微生物学

合集下载

微生物学

微生物学

微生物学(Microbiology)微生物(microorganism):通常是指一切肉眼看不见或看不清,必须借助于显微镜才能看到的一大类形态微小、结构简单的较为低等的微小生物的总称。

约在17世纪,林奈(Linnaeus,1707~1778)提出生物可以划分为:植物动物18世纪,由于显微镜制造上的发展,人类发现在自然界中还存在许多肉眼看不清的微小生物。

1866年,海格尔(E.H.Haeckle)提出将生物分为植物界、动物界和原生生物界,原生生物界是由低等生物组成(微生物)。

生物植物界动物界原生生物界20世纪40年代,依靠电子显微镜,人类发现所有生物的细胞核可区分为二类,既真核和原核。

在原生生物界中,有真核的生物,也有原核的生物,因此海格尔提出的原生生物界实际上包括了在进化上相差很远的生物种类。

1969年,R.H.Whittaker 提出了将生物分为五界:生物植物界动物界原生生物界真菌界细菌界生物六界生物植物界动物界原生生物界真菌界细菌界病毒界根据生物六界学说,微生物分属原核生物界、原生生物界、真菌界和病毒界。

原生生物界包括单细胞藻类和原生动物。

1970年,Woese 和Wolfe 在对代表性细菌类群的16S rRNA碱基序列进行比较研究后发现:产甲烷细菌(methanogens)与其他细菌(或称为真细菌,eubacteria)有明显的区别,进一步的研究又发现极端嗜盐细菌(extreme halophiles)和嗜热酸细菌(thermo-acidophiles)的16S rRNA谱也与产甲烷细菌相似。

这三类细菌在厌氧、高温和强酸的条件下生活,与地球上生命出现初期的环境相似,因此将它们命名为古菌(archaea)。

根据上述研究结果,1977年,Woese提出了著名的三原界(域,domain)学说。

该学说认为,在生物进化的早期,各种生物存在一个共同祖先,由这一共同祖先分3条路线进化,形成了三个原界,既古菌原界、真细菌原界和真核原界。

《微生物学》教案(共6)

《微生物学》教案(共6)









细胞壁、细胞膜、细胞




异养、自养、兼性自养








04
微生物营养与代谢
营养类型及营养物质吸收方式
营养类型
根据微生物对营养物质的需求和利用方式,可分为光能自养型、化能自养型、光能异养型和化 能异养型等。
营养物质吸收方式
微生物通过细胞膜上的特定转运蛋白或通道蛋白,以主动运输或被动运输的方式吸收营养物质 ,如氨基酸、糖类、无机盐等。
显微镜
使用前应检查镜头是否干净、光源是 否正常,使用过程中要轻拿轻放,避
免损坏镜头。
离心机
使用前应检查离心管是否平衡、转速 和时间设置是否合理,使用过程中要 注意观察离心机运转情况,如有异常
应立即停机检查。
培养箱
使用前应检查温度、湿度等参数是否 设置正确,使用过程中要定期观察培 养物生长情况,及时调整参数。
微生物学是研究微生物及其生命活动的科学,涉 及细菌、病毒、真菌、原生动物等微小生物。
02 课程内容与体系结构
课程内容涵盖微生物的形态结构、生理生化、遗 传变异、生态分布及分类进化等方面,体系结构 完整,注重基础理论与实践应用相结合。
03 微生物学在相关领域的应用
微生物学在医学、农业、工业、环保等领域具有 广泛应用,对于人类健康、经济发展及生态环境 保护具有重要意义。
《微生物学》教案( 共6)
目录
• 课程介绍与教学目标 • 微生物基本概念与分类 • 微生物形态结构与功能 • 微生物营养与代谢 • 微生物生长繁殖与遗传变异 • 微生物生态与环境影响 • 免疫系统与抗感染免疫 • 实验操作规范及注意事项

微生物学

微生物学

:微生物学是一门在细胞、分子或群体水平上研究微生物的形态构造、生理代谢、遗传变异、生态分布和分类进化等生命活动基本规律,并将其应用于工业发酵、医药卫生、生物工程和环境保护等实践领域的科学缺壁细菌在自然界长期进化中和实验室菌种的自发突变中都会产生少数缺细胞壁的种类,或是用人为的方法通过抑制新生细胞壁的合成或对现成细胞壁进行酶解而获得人工缺壁的细菌菌落即单个或聚集在一起的一团微生物在适宜的固体培养基表面或内部生长、繁殖到一定程度可以形成肉眼可见的、有一定形态结构的子细胞生长群体真病毒是至少含有核酸和蛋白质两种组份的分子病原体亚病毒是凡在核酸和蛋白质两种成分中只含有其中之一病原体。

效价表示每毫升试样中所含有的具有侵染性的噬菌体粒子数温和噬菌体侵入相应宿主细胞后由于前者的基因组整合到后者的基因组上并随后者的复制而进行同步复制,因此温和噬菌体的这种侵入并不引起宿主细胞裂解,这就是溶源性。

溶源菌是一类能与温和噬菌体长期共存,一般不会出现有害影响的宿主细胞温和噬菌体是指不能完成复制循环具有溶源性不发生烈性裂解的噬菌体。

类病毒是一类只含有RNA一种成分,专心寄生在活细胞内的分子病源体。

拟病毒是指一类包裹在真病毒粒中的有缺陷的类病毒。

沅病毒是一类不含核酸的传染性蛋白质分子。

磷壁酸是G+细菌细胞壁结合在细胞壁上的一种酸性多糖,主要成分为甘油磷酸或核糖醇磷酸脂多糖是位于G-细菌细胞壁最外层的一层较厚的类脂多糖类物质,由类脂A、心多糖和O-特异侧链3部分组成。

生长:分个体生长和群体生长两类,个体生长指微生物细胞因同化作用超过异化作用的速度,造成原生质总量不断增长的现象;群体生长是指某一微生物群体中因个体的生长、繁殖而导致该群体的总重量、体积、个体浓度增长的现象繁殖:在各种细胞组份呈平衡增长的情况下,个体的体积或重量达到某一限度时,通过细胞分裂,引起个体数目增加的现象连续发酵:当微生物以单批培养的方式培养到指数期后期时一方面以一定速度连续流入新鲜培养基和通入无菌空气并立即搅拌均匀,另一方面利用溢流的方式以同样的流速不断流出培养物的培养方法。

