圆的切线证明专题
专题复习与圆的切线有关的证明
是圆的切线
5、常用的添加辅助线的方法
(1)直线与圆的公共点已知时,作出过公共点的 半径,再证半径垂直于该直线。 有切点,连半径,证垂直 (2)直线与圆的公共点不确定时,过圆心作直线 的垂线段,再证明这条垂线段为圆的半径 无切点,作垂直,证半径
切线的性质
如图,⊙O的切线PC交直径AB的延长线于点P,C为切点, 若∠P=30°,⊙O的半径为1,则PB的长为_______
无交点,作垂直,证半径
例:如图 ,已知:O 为 BAC 角平分线上一点,
OD AB 于 D ,以 O 为圆心, 为半径作圆。
求证:AC 是⊙ O 的切线。
E
数学解答题P7 数学解答题P9
P9《数学解答题》
切线的性质
P9《数学解答题》
切线的性质
P9《数学解答题》
切线的性质
切线的性质
垂直 于经过切点的半径. 定理:圆的切线________ 技巧:圆心与切点的连线是常用的辅助线.
垂直 于这条半径的直线是圆 定理: 经过半径的外端并且________ 的切线. 证圆的切线技巧: (1)如果直线与圆有交点,连接圆心与交点的半径,证明直 线与该半径垂直,即“有交点,作半径,证垂直”.
(2)如果直线与圆没有明确的交点, 则过圆心作该直线的垂 线段,证明垂线段等于半径,即“无交点,作垂直,证半径”.
切线的判定
作业:《数学解答题》 P7-10第一问
专题复习 与圆的切线有关的证明
1、圆的切线性质定理
圆的切线垂直于经过切点的半径.
2、辅助线: 连接圆心与切点
连半径,得垂直
半径与切线垂直
3、切线判定
定理:经过半径的外端并且垂直于这条半径的 直线是圆的切线。
专题 证明圆的切线的常用方法(六大题型)(解析版)
(苏科版)九年级上册数学《第2章对称图形---圆》专题证明圆的切线的常用的方法★★★方法指引:证明一条直线是圆的切线的方法及辅助线作法:1、有交点:连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称:“有交点,连半径,证垂直”.2、无交点:作垂直、证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称:“无交点,作垂直,证半径”.类型一:有公共点:连半径,证垂直●●【典例一】(2022•雁塔区校级模拟)如图,AB 是⊙O 的直径,点D 在直径AB 上(D 与A ,B 不重合),CD ⊥AB ,且CD =AB ,连接CB ,与⊙O 交于点F ,在CD 上取一点E ,使得EF =EC .求证:EF 是⊙O 的切线;【分析】连接OF ,根据垂直定义可得∠CDB =90°,从而可得∠B +∠C =90°,然后利用等腰三角形的性质可得∠B =∠OFB ,∠C =∠EFC ,从而可得∠OFB +∠EFC =90°,最后利用平角定义可得∠OFE =90°,即可解答;【解答】证明:连接OF ,∵CD ⊥AB ,∴∠CDB =90°,∴∠B +∠C =90°,∵OB =OF ,EF =EC ,∴∠B =∠OFB ,∠C =∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣(∠OFB+∠EFC)=90°,∵OF是⊙O的半径,∴EF是⊙O的切线:【点评】本题考查了切线的判定与性质,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式1-1】(2022•澄城县三模)如图,AB是△ABC外接圆⊙O的直径,过⊙O外一点D作BC的平行线分别交AC,AB于点G,E,交⊙O于点F,连接DB,CF,∠BAC=∠D.求证:BD是⊙O的切线;【分析】证明∠ABD=90°,根据切线的判定可得BD与⊙O相切;【解答】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DG∥BC,∴∠AGE=∠ACB=90°,∴∠A+∠AEG=90°,又∵∠A=∠D,∠AEG=∠DEB,∴∠D+∠DEB=90°,∴∠DBE=90°,∴AB⊥BD,∵AB为直径,∴BD与⊙O相切;【点评】此题考查了切线的判定,垂径定理,解答本题需要我们熟练掌握切线的判定.【变式1-2】如图,AB是⊙O的直径,点C是圆上一点,CD⊥AB于点D,点E是圆外一点,CA平分∠ECD.求证:CE是⊙O的切线.【分析】利用切线的判定定理证明∠OCE=90°即可得出结论.【解答】证明:∵CA平分∠ECD,∴∠ECA=∠DCA.∵CD⊥AB,∴∠CAD+∠DCA=90°,∴∠ECA+∠CAD=90°.∵OA=OC,∴∠CAD=∠ACO,∴∠ECA+∠ACO=90°,即∠OCE=90°,∴OC⊥EC,∵OC是⊙O的半径,∴CE是⊙O的切线.【点评】本题主要考查了圆的切线的判定,熟练应用圆的切线的判定定理是解题的关键.【变式1-3】(2022秋•阳谷县校级期末)如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线.(2)求证:FD=FG.