.当2p q r ≤<<时,13pqr pq qr rp qr =++-<,所以3q <,故 2q =.于是2221qr qr q r =++-故2)23()(q r --=,所以21,23q r -=-=,即 3,5q r ==,所以,()(),,2,3,5p q r =. 再由 ,,p q r 的对称性知,所有可能的数组( ,,p q r )共有6组,即()()()()()() 2,3,5?2,5,33,2,53,5,25,2,35,3,2.,,,,, 于是10p q r ++=. 8.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为.【答】8.设这两个数为22),(m n m n >,则221000m n m n +=-,即2()110(101)m n --= 又100110011143791117713=⨯=⨯=⨯=⨯,所以()21,1()1001,1m n --=或(143,7)或 (91,11)(77,13),验证可知只有()21,(1143,)7m n --=满足条件,此时2144,8m n ==. .9.已知D 是ABC △内一点,E 是AC 的中点,610AB BC BAD BCD ==∠=∠,,,EDC ∠=ABD ∠,则DE =.【答】4.1//2CD F DF DC DE AF DE AF ==延长至,使,则且 ,,,AFD EDC ABD A F B D ∠=∠=∠所以,故四点共圆,于是 10BFD BAD BCD BF BC BD FC ∠=∠=∠==,所以,且⊥,90.FAB FDB ∠=∠=︒故6AB AF =又,故,所以14.2DE AF ==已知二次函数()()222221450y x m n x m n =++++++的图象在x 轴的上方,则满足条件的正整数对(m ,n)的个数为. 解析:16.因为二次函数的图象在x 轴的上方,所以222[()](22)144500m n m n ∆=++-++<,整理得 42449mn m n ++<,即()(5122)11m n ++<.因为,m n 为正整数,所以()(122.)15m n <++ 又12m +≥,所以25212n +<,故5n ≤. 当n=1时,1m +253≤,故223m ≤,符合条件的正整数对(m,n)有8个;当n=2时,1m +5≤,故m ≤4,符合条件的正整数对(m,n)有4个; 当n=3时,1m +257≤,故187m ≤,符合条件的正整数对(m,n)有1个;当n=4时,1m +259≤,故179m ≤,符合条件的正整数对(m,n)有1个;当n=5时,1m +2511≤,故1411m ≤,符合条件的正整数对(m,n)有1个综合可知:符合条件的正整数对(m,n)有8421116++++=个第二试(A)一、(本题满分20分)设a ,b ,c ,d 为四个不同的实数,若a ,b 为方程210110x cx d --=的根, c ,d 为方程2100x ax b --=的根,求a b c d +++的值.解由韦达定理得1010a b c c d a +=+=,,两式相加得1)0(a b c d a c +++=+.因为a 是方程210110x cx d --=的根,所以210110a ac d --=,又10d a c =-,所以 211011100.a a c ac -+-=①类似可得211011100.c c a ac -+-=②①-②得)((1210)a c a c -+-=因为a c ≠,所以121a c +=,所以(11210)0a b c d a c +++=+=.二、(本题满分25分)如图,在扇形OAB 中,9012AOB OA ∠=︒=,,点C 在OA 上,4AC =, 点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F . (1)当四边形ODEC 的面积S 最大时,求EF ; (2)求2CE DE +的最小值.解 (1)分别过O ,E 作CD 的垂线,垂足为M ,N . 由6,8OD OC ==,得10CD =.所以(111101260222)DOCD DECD S S S CD OM EN CD OE =+=⨯+≤⨯=⋅⋅=当OE DC ⊥时,S 取得最大值60.683612=105EF OE OF ⋅=-=-此时,212,.OB G BG OB GC GE ==()延长至点,使,连结 因为1,2OD OE DOE EOG OE OG ==∠=∠,所以ODE OEG ∽,所以12DE EG =故2EG DE =,所以2CE DE CE EG CG +=+≥C ,E ,G 三点共线时等号成立2CE DE +故的最小值为.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.解:记()33222m n m n S m n +-=+,则()2222332222()[()3]3()()m n m n mn m n m n m n mn mn S m n m n m n m n m n ++--+-⎛⎫===+-- ⎪+++⎝⎭+,,(,?,,1).mnm n p q p q p q m n==+因为为正整数,故可令为正整数,且 于是222233()()q q pq q S m n m n p p p +=+--=+-因为S 是非负整数,所以2|p q ,11()() .|p q p m n mn ==+,又,故,即①所以2n mn n m n m n=-++是整数,所以2()|m n n +,故2n m n ≥+,即2n m n -≥ 332200.S m n m n +-≥≥又由,知②3223222³(.)n m n m m n m m n n m --≥≥=≥所以,所以³m n m n =由对称性,同理可得,故34|2 2.20 2.m n m m m n m m m =≥=≥-≤把代入①,得,则把代入②,得,即 2.m =故,2 2.m n m n ==所以,满足条件的正整数为,第二试(B)一、(本题满分20分)若实数a ,b ,c 满足()11195555a b c a b c b c a c a b ⎛⎫++++= ⎪+-+-+-⎝⎭,求()111a b c a b c ⎛⎫++++⎪⎝⎭的值. 解:a b c x ab bc ca y abc z ++=++==记,,,则()111111555666a b c x a b c b c a c a b x a x b x c ⎛⎫⎛⎫++++=++⎪ ⎪+-+-+----⎝⎭⎝⎭22323[312()36()](936)6()36()216536216x x a b x ab bc ca x x y x a b c x ab bc ca x abc x xy z -+++++-+==++++++--+- 结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得272xy z = 所以()111272xy a b c a b c z ⎛⎫++++==⎪⎝⎭.二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,ABC △和CDE △都是等腰直角三 角形,AB AC DE DC ==,. (1)证明:AD BC ∥;(2)设AC 与DE 交于点P ,如果30ACE ∠=︒,求DPPE.145,,ACB DCE BC EC ∠=∠=︒==解()由题意知,所以,AC DCDCA ECB BC EC∠=∠=,所以ADC BEC ∆∆∽,故45DAC EBC ∠=∠=,所以DAC ACB ∠=∠,所以AD BC ∥(2)设AE x =,因为30ACE ∠=,可得,2,AC CE x DE DC === 因为90,EAP CDP EPA CPD ∠=∠=∠=∠,所以APE DPC ∆∆∽,故可得12APE DPC S S ∆∆=又22,=EPC APE AEC EPC DPC CDE S S S S S S x ∆∆∆∆∆∆+==+=,于是可得2(2DPC S x ∆=,21)EPC S x ∆=所以DPC EPC S DP PE S ∆∆==三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为1m x +,的各位数字之和为n ,并 且m 与n 的最大公约数是一个大于2的素数.求x .( ,.) 2x abcd m n m n =解设,由题设知与的最大公约数为大于的素数 91,19(.)d n m m n d ≠=+==若,则,所以,矛盾,故()(9198,,829.)c n m m m n m c ≠=+-=-==若,则,故,它不可能是大于的素数,矛盾,故991()(99926,, 2613)b a n m m m n m =≠=+---=-==若,显然,所以,故,但此时可得13263936.n m n ≥=+≥>,,矛盾若9199()()17,,171717,34b n m m m n m n m ≠=+--=-====,则,故,只可能88999799.x =于是可得或。