《微生物学》PPT课件

《微生物学》PPT课件

营养类型
根据微生物对营养需求的不同,可分为自养型、 异养型和兼性营养型。
2024/1/24
12
微生物的生长曲线与测定方法
生长曲线
描述微生物在适宜条件下 生长繁殖的四个阶段,即 延迟期、对数期、稳定期 和衰亡期。
2024/1/24
测定方法
包括直接计数法(如显微 镜计数法、平板菌落计数 法)和间接测定法(如比 浊法、生理指标法等)。
2024/1/24
31
20
微生物与环境的相互作用关系
微生物通过代谢活动影响环境,如分解有机物、 转化无机物等
环境因素如温度、湿度、pH值等对微生物的生长 和代谢具有重要影响
微生物与环境之间存在着复杂的相互作用关系, 既有互利共生也有竞争关系
2024/1/24
21
微生物在环境保护中的应用
利用微生物处理污水和废气,降低污染物浓度
命名规则
采用双名法,即属名和种名,用斜体拉丁文表示,属名在前,种名在后。例如:Escherichia coli(大肠埃希氏菌 )。
2024/1/24
24
微生物的鉴定方法与步骤
鉴定方法
表型鉴定(形态学、生理生化特征)、遗传学鉴定(基因型、DNA序列分析)、血清学鉴定(抗原抗 体反应)等。
鉴定步骤
采集样品、分离纯化、形态观察、生理生化试验、血清学试验、分子生物学试验等。
遗传物质传递
包括DNA复制、转录和翻译等过程 ,实现遗传信息的传递和表达。
14
04
微生物的代谢与调 控
202代谢与呼吸作用
能量代谢途径
ATP合成机制
包括发酵、无氧呼吸和有氧呼吸等, 不同微生物采用不同的代谢途径获取 能量。
微生物通过底物水平磷酸化和氧化磷 酸化两种方式合成ATP,为细胞提供 能量。

微生物学知识点

微生物学知识点

微生物学知识点微生物学知识点协议一、微生物的定义与分类1、微生物的定义微生物是指肉眼难以看清,需要借助显微镜才能观察到的微小生物。

包括细菌、真菌、病毒、原生生物和某些藻类等。

2、微生物的分类原核微生物:细菌、放线菌、蓝细菌等。

真核微生物:真菌(酵母菌、霉菌)、原生生物(草履虫、变形虫)等。

非细胞型微生物:病毒、类病毒、朊病毒等。

二、微生物的特点1、体积小,面积大微生物个体微小,但其比表面积大,有利于物质交换和代谢活动。

2、吸收多,转化快微生物能迅速吸收营养物质,并在短时间内完成代谢和生长繁殖。

3、生长旺,繁殖快大多数微生物在适宜条件下能快速生长和繁殖,数量呈指数增长。

4、适应强,易变异微生物能适应各种环境条件,且容易发生遗传变异,产生新的性状。

5、分布广,种类多微生物在自然界中无处不在,其种类繁多,估计有数百万种以上。

三、微生物的营养1、营养物质碳源:提供微生物生长所需的碳元素,如糖类、有机酸等。

氮源:提供氮元素,如铵盐、硝酸盐、蛋白质等。

无机盐:包括钾、钠、钙、镁、铁、锰等元素。

生长因子:维生素、氨基酸、嘌呤、嘧啶等。

水:作为溶剂和生化反应的介质。

2、营养类型光能自养型:利用光能将二氧化碳转化为有机物,如蓝细菌。

光能异养型:利用光能和有机物作为碳源,如红螺菌。

化能自养型:通过氧化无机物获取能量,将二氧化碳转化为有机物,如硝化细菌。

化能异养型:利用有机物作为能源和碳源,大多数微生物属于此类。

四、微生物的生长1、生长曲线迟缓期:微生物适应新环境,代谢缓慢,细胞数量基本不变。

对数期:细胞快速分裂繁殖,生长速率最大,代谢旺盛。

稳定期:细胞生长速率与死亡速率相等,活菌数达到最高水平,代谢产物大量积累。

衰亡期:细胞死亡速率大于生长速率,活菌数逐渐减少。

2、影响生长的因素温度:每种微生物都有其适宜的生长温度范围,分为最低生长温度、最适生长温度和最高生长温度。

pH 值:不同微生物对 pH 值的要求不同,大多数细菌在中性或微碱性环境中生长良好。

微生物学知识点

微生物学知识点

微生物学知识点
微生物学是研究微观生物的一门学科,涉及到细菌、真菌、病毒等微生物的研究。

微生物在人类生活中起着重要作用,对环境、健康、食品等方面都有着不可或缺的影响。

本文将介绍微生物学的一些知识点,包括微生物的分类、生长特点、应用等方面。

微生物的分类
微生物主要包括细菌、真菌和病毒等几类。

细菌是最常见的微生物之一,通常以单细胞形式存在,包括革兰氏阳性菌和革兰氏阴性菌等不同类型。

真菌则是一类以孢子繁殖的微生物,分为霉菌、酵母菌等多个类群。

而病毒是一种无法独立生长的微生物,需要寄生在宿主细胞内复制。

微生物的生长特点
微生物具有快速繁殖的特点,细菌的繁殖周期一般在20分钟到数小时之间,真菌和病毒也具有较快的繁殖速度。

微生物的生长需要适宜的温度、湿度和营养物质,不同类型的微生物对生长环境的要求有所不同。

微生物的应用
微生物在食品、医药、环境等领域都有着广泛的应用。

在食品行业中,微生物可以用于食品的发酵、熟化等过程,生产出各种风味独特的食品。

在医药领域,微生物可以用于制备抗生素、疫苗等药物,对
许多疾病有着重要的控制作用。

在环境领域,微生物可以进行土壤修复、废水处理等工作,保护环境资源。

总结
微生物学作为一门重要的学科,对人类生活起着重要的作用。

通过学习微生物学的知识点,可以更好地理解微生物在生活中的应用和影响,促进微生物学研究的发展。

希望本文能够帮助读者更好地了解微生物学相关知识,增进对微生物学的兴趣和认识。

微生物学名词解释

微生物学名词解释

1、微生物学(Microbiology):是一门在细胞、分子或群体水平上研究微生物的形态构造、生理代谢、遗传变异、生态分布和分类进化等生命活动基本规律,并将其应用于工、农、以及环境保护等实践领域的科学。