【分析】(1)欲证明MN是半圆的切线,只需证得∠MAB=90°,即MA⊥AB即可;(2)根据圆周角定理推论得到∠ACB=90°,由DE⊥AB得到∠DEB=90°,则∠1+∠5=90°,∠3+∠4=90°,又D是弧AC的中点,即弧CD=弧DA,得到∠3=∠5,于是∠1=∠4,利用对顶角相等易得∠1=∠2,则有FD=FG.【解答】证明:(1)如图,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.又∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即∠MAB=90°,∴MA⊥AB.∴MN是半圆的切线.(2)∵AB为直径,∴∠ACB=90°,而DE⊥AB,∴∠DEB=90°,∴∠1+∠5=90°,∠3+∠4=90°,∵D是弧AC的中点,即弧CD=弧DA,∴∠3=∠5,∴∠1=∠4,而∠2=∠4,∴∠1=∠2,∴FD=FG.【点评】本题考查了切线的判定:经过半径的外端点,并且与半径垂直的直线是圆的切线.也考查了圆周角定理及其推论、三角形外角的性质以及等腰三角形的判定.【变式1-4】如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接OC,PB,已知PB=6,DB=8,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)求⊙O的半径.(3)连接BE,求BE的长.【分析】(1)由已知角相等及直角三角形的性质得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB =6,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.(3)延长PB、DE相交于点F,证明△PED≌△PEF(ASA),由全等三角形的性质得出PD=PF=10,DE =EF,求出DF的长,则可得出答案.【解答】(1)证明:∵DE⊥PE,∴∠DEO=90°,∵∠EDB=∠EPB,∠BOE=∠EDB+∠DEO,∠BOE=∠EPB+∠OBP,∴∠OBP=∠DEO=90°,∴OB⊥PB,∴PB为⊙O的切线;(2)解:在Rt△PBD中,PB=6,DB=8,根据勾股定理得:PD=10,∵PD与PB都为⊙O的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4;在Rt△CDO中,设OC=r,则有OD=8﹣r,根据勾股定理得:(8﹣r)2=r2+42,解得:r=3,则圆的半径为3.(3)延长PB、DE相交于点F,∵PD与PB都为⊙O的切线,∴OP平分∠CPB,∴∠DPE=∠FPE,∵PE⊥DF,∴∠PED=∠PEF=90°,又∵PE=PE,∴△PED ≌△PEF (ASA ),∴PD =PF =10,DE =EF ,∴BF =PF ﹣PB =10﹣6=4,在Rt △DBF 中,DF==∴BE =12DF =【点评】本题考查了切线的判定和性质,勾股定理,平行线的性质,全等三角形的判定和性质,熟练掌握性质定理是解题的关键.●●【典例二】 如图,△ABC 是直角三角形,点O 是线段AC 上的一点,以点O 为圆心,OA 为半径作圆.O 交线段AB 于点D ,作线段BD 的垂直平分线EF ,EF 交线段BC 于点.(1)若∠B =30°,求∠COD 的度数;(2)证明:ED 是⊙O 的切线.【分析】(1)根据三角形的内角和定理得到∠A =60°,根据等腰三角形的性质得到∠ODA =∠A =60°,于是得到∠COD =∠ODA +∠A =120°;(2)根据线段垂直平分线的性质得到∠EDB =∠B =30°,求得ED ⊥DO ,根据切线的判定定理即可得到结论.【解答】(1)解:∵∠C =90°,∠B =30°,∴∠A =60°,∵OD =OA,∴∠COD=∠ODA+∠A=120°;(2)证明:∵EF垂直平分BD,∴∠EDB=∠B=30°,∴∠EDO=180°﹣∠EDB﹣∠ODA=180°﹣30°﹣60°=90°,∴ED⊥DO,∵OD是⊙O的半径,∴ED是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,线段垂直平分线的性质,熟练掌握切线的判定定理是解题的关键.【变式2-1】如图,AB为⊙O的直径,点C,D在⊙O上,AC=CD=DB,DE⊥AC.求证:DE是⊙O的切线.【分析】连接OD,根据已知条件得到∠BOD=13×180°=60°,求得∠EAD=∠DAB=12∠BOD=30°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,求得∠EDA=60°,根据切线的判定定理即可得到结论.【解答】证明:连接OD,∵AC=CD=DB,∴∠BOD=13×180°=60°,∵CD=DB,∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,正确的作出辅助线是解题的关键.【变式2-2】如图,AC是⊙O的直径,B在⊙O上,BD平分∠ABC交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.求证:DE是⊙O的切线.