最新-2018年全国初中数学竞赛初赛试卷(天津赛区) 精品

最新-2018年全国初中数学竞赛初赛试卷(天津赛区) 精品

2018年全国初中数学竞赛天津赛区初赛试卷一、选择题(本大题共5小题,每小题7分,满分35分.每小题均给出了代号为A 、B 、C 、D 的四个选项,其中只有一个选项是正确的.请将正确选项的代号填入题后的括号里)(1)已知7x x +=(01x <<)的值为( ).(A )(B ) (C (D(2)若关于x 的方程2230x x m -+=的一个根大于2-且小于1-,另一个根大于2且小于3,则m 的取值范围是( ). (A )98m <(B )9148m -<< (C )95m -<<- (D )142m -<<-(3)某段公路由上坡、平坡、下坡三个等长的路段组成,已知一辆汽车在三个路段上行驶的平均速度分别为1v ,2v ,3v ,则此辆汽车在这段公路上行驶的平均速度为( ).(A )1233v v v ++ (B )1231113v v v ++(C )1231111v v v ++ (D )1233111v v v ++(4)已知边长为1的正方形ABCD ,E 为CD 边的中点,动点P 在正方形ABCD 边上沿A B C E →→→运动,设点P 经过的路程为x ,△APE 的面积为y ,则y 关于x 的函数的图象大致为( ).(5)已知矩形ABCD 中,AB = 72,AD = 56,若将AB 边72等分,过每个分点分别作AD的平行线;将AD 边56等分,过每个分点分别作AB 的平行线,则这些平行线把整个矩形分成了边长为1的72×56个小正方形.于是,被对角线AC 从内部穿过的小正方形(小正方形内部至少有AC 上的两个点)共有( ).(A )130个 (B )129个 (C )121个 (D )120个二、填空题(本大题共5小题,每小题7分,满分35分.把答案填在题中横线上)(6)将一枚骰子掷两次,若第一次出现的点数为x ,第二次出现的点数为y ,则由x ,y所确定的点(,)M x y 在双曲线6y x=上的概率等于 . (7(2n ≥的整数)的值等于 . (8)若p 是质数,且3p +整除5p ,则2009p 的末位数字是 . (9)如图,在四边形ABCD 中,105ACB BAD ∠=∠=︒,45ABC ADC ∠=∠=︒,若2AB =,则CD 的长为.(10)如图所示,在圆环的10个空格内分别填入1,2,3,4,5,6,7,8,9,10这10个数字,将所有相邻两 个格子(具有公共边)内的两数之差的绝对值相加, 若使这个和最大,则此最大值为 .三、解答题(本大题共4小题,每小题满分20分,共80分)(11)(本小题满分20分)(第(10)题)(第(9)题)D CBA已知 2xy x y =+,3xzx z=+,4yz y z =+, 求752x y z +-的值.(12)(本小题满分20分)从一个等边三角形(如图①)开始,把它的各边分成相等的三段,再在各边中间一段上向外画出一个小等边三角形,形成六角星图形(如图②);然后在六角星各边上,用同样的方法向外画出更小的等边三角形,形成一个有18个尖角的图形(如图③);如果在其各边上,再用同样的方法向外画出更小的等边三角形(如图④).如此继续下去,图形的轮廓就能形成分支越来越多的曲线,这就是瑞典数学家科赫将雪花理想化得到的科赫雪花曲线.如果设原等边三角形边长为a ,不妨把每一次的作图变化过程叫做“生长”,例如,第1次生长后,得图②,每个小等边三角形的边长为13a ,所形成的图形的周长为4a .请填写下表:(用含a 的代数式表示)图① 图② 图③ 图④已知m ,n 为正整数,关于x 的方程2()0x mnx m n -++=有正整数解,求m ,n 的值. 已知点P 是锐角△ABC 内的一个点,且使PA PB PC ++最小,试确定点P 的位置,并证明你的结论.(14)(本小题满分20分)A BC。