2、灭菌(sterilization):采用强烈的理化因素使任何物体内外部的一切微生物永远丧失其生长繁殖能力的措施。

3、消毒(disinfection):采用较温和的理化因素仅杀死物体表面或内部一部分对人体有害的病原菌,而对被消毒的物体基本无害的措施。

4、菌落(colony):单个(或聚集在一起的一团)微生物在适宜的固体培养基表面或内部生长、繁殖到一定程度可以形成肉眼可见的、有一定形态结构的子细胞生长群体。

5、菌苔(lawn):众多菌落连成一片形成。

6、平板(plate):被用于获得微生物纯培养的最常用的固体培养基形式,是冷却凝固后的固体培养基在无菌培养皿中形成的培养基固体平面。

7、糖被(glycocalyx):包被在某些细菌细胞壁外的一层厚度不定的胶状物质。

根据其有无固定层,层的厚度又可以分为荚膜(capsule)微荚膜(microcapsule)、粘液层和菌胶团。

8、趋化性(Chemotaxis):单细胞或多细胞生物在它们所处的环境中的某些化学物质的指令下,进行定向运动的特征。

9、肽聚糖(peptidoglycan):是真细菌细胞壁中特有的成分,由肽聚糖单体聚合而成。

10、原生质体(protoplast):人为条件下用溶菌酶除尽原有的细胞壁或者用青霉素抑制新生细胞壁合成所得到的仅有细胞膜包裹着的圆球状渗透敏感细胞。

11、L型细菌(L-form of bacteria):实验室诱发或者在宿主体内形成的无细胞壁的细菌。

12、芽孢(endospore):某些种类的细菌在一定的时期,其细胞内产生特殊休眠结构。

13、真菌(fungi):是一类单细胞或者能形成丝状分枝的营养体,有细胞壁和细胞核,不含有叶绿素和其他光合色素,有性生殖和无性生殖产生孢子的生物群。

微生物学课件ppt完整版

微生物学课件ppt完整版
医院感染
分为内源性感染(由体内正常菌 群引起的感染)和外源性感染( 由外界环境中的微生物引起的感
染)。
感染类型
局部感染局限于某一部位,而全 身感染则涉及多个器官和系统。
局部感染与全身感染
在医院等医疗机构内获得的感染 ,多由耐药菌引起,治疗难度较 大。
微生物感染的预防与治疗
预防措施
包括个人卫生、环境卫生、疫苗接种等,以 降低感染风险。
无菌操作
进行微生物实验时,要保 持无菌操作环境,避免杂 菌污染。
实验记录
详细记录实验过程和结果 ,包括培养基的配制、接 种方法、培养条件、观察 结果等。
实验后处理
实验结束后,要对实验器 材进行清洗和消毒处理, 保持实验室的整洁和卫生 。
2023
REPORTING
THANKS
感谢观看
食品工业
利用微生物发酵技术生产酒类、面 包、酸奶等食品。
03
02
农业应用
利用微生物制剂防治植物病害、促 进作物生长等。
生物能源
利用微生物发酵产生沼气、生物柴 油等可再生能源。
04
2023
PART 05
微生物的免疫与感染
REPORTING
微生物的免疫机制与特点
先天性免疫
通过遗传获得的非特异性免疫,包括皮肤、黏膜 屏障、吞噬细胞等。
病原学检查
通过直接涂片镜检、分离培养等方法确定病 原微生物种类。
免疫学检查
利用抗原抗体反应等免疫学原理检测病原微 生物及其产物。
2023
PART 06
微生物学实验技术与方法
REPORTING
微生物学实验室常用设备与器材
培养箱
提供适宜的温度和湿度条件, 用于培养微生物。

微生物学研究

微生物学研究

微生物学研究微生物学是研究微小生物的学问,其主要涵盖微生物的形态、结构,生理功能,种群动态以及在生态系统和生产领域中的应用等方面。

微生物是地球上最为丰富的生物群体之一,其分布广泛,有着丰富多样的功能,其重要性不言而喻。

在农业、医疗、环保、食品等领域都有广泛的应用和前景。

微生物的分类微生物按其形态结构与生育方式可以分为细菌、真菌、病毒、支原体、立克次体等五大类,其中细菌和真菌是最为常见的两种微生物。

细菌是一种原核生物,其细胞内不含真核膜分离的细胞器,具有单一的环形DNA,且常伴有多种嵌套的质粒。

细菌的生长繁殖速度非常快,一个细菌培养物可以在一夜之间繁殖成10亿个细胞。

真菌一般为多细胞真核生物,其体积巨大,组成复杂。

真菌包括单细胞真菌和多细胞真菌,单细胞真菌通常为酵母,多细胞真菌包括菌丝菌和子囊菌,菌丝菌是由菌丝构成的生物,子囊菌可以形成硬壳保护自身。

微生物学的应用微生物在农业、医疗、环保、食品等领域有广泛的应用和前景。

大肠杆菌是一种可以作为指示器的微生物,其数量多寡可以评估水质,黑曲霉可以分解化肥和农药等有毒分子,可以作为生态环保的参考物种。

在医疗领域,微生物学在诊断和治疗感染性疾病方面有着广泛的应用,例如通过病原菌分离的方法,可以快速明确感染的病原体类型,采用抗生素治疗病人。

微生物在食品领域也有着广泛的应用,例如乳酸菌可以发酵乳制品,使之口感醇香,并能提高补骨力。

微生物还可以利用其新颖的代谢途径生物合成对人类有用的物质。

例如部分细菌可在醋酸溶液中发酵产生醋酸菌素,从而作为抗菌剂和泌尿系统疾病治疗药物。

此外利用硫杆菌生产硫磺,或利用微生物发酵生产麻黄素、小麦胚芽醇等化合物,也是微生物学在绿色化工领域的应用之一。

微生物学的研究方法微生物学研究方法主要有分离、纯化、鉴定和培养四个步骤。

分离是指将含有微生物的样品分成单一单元,以便在后续研究中对单一微生物进行鉴定和培养。

纯化是在分离出的微生物进行单纯化处理,以剔除杂质,得到单一的微生物种类,以此保证实验结果的准确性。

微生物学必考知识点汇总

微生物学必考知识点汇总

第一章绪论微生物学(Microbiology)是生物学的一个分支,是研究微生物的形态结构、生理、遗传变异、生态分布,分类及其与人类、动物、植物、自然环境相互关系等问题的科学。