【分析】连接OD,根据圆周角定理的推论得到∠ABC=90°,根据角平分线的性质求出∠DBE=45°,根据圆周角定理得到∠DOC,根据平行线的性质求出∠ODE=90°,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠DBE=45°,∴∠DOC=2∠DBE=90°,∵DE∥AC,∴∠ODE=∠DOC=90°,∴DE是⊙O的切线;【点评】本题考查的是切线的判定定理、圆周角定理以及正方形的判定和性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.【变式2-3】(2023•鼓楼区校级模拟)如图,在⊙O中,AB为⊙O的直径,AC为弦,OC=4,∠OAC=60°.(1)求∠AOC的度数;(2)在图(1)中,P为直径BA的延长线上一点,且S△PAC=PC为⊙O的切线;【分析】(1)根据等腰三角形中有一角为60度时是等边三角形得到△ACO是等边三角形,则∠AOC=60°;(2)由等边三角形的性质以及勾股定理得出CD的长,再利用三角形外角的性质以及等腰三角形的性质得出∠PCA=30°,进而得出答案;【解答】(1)解:在△OAC中,∵OA=OC=4,∠OAC=60°,∴△OAC是等边三角形,∴∠AOC=60°;(2)证明:过点C作CD⊥AO于点D,∵△AOC是等边三角形,CD⊥AO,∴AD=DO=12OA=2,∠ACO=60°,∴CD∵S △PAC =∴12PA •CD =∴PA =4,∴PA =AC ,∴∠P =∠PCA =12∠OAC =30°,∴∠PCO =∠PCA +∠ACO =30°+60°=90°,∴OC ⊥PC ,∵OC 是⊙O 的半径,∴PC 为⊙O 的切线.【点评】本题考查了等边三角形的判定和性质,切线的判定,熟练掌握相关的性质和判定是解决问题的关键.【变式2-4】(2023•门头沟区二模)如图,AB 是⊙O 直径,弦CD ⊥AB 于E ,点F 在CD 上,且AF =DF ,连接AD ,BC .(1)求证:∠FAD =∠B(2)延长FA 到P ,使FP =FC ,作直线CP .如果AF ∥BC .求证:直线CP 为⊙O 的切线.【分析】(1)根据垂径定理、圆周角定理可得∠ACD =∠ACD =∠B ,根据等腰三角形的性质可得∠FAD=∠FDA,进而可得∠FAD=∠B;(2)根据平行线的性质以及三角形内角和定理可得∠FAB=∠FAD=∠FDA=30°,进而得到∠CFP=60°,再利用等边三角形的性质可得∠PCO=60°+30°=90°,由切线的判定方法可得结论.【解答】证明:(1)如图,连接AC,∵AB是⊙O直径,弦CD⊥AB,∴AC=AD,∴∠ACD=∠ACD=∠B,∵AF=FD,∴∠FAD=∠FDA,∴∠FAD=∠B;(2)如图,连接OC,∵AF∥BC,∴∠FAB=∠B,∴∠FAB=∠FAD=∠FDA,∵∠AED=90°,∴∠FAB=∠FAD=∠FDA=30°,∴∠CFP=60°,∵FP=FC,∴△CFP是等边三角形,∴∠PCF=60°,∵OB=OC,∴∠B=∠OCB=30°,∴∠OCD=30°,∴∠PCO=60°+30°=90°,即OC⊥PC,∵OC是半径,∴PC是⊙O的切线.【点评】本题考查切线的判定,圆周角定理、平行线的性质以及三角形内角和定理,掌握切线的判定方法,圆周角定理是正确解答的前提.●●【典例三】如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,过点C 作CE ⊥AD 交AD 的延长线于点E ,延长EC ,AB 交于点F ,∠ECD =∠BCF .求证:CE 为⊙O 的切线;【分析】连接OC ,BD ,可推出EF ∥BD ,进而可证CD =BC ,进而得出CE 为⊙O 的切线;【解答】证明:如图1,连接OC ,BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵CE ⊥AE,∴∠E=∠ADB,∴EF∥BD,∴∠ECD=∠CDB,∠BCF=∠CBD,∵∠ECD=∠BCF,∴∠CDB=∠CBD,∴CD=BC,∴半径OC⊥EF,∴CE为⊙O的切线;【点评】本题考查了圆周角定理及其推论,圆的切线判定,解决问题的关键是作合适的辅助线.【变式3-1】(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.【分析】连接OD,根据OA=OB,CD=BD,得出OD∥AC,∠ODE=∠CED,再根据DE⊥AC,即可证出OD⊥DE,从而得出答案.【解答】证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定与性质,解决本题的关键是掌握圆周角定理的推论、线段垂直平分线的性质以及等边三角形的判定,是一道常考题型.【变式3-2】已知,如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论.【分析】(1)连接CD,如图,根据圆周角定理,由BC为直径得到∠BDC=90°,然后根据等腰三角形的性质得AD=BD;(2)连接OD,先得到OD为△ABC的中位线,再根据三角形中位线性质得OD∥AC,而DE⊥AC,则DE⊥OD,然后根据切线的判定定理可得DE为⊙O的切线.