国外盾构法隧道的发展历史

合集下载

盾构法隧道介绍

盾构法隧道介绍

盾构法隧道主要内容一、盾构施工技术的进展历史二、盾构施工技术的国内外进呈现状三、盾构机的种类四、盾构施工的技术特点五、盾构机工作原理五、盾构施工的主要工序六、中国承受盾构修建地铁历史及规划八、工程案例一、盾构施工技术的进展历史1盾构施工法的制造1818 年,Brunel 从一种食船虫在船身上打洞一事受到启发,争论出了盾构工法。

历经艰辛,终在1841 年使泰晤士河底隧道贯穿,该隧道自1825 年开工,历时17 年,可充分说明技术的成功是多么的坎坷!2盾构施工法的进展阶段自1818 年诞生进展到现在已有180 多年的历史,概括而言,有四个阶段:(1)初期盾构:以Brunel 盾构为代表;(2)其次代盾构:以机械式、气压式、TBM 及城市盾构工法为代表;(3)第三代盾构:以闭胸式盾构为代表〔泥水式、土压式〕;(4)第三代盾构:以安全、高速、大深度、大断面、断面多样化、异形化为特色。

二、盾构施工技术的国内外进呈现状1国外盾构施工技术现状以欧洲和日本最为兴旺。

美国:纽约自1900 年起用气压盾构就建筑了数十条水底隧道,目前根本是以盾构施工占90%以上;前苏联:莫斯科自1932 年开头承受盾构法施工地铁等地下工程;德国、法国、英国、加坡等也在广泛承受盾构法施工地下工程。

日本:自1917 年在国铁羽越线折渡隧道〔泻县〕的建设中首次承受盾构工法。

日本从盾构施工法正式开头用于城市隧道建设的1964 年至1984 年约20 年间,工研制盾构机超过5000 台。

目前日本已经成为世界上盾构制造技术以及施工技术的大国,占据世界上仅80%的盾构份额。

1917 年——日本国铁隧道建设中首次承受盾构工法1953 年——日本关门隧道承受盾构工法1957 年——日本地铁承受顶盖式盾构施工,这是城市隧道首次承受盾构1960 年——日本名古屋地铁承受盾构施工1962 年——东京下水道承受圆形盾构。

此后,盾构渐渐用于小断面的市政管道建设1964 年——日本下水道工程,最先承受泥水式盾构1974 年——日本独立争论出土压式盾构1975 年——日本争论出砾石泥水式盾构1981 年——日本争论出加气泡盾构2国内盾构施工技术现状国内最早是在1956 年,阜海州露天煤矿承受直径2.66m 的盾构,在砂土层中成功地开掘了一条流水巷道。

盾构隧道掘进机的发展史

盾构隧道掘进机的发展史

盾构隧道掘进机的发展史1818年,英国工程师布伦诺尔设计出一种挖掘机,在泰晤士河底下挖掘隧道。

他观察过一种名叫凿船虫的蛀木软体动物,发现这种虫子利用圆管形硬壳支撑孔洞四周的特朵铖,继续向前钻进。

于是受到启发,制造了一个箱形铁壳(称为盾构),利用千斤顶在松软的土壤中向前推进。

挖掘工人则在铁壳内一面挖掘,一面在隧道内壁衬砖。

这便是人类的第一台盾构机。

1825年至1841年间,利用布仑诺尔设计的盾构凿通韦平到罗瑟海斯的世界第一条水下隧道,长约1100米。

1865年,英国桥梁工程师巴洛发明一种盾构,并注册了专利,这种盾构是圆筒形,直径较布仑诺尔设计的为小,不用砖铺砌隧道内壁,而用铁块砌块。

巴洛和工程师格雷特黑德利用这种盾构在一年之内凿通泰晤士河床下的第二条隧道。

格雷特黑德还改进了挖隧道技术,以压缩空气抵消外面的水压。

1890年,伦敦用这种技术建成了世界上第一条地下铁道。

盾构机全名叫盾构隧道掘进机,是一种隧道掘进的专用工程机械,现代盾构掘进机集光、机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧道衬砌、测量导向纠偏等功能,涉及地质、土木、机械、力学、液压、电气、控制、测量等多门学科技术,而且要按照不同的地质进行“量体裁衣”式的设计制造,可靠性要求极高。

盾构掘进机已广泛用于地铁、铁路、公路、市政、水电等隧道工程。

用盾构机进行隧洞施工具有自动化程度高、节省人力、施工速度快、一次成洞、不受气候影响、开挖时可控制地面沉降、减少对地面建筑物的影响和在水下开挖时不影响水面交通等特点,在隧洞洞线较长、埋深较大的情况下,用盾构机施工更为经济合理。