2018年全国初中数学联合竞赛试题参考答案及评分标准【直接打印】精品

2018年全国初中数学联合竞赛试题参考答案及评分标准【直接打印】精品

2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分)1.已知21a ,32b,62c ,那么,,a b c 的大小关系是()A.ab cB.ac b C.bacD.b ca【答】C. 因为121a,132b,所以110ab,故ba .又(62)(21)6ca(21),而22(6)(21)3220,所以621,故ca .因此ba c .2.方程222334x xy y的整数解(,)x y 的组数为()A .3.B .4.C .5.D .6.【答】B. 方程即22()234xy y,显然x y 必须是偶数,所以可设2x y t ,则原方程变为22217ty,它的整数解为2,3,t y从而可求得原方程的整数解为(,)x y =(7,3),(1,3),(7,3),(1,3),共4组.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为()A .63B .53C .263D .253【答】D.过点C 作CP//BG ,交DE 于点P.因为BC =CE =1,所以CP 是△BEG 的中位线,所以P 为EG 的中点.又因为AD =CE =1,AD//CE ,所以△ADF ≌△ECF ,所以CF =DF ,又CP//FG ,所以FG 是△DCP 的中位线,所以G 为DP 的中点.因此DG =GP =PE =13DE =23.连接BD ,易知∠BDC =∠EDC =45°,所以∠BDE =90°. 又BD =2,所以BG =22225BDDG293.4.已知实数,a b 满足221a b ,则44a ab b 的最小值为()PGFEBCADA .18. B .0. C .1. D .98.【答】B.442222222219()2122()48aabbab a bab a b ab ab .因为222||1ab a b ,所以1122ab ,从而311444ab,故2190()416ab,因此219902()488ab,即44908aabb.因此44a abb 的最小值为0,当22,22a b或22,22ab时取得.5.若方程22320x pxp 的两个不相等的实数根12,x x 满足232311224()xxxx ,则实数p的所有可能的值之和为()A .0.B .34. C .1.D .54.【答】 B.由一元二次方程的根与系数的关系可得122x x p ,1232x x p ,所以2222121212()2464x x x x x x p p,332212121212()[()3]2(496)xxx x x x x x p pp.又由232311224()x x x x 得223312124()x x x x ,所以2246442(496)p p p pp ,所以(43)(1)0p pp ,所以12330,,14p p p .代入检验可知:1230,4p p 均满足题意,31p 不满足题意. 因此,实数p 的所有可能的值之和为12330()44p p .6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a cb d .这样的四位数共有()A .36个.B .40个.C .44个.D .48个.【答】C.根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个.二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111abct b c a,则t_________.【答】1.由1a t b 得1bt a,代入1bt c得11t tac ,整理得2(1)()0ct ac ta c ①又由1c t a 可得1ac at ,代入①式得22()0ctatac ,即2()(1)0c a t,又c a ,所以210t,所以1t.验证可知:11,1a b caa时1t;11,1a bcaa时1t .因此,1t .2.使得521m是完全平方数的整数m 的个数为.【答】1.设2521mn (其中n 为正整数),则2521(1)(1)mnn n ,显然n 为奇数,设21n k (其中k 是正整数),则524(1)mk k ,即252(1)m k k .显然1k,此时k 和1k 互质,所以252,11,m k k 或25,12,m k k 或22,15,m k k 解得5,4k m .因此,满足要求的整数m 只有1个.3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BC AP=.【答】3.设D 为BC 的中点,在△ABC 外作∠CAE =20°,则∠BAE =60°. 作CE ⊥AE ,PF ⊥AE ,则易证△ACE ≌△ACD ,所以CE =CD =12BC.又PF =PA sin ∠BAE =PA sin 60°=32AP ,PF =CE ,所以32AP =12BC ,因此BC AP=3.4.已知实数,,a b c 满足1abc,4a b c ,22243131319a b c aa bb cc ,则222abc =.【答】332.因为22313(3)(1)(1)(1)aa aa abc a bc a a bcbc a b c ,所以FEDBCAP2131(1)(1)a aa b c .同理可得2131(1)(1)b b b a c ,2131(1)(1)c cc a b .结合22243131319ab c aa bb cc 可得1114(1)(1)(1)(1)(1)(1)9b c a c a b ,所以4(1)(1)(1)(1)(1)(1)9a b c a b c .结合1abc,4a b c,可得14ab bc ac. 因此,222233()2()2a bca bc ab bc ac .实际上,满足条件的,,a b c 可以分别为11,,422.第二试(A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.解设直角三角形的三边长分别为,,a b c (a b c ),则30a b c .显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c 及30a b c 得303a b c c ,所以10c . 由a b c 及30a b c 得302a b c c ,所以15c . 又因为c 为整数,所以1114c .……………………5分根据勾股定理可得222abc ,把30ca b 代入,化简得30()4500ab a b ,所以22(30)(30)450235a b ,……………………10分因为,a b 均为整数且a b ,所以只可能是22305,3023,ab解得5,12.a b ……………………15分所以,直角三角形的斜边长13c ,三角形的外接圆的面积为1694.……………………20分二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2ADBD CD .DPOABC2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共4页)证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PAPD PO ,2ADPD OD . ……………………5分又由切割线定理可得2PAPB PC ,∴PB PC PD PO ,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,……………………20分∴PD BD CD OD,∴2AD PD OD BD CD .……………………25分三.(本题满分25分)已知抛物线216yxbx c 的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x )两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2,若AM//BC ,求抛物线的解析式.解易求得点P 23(3,)2b bc ,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x bx c的两根,所以21396x b bc ,22396x bbc ,又AB 的中点E 的坐标为(3,0)b ,所以AE =296b c .……………………5分因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AEPE DE ,即2223(96)()||2bc b c m ,又易知0m,所以可得6m. ……………………10分又由DA =DC 得22DA DC ,即22222(96)(30)()bc mb mc ,把6m代入后可解得6c (另一解0c 舍去).……………………15分又因为AM//BC ,所以OA OM OBOC,即223||3962|6|396b b c bbc.……………………20分把6c 代入解得52b (另一解52b舍去). 因此,抛物线的解析式为215662y xx . ……………………25分2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共5页)精品文档强烈推荐2018年全国初中数学联合竞赛试题参考答案及评分标准第4页(共7页)精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有。

2018年全国初中数学竞赛试题及答案

2018年全国初中数学竞赛试题及答案

若关于 m 的方程有正整数解,则
9 4n(n 1) 8 (2 n 1)2 l 2 ( l 为正整数),
即 l 2 (2n 1)2 8,[ l (2n 1)][( l (2 n 1)] 8

l (2n 1) 8 l (2n 1) 4
所以
,或

l (2n 1) 1 l (2n 1) 2
解得: n
5 4
所以 PQ= yp
yQ
( a2
3a
4)
(a2
3a
4) =
2
2a
8
即当 a= 0(属于 -2≤ a≤2)时, PQ 的最大值为 8。
12.已知 a , b 都是正整数,试问关于 x 的方程 x 2 abx 1 ( a b) 2
把它们求出来;如果没有,请给出证明.
-4
Q
-6
B
-8
-10
0 是否有两个整数解?如果有,请
但不多于 8 个,红球不少于 2 个,黑球不多于 3 个,那么上述取法的种数是(

( A )14
( B) 16
(C) 18
(D )20
解:选( B )。只用考虑红球与黑球各有 4 种选择:红球( 2,3,4,5 ),黑球( 0,1,2,3 )共 4× 4= 16 种
3.已知 a 、 b 、 c 是三个互不相等的实数,且三个关于 x 的一元二次方程 ax 2 bx c 0 ,
综上,存在正整数 a= 1, b=3 或 a=3, b=1,使得
方程 x 2 abx 1 (a b) 0 有两个整数解为 x1 1, x2 2 。 2
DE
13.如图,点 E, F 分别在四边形 ABCD 的边 AD , BC 的延长线上,且满足

初中数学竞赛“《数学周报》杯”2018年全国初中数学竞赛试题(含答案)

初中数学竞赛“《数学周报》杯”2018年全国初中数学竞赛试题(含答案)