【解答】(1)证明:连接CD,如图,∵BC为直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,即点D是AB的中点;(2)解:DE与⊙O相切.理由如下:连接OD,∵AD=BD,OC=OB,∴OD为△ABC的中位线,∴OD∥AC,而DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.【变式3-3】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=【解答】(1)证明:连接OD,如图,∵∠BAC的平分线交BC于点D,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:∵∠B=30°,∴∠BAC=60°,∴∠CAD=30°,在Rt△ADC中,DC=4,∴AC==在Rt△ABC中,∠B=30°,∴AB=2AC=【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.【变式3-4】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.【点评】此题主要考查了切线的判定,角平分线的性质,含30°的直角三角形的性质,勾股定理,矩形的判定和性质,构造出直角三角形是解本题的关键,是一道中等难度的中考常考题.●●【典例四】(2022•城关区一模)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为6,PB=4,PC=8.求证:PC是⊙O的切线;【分析】可以证明OC2+PC2=OP2得△OCP是直角三角形,即OC⊥PC,PC是⊙O的切线;【解答】解:如图,连接OC、BC,∵⊙O的半径为6,PB=4,PC=8.∴OC=OB=6,OP=OB+BP=6+4=10,∴OC2+PC2=62+82=100,OP2=102=100,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线;【点评】本题考查圆的切线的判定和勾股定理逆定理,利用勾股定理的逆定理证明垂直是解决问题的关键.【变式4-1】如图,AD, BD是⊙O的弦,AD⊥BD,且BD=2AD=8 ,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先由勾股定理的逆定理证明垂直,再由切线的判断进行解答即可.【解答】证明:连接AB,∵AD⊥BD,且BD=2AD=8 ,∴AB为直径,AB2 =82+42 =80,∵CD=2,AD=4 ,∴AC2 =22 +42=20,∵CD=2,BD=8,∴BC=102=100,∴AC2+AB2=CB2,∴∠BAC=90° ,∴AC是⊙O的切线【点评】本题考查切线的判定,圆周角定理的推论,勾股定理的逆定理,解题关键是作出辅助线构造直角三角形.【变式4-2】如图,AD,BD是⊙O的弦,AD⊥BD,且BD=2AD=8,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先根据圆周角定理得到AB为⊙O的直径,再利用勾股定理计算出AB、AC,接着利用勾股定理的逆定理证明△ABC为直角三角形,∠BAC=90°,所以AC⊥AB,然后根据切线的判定定理得到结论.【解答】证明:∵AD⊥BD,∴∠ADB=90°,∴AB为⊙O的直径,∵BD =2AD =8,∴AD =4,在Rt △ADB 中,AB 2=AD 2+BD 2=42+82=80,在Rt △ADC 中,AC 2=AD 2+CD 2=42+22=20,∵BC 2=(2+8)2=10,∴AC 2+AB 2=BC 2,∴△ABC 为直角三角形,∠BAC =90°,∴AC ⊥AB ,∵AB 为直径,∴AC 是⊙O 的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理和勾股定理的逆定理.●●【典例五】(2022•鄞州区校级开学)如图,AB 为⊙O 的直径,点C 和点D 是⊙O 上的两点,连接BC ,DC ,BC =CD ,CE ⊥DA 交DA 的延长线于点E .求证:CE 是⊙O 的切线;【分析】连接OD ,OC ,证得△COD ≌△COB ,可得∠OCD =∠BCO ,从而得到∠ADC =∠DCO ,进而得到DA ∥CO ,利用切线的判定定理即可求证;【解答】证明:连接OD ,OC,如图,在△COD和△COB中,OD=OBOC=OC,CD=CB∴△COD≌△COB(SSS),∴∠OCD=∠BCO,∵CO=BO,∴∠B=∠BCO,∵∠B=∠ADC,∴∠ADC=∠DCO.∴DA∥CO,∴∠E+∠ECO=180°.∵CE⊥EA,∴∠E=90°.∴∠ECO=90°,∴EC⊥CO,∵CO是⊙O的半径,∴EC是⊙O的切线;【点评】本题主要考查了切线的判定,圆周角定理等知识,熟练掌握切线的判定,相似三角形的判定和性质,圆周角定理等知识是解题的关键.【变式5-1】如图,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.