热力学内容总结课的教学探讨

热力学内容总结课的教学探讨
热力学内容总结课的教学探讨

工程热力学与传热学课程总结与体会

工程热力学与传热学课 程总结与体会 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

工程热力学与传热学 题目:工程热力学与传热学课程总结与体 会 院系:水利建筑工程学院给排水科学与工 程 班级:给排水科学与工程一班 姓名:张琦文 指导老师:姚雪东 日期:2016年5月1日 认识看法地位作用存在问题解决措施未来 发展展望 传热学在高新技术领域中的应用 摘要: 热传递现象无时无处不在【2】它的影响几乎遍及现代所有的工业部门【1】也渗透到农业、林业等许多技术部门中。本文介绍了航空航天、核能、微电子、材料、生物

医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识【1】而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。 前言:通过对传热学这门课程的学习,了解了传热的基本知识和理论。发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。传热学是研究由温度差异引起的热量传递过程的科学。传热现象在我们的日常生活中司空见惯。早在人类文明之初人们就学会了烧火取暖。随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

第一章 化学热力学基础 公式总结

第一章 化学热力学基础 公式总结 1.体积功 We = -Pe △V 2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程 .定温可逆时: Wmax=-Wmin= 4.焓定义式 H = U + PV 在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U 在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H 5.摩尔热容 Cm ( J·K-1·mol-1 ): 定容热容 CV (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程 适用对象 : 任意的气体、液体、固体物质 ) 定压热容 Cp ?=?2 1 ,T T m p dT nC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程 适用对象 : 任意的气体、液体、固体物质 ) 单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp,m = 4R 1 221ln ln P P nRT V V nRT =n C C m = ?=?2 1 ,T T m V dT nC U

Cp,m = Cv,m + R 6.理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结 7.定义:△fHm θ(kJ·mol-1)-- 标准摩尔生成焓 △H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变; △fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。 8.热效应的计算 由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程 △rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1) 10.热机的效率为 对于卡诺热机 12 11Q Q Q Q W R +=- =η dT C p T T ? ?2 1 1 2 1211Q Q Q Q Q Q W +=+=-=η121T T T -=

道德与法制教研组同课异构教研活动总结

道德与法制教研组同课异构教研活动总结“宝剑锋从磨砺出,梅花香自苦寒来。”对教师而言,好课是磨出来的。为促进我校教师专业成长,提高教育教学质量。2020年11月10日,我校组织滨州实验学校道法组以同课异构的形式进行了“议题式教学”主题教研活动。本次活动由学校教科研处安排,我校初中道法组顾问焦爱玲老师主持组织,初中道法组全体教师参与。校本部石学芳、尹娜老师、南校区李艳军老师同上一节课《我对谁负责,谁对我负责》。三位老师上完课后,道法组的教师集中对两节课进行评课,就三节课中的优点、不足、改进建议进行了深入的讨论和交流。 纵观整个活动,老师们都高度重视,所有的课堂都准备充分、设计精妙、过程精彩、特色鲜明、效果突出,同一内容从不同的角度切入,用不同的方式讲解,注重学生思维的引导注重师生的有效互动,注重教学与生活的紧密联系,体现了“以学生为中心”的教育理念,同样的教学内容演绎了不一样的精彩。 石学芳老师运用总议题、分议题的方式将本课重点内容加以提炼,第一目中的四个表格更是形象生动地总结归纳了责任与角色含义、来源。把课堂真正还给学生,体现以生为本。在快乐中学习新知,在生活中真正感悟责任的重要意义。 尹娜老师关注学生已有的生活经验和知识背景,引导学生经历了一个探索知识、获取知识的过程。尹老师善于挖掘教学资源,运用张定宇的故事讲本节课内容串联起来,在学习榜样力量的同时更是展示了同学们日常生活中的照片,真正的感悟责任。