三菌四体一病毒1.细菌、真菌、放线菌;2.支原体、衣原体、螺旋体、立克次氏体;3.不具细胞结构的病毒;不同形态的微生物可以分为三大类:1.真核细胞型微生物细胞核的分化程度较高,有核膜、核仁和染色体;胞质内有完整的细胞器(如内质网、核糖体及线粒体等)。

真菌属于此类型微生物。

2.原核细胞型微生物细胞核分化程度低,仅有原始核质,没有核膜与核仁;细胞器不很完善。

这类微生物种类众多,有细菌、螺旋体、支原体、立克次体、衣原体和放线菌。

3.非细胞型微生物没有典型的细胞结构,亦无产生能量的酶系统,只能在活细胞内生长繁殖。

病毒属于此类型微生物。

细菌是三种形态:球菌(用直径衡量大小)、杆菌(长宽衡量大小,宽写在前面,不加单位,长写在后面,写上单位)、螺旋菌(自然长度、螺旋数、螺距等衡量大小)长度单位均为微米(μm)微生物特点:1.体积小、面积大2.吸收多、转化快3.生长旺、繁殖快☆比面积=面积/体积4.适应强、易变异5.分布广、种类多巴斯德的功绩:1.彻底否定了“自生说”。

巴斯德在前人的研究基础上,进行了许多实验,其中著名的曲瓶颈试验无可辩驳证实,空气内确实含有微生物,它们引起有机质的腐败。

2.证明发酵是微生物引起的。

在否定“自生说”的基础上,认为一切发酵作用都可能和微生物的生长繁殖有关。

3.免疫学----预防接种。

1877年,巴斯德研究了鸡霍乱,发现将病原菌减毒可诱发免疫性,以预防鸡霍乱病。

首次制成狂犬疫苗,证实其免疫学说,为人类防病、治病做出重大贡献。

4.发明巴斯德消毒法,解决家蚕软化病问题。

60℃---65℃作短时间加热处理,杀死有害微生物的一种消毒法。

柯赫的功绩:1.发明了固体培养基并用其纯化微生物等一系列研究方法的创立2.证实炭疽病因—炭疽杆菌3.发现结核杆菌、霍乱弧菌4.提出科赫法则:确定某种微生物是否具有致病性的主要依据。

微生物学知识点

微生物学知识点

微生物学知识点微生物学是研究微生物的科学领域,涵盖了对微生物的分类、结构、生理、遗传、繁殖、生态等方面的研究。

微生物是一类极小的生物体,包括细菌、真菌、病毒、原生动物等。

它们广泛存在于地球上的各个环境中,对地球生态系统的平衡与稳定起着重要作用。

一、微生物的分类微生物按照形态、结构和生理特征,可以分为细菌、真菌、病毒和原生动物等几大类。

1. 细菌:细菌是一类单细胞的微生物,形态多样,可以是球形、杆状、螺旋形等。

细菌广泛存在于土壤、水体、空气等环境中,有些细菌对人类有益,如参与食物发酵和分解有害物质,而有些细菌则是人类的致病菌。

2. 真菌:真菌是一类多细胞的微生物,包括酵母菌、霉菌等。

真菌可以通过孢子繁殖,广泛存在于土壤、植物、动物体内等环境中。

真菌对于生态系统的平衡和物质循环有重要作用,同时也可以引起人类的疾病。

3. 病毒:病毒是一类非细胞的微生物,由核酸和蛋白质组成。

病毒必须寄生在其他生物细胞内才能进行繁殖,它们可以感染细菌、植物和动物等生物体,引起各种疾病。

4. 原生动物:原生动物是一类单细胞的微生物,包括阿米巴、锥虫等。

它们广泛存在于水体、土壤和动物体内,是生态系统中重要的食物链成员。

二、微生物的结构与功能微生物的结构与功能各异,适应了不同的生存环境和生活方式。

1. 细菌结构与功能:细菌通常由细胞壁、细胞膜、细胞质、核糖体等组成。

细菌可以进行光合作用、呼吸作用和发酵作用等代谢过程。

有些细菌还能产生酶、激素等物质,对环境有调节作用。

2. 真菌结构与功能:真菌通常由菌丝、菌核和孢子等组成。

真菌通过菌丝在有机物上进行分解和吸收,起到分解有机物和循环养分的作用。

同时,真菌还能产生抗生素、酶和食物等。

3. 病毒结构与功能:病毒主要由核酸和蛋白质组成,没有细胞结构。

病毒通过感染细胞进行繁殖,对宿主细胞产生破坏作用,引起各种疾病。

4. 原生动物结构与功能:原生动物通常由细胞膜、细胞质和细胞核等组成。

它们通过摄食和吸收等方式获取营养,同时也是其他生物的食物来源。

微生物学课件ppt

微生物学课件ppt

微生物的生长曲线
延迟期
微生物适应环境,繁殖 速度较慢,数量增长缓
慢。
对数生长期
微生物快速繁殖,数量 呈指数增长。
稳定期
微生物繁殖速度减慢, 营养物质消耗殆尽,环 境压力增大,死亡数量
增加。
衰亡期
微生物大量死亡,数量 下降。
微生物的培养基
液体培养基
适用于工业发酵和实验室研究, 可促进微生物的生长和繁殖。
有性繁殖
通过两个细胞的结合,经过减数分裂形成配子,再经过受精作用形成新的个体, 如真菌的孢子生殖。
Part
05
微生物的遗传与变异
基因突变
基因突变是微生物遗传变异的重要来 源之一,是指基因序列中发生的碱基 对的增添、缺失或替换,导致基因结 构的改变。
基因突变通常是不定向的,但也可以 在某些特定条件下(如诱变剂的作用 )发生定向突变。
环境污染等,这些行为可能导致某些病原菌的抗药性和生态失衡。
Part
07
微生物的应用与危害
微生物在工业上的应用
01
02
03
ቤተ መጻሕፍቲ ባይዱ
04
微生物发酵
利用微生物的代谢过程生产食 品、饮料、饲料、抗生素、氨
基酸等产品。
生物转化
利用微生物将原料转化为燃料 、化学品、塑料等工业品。
生物冶金
利用微生物从矿石中提取金属 。
微生物学课件
• 微生物学简介 • 微生物的形态与结构 • 微生物的营养与生长 • 微生物的代谢与繁殖 • 微生物的遗传与变异 • 微生物的生态与分布 • 微生物的应用与危害
目录
Part
01
微生物学简介
微生物的定义与分类
微生物定义

什么是微生物学,我们对它的了解有多少?