求证:CD是⊙O的切线;【分析】连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC 为直角,即可得证;【解答】证明:如图,连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB,在△COD和△COB中,OC=OC∠COD=∠COB,OD=OB∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°,∵OD是⊙O的半径,∴CD是⊙O的切线;【点评】此题考查了切线的判定和性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.【变式5-2】(2022秋•新抚区期末)如图,AB为⊙O的直径,四边形OBCD是矩形,连接AD,延长AD 交⊙O于E,连接CE.求证:CE为⊙O的切线.【分析】连接OC、BE,根据矩形性质和圆半径相等,推出∠CDE=∠AEO,进而得到OP=CP,然后根据OB∥CD,可以推出∠COE=∠BOC,最后通过证明△BOC≌△EOC即可求解.【解答】证明:如图:连接OC、BE,OE,CD交于点P,∵四边形OBCD是矩形,∴OB∥CD,∠OBC=90°,OB=CD,∵OB∥CD,∴∠A=∠CDE,∵在⊙O中,OA=OB=OE,∴OE=CD,∵OA=OE,∴∠A=∠AEO,∴∠CDE=∠AEO,∴DP=PE,∵OE=CD,∴OP=CP,∴∠COE=∠DCO,∵OB∥CD,∴∠DCO=∠BOC,∴∠COE=∠BOC,在△BOC和△EOC中,OB=OECO=CO,∠BOC=∠COE∴△BOC≌△EOC(SAS),∴∠CEO=∠OBC=90°,∴CE⊥OE,又∵OE为⊙O的半径,∴CE为⊙O的切线.【点评】本题考查圆周角定理,全等三角形的判定和性质,矩形的性质等众多知识点,熟悉掌握以上知识点是解题关键.【变式5-3】(2022•建邺区二模)如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若AP BF=1,求⊙O的半径.【分析】(1)连接AF,根据菱形的性质得到∠ACF=∠ACE,根据全等三角形的性质得到∠AFC=∠AEC,推出OA⊥AE,根据切线的判定定理即可得到结论;(2)连接BP,根据圆周角定理得到∠APB=90°,求得AC=2AP=【解答】(1)证明:连接AF,∵四边形ABCD为菱形,∴∠ACF=∠ACE,在△ACF与△ACE中,CF=CE∠ACF=∠ACEAC=AC,∴△ACF≌△ACE(SAS),∴∠AFC=∠AEC,∵AB是⊙O的直径,∴∠AFB=∠AFC=90°,∴∠AEC=90°,∵AB∥DC,∴∠BAE+∠AEC=90°,∴∠BAE=90°,∴OA⊥AE,∵OA是⊙O的半径,∴AE是⊙O的切线;(2)解:连接BP,∵AB是⊙O的直径,∴∠APB=90°,∵AB=CB,AP=∴AC=2AP=设⊙O的半径为R,∵AC2﹣CF2=AF2,AB2﹣BF2=AF2,∴2−(2R−1)2=(2R)2−12,∴R=32(负值舍去),∴⊙O的半径为3 2.【点评】本题考查了切线的判定和性质,圆周角定理,菱形的性质,三角形全等的性质和判定,勾股定理等知识,解答本题的关键是根据勾股定理列方程解决问题.类型二:无公共点:作垂直,证半径●●【典例六】如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【分析】过点O作OE⊥AC于点E,连接OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【解答】证明:过点O作OE⊥AC于点E,连接OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∵圆心到直线的距离等于半径,∴AC是⊙O的切线.【点评】本题考查了切线的判定和性质,等腰三角形的性质,角平分线的性质,熟练掌握性质定理是解题的关键.【变式6-1】如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.【分析】利用正方形的性质得出AC平分角∠BCD,再利用角平分线的性质得出OM=ON,即可得出答案.【解答】证明:如图所示,连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴ON为⊙O的半径,∴CD与⊙O相切.【点评】此题主要考查了正方形的性质以及角平分线的性质,得出OM=ON是解题关键.【变式6-2】如图,OC平分∠AOB,D是OC上任意一点,⊙D和OA相切于点E,连接CE.(1)求证:OB与⊙D相切;(2)若OE=4,⊙D的半径为3,求CE的长.【分析】(1)过点D作DF⊥OB于点F,先由切线的性质得DE⊥OA,则由角平分线的性质得DF=DE,即可证得结论;(2)过E作EG⊥OD于G,先由勾股定理求出OD=5,再由面积法求出EG=125,然后由勾股定理求出DG=95,最后由勾股定理求出CE即可.