盾构机的基本工作原理就是一个圆柱体的钢组件沿隧洞轴线边向前推进边对土壤进行挖掘。

该圆柱体组件的壳体即护盾,它对挖掘出的还未衬砌的隧洞段起着临时文撑的作用,承受周围土层的压力,有时还承受地下水压以及将地下水挡在外面。

挖掘、排土、衬砌等作业在护盾的掩护下进行。

据了解,采用盾构法施工的掘进量占京城地铁施工总量的45%,目前共有17台盾构机为地铁建设效力。

盾构简史、始发

盾构简史、始发
城市地铁盾构施工具有快速、安全、对地面建筑物影响小等诸多优点, 随着技术进步、认识提高、综合国力的增强,特别是随着该施工技术所 显现的优势,盾构法越来越多地被国内地铁界所接受,上海、广州、南 京、北京、深圳、天津、西安、成都、沈阳、杭州等城市都使用这种方 法。虽然盾构有许多成功的工程实例,但是使用这种方法也有较大的风 险。盾构在对洞口进行加固处理的始发时阶段出问题的概率很高,即使 是非常有经验的承包商也常会发生类似事故。
上路
海南
延线
安隧

道 1994年
上杨 海浦 地线

2003年
双圆盾构
泥水平衡式盾构
土压平衡式盾构
网格式式盾构
手掘式盾构
1 土体 2 刀盘 3 土仓 4 压力墙 5 千斤顶 6 螺旋输送机 7 管片拼装机 8 衬砌
开挖示意图 土压平衡盾构机工作原理
马达驱动刀盘旋转切削 土体,盾构机液压千斤 顶将盾构机向前推进, 并向密封仓内加入塑流 化改性材料,与开挖面 切削下来的土体经过充 分搅拌,形成具有一定 塑流性和透水性低的塑 流体,设置盾构机推进 千斤顶速度与螺旋输送 机向外排土的速度相匹 配,经舱内塑流体向开 挖面传递设定的平衡压 力,实现盾构机始终在 保持动态平衡的条件下 连续向前推进。
始发技术包括 1. 洞口端头处理(软土无自稳能力的地层中); 2. 洞门砼凿除(主要针对钢筋砼围护结构); 3. 盾构始发基座的设计加工、定位安装; 4. 始发用反力架的设计加工、就位; 5. 支撑系统、洞门密封装置的安装;
设计轴线
纠偏 曲线
结构面
盾构始发井 始发方向
根据始发基座受力特点,建立如下三维模型进行计算:
机械式盾构 TBM 气压式盾构 开挖面的稳定

国外盾构法隧道的发展历史

国外盾构法隧道的发展历史

国外盾构法隧道的发展历史盾构施工技术自1823年由布鲁诺尔首创于英国伦敦的泰晤土河的水底隧道工程以来,已有170余年的历史。

在这170余年的风风雨雨中,经过几代人的努力,盾构法已从一种只能在极少数欧美发达国家中才见应用的特殊技术,发展成为在发达国家中极为普通,在发展中国家中亦逐渐得到应用的隧道施工技术。

据说最早发明盾构法的思路是来自发明者的一个有趣的发现,英国的布鲁诺尔发现船的木板中,有一种蛀虫钻出孔道,并用它自己分泌的液体覆涂在孔壁上。

1818年布鲁诺尔在蛀虫钻孔的启示下,最早提出了用盾构法建设隧道的设想,并且在英国取得了该施工法的专利。

1825年,布鲁诺尔用他自己的想法制成盾构,并第一次在泰晤士河施工了水底隧道。

这条道路隧道的断面(11.4m×6.8m)相当大,施工中遇到了坍方和水淹,加上隧道的损坏,当时处于难于进展的状态,由于初始未能掌握控制泥水涌入隧道的方法,隧道施工中两次被淹,后来在东伦敦地下铁道公司的合作下,经过对盾构施工的改进,用气压辅助施工,花了18年的时间才于1843年完成了全长458m的第一条盾构法隧道。

1865年巴尔劳首次采用圆形盾构,并用铸铁管片作为地下隧道衬砌。

1869年,他用圆形盾构在泰晤土河底下建成了外径为2.21m 的隧道。

在盾构穿越饱和含水地层时,施加压缩空气以防止涌水的气压法最先是在1830年由口切兰斯爵士(Lord Cochrance)发明的。

1874年,在英国伦敦地下铁道南线的粘土和含水砂砾地层中建造内径为3.12m的隧道时,格雷塞德(Henry Greathead)(1844~1896)综合了以往所有盾构施工和气压法的技术特点,较完整地提出了气压盾构法的施工工艺,并且首创了在盾尾后面的衬砌外围环形空隙中压浆的施工方法,为盾构法发展起了重大的推动作用。