什么是微生物学,我们对它的了解有多少?

什么是微生物学,我们对它的了解有多少?微生物学是研究微生物的结构、生理、生态、遗传等方面的科学。

在我们的日常生活中,微生物无处不在,涉及到许多领域,如食品、医药、环境等。

然而,我们对微生物学的认识还相对较少。

本文将从多个角度介绍微生物学,帮助读者更好地了解微生物。

一、微生物的种类和分类微生物主要包括细菌、真菌、病毒、藻类等多种类型。

细菌是目前已知最广泛的一类微生物,它们广泛存在于土壤、水体、消化道等环境中。

真菌是另一类重要的微生物,常见于水果、面包、酸奶等食品中。

病毒虽然不属于生物界,但也是微生物之一,常以寄生方式危害人类和动植物。

藻类则是一类重要的水生微生物,它们能够通过光合作用,为水生生物提供氧气。

二、微生物的生态和功能微生物在生态系统中担任着重要的角色。

它们能够分解有机物质、修复环境、参与氮的循环等,起到保持生态平衡的作用。

此外,在医学领域中,微生物也发挥着重要的功能,如发酵制药、生产抗生素等。

三、微生物与人类健康微生物对人类的健康有着深刻的影响。

有些微生物能够感染人体,引起多种疾病,如肺炎、流感等。

而另一些微生物则有利于人体健康,如肠道菌群中的有益菌能够帮助维持消化道的平衡。

四、微生物的遗传与进化微生物在进化和遗传方面也具有独特的特点。

它们能够通过水平基因转移、质粒共享等方式快速地适应环境的变化。

这种快速的进化能力也是导致许多病原微生物对抗药物产生抗性的原因之一。

五、未来微生物学的发展趋势未来微生物学的发展趋势将会越来越关注微生物与环境、微生物与人类健康等方面。

在大数据和人工智能等技术的辅助下,微生物学的研究将更加深入,为我们认识微观世界带来更多的惊喜。

经过以上的了解,我们不难发现,微生物学对我们的认识和生活都有着重要的意义。

同时,我们也应该重视微生物对健康和环境的影响,不断地加强对微生物领域的研究和应用。

与此同时,注意个人卫生,合理饮食也十分重要。

让我们共同迈向健康的未来。

微生物学

微生物学
绪论
一、什么是微生物 二、人类对微生物的认识史 三、微生物学的发展促进了人类的进步 四、微生物的五大共性 五、微生物学及其分科
一、什么是微生物
1 定义:微生物(microorganism, microbe)是一切肉眼看不见或 看 不清楚的微小生物的总称。它们都是一些个体微小(一般<0.1mm)、 构造简单的低等生物。 2 种类:包括属于原核类的细菌(真细菌和古生菌)、放线菌、蓝细菌 (旧称“蓝绿藻”或“蓝藻”)、支原体、立克次氏体和衣原体;属于 真核类的真菌(酵母菌、霉菌和蕈菌)、原生动物和显微藻类;以及属 于非细胞类的病毒和亚病毒(类病毒、拟病毒和朊病毒)。
②巴斯德消毒法:低温维持法,63 ℃、30min;高温瞬时法,72 ℃、15s。
4 发展期 时间:1897-1953 实质:生化水平研究阶段 开创者:E. Büchner—生物化学奠基人 特点:①对无细胞酵母菌“酒化酶”进行生化研究(标志);②发现微生物
的 代谢统一性;③普通微生物学开始形成(代表人物是美国加里福尼亚 大学伯克利分校的M. Doudoroff);④开展广泛寻找微生物的有益代 谢产物;⑤青霉素的发现推动了微生物工业化培养技术的猛进。
巴斯德学派的主要贡献:
①胚种学说: 曲颈瓶试验:1862年,巴斯德终于设计 出一个巧妙的曲颈瓶试验。他给烧瓶安 装了一像横着眼放的S形状的长颈,当 把烧瓶中的肉汤煮沸时,不仅瓶中的微 生物被杀死了,水蒸汽把瓶颈中的微生 物也杀死了。等到汤放凉时,新鲜的空 气就可以通过瓶颈自由进到瓶子中,而 带菌的灰尘由于比空气重,在长颈向下 弯曲处就被拦截住了。经过这样处理的培养液放许多天也不会变质。而如果把 培养液倾斜,让它通过长颈的弯曲部,或者把长颈打断,培养液中很快就会充 满了微生物。这样就令人信服地证明了,是空气中的微生物使汤腐败的,而不 是汤腐败产生微生物。

微生物学基本知识

微生物学基本知识
由单细胞或多细胞构成,主要类别真菌(霉菌、酵 母菌)、单细胞藻类、原生动物 1.2.2非细胞生物:病毒
二、微生物的特点
由于微生物的形体极其微小,因而其比面值 极大,这就意味着具有小体积、大面积这一特 点的微生物,除具有一般大型生物的共性外, 还具有以下其它生物所不能比拟的特性。 2.1体积小,比表面积大 2.2代谢能力强 2.3生长旺,繁殖快 2.4适应性强,易变异 2.5分布广,种类多
一、微生物的定义与分类
1.微生物的定义
微生物的定义可以表述为:微生物 是指所有形体微小。具有单细胞或简单的 多细胞结构或没有细胞结构的一群最低等 生物。
1.2微生物的分类
按细胞结构的有无分为: 1.2.1细胞生物: 原核细胞生物:具有原核的细胞生物称为原核生物,
由单细胞构成,主要类别为细菌、放线菌等 真核细胞生物:具有真核的细胞生物称为真核生物,
❖ 活菌计数法:主要为平板计数(平板计数、涂 沫法、滤膜法、MPN法)。以上各计数方法是 指在一定培养基经培养后在固体平板上形成可 见菌落或在液体培养基呈混浊生长现象作为计 数依据,用于特殊细菌计数,如大肠埃希菌、 金黄色葡萄球菌都要用特殊培养基。
4.1.3细菌数的测定方法
❖ 直接计数法:主要为自动菌数测定仪、计数板 计数法。是指直接在显微镜下或以自动化仪器 定量计数或测定菌细胞的数量。所测的结果不 仅包括活菌,也包括死菌。
4.1.2细菌的菌落特征
粘质沙雷氏菌的菌落特征
4.1.2细菌的菌落特征