【解答】(1)证明:连接DE,过点D作DF⊥OB于点F,如图所示:∵⊙D与OA相切于点E,∴DE⊥OA,∵OC平分∠AOB,∴DF=DE,又∵DF⊥OB,∴OB与⊙D相切;(2)解:过E作EG⊥OD于G,如图所示:由(1)得:DE⊥OA,∴∠OED=90°,∵OE=4,DE=3,∴OD=5,∵EG⊥OD,∴12OD×EG=12OE×DE,∴EG=OE×DEOD=4×35=125,∴DG===9 5,∴CG=CD+DG=3+95=245,∴CE=【点评】此题考查了切线的判定与性质、勾股定理以及角平分线的性质等知识,解题的关键是准确作出辅助线.【变式6-3】如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.【分析】(1)过O点作OE⊥CD于点E,通过角平分线的性质得出OE=OA即可证得结论.(2)过点D作DF⊥BC于点F,根据切线的性质可得出DC的长度,继而在Rt△DFC中利用勾股定理可得出DF的长,继而可得出半径.【解答】(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,又∵DO平分∠ADC,∴OE=OA,∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,∴CD是⊙O的切线.(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,∴四边形ABFD是矩形,∴AD=BF,AB=DF,又∵AD=4,BC=9,∴FC=9﹣4=5,∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,∴DC=AD+BC=4+9=13,在Rt△DFC中,DC2=DF2+FC2,∴DF=12,∴AB=12,∴⊙O的半径R是6.【点评】此题考查了切线的性质、角平分线的性质及勾股定理的知识,证明第一问关键是掌握切线的判定定理,解答第二问关键是熟练切线的性质.【变式6-4】(2022秋•清原县期末)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O 经过点C 且与AB 边相切于点E ,∠FAC =12∠BDC .(1)求证:AF 是⊙O 的切线;(2)若BC =6,AB =10,求⊙O 的半径长.【分析】(1)作OH ⊥FA ,垂足为点H ,连接OE ,证明AC 是∠FAB 的平分线,进而根据OH =OE ,OE ⊥AB ,可得AF 是⊙O 的切线;(2)勾股定理得出AC ,设⊙O 的半径为r ,则OC =OE =r ,进而根据切线的性质,在Rt △OEA 中,勾股定理即可求解.【解答】(1)证明:如图,作OH ⊥FA ,垂足为点H ,连接OE ,∵∠ACB =90°,D 是AB 的中点,∴CD =AD =12AB ,∴∠CAD =∠ACD ,∵∠BDC =∠CAD +∠ACD =2∠CAD ,又∵∠FAC =12∠BDC ,∴∠FAC =∠CAD ,即AC 是∠FAB 的平分线,∵点O 在AC 上,⊙O 与AB 相切于点E ,∴OE ⊥AB ,且OE 是⊙O 的半径,∴OH =OE ,OH 是⊙O 的半径,∴AF 是⊙O 的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,AB=10,∴AC==8,∵BE,BC是⊙O的切线,∴BC=BE=6,∴AE=10﹣6=4设⊙O的半径为r,则OC=OE=r,在Rt△OEA中,由勾股定理得:OE2+AE2=OA2,∴16+r2=(8﹣r)2,∴r=3.∴⊙O的半径长为3.【点评】本题考查了切线的性质与判定,勾股定理,熟练掌握切线的性质与判定是解题的关键.1.如图,已知AB是⊙O的直径,AB=BE,点P在BA的延长线上,连接AE交⊙O于点D,过点D作PC⊥BE垂足为点C.求证:PC与⊙O相切;【分析】连接OD,根据等腰三角形的性质得到∠BAE=∠BEA,∠BAE=∠ODA,等量代换得到∠ODA=∠BEA,证明OD∥BE,根据平行线的性质得到PC⊥OD,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AB=BE,∴∠BAE=∠BEA,∵OA=OD,∴∠BAE=∠ODA,∴∠ODA=∠BEA,∴OD∥BE,∵PC⊥BE,∴PC⊥OD,∵OD是⊙O的半径,∴PC与⊙O相切;【点评】本题考查的是切线的判定、解直角三角形,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.2.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,点D是BC的中点,DE∥BC交AC的延长线于点E.(1)求证:直线DE与⊙O相切;(2)若⊙O的直径是10,∠A=45°,求CE的长.【分析】(1)连接OD,如图,先利用垂径定理得到OD⊥BC,再根据平行线的性质得到OD⊥DE,然后根据切线的判定方法得到结论;(2)先根据圆周角定理得到∠B=90°,则∠ACB=45°,再根据平行线的性质得到∠E=45°,则可判断△ODE 为等腰直角三角形,于是可求出OE,然后计算OE﹣OC即可.