1880~1890年间,在美国和加拿大间的圣克莱河下用盾构法建成一条直径6.4m,长1800余m的水底铁路隧道。

盾构隧道的盾构机发展历史

盾构隧道的盾构机发展历史

盾构隧道的盾构机发展历史
1974年第一台土压平衡式盾构在东京采用。

该盾构由日本制造商IHI(石川岛播磨)设计,其外径为3.72m,用它掘进了长1900m的主管线。

在以后的年代里,很多制造厂商以土压盾构、压力保持盾构、软泥盾构、土壤压力盾构、受压的土壤盾构、泥压盾构、或泥浆状的土壤盾构等名称生产了“土压平衡式盾构”。

这些名称的盾构基本上都应用了同一种工法,国际上称为“土压平衡系统”(EARTH PRESSURE BALANCE SYSTEM,简称EPBS)。

土压平衡式盾构(EPB)自1974年在日本首次使用以来,以其独特的优势已广泛用于世界各地的隧道工程中。

1984年上海市隧道工程公司在我国首次应用从日本引进的φ4.36m土压平衡盾构建成了芙蓉江下水道总管工程。

土压平衡式盾构在在全国地铁、市政、能源等工程建设中得到更为广泛的应用。

实践证明,土压平衡式盾构因其能较好地控制地表沉降、保护环境、适应在市区和建筑密集处施工等优点,在我国正走向普及。

浅谈国内外盾构法施工的发展及其趋势

浅谈国内外盾构法施工的发展及其趋势

浅谈国内外盾构法施工的发展及其趋势摘要:本文介绍了盾构法施工国内外研究现状,及存在的问题。

关键词:盾构法施工;发展;趋势;问题一、盾构法施工----实测数据回归法实测数据回归是指通过对现场收集资料的回归与分析,用数理统计法从所得数值中回归出预测沉降的数学表达式。

1956年,两位英国教授Skempton最早就这一问题进行书面论述。

他们提出一个衡量建筑物危险程度的临界指标,“角变扭曲度”(即δ/L,其中δ表示地面局部沉降量,L表示减去倾斜影响后的建筑物长度)[9]。

保证建筑物安全的角变扭曲度应小于1/1000。

1969年,美国R.B.Peck通过对隧道地表沉降的实测数据分析,提出了地表沉降曲线近似于概率论中正态分布曲线,认为施工引起的地表沉降是在不排水的条件下由地层损失所引起,地表沉降槽的体积应等于地层损失的体积[10]。

并提出地面沉降横向分布估算的公式为:式中:—距隧道中心距离为处的地面沉降量(m);—沉降槽体积,也称地层损失量(推进每米);—隧道中心处的最大沉降量(m);—曲线反弯点的横坐标(m) ,亦称沉降槽宽度系数。

在墨西哥举行的国际土力学地基基础会议上,R.B.Peck作了著名的“State-of-the-Art Report”报告,对17例隧道工程进行了研究[11]。

此外R.B.Peck 还介绍了加有气压情况下开挖面稳定条件,开挖面到达之前发生的地面沉降的实例等。

1977年,半谷在东京举行的第九届国际土力学和地基基础会议的论文集内,整理了适用于地铁的25件关于盾构隧道的58例实测数据,给出了地表最大沉降量和地层条件的关系[12]。

如表1-1所示:表1-1地表最大沉降量和地层条件的关系英国是世界上最早修建地下铁道的国家,对地铁等城市隧道施工地表沉降问题研究较多。

它们的大部分工作是由TRRL (Transport and Road Research Laboratory)所进行的。

Clough & Schmidt (1974)在其关于粘土隧道工程的著作中,提出了饱和含水塑性粘土中的地面沉降槽宽度系数i由如下公式求取[13]:式中:Z ― 地面至隧道中心深度(m)R ― 隧道半径(m)。

盾构法隧道与应用——第一章第一节盾构法隧道的起源及历史(一)

盾构法隧道与应用——第一章第一节盾构法隧道的起源及历史(一)

第一节盾构法隧道的起源及历史据记载,人类设想建造各种用途的隧道已有上千年了。

1802年,英国采矿工程师阿贝尔·马蒂厄提出修建英吉利海峡隧道计划,设计从英法两岸用一种有掩体结构的挖掘机修筑隧道,每侧各挖掘18.7km,最后在瓦恩·班克浅滩对接贯通。