李艳军老师以歌曲的律动带学生们走进责任的课堂,从感悟日常生活中责任来源于哪里到案例探讨校园里、公交车上、上课时有哪些不负责任的行为。一步步带领学生感悟知识、感受道法的趣味,并能够学以致用。让孩子们在游戏中快乐的学习。 课后,我们围成一团,以“议题式教学”为核心,就三节课展开了头脑风暴式的研讨。各听课教师知无不言、言无不尽,畅所欲言,对三节课分别做了点评,并提出了自己中肯的建议,相互取长补短,整个活动过程体现了浓浓的教研氛围。 本次“议题式教学”同课异构研讨活动为我们搭建了一个畅谈教学思想、交流教学设计和展示教学风格的平台。在活动中,无论是对于执教者还是听课者,都受益匪浅。作为执教者,不但能在课堂教学相互的比较中学习,充分认识到自己对教材的理解和处理等方面与他人的差异,从而达到优势互补、相互切磋与共同提高的目的。而作为听课者,不但能从几位老师智慧火花的进射中有了对教学活动多角度、全方位的思考,而且还能结合自身教学实践进行教学反思,从而有效地促进了教师专业化成长。 苏霍姆林斯基说过:任何一个教师都不可能是一切优点全面的体现者,每一位教师都有他的优点,有别人所不具备的长处,能够在精神生活的某一个领域里比别人更突出、更完善地表现自己。但与此同时,我们也相信,每位教师肯定也有他的缺点所在。这正是我们这次活动所追求的不同教学风格的“异曲同工”的境界。相信,通过本次活动,我们对“议题式教学”的认识又有了更深层次的认识,它一定会助

工程热力学期末总结

《工程热力学》期末总结 一、闭口系能量方程的表达式有以下几种形式: 1kg 工质经过有限过程:w u q +?= (2-1) 1kg 工质经过微元过程:w du q δδ+= (2-2) mkg 工质经过有限过程:W U Q +?= (2-3) mkg 工质经过微元过程:W dU Q δδ+= (2-4) 以上各式,对闭口系各种过程(可逆过程或不可逆过程)及各种工质都适用。 在应用以上各式时,如果是可逆过程的话,体积功可以表达为: pdv w =δ (2-5) ? = 2 1 pdv w (2-6) pdV W =δ (2-7) ? = 2 1 pdV W (2-8) 闭口系经历一个循环时,由于U 是状态参数,?=0dU ,所以 W Q ??= δδ (2-9) 式(2-9)是闭口系统经历循环时的能量方程,即任意一循环的净吸热量与净功量相等。 二、稳定流动能量方程 t s w h w z g c h q +?=+?+?+?=2 21 (2-10) (适用于稳定流动系的任何工质、任何过程) ? - ?=2 1 vdp h q (2-11) (适用于稳定流动系的任何工质、可逆过程) 三、几种功及相互之间的关系(见表一) 表一 几种功及相互之间的关系

四、比热容 1、比热容的种类(见表二) 。 )/3 kg m 2、平均比热容:1 21 1221 20 t t t t c t t c t t c - -= (2-12) 3、利用平均比热容计算热量:11220 t t c t t c q -= (2-13) 4、理想气体的定值比热容(见表三)

其中:M M R R g 83140= = [J/(kg ·K)] M —气体的摩尔质量,如空气的摩尔质量为28.96kg/kmol 。 空气的kmol /kg 96.28K)kmol /(J 83140?= = M R R g =287[J/(kg ·K)],最好记住空气的气体常数。 引入比热容比k 后,结合梅耶公式,又可得: g p R k k c 1 -= (2-14) g V R k c 1 1-= (2-15) 五、理想气体的热力学能、焓、熵(见表四) (焓的定义:pv u h += kJ/kg , 焓是状态参数) 六、气体主要热力过程的基本计算公式(见表五)