初中数学竞赛“《数学周报》杯”2018年全国初中数学竞赛试题(含答案)中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案答题时注意:1.⽤圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.⼀、选择题(共5⼩题,每⼩题6分,满分30分. 以下每道⼩题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有⼀个选项是正确的. 请将正确选项的代号填⼊题后的括号⾥. 不填、多填或错填都得0分)1.已知实数x y ,满⾜ 42424233y y x x -=+=,,则444y x+的值为().(A )7 (B )(C )(D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得212184x +==, 21122y --+==,所以444y x +=22233y x++- 2226y x=-+=7. 2.把⼀枚六个⾯编号分别为1,2,3,4,5,6的质地均匀的正⽅体骰⼦先后投掷2次,若两个正⾯朝上的编号分别为m ,n ,则⼆次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是().(A )512 (B )49 (C )1736 (D )12(第3题)【答】(C )解:基本事件总数有6×6=36,即可以得到36个⼆次函数. 由题意知=24m n ->0,即2m >4n .通过枚举知,满⾜条件的m n ,有17对. 故1736P =.3.有两个同⼼圆,⼤圆周上有4个不同的点,⼩圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条(B ) 8条(C )10条(D )12条【答】(B )解:如图,⼤圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;⼩圆周上的两个点E ,F 中,⾄少有⼀个不是四边形ABCD 的对⾓线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,⾄少有两条不同于A ,B ,C ,D 的两两连线.从⽽这6个点可以确定的直线不少于8条.当这6个点如图所⽰放置时,恰好可以确定8条直线.所以,满⾜条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的⼀条弦,且1AB a =<.以AB 为⼀边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的⼀点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为().(A(B )1 (C(D )a 【答】(B )解:如图,连接OE ,OA ,OB .设D α∠=,则120ECA EAC α∠=?-=∠.⼜因为()1160180222ABO ABD α∠=∠=?+?- 120α=?-,所以ACE △≌ABO △,于是1AE OA ==.(第4题)5.将1,2,3,4,5这五个数字排成⼀排,最后⼀个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第⼀个数整除,那么满⾜要求的排法有().(A )2种(B )3种(C )4种(D )5种【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的⼀个满⾜要求的排列.⾸先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件⽭盾.⼜如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明⼀个偶数后⾯⼀定要接两个或两个以上的奇数,除⾮接的这个奇数是最后⼀个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满⾜条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1.⼆、填空题(共5⼩题,每⼩题6分,满分30分)6.对于实数u ,v ,定义⼀种运算“*”为:u v uv v *=+.若关于x 的⽅程1()4x a x **=-有两个不同的实数根,则满⾜条件的实数a 的取值范围是.【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠=+-+>?,,解得,0a >,或1a <-.7.⼩王沿街匀速⾏⾛,发现每隔6分钟从背后驶过⼀辆18路公交车,每隔3分钟从迎⾯驶来⼀辆18路公交车.假设每辆18路公交车⾏驶速度相同,⽽且18路公交车总站每隔固定时间发⼀辆车,那么发车间隔的时间是分钟.【答】4.解:设18路公交车的速度是x ⽶/分,⼩王⾏⾛的速度是y ⽶/分,同向⾏驶的相邻两车的间距为s ⽶.每隔6分钟从背后开过⼀辆18路公交车,则s y x =-66.①每隔3分钟从迎⾯驶来⼀辆18路公交车,则s y x =+33.②由①,②可得 x s 4=,所以4=xs.即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为.【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB .⼜//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==.因此 1122FC FN NC AB AC =+=+=9.9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆⼼I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为.【答】163.解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r ,BC 边上的(第8题)(第8题答案)⾼为a h ,则11()22a ABC ah S abc r ==++△,所以a r ah a b c=++.因为△ADE ∽△ABC ,所以它们对应线段成⽐例,因此a a h r DEh BC-=,所以 (1)(1)a a a h r r aDE a a a h h a b c-=?=-=-++ ()a b c a b c +=++,故 879168793DE ?+==++().10.关于x ,y 的⽅程22208()x y x y +=-的所有正整数解为.【答】481603232.x x y y ====??,,,解:因为208是4的倍数,偶数的平⽅数除以4所得的余数为0,奇数的平⽅数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213?,(第9题答案)其中s ,t 都是偶数.所以222(13)213(13)s t -=?-+≤2222131511?-<.所以13s -可能为1,3,5,7,9,进⽽2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从⽽13s -=7.于是62044s s t t ====??,,;,因此 481603232.x x y y ====??,,,三、解答题(共4题,每题15分,满分60分)11.在直⾓坐标系xOy 中,⼀次函数b kx y +=0k ≠()的图象与x 轴、y 轴的正半轴分别交于A ,B 两点,且使得△OAB 的⾯积值等于3OA OB ++.(1)⽤b 表⽰k ;(2)求△OAB ⾯积的最⼩值.解:(1)令0=x ,得0y b b =>,;令0=y ,得00bx k k=-><,.所以A ,B 两点的坐标分别为0)(0)b AB b k -(,,,,于是,△OAB 的⾯积为 )(21kbb S -?=.由题意,有3)(21++-=-?b kbk b b ,解得 )3(222+-=b b b k ,2b >.……………… 5分(2)由(1)知21(3)(2)7(2)10()222b b b b b S b k b b +-+-+=?-==--21027)72b b =-++=++-≥1027+,当且仅当1022b b -=-时,有S =102+=b ,1-=k 时,不等式中的等号成⽴.所以,△OAB ⾯积的最⼩值为1027+. ……………… 15分12.是否存在质数p ,q ,使得关于x 的⼀元⼆次⽅程20px qx p -+=有有理数根?解:设⽅程有有理数根,则判别式为平⽅数.令2224q p n ?=-=,其中n 是⼀个⾮负整数.则2()()4q n q n p -+=.……………… 5分由于1≤q n -≤q +n ,且q n -与q n +同奇偶,故同为偶数.因此,有如下⼏种可能情形:222q n q n p -=??+=?,, 24q n q n p -=??+=?,, 4q n p q n p -=??+=?,, 22q n p q n p -=??+=?,, 24.q n p q n ?-=?+=?,消去n ,解得22251222222p p p q p q q q p q =+=+===+,,,,.……………… 10分对于第1,3种情形,2p =,从⽽q =5;对于第2,5种情形,2p =,从⽽q =4(不合题意,舍去);对于第4种情形,q 是合数(不合题意,舍去).⼜当2p =,q =5时,⽅程为22520x x -+=,它的根为12122x x ==,,它们都是有理数.综上所述,存在满⾜题设的质数. ……………… 15分13.如图,△ABC 的三边长B C aC Ab A ===,,,a b c ,,都是整数,且a b ,的最⼤公约数为2.点G 和点I 分别为△ABC 的重⼼和内⼼,且90GIC ∠=?.求△ABC 的周长.解:如图,延长GI ,与边BC CA ,分别交于点P Q ,.设重⼼G 在边BC CA ,上的投影分别为E F ,,△ABC 的内切圆的半径为r ,BC CA ,边上的⾼的长分别为a b h h ,,易知CP =CQ ,由PQC GPC GQC S S S =+△△△,可得 ()123a b r GE GF h h =+=+,即 222123A B C A B C A B CS S Sa b c a b=?+ ?++??△△△,从⽽可得 6aba b c a b++=+. ……………… 10分因为△ABC 的重⼼G 和内⼼I 不重合,所以,△ABC 不是正三⾓形,且b a ≠,否则,2a b ==,可得2c =,⽭盾.不妨假设a b >,由于()2a b =,,设()1111221a a b b a b ===,,,,于是有1111126a b ab a b a b =++为整数,所以有11()12a b +,即()24a b +.于是只有1410a b ==,时,可得11c =,满⾜条件.因此有35a b c ++=.所以,△ABC 的周长为35.……………… 15分(第13题)(第13题答案)。