他建议在海峡地下通道的中间设计一个人工岛,隧道的照明由油灯提供,而烟囱将提供通风。

阿贝尔·马蒂厄1802年设计可行驶马车隧道1803年爆发了英法战役,阿贝尔·马蒂厄的计划未能付诸实施。

法国工程师布鲁诺尔(Mare Isambard Brunel)在伦敦从船蛀在船板上蛀孔,再用分泌物涂在孔的四周中得到启示,发现了盾构法掘进隧道的原理。

当时,圣·彼德斯勃格(St.Pertersburg)正规划一条跨越Neca河的工程,布鲁诺尔参与了此项目的设计研究。

布鲁诺尔看到每年桥墩总是遭受从Lagoda湖上漂流的大冰块的破坏,当时曾提议修建一隧道(用盾构法挖掘)。

后来,布鲁诺尔完善了构思,注册了专利。

布鲁诺尔构想的盾构机械内部结构由不同的单元格组成,每一个单元格可容纳一个工人独立工作并对工人起到保护作用(图l-5)。

采用的方法是将所有的单元格都被牢靠地装在盾壳上。

当时设计了两种施工方法,一种是当一段隧道挖完后,整个盾壳由液压千斤顶借助后靠向前推进;另一种方法是每一个单元格能单独地向前推进。

第一种施工法后来被采用,并得到推广应用,演变为成熟的盾构法,目前所有的封闭式盾构都是基于第一种方法。

此后,布鲁诺尔逐步完善了盾构结构的机械系统,设计成封闭式盾壳用全断面螺旋式开挖,衬砌紧随其后的(图l-6)。

它可以被认为是土压平衡盾构(EPB Shield)的先行者。

图1-5 布鲁诺尔注册专利的盾构,1806图1-6 M.I.Brunel 螺旋盾构,18181825年~1843年,布鲁诺尔在伦敦泰晤士河下的隧道工程中使用这种盾构,布鲁诺尔终于实现了他的设想(图1-7)。

盾构发展史

盾构发展史

第一章盾构技术进展概况1.1 引言盾构实际上是盾构机的简称。

它是一个横断面外形与隧道横断面外形相同、尺寸稍大,内藏挖土、排土机具,自身设有保护外壳的暗挖隧道的机械。

以盾构为核心的一整套完整的隧道施工方法称为盾构工法,概况如图1.1所示。

盾构工法的设想19世纪初产生于英国,至今已有200年的历史。

盾构工法问世以前隧道施工主要靠开挖法。

但就城市隧道施工而言,开挖法存在受地形、地貌、环境条件的限制;开挖法给城市交通带来极大不便;开挖产生的地层沉降较大;施工机械的噪声和振动;施工对环境构成的污染等诸多不利因素。

相对而言,盾构工法不存在这些缺陷,故受到人们的极大重视,并得以迅速发展。

人们不仅开发了软土盾构工法,而且还开发了适于卵石地层等多种其它地层的盾构工法。

此外,还在提高安全性、提高工程质量、缩短工期及降低成本等方面作了精心的研究和开发,并取得了较大的成功。

目前盾构工法在城市隧道施工技术中已确立了稳固的统治地位,且已成为一种必不可少的通用隧道施工技术。

目前隧道科技工作者正在致力于更先进的全机械化的计算机控制的智能化的盾构工法,适于地下大深度的盾构工法及特殊断面、特殊功能的盾构工法的研究和开发。

1.2 盾构法隧道的发展历史和现状18世纪未英国人提出在伦敦地下修建横贯泰晤士河隧道的构想,并对具体的掘削工法和使用机械等问题做了讨论。

到1798年开始着手希望实现这个构思,但由于竖井挖不到预定的深度,故计划受挫。

但横贯泰晤士河隧道的设想与日俱增,4年后Torevix决定由另一地点建造连结两岸的隧道,随后工程再次开工。

施工中克服了种种困难,当掘进到最后30m 时,开挖面急剧浸水隧道被水淹没,横贯泰晤士河的设想再次破灭,工程从开工到被迫终止用了5年时间。

横贯泰晤士河的计划在以后10年中未见显著进展。

1818年Brunel观察了小虫腐蚀木船底板成洞的经过,从而得到启示,在此基础上提出了盾构工法,并取得了专利。

这就是所谓的开放型手掘盾构的原型。

盾构法隧道概述

盾构法隧道概述
⑵推进系统:由若干组推进千斤顶组成。
⑶加泥与注浆系统:外加泥或水与切削下来的密封舱 内土体充分搅拌,使之成为可塑、渗透性极小的泥土, 并保持一定的动态平衡压力,控制开挖面土体不塌陷 和地面不发生较大沉降。注浆系统分盾尾同步注浆和 管片二次注浆,主要是保证地面沉降在允许范围内。
⑷螺旋输送机系统:将切削下来的土体输 送到皮带机或编组列车内,是控制密封舱内 保持一定土压与开挖面土压和水压平衡的 关键管片吊运系统。
⑼后续台车系统:主要为盾构机各种后配套设备 的台车编组。
2.2、泥水平衡盾构机的主要部件和系统结构
与土压平衡盾构机相比,无加泥装置、螺旋输送 机及其泥土输送编组列车等系统;但
多了泥水分离系统和泥水输送管理系统,其他结构 系统基本相同这里不再赘述。
3、盾构法隧道的优缺点 3.1、优点
⑴在盾构支护下进行地下工程的暗挖施工,不受 地面交通、河道、航运、潮汐、季节气候等条件 的影响,能较经济合理地保证隧道安全施工;
但由于泥水加压盾构,需要一套较复杂的泥水处理设备, 投资较大(大概就占了整个泥水盾构系统的三分之一的费 用) ;施工占地面积较大,在城市市区施工,有一定困难, 然而在某些特定条件下的工程,如在大量含水砂砾层,无 粘聚力、极不稳定土层和覆土浅的工程,以及超大直径盾 构和对地面变形要求特别高的地区施工,泥水加压盾构就 能显示其优越性。另外对某些施工场地较宽敞,有丰富的 水源和较好泥浆排放条件或泥浆仅需进行
⑵需要设备制造、气压设备供应、衬砌管片预制、 衬砌结构防水及堵漏、施工测量场地布置、盾构 转移等技术配合,系统工程协调复杂;
⑶建造短隧道时经济性差;对隧道施工半径过小 或隧道埋深过浅时,施工难度教大。
泥水加压式盾构机技术
泥水加压盾构是应用封闭型平衡原理进行开挖的新型盾构: 用泥浆代替气压支护开挖面土层,施工质量好、效率高、 技术先进、安全可靠,是一种全新的盾构技术。