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的 pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 pV (m/M )RT nRT 或 pV m p (V /n ) RT 式中p , V , T 及n 单位分别为Pa, m 3, K 及mol 。 V m V /n 称为气体的摩尔体 积,其单位为m 3?mol -1。R=8.314510 J mol -1 K 1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 ( 1) 组成 摩尔分数 式中 n A 为混合气体总的物质的 量。 V m ,A 表示在一定T , p 下纯气体A 的摩 A 尔体积。 y A V mA 为在一定T , p 下混合之前各纯组分体积的总和。 A ( 2) 摩尔质量 述各式适用于任意的气体混合物 (3) y B n B /n p B / p V B /V 式中P B 为气体B ,在混合的T , V 条件下,单独存在时所产生的压力,称为 B 的分压力。V B 为B 气体在混合气体的T , p 下,单独存在时所占的体积。 y B (或 x B ) = n B / n A A 体积分数 B y B V m,B / yAV m,A A y B M B m/n M B / n B B B B 式中 m m B 为混合气体的总质量, n B n B 为混合气体总的物质的量。上 M mix B

叮叮小文库3. 道尔顿定律 p B = y B p, p P B B 上式适用于任意气体。对于理想气体 P B n B RT/V 4. 阿马加分体积定律 V B ri B RT/V 此式只适用于理想气体。 第二章热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 U Q W 或dU 8Q SW 9Q P amb dV SW' 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中P amb为环境的压力,W为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 H U pV 3. 焓变 (1)H U (PV) 式中(pV)为pV乘积的增量,只有在恒压下(pV) P(V2v1)在数值上等于体积功。 2 (2)H 1n C p,m dT 此式适用于理想气体单纯pVT变化的一切过程,或真实气体的恒压变温过程,

2019年同课异构教研活动的总结

同课异构教研活动的总结 本学期,中心小学的教学教研工作主要以校区教学教研工作计划为参考,认真贯彻执行《基础教育课程改革纲要》,大力推进教育科研,深化课堂教学改革,扎实开展校本教研活动。以学生发展为根本,坚定不移地推进教学方式和学习方式的转变,以提高课堂教学效率为重点,全面提高教育教学质量。现就一学期来对我校的一些做法作如下总结。 一、强化学习,提升教师的整体素质。 1、开展了多读书,读好书活动采取多种形式鼓励教师多购书,多读书,读好书,使学校真正成为“书香校园”。 2、继续开展教师基本功训练活动每周抽出一定的时间进行“三笔字”的训练,夯实教师的基本功。 3、充分发挥远程教育和一体机的功能全体教师参与了继续教育网上培训,让每位教师进一步熟悉一体机设备并能熟练运用,会制作课件,鼓励教师运用课件上课,会用电脑备课,尽量在网上学习,在网上交流,鼓励教师创建自己的博客。 二、抓好常规教研,提高教研水平。 (一)建构学习平台,促进专业成长。 1、加大教育理论学习,促进专业成长。我校结合建设书香校园活动,掀起读书热潮,特别是开展教师读书活动,网上学习与网下学习相结合,学习有关教育教学理论,既能及时了解教改动态信息,开阔视野,又能提高教育教学理论水平。

2、通过“走出去,请进来”的方式加强对教师业务能力的培训积极搞好校内的校本培训,在校内开展名师视频学习和校内公开课交流活动。同时还有针对性的地组织教师参加各级各类的听课观摩活动。在这一学期里,我们组织全体语文教师参加了语文主题学习论坛及观摩课活动,不断提高教师的教研水平和教学能力。并邀请兄弟学校到我学校观摩课改课堂,对我们的课堂提出指导性建议,共同探讨课堂改革话题。 在校内教研活动中,我校成立了以xx老师为语文教研组长,xx 老师为数学教研组长的教研组织。要求教研组长,每学期初制定好该组教研计划,写好教研活动记录,学期末做好教研工作总结,每周四进行语文听课教研活动,每周五进行数学听课教研活动。要求每位教师在一学期内必须要讲一节校内公开课,教师们互相交流,互相学习,取长补短。本学期,我校共举行教研活动17次,取得了较好的教研 效果。 另外,我校还要充分利用学校的远程教育设备,组织教师学习 专家讲座,优秀示范课等,和校内听课同步进行。本学期校长共听课45节,主任听课共38节,每位教师听课20多节。 3、通过参加校区赛课活动,提高教师的素质我们学校本学期共推出无名教师参加校区的月赛课活动,均取得了优异的成绩,一等奖一名,二等奖三名,三等奖一名。在赛课活动中,老师们均在各方面展示了自己的高素质。教态亲切、自然、普通话标准,语言准确,富