2018年全国初中数学联赛四川初赛试题

2018年全国初中数学联赛四川初赛试题

2018年全国初中数学联赛四川初赛试题(3月24日上午9:00—11:00)一、选择题(本大题满分42分,每小题7分) 1.若a ,b 为实数,满足a a -+11=bb+-11,则(1+a +b )(1-a -b )的值是( ). (A )-1 (B)0 (C)1 (D)22.设p 是正奇数,则p 2除以8的余数等于( ). (A )1 (B)3 (C)5 (D)73.已知△ABC 中,AB =AC =43,高AD =4,则△ABC 的外接圆半径是( ). (A )3 (B)4 (C)5 (D)64.设a ,b 是整数,方程x 2+ax +b =0的一根是324-,则a +b 的值是( ).(A )-1 (B)0 (C)1 (D)25.工地上有甲、乙二块铁板,铁板甲形状为等腰三角形,其顶角为45°,腰长为12cm ;铁板乙形状为直角梯形,两底边长分别为4cm 、10cm,且有一内角为60°.现在我们把它们任意翻转,分别试图从一个直径为8.5cm 的圆洞中穿过,结果是( ).(A )甲板能穿过,乙板不能穿过 (B)甲板不能穿过,乙板能穿过 (C)甲、乙两板都能穿过 (D)甲、乙两板都不能穿过6.设抛物线y =x 2+kx +4与x 轴有两个不同的交点(x 1,0),(x 2,0),则下列结论中,一定成立的是( ).(A )x 12+x 22=17 (B) x 12+x 22=8 (C) x 12+x 22<17 (D) x 12+x 22>8 二、填空题(本大题满分28分,每小题7分)1.已知不等式ax +3≧0的正整数解为1,2,3,则a 的取值范围是 .2.如图,在直角梯形ABCD 中,AB =BC =4,M 为腰BC 上一点, 且△ADM 为等边三角形,则S △CDM :S △ABM = .3.有一种产品的质量要求从低到高分为1,2,3,4共四种不同的档次.若工时不变,车间每天可生产最低档次(即第一档次)的产品40件,生产每件产品的利润为16元;如果每提高一个档次,每件产品利润可增加1元,但每天少生产2件产品.现在车间计划只生产一种档次的产品.要使利润最大,车间应生产第 种档次的产品.4.方程2x 2+5xy +2y 2=2018的所有不同的整数解共有 组. 三、(本大题满分20分)已知一次函数y =ax +b 的图象经过点A (3,3+2),B (-1,3),C (c ,2-c ). 求a 2+b 2+c 2-ab -bc -ca 的值.四、(本大题满分25分)如图,在⊙O 中,弦CD 垂直于直径AB .M 是OC 的中点,AM 的延长线交⊙O 于E ,DE 交BC 于N.求证:BN=CN .MD C BA五、(本大题满分25分)一场数学游戏在两个非常聪明的学生甲、乙之间进行.裁判先在黑板上写出下面的正整数2、3、4、…、2018,然后随意擦去一个数.接下来由乙、甲两人轮流擦去其中的一个数(即乙先擦去其中的一个数,然后甲再擦去一个数,如此轮流下去),若最后剩下的两个数互质,则判甲胜;否则,判乙胜.按照这种游戏规则,求甲获胜的概率.(用具体的数字作答)2018年全国初中数学联赛四川初赛试题参考答案及评分细则一、选择题(本大题满分42分,每小题7分,共42分). 1、C ;2、A ;3、D ;4、B ;5、A ;6、D .二、填空题(本大题满分28分,每小题7分,共28分). 1、-1≦a <-43; 2、2; 3、3; 4、4. 三、(本大题满分20分).解:由条件知,3+2=3a +b ,且3= -a +b ,解得a =3-1,b =23-1. 5分 于是2-c =ac +b =(3-1)c +(23-1),解得c =3-2 10分 因此,a -b = -3,b -c =3+1,c -a = -1; ∴a 2+b 2+c 2-ab -bc -ca =21〔(a -b )2+(b -c )2+(c -a )2〕 =21〔(-3)2+(3+1)2+(-1)2〕=4+3 . 20分四、(本大题满分25分) 证明:连结AC 和BD , ∵弦CD 垂直于直径AB ,∴BC =BD . 5分 ∴∠BCD =∠BDC .∵OA =OC ,∴∠OCA =∠OAC .∵∠BDC =∠OAC ,∴∠BCD =∠OCA . ∴△BCD ∽△OCA . ∴CO CB =CACD15分 在△CDN 和△CAM 中,∵∠DCN =∠ACM ,∠CDN =∠CAM ,∴△CDN ∽△CAM ; 20分B∵CM CN =CA CD =CO CB =CMCB2, ∴CN =21CB,即BN =CN . 25分五. (本大题满分25分)一场数学游戏在两个非常聪明的学生甲、乙之间进行.裁判先在黑板上写出下面的正整数2、3、4、…、2018,然后随意擦去一个数.接下来由乙、甲两人轮流擦去其中的一个数(即乙先擦去其中的一个数,然后甲再擦去一个数,如此轮流下去),若最后剩下的两个数互质,则判甲胜;否则,判乙胜.按照这种游戏规则,求甲获胜的概率.(用具体的数字作答)解:由于甲、乙都非常聪明,他们获胜的关键是看裁判擦去哪个数。

2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)

2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)