铜绿
门 氏
假单

胞菌

的菌

落特




弗氏志贺氏菌的菌落特征
4.1.2细菌的菌落特征

微生物学与免疫学

微生物学与免疫学

微生物学与免疫学微生物学和免疫学是生物学中两个重要的分支领域。

微生物学研究微生物的形态、生理特性、基因组结构和功能,以及微生物与宿主之间的相互作用;而免疫学则研究认识身体对抗疾病的机制,以及免疫系统的结构和功能。

两者互为补充,对于理解生物界的多样性和维持个体健康至关重要。

一、微生物学微生物学是研究微生物的学科,微生物包括细菌、真菌、病毒和原生动物等。

微生物广泛存在于地球上的各个环境中,包括土壤、水体、空气、人体等。

微生物在地球生态系统中起着重要的角色,是物质和能量循环的关键参与者。

微生物的形态和结构多样,有球菌、杆菌、螺旋菌等不同形态。

微生物的生理特性也非常复杂,包括其代谢途径、营养需求等。

此外,微生物的基因组结构和功能是研究微生物多样性和宿主相互作用的重要方面。

微生物与宿主之间的关系也是微生物学研究的重点。

微生物可以与宿主形成共生、寄生或互利共生的关系,对宿主的健康有重要影响。

例如,肠道微生物与人体的消化吸收和免疫系统密切相关。

二、免疫学免疫学是研究身体对抗疾病的机制和免疫系统的学科。

免疫系统是一个复杂的机体系统,包括多种细胞、分子和器官,协同作用以保护机体免受感染和疾病。

免疫系统的结构由多种细胞组成,包括巨噬细胞、淋巴细胞、树突状细胞等。

免疫系统的功能包括识别和清除病原体、记忆病原体以及调节免疫反应等。

免疫系统的紊乱会导致免疫性疾病的发生,如自身免疫病。

免疫学的研究对于预防和治疗疾病具有重要意义。

通过研究免疫系统的机制,人们可以开发出疫苗和其他免疫治疗方法,有效预防和治疗疾病。

三、微生物学和免疫学的关联微生物学和免疫学是紧密相关的学科,两者互为补充,共同推动了生物学的发展。

首先,微生物学的研究为免疫学提供了基础。

微生物是引起感染和免疫反应的主要病原体,了解微生物的特性和机制对于研究免疫系统的反应至关重要。

其次,微生物与宿主的相互作用对免疫系统的发展和功能调节具有重要影响。

微生物可以刺激免疫系统的发育和正常功能,有利于宿主的健康。

微生物学名词解释

微生物学名词解释

微生物学名词解释第一章1. 微生物:指一切肉眼看不见或看不清的微小生物的总称。

2. 微生物学:是一门在细胞、分子或群体水平上研究微生物形态、构造、生理代谢、遗传变异、生态分类和分类进化等生命活动基本规律,并将其应用于工业发酵、医药卫生、生物工程和环境保护等实践领域的科学,其根本任务是发掘、利用、改善和保护有益微生物、控制消灭或改造有害微生物,为人类社会的进步服务。