【解答】(1)证明:连接OD,如图,∵点D是BC的中点,∴OD⊥BC,∵DE∥BC,∴OD⊥DE,∴直线DE与⊙O相切;(2)解:∵AC是⊙O的直径,∴∠B=90°,∵∠A=45°,∴∠ACB=45°,∵BC∥DE,∴∠E=45°,而∠ODE=90°,∴△ODE为等腰直角三角形,∴OE==∴CE=OE﹣OC=5.【点评】本题考查了切线的性质与判定:圆的切线垂直于经过切点的半径.也考查了垂径定理、圆周角定理和等腰直角三角形的性质.3.(2023•东城区校级模拟)如图,⊙O的半径OC与弦AB垂直于点D,连接BC,OB.(1)求证:2∠ABC+∠OBA=90°;(2)分别延长BO、CO交⊙O于点E、F,连接AF,交BE于G,过点A作AM⊥BC,交BC延长线于点M,若G是AF的中点,求证:AM是⊙O的切线.【分析】(1)先根据垂径定理得到AC=BC,再根据圆周角定理得到∠BOC=2∠ABC,然后利用互余关系得∠BOD+∠OBD=90°,从而得到结论;(2)如图,连接OA,根据垂径定理得到BE⊥AF,再根据圆周角定理得到∠CAF=90°,则可判断BE ∥AC,所以∠ABE=∠BAC,接着证明∠BAO=∠CBA得到OA∥BC,根据平行线的性质得到AM⊥OA,然后根据切线的判断方法得到结论.【解答】证明:(1)∵OD⊥AB,∴AC=BC,∠ODB=90°,∴∠BOC=2∠ABC,∵∠BOD+∠OBD=90°,∴2∠ABC+∠OBA=90°;(2)如图,连接OA,∵G是AF的中点,∴BE⊥AF,∵CF为直径,∴∠CAF=90°,∴CA⊥AF,∴BE∥AC,∴∠ABE=∠BAC,∴AC=BC,∴∠CAB=∠CBA,∵OA=OB,∴∠BAO=∠ABO,∴∠BAO=∠CBA,∴OA∥BC,∵AM⊥BC,∴AM⊥OA,而OA为⊙O的半径,∴AM是⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、垂径定理.4.(2022•思明区校级二模)如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,BE∥AD交DC 延长线于点E,若BC平分∠ACE.(1)求证:BE是⊙O的切线;(2)若BE=3,CD=2,求⊙O的半径.【分析】(1)连接OB,由条件可以证明OB∥DE,从而证明OB⊥BE;(2)由垂径定理求出AD长,从而由勾股定理可求AC长.【解答】(1)证明:连接OB,∵″OB=OC,∴∠OBC=∠OCB,∵∠BCE=∠OCB,∴∠OBC=∠BCE,∴OB∥DE,∵AC是⊙O直径,∴AD⊥DE,∵BE∥AD,∴BE⊥DE,∴OB⊥BE,∵OB是⊙O半径,∴BE是⊙O切线;(2)解:延长BO交AD于F,∵∠D=∠DEB=∠EBF=90°,∴四边形BEDF是矩形,∴BF⊥AD,DF=BE=3,∴AD=2DF=6,∵AC2=AD2+CD2,∴AC2=62+22=40,∴AC=∴⊙O【点评】本题考查切线的判定,矩形的判定和性质,垂径定理,勾股定理,用到的知识点较多,关键是熟练掌握知识点,并能灵活应用.5.(2023•封开县一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.【分析】(1)连接OD,由AC=AB,根据等边对等角得到一对角相等,再由OD=OB,根据等边对等角得到又一对角相等,等量代换可得一对同位角相等,根据同位角相等两直线平行可得OD与AC平行,又EF垂直于AC,根据垂直于两平行线中的一条,与另一条也垂直,得到EF与OD也垂直,可得EF为圆O的切线;(2)连接AD,由AB为圆的直径,根据直径所对的圆周角为直角可得∠ADB=90°,即AD与BC垂直,又AC=AB,根据三线合一得到D为BC中点,由BC求出CD的长,再由AC的长,利用勾股定理求出AD的长,三角形ACD的面积有两种求法,AC乘以DE除以2,或CD乘以AD除以2,列出两个关系式,两关系式相等可求出DE的长.【解答】(1)证明:连接OD,∵AB=AC,∴∠C=∠OBD,∵OD=OB,∴∠1=∠OBD,∴∠1=∠C,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;(2)连接AD,∵AB为⊙O的直径,∴∠ADB=90°,又∵AB=AC,且BC=6,∴CD=BD=12BC=3,在Rt△ACD中,AC=AB=5,CD=3,根据勾股定理得:AD=4,又S△ACD =12AC•ED=12AD•CD,即12×5×ED=12×4×3,∴ED=12 5.【点评】此题考查了等腰三角形的性质,圆周角定理,平行线的性质,勾股定理,三角形面积的求法,以及切线的判定,其中证明切线的方法为:有点连接圆心与此点,证垂直;无点过圆心作垂线,证明垂线段长等于圆的半径.本题利用的是第一种方法.6.(2023•宁德模拟)如图,OM 为⊙O 的半径,且OM =3,点G 为OM 的中点,过点G 作AB ⊥OM 交⊙O 于点A ,B ,点D 在优弧AB 上运动,将AB 沿AD 方向平移得到DC ;连接BD ,BC .(1)求∠ADB 的度数;(2)如图2,当点D 在MO 延长线上时,求证:BC 是⊙O 的切线.