2018 年全国初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42 分,每小题7 分)1.设二次函数 2a2y x ax 的图象的顶点为A ,与x 轴的交点为B,C .当△ABC 为等边三角22形时,其边长为()A. 6 .B.2 2 .C.2 3 .D.3 2 .【答】C.2a由题设知A (a ,) .设B(x1,0) ,C(x2 ,0) ,二次函数的图象的对称轴与x 轴的交点为D ,则22aBC | x 1 x |(x x ) 4x x 4a 42a .2 2 22 1 2 1 2223 3a又AD BC | | 2a,则 2 ,解得a 2 6 或a 2 0 (舍去).2 2 2所以,△ABC 的边长BC 2a 2 2 3 .2.如图,在矩形ABCD 中,BAD的平分线交BD 于点E ,AB 1,CAE 15,则BE ()A.33. B.22. C. 2 1. D. 3 1. A D 【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得BAF FAD AFB HEF 45,B F AB1,EBH ACB 30.EB CH F设BE x,则xHF HE,23xBH .2因为BF BH HF ,所以13 xx,解得x 3 1.所以BE 31.2 23.设p,q 均为大于 3 的素数,则使p 2 5pq 4q 为完全平方数的素数对(p,q) 的个数为()2A.1.B.2.C.3.D.4.【答】B.2018 年初中数学联赛试题参考答案及评分标准第 1 页(共 10 页)设p2 5pq 4q2 m2 (m 为自然数),则(p 2q)2 pq m2 ,即(m p 2q)(m p 2q) pq .由于p,q 为素数,且m p 2q p,m p 2q q ,所以m p 2q 1,m p 2qpq ,从而pq 2p 4q 1 0,即(p 4)(q 2) 9,所以(p,q) (5,11)或(7, 5) .所以,满足条件的素数对(p,q) 的个数为 2.2 24.若实数a,b 满足a b 2,(1 ) (1 ) 4a b,则a5 b5 ()b aA.46.B.64.C.82.D.128.【答】C.( 2 21 a) (1 b)由条件 4得a b 2a2 2b2 4ab a3 b3 0,b a即(a b) 2[(a b)2 4ab] (a b)[(a b)2 3ab] 0,又a b 2,所以2 2[4 4ab] 2[4 3ab] 0,解得ab 1.所以a2 b2 (a b)2 2ab6 ,a b a b a b ab ,a5 b5 (a2 b2 )(a3 b3) a2b2 (a b) 82 .3 3 ( )[( )2 3 ] 145.对任意的整数x, y ,定义x@ y x y xy ,则使得(x@ y)@z (y @z)@x (z@x)@ y的整数组(x, y, z) 的个数为()A.1.B.2.C.3.D.4.【答】D.(x@ y)@z (x y xy)@z (x y xy) z (x y xy)z x y z xy yz zx xyz ,由对称性,同样可得(y@z)@x x y z xy yz zx xyz ,(z@x)@ y x y z xy yz zx xyz .所以,由已知可得x y z xy yz zx xyz 0 ,即(x 1)(y 1)(z 1) 1.所以,x, y, z 为整数时,只能有以下几种情况:x 11, y 1 1,z 1 1,x 11,或y 11,z 11,x1 1,或y 11,z 11,x或yz1111,1,1,所以,(x, y, z ) (2,2,0)或(2,0,2) 或(0,2,2) 或(0,0,0),故共有 4 个符合要求的整数组.2018 年初中数学联赛试题参考答案及评分标准第 2 页(共 10 页)1 1 116.设M ,则2018 2019 2020 2050 1M的整数部分是()A.60.B.61.C.62.D.63.【答】B.1 201815 因为M 33 ,所以61.2018 M 33 331 1 1 1 1 1又M ( ) ( )2018 2019 2030 2031 2032 20501 1 134513 20 ,2030 2050 832301 183230 1185所以61 ,故的整数部分为 61.M 1345 1345 M二、填空题:(本题满分28 分,每小题7 分)1.如图,在平行四边形ABCD 中,BC 2AB ,CE AB于E ,F 为AD 的中点,若AEF48,则 B _______.【答】84.AF 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形.D由AB // FG // DC及F 为AD 的中点,知H 为CE 的中点.又CE AB,所以CE FG ,所以FH 垂直平分CE ,故DFC GFC EFG AEF 48.所以B FGC 180 248 84 .E HB CG2.若实数x, y 满足1 15x 3 y 3 (x y ) ,则x y的最大值为.4 2【答】3.1 1 1515由x 3 y 3 (x y ) 可得x y x 2 xy y 2 x y ,即( )( ) ( )4 4 222 2 1 15(x y)(x xy y ) . ①4 2令x y k ,注意到 2 2 1 ( )2 3 2 1 0x xy y x y ,故x y k 0 .y4 2 4 4又因为x2 xy y2 1 (x y)2 3xy 1 ,故由①式可得 3 3 1 15k xyk k ,所以4 4 4 2 115k k34 2xy .3k1 15k k34 2于是,x, y 可看作关于t 的一元二次方程t2 kt 0 的两根,所以3k1 15k k34 22 ,( k) 4 03k化简得k3 k 30 0 ,即(k 3)(k2 3k 10) 0,所以0 k 3.故x y 的最大值为3.2018 年初中数学联赛试题参考答案及评分标准第 3 页(共 10 页)3.没有重复数字且不为 5 的倍数的五位数的个数为.【答】21504.显然首位数字不能为 0,末位不能为 0 和 5.当首位数字不为 5 时,则首位只能选 0,5 之外的 8 个数.相应地个位数只能选除 0,5 及万位数之外的 7个数,千位上只能选万位和个位之外的 8 个数,百位上只能选剩下的 7 个数,十位上只能选剩下的 6 个数.所以,此时满足条件的五位数的个数为8787 6 18816个.当首位数字为 5 时,则个位有 8 个数可选,依次千位有 8 个数可选,百位有 7 个数可选, 十位有 6 个数可选.所以,此时满足条件的五位数的个数为887 6 2688个.所以,满足条件的五位数的个数为18816 2688 21504(个).4.已知实数a,b,c满足a b c 0 ,a 2 b 2 c 2 1,则a5 5 5b cabc.5【答】.21 2 2 2 21由已知条件可得ab bc ca a b c a b c ,a 3 b 3 c 3 3abc ,所以[( ) ( )]2 2a 5bc (a 2 b 2 c2 )(a 3 b 3 c3) [a2 (b 3 c3 ) b2 (a 3 c3) c2 (a 3 b3)]5 53abc (a2b2c a2c2b b2c2a) 3abc [a b (a b) a c (a c) b c (b c)]2 2 2 2 2 21 53abc abc(ab bc ca ) 3abc abc abc .2 2所以5ab5abc5c52.第一试(B)一、选择题:(本题满分42 分,每小题7 分)1.满足(x 2 x 1)x 2 1的整数x 的个数为()A.1. B.2. C.3. D.4.【答】C.当x 2 0且x 2 x 1 0时,x 2.当x2 x 1 1时,x 2或x 1.当x2 x 11且x 2为偶数时,x 0.所以,满足条件的整数x 有 3 个.2.已知x1, x2 ,x3 (x1 x2 x3 )为关于x 的方程x3 3x2 (a 2)x a 0 的三个实数根,则4x x x x ()2 2 21 12 3A.5.B.6.C.7.D.8.2018 年初中数学联赛试题参考答案及评分标准第 4 页(共 10 页)【答】A. 方程即 (x1)(x 22x a ) 0 ,它的一个实数根为 1,另外两个实数根之和为 2,其中必有一根小于 1,另一根大于 1,于是 x 2 1, x 1 x 3 2 ,故4x x x x (xx )(xx )4x12(xx ) 4x12 2 2 1123313113112(x x )15 .313.已知点 E , F 分别在正方形 ABCD 的边CD , AD 上,CD 4CE ,EFB FBC ,则tan ABF()A. 12 .B. 35.C. 2 2.D. 3 2.【答】B. 不妨设CD 4,则CE 1,DE 3.设 DF x ,则 AF 4 x , EFx 29 .作 BHEF 于点 H .因为 EFBFBC AFB , BAF 90 BHF , BF 公共,所以△ BAF ≌△ BHF ,所以 BH BA 4.由 S 四边形ABCDSABFSBEF SDEFSBCE 得ADF1 11 14 2 xx 2x, 222 2 4 (4 ) 4 934 18解得 所以x . 512 AF 3 AF4 x, tanABF.5 AB 5BH EC4.方程 3 9 x3 x 的实数根的个数为( )A.0.B.1.C.2.D.3.【答】B. 令 y 9 x ,则 y 0,且 x y 2 9 ,原方程变为 3 y 3 y 2 9 ,解得 y 1或 y 6,从而可得 x 8或 x 27 .检验可知: x 8是增根,舍去; x27 是原方程的实数根.所以,原方程只有 1 个实数根.5.设 a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的 2017 倍都等于 2018,则这样的三元 数组 (a ,b ,c )的个数为()A.4.B.5.C.6.D.7.【答】B.由已知得, a 2017bc 2018,b 2017ac 2018 ,c 2017ab 2018,两两作差,可得(a b)(1 2017c) 0,(b c)(1 2017a) 0,(c a)(1 2017b) 0.2018 年初中数学联赛试题参考答案及评分标准第 5 页(共 10 页)1由(a b )(1 2017c ) 0,可得 a b 或c .20172018(1)当a b c 时,有2017a 2 a 2018 0,解得a 1或a .20171 1a , c 2018 .2017 2017(2)当a b c 时,解得b1 1 1 11 (3)当a b时,c ,此时有:a ,b 2018 ,或a 2018 ,b .2017 2017 2017 2017 2017故这样的三元数组(a,b,c)共有 5 个.6.