第二章盾构法发展史与施工工艺

第二章盾构法发展史与施工工艺

网格式式盾构
1952年
手掘式盾构
在城市地铁中的应用: 北京地铁; 成都地铁; 南京地铁;
上海地铁;
广州地铁; 深圳地铁;
天津地铁;
杭州地铁; 西安地铁;
武汉地铁;
沈阳地铁; 。。。。。
在越江海隧道中的应用: 重庆主城区排水隧道:采用Φ6.6m泥水盾构施工, 已建成; 南水北调穿黄工程引水隧道:采用Φ8.8.m泥水盾 构施工,在建中;
(3)隧道埋深太浅,则盾构法施工困难很大,地表沉隆很 难控制。
(4)隧道衬砌、运输、拼装、机械安装等工艺复杂,同时 需要设备制造、衬砌管片预制、场地布置、盾构转移等不 同施工技术的相互配合,系统工程协调复杂。
2.3 盾构工法的基本过程
(1)在盾构隧道的始发端和到达端各修建一个竖井;
(2)盾构机在竖井内安装就位; (3)依靠千斤顶推力(作用在已拼装好的衬砌环上), 将盾构从始发竖井始发; (4)盾构在地层中沿着设计轴线掘进,同时不断出 土和安装管片环,并及时向盾尾空隙内注浆,防止地 层下沉; (5)盾构进入到达竖井后拆除。
泥浆注入: 在保持正面压力一定的情况 下,不断注入新鲜泥浆 泥浆运输: 用泥浆排送管路将泥浆运送 至泥浆处理设备,处理排放
穿连接螺栓及嵌缝: 将管片连成整体隧道衬砌,并 做嵌缝堵漏处理.
铺设道轨及管路: 盾构机前进同步铺设电瓶车 及机架道轨以及相应管路
预拌注浆浆液: 在工作井附近拌制壁后注浆 浆液
二次紧固穿孔螺栓: 将螺栓拧紧,增加隧道刚性
壁后注浆: 用惰性或活性浆液填塞管片 壁后空隙,并用以防水
封堵手孔: 用同色混凝土封堵手孔,防 止穿孔螺栓生锈腐蚀
壁后注浆浆液运输: 用管路将浆液运至注浆桶
二次注浆: 对局部隧道渗漏点进行二次 注浆防水

盾构法隧道施工的起源和发展

盾构法隧道施工的起源和发展

矩形隧道 双圆盾构
21世纪我国的盾构技术发展和展望
21世纪我国盾构技术发展进入了快速上升的阶段,2009年12月, 国务院又批复了22个城市的地铁建设规划,总投资超过8820 亿元。根据2009年北京国际城市轨道交通展览会上我国各城市 轨道交通发展规划图显示,至2016年我国将新建轨道交通线路 89条,总建设里程达2500 公里。盾构施工将在地铁建设中发 挥不可替代的作用。
我国盾构技术的早期发展
1966年5月,上海隧道建设公司用盾构法设计建造中国 第一条水底公路隧道——打浦路隧道。打浦路隧道全 长2.7km,隧道部分长1320m,外径10m。所用网格盾构 有所改进,敞开式施工可转换为闭胸式施工。
直径10.22m盾构掘进机
打浦路隧道工程施工
80年代-我国盾构技术的发展
直径4.35m土压平衡盾构掘进机结构图
90年代-我国盾构技术的发展
1995年,上海隧道工程股 份有限公司开始研究矩形 隧 道 技 术 , 1996 年 研 制 了 一 台 2.5m×2.5m 可 变 网 格 矩形隧道掘进机,顶进矩 形隧道60m。
1996年,上海隧道工程股 份有限公司总承包施工延 安东路隧道南线工程。长 1300m的圆形主隧道采用从 日 本 引 进 的 直 径 11.22m 的 泥水加压平衡盾构掘进机 施工。填补了我国泥水平 衡盾构施工隧道的空白。
Elb隧道 Clichy
长度 (m)
460 90 403 10200 580
465
375 1230 2150
920
直径 (m) 11.3х6.7
2.85 2.20 3.10~3.45 5.20
2.50
4.00 9.75 3.05
5.95