工程热力学大总结_第五版

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c ===''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 221mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++ =221 2.gz c u e ++=221 3.U E = 或u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.102000121221t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把()T f c v =的经验公式代入?=?2 1dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1121Λ 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?21pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

高中体育和义务教育体育中心组开展“同课异构”课教研活动总结

ⅩⅩ高中体育和义务教育体育中心组开展“同课异构”课教研活动总结 在新课程改革不断深入的过程中,我们越来越清晰的认识到:新课改的重心在课堂,课改的成败关键在教师。我们不断探索提升教师专业素质的有效途径,形成了“同课异构” 校本教研的模式,我们体育教育中心组从校本教研的意义、解决问题的方式途径及操作流程等方面进行了较深入的研究,以螺旋式研课为主导,带动校本教研走向常态化、制度化,对引领教师自我反思和专业成长具有较强的现实意义。 5月21日上午,ⅩⅩ体育教研中心组在文昌三小和文昌中学分别举行了“同课异构”课的教研活动。海口市第二十七小学朱险峰老师、儋州市第一小学黎玉妹老师和琼海市实验小学凌仕赞老师围绕同课题《快速跑》进行异构并作课。高中组由乐东县黄流中学孙海荣老师、文昌中学徐涛老师、海口市第一中学李多智老师作课。来自全省各市县兄弟学校体育学科的老师参加了此次教研活动,ⅩⅩ体育教研中心组成员亲临现场指导。 活动中,六位老师分别凭借不同的教学媒介执教了相同题材的《快速跑》和篮球:《三攻二、二防三》。他们以个性化的课堂教学,诠释了“同课异构”常态课的内涵。其中,海口市第二十七小学朱险峰老师的“独特新颖教学设计”;儋州市第一小学黎玉妹老师和琼海市实验小学凌仕赞老师的“整体呈现、局部深入”的教学设计,以及“学科知识的整合”都给听课的老师们留下深刻的印象。 “同课异构”是指同一教学内容由不同教师在不同的班级采取不同的教学方 法展开教学的一种教研形式,其目的是不断优化课堂,提高课堂教学的有效性。 “同课异构” 的过程是“实践、反思、再实践、再反思”的循环往复的过程,是教师业务水平反复锤炼的过程。这既是教师教学方式、研究方式的一场变革,同时也是教师学习方式、思考方式的一种变革。 “同课异构”聚焦课堂,提高课堂实效,融理论研讨与课堂实践于一体,引领广大教师深入课堂,潜心钻研,提高了课堂教学效率。 “同课异构”融合集体智慧,从教师个体、教研组、学校三个层面开展了互动合作式的研究。教师彼此真诚坦露自己的教学思想和教学困惑,集思广益,扬长避短,融合集体智慧,实现优势互补,使自己的教育思想和教学行为不断得到荡

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性 要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够 的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假 设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只 适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε =没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应 的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服 极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。 会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