3. 磷壁酸:是结合在G+细菌细胞壁上的一种酸性多糖,主要成分为甘油磷酸或核酸醇磷酸。

4. 原核微生物:即广义的细菌。

指一大类细胞核无核膜包裹,只存在核区的裸露DNA的原始单细胞生物。

5.原生质体:指在人为条件下,用溶菌酶除尽原有细胞壁或用青霉素抑制新生细胞壁合成后,所得到仅有一层细胞膜包裹的圆球状渗透敏感细胞。

6.细菌:是一类细胞细短(直径约0.5um,长度约0.5~5um),结构简单、胞壁坚韧、多以二分裂方式繁殖和水生性较强的原核生物。

7. 固质空间:在G-细菌中,其外膜与细胞膜间的狭窄胶质空间(约12~15nm),其中存在着多种固质蛋白,包括水解酶类、合成酶类和运输蛋白等。

8. L-型细菌:在实验室或宿主体内通过自发突变而形成遗传性稳定的细胞壁缺损菌株。

9. 球状体:又称原生质球。

指还残留了部分细胞壁(尤其是G-细菌外膜层)的原生质体。

10. 外膜:是G-细菌细胞壁所特有的结构,位于壁的最外层,化学成分为脂多糖。

11. 脂多糖(LPS):是位于G-细菌细胞壁最外层的一层较厚(8~10nm)的类脂多糖类物质,由类脂A-核心多糖和D-特异侧链等部分组成。

12.伴孢晶体:少数芽孢杆菌,在形成芽孢的同时,会在芽孢旁形成一颗菱形、方形或不规则形的碱溶性蛋白质晶体。

13.放线菌:一类主要呈菌丝状生长和以孢子繁殖的陆生性较强的原核生物。

14. 间体:由细胞膜内褶形成的囊状构造,其内充满着层状或管状泡囊。

多见于G+菌。

15. 芽孢:某些细菌在其生长发育后期,在细胞内形成的一个圆形或椭圆形,厚壁,含水量低,挑选性强的休眠结构。

微生物学的主要分支

微生物学的主要分支

《微生物学的主要分支及其重要意义》微生物学是一门研究微生物的形态、结构、生理、遗传、生态等方面的科学。

随着科学技术的不断发展,微生物学已经形成了多个重要的分支,这些分支在不同领域发挥着至关重要的作用。

一、细菌学细菌学是微生物学的一个重要分支,主要研究细菌的形态、结构、生理、遗传、生态以及与人类和环境的关系。

细菌是一类微小的单细胞生物,具有多种形态,如球状、杆状、螺旋状等。

细菌的结构包括细胞壁、细胞膜、细胞质、拟核等。

细菌的生理特性包括营养需求、代谢途径、生长繁殖等。

细菌的遗传物质主要是 DNA,通过基因突变、基因重组等方式进行遗传变异。

细菌在自然界中分布广泛,与人类的关系密切。

有些细菌是有益的,如乳酸菌可以发酵乳制品、双歧杆菌可以调节肠道菌群等;而有些细菌则是有害的,如病原菌可以引起人类和动物的疾病。

细菌学的研究对于预防和治疗细菌感染性疾病、开发新型抗生素、保护环境等方面具有重要意义。

二、病毒学病毒学是研究病毒的形态、结构、生理、遗传、生态以及与宿主的相互作用的科学。

病毒是一类非细胞型微生物,由核酸和蛋白质组成。

病毒的形态多种多样,有球状、杆状、蝌蚪状等。

病毒的结构简单,没有细胞结构,必须在活细胞内才能生存和繁殖。

病毒的遗传物质可以是DNA 或 RNA。

病毒可以感染人类、动物、植物等各种生物,引起多种疾病。

例如,流感病毒可以引起流行性感冒、艾滋病病毒可以引起获得性免疫缺陷综合征等。

病毒学的研究对于预防和治疗病毒感染性疾病、开发新型疫苗、了解生命起源等方面具有重要意义。

三、真菌学真菌学是研究真菌的形态、结构、生理、遗传、生态以及与人类和环境的关系的科学。

真菌是一类具有真正细胞核的微生物,包括酵母菌、霉菌和蕈菌等。

真菌的形态多样,有单细胞的酵母菌和多细胞的霉菌、蕈菌等。

真菌的结构包括细胞壁、细胞膜、细胞质、细胞核等。

真菌的生理特性包括营养需求、代谢途径、生长繁殖等。

真菌的遗传物质主要是 DNA。

真菌在自然界中分布广泛,与人类的关系密切。

微生物学的概念及其主要分支学科

微生物学的概念及其主要分支学科
微生物定义
微生物是一类肉眼难以看见或看清的 微小生物的总称,包括细菌、病毒、 真菌、放线菌、立克次氏体、支原体 、衣原体和藻类等。
微生物分类
根据微生物的形态、结构、生理特征 等,可将其分为原核微生物(如细菌 和放线菌)和真核微生物(如真菌、 藻类和原生动物)两大类。
微生物学研究对象
微生物的形态和结构
物质循环
微生物参与碳循环、氮循环、硫 循环等物质循环过程,促进自然 界中元素的循环和利用。
微生物遗传信息传递和表达调控机制
遗传信息传递
微生物通过DNA复制、转录和翻译等过程传递遗传信息,实现性状的遗传和变 异。
表达调控机制
微生物通过基因表达调控机制如转录调控、翻译调控、表观遗传调控等,控制 基因的表达水平和时间,以适应环境变化。
真菌
空气中的真菌主要以孢子的形式存在,一些真菌孢子具有致敏性,对人类健康有一定影 响。但也有一些真菌具有降解有机物的能力,对空气净化有积极作用。
病毒
空气中的病毒主要通过飞沫、气溶胶等形式传播,对人类健康构成威胁。但一些病毒也 可被用于生物防治和基因工程等领域。
极端环境下微生物适应性研究
嗜热微生物
能够在高温环境下生存和繁殖,具有独特的耐热机制和生物酶活性, 对高温环境下的生物地球化学循环有重要作用。
微生物组学的研究方法
微生物组学是研究微生物群落结构和功能的学科,其研究方法包括宏基因组学、转录组学 、蛋白质组学等。
微生物培养技术的改进
随着生物技术的发展,微生物培养技术也得到了不断改进和优化,源的开发和利用
未来微生物学将更加注重微生物资源的开发和利用,包括有益微生物的筛选和应用、微生物代谢产物的开发 和利用等。
02
微生物学发展历史回顾
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梅毒的化学治疗剂
1928 Griffith发现细菌转化
1929 Fleming发现青霉素
1935 Stanley首次提纯了烟草花叶病毒,并获得了它 的“蛋白质结晶”
1943 Luria和Delbück用波动实验证明细菌噬菌体的抗 性是基因自发突变所致;
Chain和Flory形成青霉素工业化生产的工艺
1995 第一个独立生活的生物(流感嗜血杆菌)全基因 序列测定完成
1996
第一个自养生活的古生菌基因组测定完成
1997
第一个真核生物(啤酒酵母)基因组测序完成
2000
霍乱弧菌基因组测序完成
与微生物学有关的诺贝尔生理或医学奖 Nobel Prize in Physiology or Medicine
限制性内切酶; Temin和Baltimore发现转录酶
1973 Ames建立细菌测定法检测致癌物;
Cohen 等首次将重组质粒转入大肠杆菌中获得成功
1974 Khler和Milstein建立生产单克隆抗体的技术
1977 Woese提出古生菌是有不同于细菌和真核生物 的特殊类群;Sanger首次对ΦX174噬菌体DNA进行了全 序列分析
1982—1983 Cech和Altman发现具有催化活性的 RNA(ribozyme);McClintock发现的转座因子获得公 认; Prusiner发现朊病毒(prion)
1983—1984 Gallo和Montagnier分离和鉴定人免疫 缺陷病毒;
Mullis建立PCR技术
1988 Deisenhofer等发现并研究细菌的光合色素
1861 Pasteur用曲颈瓶实验证明微生物非自然发生,推翻
了争论以久的“自生说”
1864
Pasteur建立了巴氏消毒法
1867 — 1869 Lister创立了消毒外科,并首次成功的进行
了石炭酸消毒实验 Miescher 发现核酸
1876—1877 Koch证明了炭疽病由炭疽杆菌引起
1881 Koch等首创用明胶固体培养基分离细菌,巴斯德