盾构法隧道施工原理(2014.6.14)

盾构法隧道施工原理(2014.6.14)

预制管片衬砌,一次成型,施工质量易于控制。
经济效率显著。 高安全。施工作业环境好,施工人员安全得到有 高适应。不影响地面交通,不影响航运通航,不
效保障。对周围环境影响小,地表沉降易于控制。
受风雨等气候条件影响。不受地质限制。
(四)盾构法隧道施工的缺点
盾构机制造周期长,设备投入较大;
准备难且费用高,短距离隧道不经济;
• • • • 盾构法隧道施工的工作原理 盾构法隧道施工的特点 盾构法隧道施工的优点 盾构法隧道施工的缺点
(一)盾构法隧道施工工作原理
盾构机千斤顶利用已成型管片提供反力,向前 施加推力,利用刀盘旋转切削掌子面土体(保 持土仓压力),通过螺旋输送机(管道)把渣 土输送出来,拼装机拼装管片形成衬砌,管片 背后同步注浆,形成永久结构。
北京地铁
• 2000 年 9 月,北京地铁五号线雍和宫站至北 新桥站区间首次采用盾构法施工。
• 2000 年 -2014 年,高速发展期。建成运营 17 条线路,总长 527 公里。日均客流约 1000 万 人次。是国内最繁忙的轨道交通系统。 • 根据线网规划,2020年将建成30条线路,运 营里程超过1000公里。
盾构机下井 始发端头加固
始发井
盾构机就位调试
初始掘进 负环拆除
洞门密封圈安装
洞门围护墙凿除
反力架安装
正常掘进
到达端头加固 到达车站 过 站 再次就位调试 再次始发
洞门密封圈安装
盾构机托架
中间站
盾 构 法 隧 道 施 工 流 程 图
到达终点站
盾构机解体外运
到达站
(二)局部流程
准备工作(风、水、电、浆液、渣车、管片) →启动液压系统 →启动刀盘 →启动次级渣土 运输系统(皮带机)→启动推进千斤顶→启动 首级渣土运输系统(螺旋机)→同步注浆→停 止掘进→安装管片→准备下一环掘进。 开挖→出土→注浆→拼装

盾构法发展历史

盾构法发展历史
1963年,上海隧道股份结合上海软土地层对盾构掘进机、 预制钢混凝土衬砌、隧道掘进施工参数,隧道接缝防水 进行了系统的试验研究。研制了1台直径4.2m的手掘式盾 构进行浅埋和深埋隧道掘进试验,隧道掘进长度68m。
我国盾构技术的早期发展
1966年5月,上海隧道建设公司用盾构法设计建造中国
第一条水底公路隧道——打浦路隧道。打浦路隧道全 长2.7km,隧道部分长1320m,外径10m。所用网格盾构 有所改进,敞开式施工可转换为闭胸式施工。
Glasgow Harbour road Sewer gallery(Clichy) Spree road隧道(Berlin) Orleans Railway(Paris) Sewer隧道(Hamburg) Elb隧道 Clichy
10200
580 465 375 1230 2150 920
3.10~3.45
球体盾构机亦称直角盾构机,其刀盘部分设计为球体,可以进 行转向。球体盾构施工法又称直角方向连续掘进施工法。 该方法对施工场地要求较小,并且可以进行直角转弯施工。 对未来城市小半径曲线地铁避让建筑物基础有很强的适用性。 球体盾构的施工方法分为“横一横”和“纵一横”两种。 “横一横”方向连续掘进是先沿一个方向完成施工后,水平 旋转球体进行另一个横向隧道的施工,可以满足盾构转弯的 要求。“纵一横”方向连续掘进施工则是从地面开始连续沿 直角方向向下开挖到达预定位置后进行转向,然后实施横向 隧道施工的方法。
泥水盾构 半机械式 手掘式盾构 手掘式盾构 土压式盾构
20世纪60年代中期至80年代盾构掘进工法继续发展,产生 各种平衡式的工法,盾构机的种类手掘式、半机械式、机 械式、泥水式和土压式。
我国盾构技术的早期发展
20世纪50年代初,东北阜新煤矿用直径2.6m的手掘式盾构 及小混凝土预制块修建疏水巷道,这是我国首条用盾构掘进 机施工的隧道。