热力学公式总结

第一章气体的pVT关系 主要公式及使用条件 1. 理想气体状态方程式 pV =(m/M )RT =nRT 或pV m = p(V/n) = RT 式中p, V, T及n单位分别为Pa, m3, K及mol。V m =V /n称为气体的摩尔体 积,其单位为m3.mol-1。R=8.314510 J mol-1-K-1,称为摩尔气体常数。 此式适用丁理想气体,近似地适用丁低压的真实气体。 2. 气体混合物 (1)组成 摩尔分数y B (或X B) = n B/,n A A 体积分数 B = y B V m,B y A V "m,A 式中£ n A为混合气体总的物质的量。V*m,A表示在一定T, p下纯气体A的摩A 尔体积。z y A V%A为在一定T, p下混合之前各纯组分体积的总和。A (2)摩尔质量 M mix = Y B M B=m/n = L M B/' n B B B B 式中m=£m B为混合气体的总质量,n=£n B为混合气体总的物质的量。上述各式适用丁任意的气体混合物。 (3)y B =n B / n = P B / p = V;/V 式中p B为气体B,在混合的T, V条件下,单独存在时所产生的压力,称为 B 的分压力。V B*为B气体在混合气体的T, p下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p, p = % P B B 上式适用丁任意气体。对丁理想气体 P B =A B RT/V 4. 阿马加分体积定律 ..*

V B = n B RT / p 此式只适用丁理想气体。 第二章热力学第一定律 主要公式及使用条件 1.热力学第一定律的数学表示式 U =Q W 或 d U = a Q+a W =a Q-a 网V ' W 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中P amb为环境的压力,W'为非体积功。上式适用丁封闭体系的一切过程。 2.焰的定义式 H =U pV 3.焰变 (1) H = U (pV) 式中以P V)为P V乘积的增量,只有在包压下A(P V) = P。-V1)在数值上等丁体积功。 2 (2) H = 1 nC p,m dT 此式适用丁理想气体单纯pVT变化的一切过程,或真实气体的包压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4.热力学能(乂称内能)变 2 U = 1 nC v,m dT 此式适用丁理想气体单纯pVT变化的一切过程。 5.包容热和包压热 Qv = U ( dV = 0W =' 0 Q p = H (d p =0,W' =0) 6.热容的定义式 (1)定压热容和定容热容 C p = aQp/dT =(州 /钉)p C v =8Q V /dT =(印 /可)V (2) 摩尔定压热容和摩尔定容热容

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c = = = ''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 2 2 1mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++=2 21 2.gz c u e ++=22 1 3.U E = 或 u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10 20 121 2 2 1 t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把 ()T f c v =的经验公式代入?=?2 1 dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1 1 21 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2 1pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21 pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

同课异构活动总结

卧龙小学小学语文学科“同课异构”活动总结 为了进一步加强语文教师队伍建设,鼓励教师采用多种方式进行有效的课堂教学,提高教学水平,促进教师专业成长,侯营联校教研室组织了“同课异构”课堂教学展示活动,力图通过这次活动能为我校广大教师提供一个相互启发、相互学习的平台。“同课异构”指同一教学内容,不同教师,不同构想,不同上法的一种教学实践活动,体现了“教无定法”的教学理念。 5月15、16日观摩了二年级语文老师孔凡俊、王晓霞的课《29 数星星的孩子》,5 月17日观摩了一年级语文老师冯丽娟、付有荣的课《乌鸦喝水》,真可谓是各具特色,各有风味。从课堂效果来看,都能根据学生实际、现有的教学条件和教师自身的特点进行不同的教学设计;每节课都做了精心的准备,对教学目标,教学重点、难点、教学策略等环节的设计与组合都有了科学的把握,相同的教学内容,运用不同的教学手段和不同的学习指导方法,尽显教师的独特教学风格。下面我从以下几点进行总结 一、亮点: 1、积极参与、认真点评 或多或少探讨、分析上课的优点和不足。 2、激活了教师的潜能。 这次活动充分展现了教师们的成长和进步,评课的教师通过评课探讨、分析上课的优点和不足这本身就是进步。上课教师表现出有较强的教学能力,驾驭教材的能力,个人综合素质,积极钻研,并根据新教材特点进行教学,教学中渗透课标要求和理念。如王晓霞教师的课过程细致入微、设计科学合理、风格独特见长、形成了自已的严谨治学的教学特色;冯丽娟老师教学思想转变较快,课上能落实语文课程的要求,尽量面向大多数学生。关注对学生情感、态度、价值观的培养,教师组织、指导、合作的作用体现得较好。孔凡俊、付有荣老师注重了朗读训练的落实。 3、教学思想、教学理念得到转变。 通过这四节课,可看出教师的课堂角色已经开始发生了变化,从单一的知识传授者,转为关注学生的学习方式、学习愿望和学习能力的培养,课堂中出现了师生互动、生生互动、平等参与的生动局面。 4、努力体现“实”与“活”的结合 所谓“实”,表现在教师课堂上花架子少了,展示了各自朴实的教学风格,让学生真正学到知识,教学目标明确,训练的意识加强。 5、合理、恰当地运用教学媒体辅助教学。 这次活动中,四位教师使用多媒体,并能在教学中合理、恰当地使用课件,让学生从直观上去学习、感受,极大地提高了教学效率。 二、不足之处总结如下: 1、教师的角色还需要从根本上得到改变。在教学过程中,教师应是组织者、引导者、参与者、评价者。这样,上课时,老师们和学生的交流自然而然的就轻松愉快了很多,课堂气氛也就随之活跃了起来,学生也会思维活跃,只有在这样的氛围中才能让学生更愉快地学,更主动地学。 2、对教材挖掘得不深不透,对学生情况没有进行客观、科学地分析,有些环节的设计不明确,设计没有清晰的认识,“为什么教”、“为什么这样教”,学生“为什么学”,“为什么这样学”心中没数。教学中有些问题的设计没有有针对性