已知实数a,b 满足a 3 3a 2 5a 1,b 3 3b 2 5b 5,则a b ()A.2.B.3.C.4.D.5.【答】A.有已知条件可得(a 1)3 2(a 1) 2,(b 1)3 2(b 1) 2 ,两式相加得(a 1) 2(a 1) (b 1) 2(b 1) 0 ,3 3因式分解得(a b2)[(a 1)2 (a 1)(b 1) (b1)2 2] 0 .因为1 3(a 2 a b b 2 a b 2 b 2 ,2 41) ( 1)( 1) ( 1) 2 [( 1) ( 1)] ( 1) 2 0所以 a b 2 0,因此 a b 2.二、填空题:(本题满分28 分,每小题7 分)1.已知p,q,r 为素数,且pqr 整除pq qr rp 1,则p q r _______.【答】10.设kpq qr rp 1 1 1 1 1,由题意知k 是正整数,又p,q,r2 ,所以pqr p q r pqr3k ,从2而k 1,即有pq qr rp 1pqr ,于是可知p,q,r 互不相等.当2 p q r 时,pqr pq qr rp 1 3qr ,所以q 3,故q 2 .于是2qr qr 2q 2r,故(q 2)(r 2) 3,所以q 2 1,r 2 3,即q 3,r 5 ,所以,(p,q,r) (2,3,5) . 1再由p,q,r 的对称性知,所有可能的数组( p,q,r)共有6组,即(2,3,5),(2,5,3) ,(3,2,5) ,(3,5,2) ,(5,2,3) ,(5,3,2) .于是p q r 10 .2018 年初中数学联赛试题参考答案及评分标准第 6 页(共 10 页)2.已知两个正整数的和比它们的积小 1000,若其中较大的数是完全平方数,则较小的数为.【答】8.设这两个数为m2 ,n (m 2 n) ,则m 2 n m2n 1000,即(m 2 1)(n 1) 1001.又1001100111437 9111 7713 ,所以(m 2 1,n 1) =(1001, 1) 或(143, 7) 或(91,11) 或(77,13) ,验证可知只有(m 2 1,n 1) (143,7) 满足条件,此时m 2 144,n 8.3 .已知D 是△ABC 内一点,E 是AC 的中点,AB 6 ,BC 10 ,BAD BCD ,EDC ABD ,则DE .F【答】4.1延长CD 至F ,使DF DC ,则DE// AF 且DE AF ,A2AFD EDC ABD ,故A, F, B, D 四点共圆,于是所以DEB CBFD BAD BCD,所以BF BC 10 ,且BD FC ,FAB FDB 90.故1又AB 6,故AF 102 62 8,所以AF 4DE .24.已知二次函数y x 2 2(m 2n 1)x (m 2 4n 2 50) 的图象在x 轴的上方,则满足条件的正整数对(m,n)的个数为.【答】16.因为二次函数的图象在x 轴的上方,所以 [2(m 2n 1)]2 4(m 2 4n 2 50) 0 ,整理得514mn 2m 4n 49 ,即(m n .因为m,n 为正整数,所以(m 1)(2n 1) 25.1)(2 1)225又m 1 2,所以2n ,故n 5.1225 22当n 1时, 1 m ,符合条件的正整数对(m,n)有 8 个;m ,故3 3当n 2 时,m 1 5,故m 4,符合条件的正整数对(m,n)有 4 个;25 18当n 3时, 1m ,故m ,符合条件的正整数对(m,n)有 2 个;7 725 17当n 4 时, 1 m ,符合条件的正整数对(m,n)有 1 个;m ,故9 925 14当n 5时,m 1 ,故m ,符合条件的正整数对(m,n)有 1 个.11 11综合可知:符合条件的正整数对(m,n)有 8+4+2+1+1=16 个.2018 年初中数学联赛试题参考答案及评分标准第 7 页(共 10 页)第二试(A)一、(本题满分20分)设a,b,c,d 为四个不同的实数,若a,b 为方程x 2 10cx 11d 0的根,c,d为方程x 2 10ax 11b 0的根,求a b c d 的值.解由韦达定理得a b 10c ,c d 10a,两式相加得a b c d 10(a c) .……………………5 分因为a 是方程x 2 10cx 11d 0 的根,所以a 2 10ac 11d 0 ,又d 10a c ,所以a 110 11 10 0 . ①……………………10 分2 a c ac类似可得c 2 110c 11a 10ac 0 . ②……………………15 分①-②得(a c)(a c 121) 0.因为a c,所以a c 121,所以a b c d 10(a c ) 1210. ……………………20 分二、(本题满分25 分)如图,在扇形OAB 中,AOB 90,OA 12 ,点C 在OA上,AC 4,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;A(2)求CE 2DE 的最小值.解(1)分别过O, E 作CD 的垂线,垂足为M , N .CE由OD 6,OC 8,得CD 10.所以FMN1S S OCD S ECD CD (OM EN)OD B21 1CD OE 10 12 60,……………………5 分2 2当OE DC 时,S 取得最大值 60.此时,12 68 36EF OE OF . ……………………10 分10 5G (2)延长OB 至点G ,使BG OB 12 ,连结GC,GE .因为O DOEO EOG12 ,DOEEOG,D EEG12,故EG2DE .所以△ODE∽△OEG,所以……………………20 分所以CE 2DE CE EG CG 242 82 8 10 ,当C, E,G 三点共线时等号成立. 故CE 2DE 的最小值为8 10 . ……………………25 分2018 年初中数学联赛试题参考答案及评分标准第 8 页(共 10 页)三、(本题满分25 分)求所有的正整数m,n ,使得m3n 3m2n2(m n)2是非负整数.解记Sm n m n3 3 2 2,则(m n)2S(m n)[(m n ) 3mn ] m n 3mn mn(m n )( ) .2 (m n) 22m n m n因为m,n 为正整数,故可令mnm n qp,p,q 为正整数,且( p,q ) 1.于是S3q q2 3pq q2 (m n ) (m n ).p 2 2p p因为S 为非负整数,所以p | q2 ,又( p,q ) 1,故p 1,即(m n) | mn . ①……………………10 分所以2nmnnmnmn是整数,所以(m n) | n2 ,故n 2 m n ,即n 2 mn .又由S 0,知m 3 n 3 m2n 2 0 . ②所以n 3 m2n 2 m 3 m2 (n 2 m ) m2n,所以n m.由对称性,同理可得m n,故m n. ……………………20 分把m n代入①,得2 | m ,则m 2.把m n代入②,得2m 3 m 4 0,即m 2 .故m 2.所以,满足条件的正整数m,n 为m 2,n 2 . ……………………25 分第二试(B)1 1 1 9一、(本题满分20 分)若实数a,b,c 满足(a b c )( ) ,求a b 5c b c 5a c a 5b 51 1 1(a b c )( )的值.a b c解 记 a b c x , ab bc ca y , abc z ,则( a bc )( a 1 b 5cb1 c 5ac1 ) a 5b x( x 1 6ax 1 6bx 1) 6c3 x 2 x [3x 6( a12( a b c )x b c )x36(ab2 36(ab bc bc ca )xca )] 216abcx (9x 36y ) 2 5x 3 36xy 216z, ……………………10 分2018 年初中数学联赛试题参考答案及评分标准第 9 页(共 10 页)结合已知条件可得x( 9x 36y) 925 3 36 2165x xy z27,整理得xy z .所以21 1 1 xy 27(a b c )( ) . ……………………20 分a b c z 2二、(本题满分25 分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AB AC ,DE DC.(1)证明:AD // BC ;(2)设AC 与DE 交于点P ,如果ACE 30,求DP PE.解(1)由题意知ACB DCE 45,BC 2AC ,EC 2DC ,AD 所以DCA ECB ,AC DC,所以△ADC ∽△BEC ,故DACBC ECEBC 45,所以DAC ACB ,所以AD // BC . EP……………………10 分B C(2)设AE x ,因为ACE 30,可得AC 3x ,CE 2x ,DE DC 2x .1因为EAP CDP 90,EPA CPD ,所以△APE ∽△DPC ,故可得S APE S DPC.2 ……………………15 分3又S EPC APE ACE 2 ,S EPC S DPC S CDE x2 ,于是可得S S x2S DPC ,S EPC ( 3 1)x2 . ……………………20 分(2 3)x2所以DPPESSDPCEPC2 33 1. ……………………25 分3 1 2三、(本题满分25 分)设x 是一个四位数,x 的各位数字之和为m ,x 1的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解设x abcd ,由题设知m 与n 的最大公约数(m,n)为大于 2 的素数.若d 9 ,则n m 1,所以(m,n) 1,矛盾,故d 9. ……………………5 分若c 9 ,则n m 19 m 8 ,故(m,n) (m, 8) ,它不可能是大于 2 的素数,矛盾,故c 9 .……………………10 分若b 9 ,显然a 9 ,所以n m 19 9 9 m 26,故(m,n) (m, 26) 13,但此时可得n ,m n 26 39 36,矛盾. ……………………15 分13若b 9,则n m 19 9 m 17,故(m,n) (m,17) 17,只可能n 17,m 34.……………………20 分于是可得x 8899或9799. ……………………25 分2018 年初中数学联赛试题参考答案及评分标准第 10 页(共 10 页)。