盾构发展史及构成和分类

盾构发展史及构成和分类

6米以上盾构国内使用情况
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 管片规格mm Φ6000—5400 Φ6200—5500 Φ6700—6000 Φ8500—7700 Φ8700—7900 Φ9000—8100 Φ9600—8700 Φ10000—9000 Φ10800—9800 Φ11000—10000 Φ11200—10200 Φ12800—11700 Φ14500—13300 Φ15000—13700 盾构类型 土压、泥水 土压、泥水 土压、泥水 土压 土压 泥水 土压 泥水 土压 泥水 泥水 泥水 泥水 土压 泥水 泥水 开挖直径mm Φ6280 Φ6440 Φ6980 Φ8280 Φ8830 Φ9030 Φ9330 Φ9960 Φ10260 Φ11182 Φ11380 Φ11640 Φ13230 Φ14270 Φ14960 Φ15510 应用情况 地 铁 东莞~深圳快速地铁 秦山核电站 惠深莞城际 穿黄、台山核电站 长株潭城际 广深港高铁 北京地铁 广深港高铁 武汉长江过江隧道 南京双线地铁 广深港高铁 上海外滩隧道 南京长江过江公路隧道 上海长江过江公路隧道
1
1. Zeile bleibt immer frei
2
EPB / Mixshield Range. 粒径分布与盾构选型图
Sieve Size Sand Medium
3
4
5
Portion of grains < d in % of the total amount
100 90 80 70 60 50 40 30 20 10 0
依靠控制泥浆质量、压力及 推进速度、保持送排泥量的 动态平衡,对压力波动敏感、泥水平 压力传递迅速、便于压力控 衡盾构 制、控制精度高,对地面沉 降量控制精度高。

简述盾构的发展历程

简述盾构的发展历程

简述盾构的发展历程盾构是一种施工技术,用于地下开挖。

它起初是在19世纪末由英国工程师James Henry Greathead发明的,用于解决伦敦市区地下隧道建设的挑战。

随着技术的不断改进和创新,盾构在过去的一个多世纪里取得了巨大的发展。

盾构的发展历程可以追溯到1860年代。

当时,伦敦市的污水处理厂需要隧道连接,以便将污水输送到泰晤士河。

然而,由于伦敦市区地下存在的各种地质条件和建筑结构,传统的开挖方法变得困难和危险。

为了解决这个问题,Greathead发明了一种新的开挖方法,即盾构。

他的设计在1871年之后首次得以实施,在建设伦敦地铁的过程中取得了成功。

20世纪初,盾构技术在各个国家开始被广泛采用。

在美国,纽约市地下铁道的建设成为盾构技术的重要项目。

在20世纪30年代,美国建筑师John Parker发明了一种气压式盾构机,使得盾构技术能够在更困难的地质条件下使用。

这种新的盾构机被用于纽约曼哈顿区的地铁建设,条件非常苛刻,包括深层软土和高水压。

随着盾构技术的进步,它的应用范围也不断扩大。

在20世纪50-60年代,日本开始使用盾构技术建设大规模的隧道工程,包括东京的地铁系统。

日本还改进了盾构机的设计,使其更加高效和可靠。

到了20世纪70年代,盾构技术已经得到全球范围内的广泛应用。

新的发展包括了更大更强大的盾构机,以及多种类型的盾构机,适用于不同的地质条件和项目需求。

例如,硬岩盾构机用于开挖岩石,而土压平衡盾构机适用于软土和水下。

21世纪初,盾构技术取得了更大的突破和创新。

例如,液压盾构机的出现改变了传统盾构机的工作方式。

液压盾构机使用压缩空气和水流来推进盾构。

这种新型盾构机的优势在于更高的推进速度和效率,同时降低了噪音和振动。

随着城市化进程的不断加快,地下空间的利用变得越来越重要。

盾构技术在城市地下工程中扮演着至关重要的角色,包括地铁、隧道、地下管道和地下储存设施等。

盾构的发展历程展示了人类对技术的不断创新和进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盾构施工技术自1823年由布鲁诺尔首创于英国伦敦的泰晤土河的水底隧道工程以来,已有170余年的历史。

在这170余年的风风雨雨中,经过几代人的努力,盾构法已从一种只能在极少数欧美发达国家中才见应用的特殊技术,发展成为在发达国家中极为普通,在发展中国家中亦逐渐得到应用的隧道施工技术。

据说最早发明盾构法的思路是来自发明者的一个有趣的发现,英国的布鲁诺尔发现船的木板中,有一种蛀虫钻出孔道,并用它自己分泌的液体覆涂在孔壁上。

1818年布鲁诺尔在蛀虫钻孔的启示下,最早提出了用盾构法建设隧道的设想,并且在英国取得了该施工法的专利。

1825年,布鲁诺尔用他自己的想法制成盾构,并第一次在泰晤士河施工了水底隧道。

这条道路隧道的断面(11.4m×6.8m)相当大,施工中遇到了坍方和水淹,加上隧道的损坏,当时处于难于进展的状态,由于初始未能掌握控制泥水涌入隧道的方法,隧道施工中两次被淹,后来在东伦敦地下铁道公司的合作下,经过对盾构施工的改进,用气压辅助施工,花了18年的时间才于1843年完成了全长458m的第一条盾构法隧道。