工程热力学读书笔记

2011/6/1 第一部分:绪论 1、工程热力学 工程热力学是研究热能有效利用及其热能与其他形式能量转换规律的科学。 2、热力学分类 工程热力学(热能与机械能),物理热力学,化学热力学等 3、热力装置的共同特点 热源和冷源、工质、容积变化功、循环 4、热效率 1 W Q η= =收益 代价 5、工程热力学研究内容 能量转换的基本定律,工质的基本性质和热力过程,热工转换设备及其工作原理,化学热力学基础。 6、工程热力学研究方法 (1)宏观方法:连续体(continuum),用宏观物理量描述其状态,其基本规律是无数经验的总结(如:热力学第一定律)。 特点:可靠,普遍,不能任意推广 经典 (宏观,平衡)热力学 (2)微观方法:从微观粒子的运动及相互作用角度研究热现象及规律 特点:揭示本质,模型近似 微观(统计)热力学

第一章:基本概念 1、热力系统 (1)热力系统(热力系、系统):人为指定的研究对象(如:一个固定的空间); (2)外界:系统以外的所有物质; (3)边界(界面):系统与外界的分界面; (4)系统与外界的作用都通过边界; (5)以系统与外界关系划分: 有无 是否传质开口系闭口系 是否传热非绝热系绝热系 是否传功非绝功系绝功系 是否传热、功、质非孤立系孤立系 (6)简单可压缩系统 只交换热量和一种准静态的容积变化功; 2、状态和状态参数 (1)状态:某一瞬间热力系所呈现的宏观状况 (2)状态参数:描述热力系状态的物理量 (3)状态参数的特征: ●状态确定,则状态参数也确定,反之亦然 ●状态参数的积分特征:状态参数的变化量与路径无关,只与初终态有关 ●状态参数的微分特征:全微分 (4)强度参数与广延参数 ●强度参数:与物质的量无关的参数,如压力p、温度T ●广延参数:与物质的量有关的参数可加性,如质量m、容积V、内能(也称之 为:热力学能)U、焓H、熵S 3、基本状态参数 (1)压力p ( pressure ) ●物理中压强,单位: Pa (Pascal), N/m2。 ●绝对压力与环境压力的相对值——相对压力; ●只有绝对压力p 才是状态参数; ●大气压随时间、地点变化;

相关文档
最新文档