2018年全国初中数学联赛试题参考答案和评分标准 精品

2018年全国初中数学联赛试题参考答案和评分标准 精品

2018年全国初中数学联赛试题参考答案和评分标准精品2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。

第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分。

如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。

第一试一、选择题:(本题满分42分,每小题7分)1.已知$a=1+\frac{1}{2+1}$,$b=3-2$,$c=6-2$,那么$a,b,c$的大小关系是()A。

$a<b<c$B。

$a<c<b$XXX<a<c$D。

$b<c<a$答】C.因为 $\frac{1}{2+1}=\frac{1}{3}$,所以$a=1+\frac{1}{3}=\frac{4}{3}$,$b=1$,$c=4$。

因为 $\frac{1}{3}<1$,所以$a<\frac{4}{3}+1=\frac{7}{3}<c$,所以 $b<a<c$。

2.方程$x^2+2xy+3y^2=34$的整数解$(x,y)$的组数为()A。

3B。

4C。

5D。

6答】B.方程即$(x+y)^2+2y^2=34$,显然$x+y$必须是偶数,所以可设$x+y=2t$,则原方程变为$2t^2+y^2=17$。

因为$2t^2\leq 16$,所以$t=\pm 2$,从而可求得原方程的整数解为$(x,y)=(-7,3),(1,3),(7,-3),(-1,-3)$,共4组。

3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,$CE=1$,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A。

$\frac{65}{26}$B。

$\frac{3}{3}$C。

$\frac{2}{5}$D。

$\frac{9}{4}$答】D.过点C作$CP\parallel BG$,交DE于点P。

最新-2018年全国初中数学竞赛试题 精品

最新-2018年全国初中数学竞赛试题 精品

中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题一、选择题(共5小题,每小题6分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得0分)1. 方程组⎪⎩⎪⎨⎧=+=+6,12y x y x 的解的个数为( )(A ) 1 (B ) 2 (C ) 3 (D ) 42. 口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( )(A ) 14 (B ) 16 (C ) 18 (D ) 203. 已知△ABC 为一锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E .若⊙O 的半径与的△ADE 的外接圆的半径相等.则⊙O 一定经过△ABC 的( ) (A ) 内心 (B ) 外心 (C )重心 (D ) 垂心4. 已知关于x 的一元二次方程,02=++c bx ax 02=++a cx bx ,02=++b ax cx 恰好有一个公共实数根.则abc ca b bc a 222++的值为( ) (A ) 0 (B ) 1(C ) 2 (D ) 35. 方程256323+-=++y y x x x 的整数解(y x ,)的个数是( ) (A ) 0 (B )1 (C )3 (D 二、填空题 (共5小题,每小题6分,满分30分)6.如图,在直角三角形ABC 中,∠ACB =90°,CA =4,点半圆弧AC 的中点,连接BP ,线段BP 把图形APCB 则这两部分面积之差的绝对值是 . 7.如图,点A ,C 都在函数)0(33>=x xy 的图象上, 点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形, 则点D 的坐标为 .8.已知点A ,B 的坐标分别为(1,0),(2,0),若二次函数3)3(2+-+=x a x y 的图象与线段AB 只有一个交点,则a 的取值范围是 . 9.如图,n G F E D C B A =∠+∠+∠+∠+∠+∠+∠.90°, 则n = . 10.已知对于任意正整数n ,都有++21a a (3)n a n =+则+-+-111132a a ···=-+11100a . 三、解答题(共4题,每小题15分,满分60分) 11.如图,已知点M ,N 的坐标分别为(0,1),(0,—1)点P 是抛物线241x y =上的一个动点.(1)判断以点P 为圆心,PM 为半径的圆与直线1-=y 的位置关系;(2)设直线PM 与抛物线241x y =的另一个交点 为Q ,连接NP ,NQ .求证:∠PNM =∠QNM .)12.已知a ,b 都是正整数,试问关于的方程0)(212=++-b a abx x 是否有两个 整数解?如果有,请把它们求出来;如果没有,请给出证明.13.如图,已知AB 为半圆O 的直径.点P 为直径上的任意一点.以点A 为圆心,AP 为半径作⊙A ,⊙A 与半圆O 相交于点C ;以点B 为圆心,BP 为半径作⊙B ,⊙B 与半圆O 相交于点D .且线段CD 的中点为M .求证:MP 分别与⊙A 和⊙B 相切.D C P A B M (第13题图) O ·14. (1)是否存在正整数m,n,使得)1nmm?+n=()2(+(2)设knkmm?+n=()(+ k(≥3)是给定的正整数,是否存在正整数m,n,使得)1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档