例1:苏云金芽孢杆菌蜡螟亚种 Bacillus thuringiensis subsp.galleria 例2:酿酒酵母椭圆变种 Saccharomyces cerevisiae var.ellipsoideus
当一个微生物种名在一篇文章或著作中反复出 现时,常常可以对学名进行省略。属及以上分类 单位的名称不能省略,只有种名可省略。当它在 有关文章或资料中首次出现时,不能省略,必须 写全,以后均可省略。省略时,只能简略种名中 的属名,种加词不能省略。
微生物学
2020年5月24日星期日
第一章 绪论
一、什么是微生物?
微生物通常是指那些微小、简单、肉眼难 以观察的生物。
• 英文“微生物”一词“microorganism”, 就是在“生物(organism)”词之前加上 前缀“非常小(micro)”所构成。
• 微生物并不是一个分类学上的术语,它们 主要是根据生物体的大小而被人为地划归 在一起的。
1962年,DNA结构的测定 1965年,细胞中基因活性的调节研究 1969年,细胞病毒感染的机理研究 1984年,单克隆抗体技术的发展,免疫学研究 1997年,朊病毒的研究 1999年,蛋白质在细胞中的移动和定位机理研究
七、微生物的发现与微生物学发展
1、感性认识阶段(史前期)(约800年前~1676)
如 Escherichia coli, E. coli (大肠杆菌)
,但是这种省略也要遵循一定的原则。
五、微生物学研究范围
微生物学就是研究微生物的科学,其研究范 围包括微生物的多样性、微生物的生命活动 规律及其对人类社会经济活动的影响。
六、微生物学的重要性与社会需求
微生物与人类和动物健康及疾病密切相关 微生物在工业生产中有很多应用 微生物对农业生产有着很大的影响 微生物学促进了生物学的发展
4.微生物生长快速。 (rapid growth rates)
5.微生物几乎无所不在。 (opmipresent)
6. 微生物研究使用相同的方法
•使用微生物的群体进行研究。 •使用特殊的无菌技术。 •微生物类群进行鉴定、培养和研究时所使 用的技术相似的。
实际上将互不相关的微生物类群放在一起 作为一门独立学科-微生物学加以研究,主要 是根据研究微生物的方法和技术,而不是根 据微生物之间的相关性。
1901-1999之间有39项。 总人数:77人
美国 46人,英国人 11人,法国人 7人,德国人 6人,瑞士人 4人,澳大利亚人 2人,意大利人 1人
1945年,青霉素的发现与发展 1952年,链霉素的发现与发展 1953年,碳水化合物在细胞中的代谢 1958年,微生物遗传的生物化学研究 1959年,DNA 和 RNA的发现与合成机理
微生物主要类群
真核生物-真菌、微型藻类、原生动物、 和某些寄生蠕虫
原核生物-细菌、放线菌、蓝细菌 和古生菌
非细胞生物-病毒、类病毒和朊病毒
二、微生物的特点
1.大多数微生物肉眼难以直接观察 (microscopic)
2.微生物通常以独立的增殖单位存在 (independent units)
3.微生物结构较不复杂。 (less complex)
三、微生物在生命世界的位置
植植物物界界
真菌界
动物界 动物界
细菌域
真核真生核物生域物域 古生菌域
原生生物界
原核生物界 a 生物五界分类系统图示
(a
共同祖先 (bb 生物三域分类系统图示
四、微生物的分类
微生物的系统分类单元遵循林耐建立的系统分类单元,自 上而下依次可分七级,即:
界Kingdom, 门Phylum, 纲Class, 目Order, 科Family, 属Genus, 种Species。
首次分离根瘤菌 1890 Von Behring制备抗毒素治疗白喉和破伤风 1891 Sternberg与巴斯德同时发现了肺炎链球菌 1895 Ivanowsky提供烟草花叶病是由病毒引起的证据;
Bordet发现互补 现象 1896 Büchner用无细胞存在的酵母菌抽提液对葡萄糖进
行酒精发酵成功 1899 Ross证实疟疾病原菌由蚊子传播 1909—1910 Ricketts发现立克次氏体;Ehrlich首次合成治
微生物作为模式生物具有如下优点: (1)微生物具有相对不复杂的结构; (2)微生物培养成本低、群体数量大,
易于获得统计学上可信度高的结果; (3)微生物生长速度快,倍增时间短,
极大缩短了世代培养研究所需周期。
微生物学发展史上的重大事件
1546
Fracastoro提出不可见到的生物引起疾病
1676
Leeuwenhoek 发现了“animalcules”
1765-1776 Spallanzani 反驳自然发生说
1786
Muller 提出了第一个细菌分类
1798
Jenner 介绍了牛痘疫苗
1838-1839 Schwann & Schleiden 提出了细胞理论
1857
Pasteur证明了乳酸发酵是由微生物引起的
5、分子生物学水平研究阶段,成熟期 (1953~至今)
J.D.Waston, H.F.C.Crick 发现DNA双螺旋模(1953年)
21世纪微生物学展望
微生物具备生命现象的特性和共性,将是21世 纪进一步解决生物学重大理论问题,如生命起源 与进化,物质运动的基本规律等,和实际应用问 题,如新的微生物资源的开发利用,能源、粮食 等的最理想的材料。
例1:大肠埃希氏菌(即大肠杆菌) Escherichia coli(Migula)Castellani et Chalmers
例2:黄曲霉菌 Aspergillus flavus
例3:粟酒裂殖酵母 Schizosaccharomyces pombe
当微生物名称是一个亚种(subspecies,简称“subsp .”,排正体字)或变种(variety,简称“var.”,排 正体字)时,学名就应按“三名法”构成,即:
必要时每一级都还可有若干辅助单元,故共可有十余级。
所有细胞微生物的种名均遵守林耐制 定的拉丁双名法,即一个种的学名用拉丁 词或拉丁化的词组成,应排成斜体字。根 据双名法的规则,学名通常由一个属名加 一个种的加词构成。出现在分类学文献中 的学名,在此两者之后往往还加上定名人 ,但在一般使用时,定名人部分经常是省 略的。
制备了炭疽菌苗
1882
Koch发现结核杆菌(Mycobacterium
tuberculosis)
1883 Koch首次发表Koch氏法则。Metchnikoff阐述了
吞噬作用。建立高压蒸汽灭菌和革兰氏染色法
1884 Pasteur研究狂犬病疫苗成功,开创了免疫学
1887 Richard Petri发明了双层培养皿 1889 Winogradsky发现硫循环和硝化细菌。Beijerinck
1956 Umbarger发现反馈阻遏现象 1961 Jocob和Monod提出基因调节的操纵子模型 1961—1966 Holley、Khorana、Nirenberg等阐明遗传 密码 1969 Edelman测定了抗原蛋白质分子的一级结构 1970—1972 Arber、Nathans和Smith发现并提纯了
1944 Avery等证实转化过程中DNA是遗传信息的载体; Waksman发现链霉素
1946—1947 Lederberg和Tatum发现细菌的接合现象、 基因连锁现象
1949 Enders、Robbins和Weller在非神经的组织培养 中,培养脊髓灰质炎 病毒成功
1952 Hershey和Chase发现噬菌体将DNA注入宿主细胞; Lederberg发明了影印培养法; Zinder和 Lederberg发现普遍性转导 Watson和Crick提出DNA双螺旋结构
相关文档
最新文档