1865年巴尔劳首次采用圆形盾构,并用铸铁管片作为地下隧道衬砌。

1869年,他用圆形盾构在泰晤土河底下建成了外径为2.21m 的隧道。

在盾构穿越饱和含水地层时,施加压缩空气以防止涌水的气压法最先是在1830年由口切兰斯爵士(Lord Cochrance)发明的。

1874年,在英国伦敦地下铁道南线的粘土和含水砂砾地层中建造内径为3.12m的隧道时,格雷塞德(Henry Greathead)(1844~1896)综合了以往所有盾构施工和气压法的技术特点,较完整地提出了气压盾构法的施工工艺,并且首创了在盾尾后面的衬砌外围环形空隙中压浆的施工方法,为盾构法发展起了重大的推动作用。

1880~1890年间,在美国和加拿大间的圣克莱河下用盾构法建成一条直径6.4m,长1800余m的水底铁路隧道。

二十世纪初,盾构施工法已在美、英、德、苏、法等国开始推广。

30~40年代在这些国家已成功地使用盾构建成内径自3.0~9.5m的多条地下铁道及过河公路隧道。

仅在美国纽约就采用气压法建成了19条重要的水底隧道,盾构施工的范围很广泛,有公路隧道、地下铁道、上下水道以及其他市政公用设施管道等。

苏联40年代初开始使用直径为6.0~9.5m的盾构先后在莫斯科、列宁格勒等市修建地下铁道的区间隧道及车站。

从20世纪60年代起,盾构法在日本得到迅速发展,除了大量在东京、大阪、名古屋等城市的地下铁道建设中外,更多地是用在下水道等市政公用设施管道建设中。

70年代,日本及联邦德国等国针对在城市建设区的松软含水地层中由于盾构施工所引起的地表沉陷、预制高精度钢筋混凝土衬砌和接缝防水等技术问题,研制了各种新型的衬砌和防水技术及局部气压式、泥水加压式和土压平衡式等新型盾构及相应的工艺和配套设备。

值得一提的是日本的盾构发展情况。

日本是欧美国家以外第一个引进盾构施工技术的国家。

1939年的关门隧道是日本首次采用盾构施工技术的隧道工程。

由于战争及战后困难时期的缘故,此项技术一直没有得到发展。

直到1957年东京地铁的丸之内线采用盾构施工技术修建了一段区间隧道,1961年名古屋地铁采用此法修建了觉王山区间隧道取得圆满成果之后,
盾构施工技术在日本有了飞速的发展。

在短短的20余年之内共制造了2000余台盾构,在世界上处于领先地位。

日本的机械式盾构是和手掘式盾构同时研究发展起来的。

1963年,大阪市上水道大淀送水管工程(总长227m)首次应用了外径2.592m(隧道外径2.35m)的机械式盾构。

1964年,大阪市地下铁道2号线谷町工区(总长447m)的区间隧道中,采用了外径6.97m(隧道外径6.8m)的大断面机械式盾构。

同年,在东京都下水道局神谷3丁目2区(总长668.4m)采用了外径3.4m的(隧道外径3.30m)机械式盾构,标准施工月进度达360m。

1967年,日本近畿铁道难波线上本町难波间1488m区间采用了外径为10.041m (隧道内径9.90m)的机械式盾构。

从此,人们对机械式盾构更为关注,使能够用于日本那样复杂地层的各种机械盾构进一步得到了发展。

特别是小断面盾构,在缩短工期的研究中也取得了很大的进步。

同时在软弱地基中还研制了挤压式盾构。

1993年建成的、连接英法两国的英吉利海峡隧道,全长48.5km,海底段长37.5km,隧道最深处在海平面下100m。

这条隧道全部采用盾构法技术施工,英国一侧共用6台盾构,3台施工岸边段,3台施工海底段,施工海底段的盾构要向海峡中单向推进21.2km ,与从法国侧向英国方向推来的盾构对接。

法国侧共用6台盾构,2台施工岸边段,3台施工海底段。

海峡隧道由2条外径8.6m的单线铁路隧道及1条外径为5.6m米的辅助隧道组成。

由于海底段最大深度达100m,因此无论盾构机械还是预制钢筋混凝土管片衬砌结构均要承受10个大气压的水压力,又由于单向推进21.2km ,盾构推进速度必须达到月进1000m的速度才能在3年左右的时间内完成,因此盾构的构造及其后续设备均须采用高质量的耐磨耗及腐蚀的材料。

所以该隧道的修建标志着盾构施工技术的最新水平。

近年来,日本把机械式盾构作了改进,研制出了用加压泥浆稳定开挖面的泥水加压盾构和利用开挖出的土体作平衡开挖面的土压平衡盾构。

相关文档
最新文档