【分析】(1)连接AO ,BO ,先根据特殊角的正弦值可得∠OAG =30°,再根据等腰三角形的性质可得∠OAG =∠OBG =30°,从而可得∠AOB =120°,然后根据圆周角定理即可得;(2)连接AO ,BO ,CO ,先证出四边形ABCD 是平行四边形,再根据等边三角形的判定与性质可得AB =AD ,根据菱形的判定可得四边形ABCD 是菱形,根据菱形的性质可得CB =CD ,然后根据SSS 定理证出△COB ≌△COD ,根据全等三角形的性质可得∠OBC =∠ODC =90°,最后根据圆的切线的判定即可得证.【解答】(1)解:如图1,连接AO ,BO .∵点G 为OM 的中点,且OM =3,∴OG =12OM =32,OA =OB =OM =3,∵AB ⊥OM ,在Rt △AOG 中,OG =12OA .∴∠OAG =30°,又∵OA =OB ,∴∠OAG=∠OBG=30°,∴∠AOB=120°,∴∠ADB=12∠AOB=60°.(2)证明:如图2,连接AO,BO,CO,由平移得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∵OM⊥AB,点D在MO延长线上,∴DM⊥CD,∵OA=OB,AB⊥OM,∴AG=BG,∴DM垂直平分AB,∴AD=BD,∵∠ADB=60°,∴△ABD为等边三角形,∴AB=AD,∴平行四边形ABCD是菱形,∴CB=CD,在△COB和△COD中,CB=CDOB=ODOC=OC,∴△COB≌△COD(SSS),∴∠OBC=∠ODC=90°,又∵OB是⊙O的半径,。
圆的切线专题
的切线知识点一、直线和圆的位置关系的定义、性质及判定设从另一个角度,直线和圆的位置关系还可以如下表示:二、切线的性质及判定1.切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.2.切线的判定:定义法:和圆只有一个公共点的直线是圆的切线;距离法:到圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.3.切线长和切线长定理:(1)切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角•①切线的判定定理设创为00的半径,过半径外端川作/丄如则0到/的距离d=r, :.1与00相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是G)O的切线.证明一直线是圆的切线有两个思路:(1)连接半径,证直线与此半径垂直;(2)作垂线,证d=τ②切线的性质定理及其推论切线的性质定理:圆的切线垂直于过切点的半径.我们分析:这个定理共有三个条件:一条直线满足:(1)垂直于切线(2)过切点(3)过圆心例2、已知:如图8,在Rt ΔABC 中,ZB = 90o , ZA 的平分线交BC 于点D, E 为AB 上的一点, DE=DC,以D 为圆心,DB 长为半径作GID 。
求证:(1) AC 是GID 的切线;(2) AB+EB=ACOA 过圆心,OA 过切点八则OA 丄AT ②经过圆心,垂直于切线=过切点 ⑴伽圆心]»为切点 (2)ΛB 丄 MT③ 经过切点,垂直于切线=过圆心 (1) AM 丄MT(2) M 为> => AM 过圆心考点一、圆的切线的证明例1、如图,ΔA3C 中,AB = AC 9 0是BC 的中点,以0为圆心的圆与A3相切于点D 。
圆的切线证明方法归纳
圆的切线证明方法归纳切线是指与圆相切且与圆的半径垂直的直线。
在几何学中,圆的切线是一个重要的概念。
证明圆的切线有许多不同的方法,下面将介绍一些常见的证明方法。
1.垂直切线法:这是最常见的证明方法之一。
具体步骤如下:(1)假设圆的半径r,圆心O,切点A和切线上的一点T。
(2)连接OA,并且将OA延长到交切线于点T。
(3)根据勾股定理可得:OA^2 =OT^2 + AT^2。
(4)由于OT和AT都是切线的一部分,所以OT和AT都垂直于OA。
(5)根据垂直定理可知OT和AT平方和等于OA的平方,即OT^2 + AT^2 = OA^2。
(6)根据步骤4和5可得:AT^2 = OA^2 - OT^2。
(7)OT是半径,所以OT^2= r^2,代入上式得:AT^2 = OA^2 -r^2。
(8)AT是切线的一部分,所以AT > 0。
因此,OA^2 - r^2 > 0。
(9)根据正数平方根的性质,OA^2 - r^2的平方根存在。
(10)所以,根据步骤9,AT存在,即OT与切线上的一点T并非同一点。
(11)由于OT与圆的半径相交于点O,所以OT是与半径垂直的直线,即切线。
2.切线垂直与半径的证明:这种证明方法基于一个重要的定理:切线垂直于半径。
具体步骤如下:(1)假设圆的半径r,圆心O,切点A和切线上的一点T。
(2)连接OA和OT。
(3)由于AO是圆的半径,所以AO与圆心O的向量相等,即AO = OT。
(4)由于切线与圆相切,切点A是切线上的一点,所以OA与切线垂直。
(5)根据向量几何的性质可得,向量OA与向量OT垂直。
(6)根据定义,切线上的每一个点与圆心都构成一个向量,这个向量与向量OA垂直。
(7)所以,根据步骤6,切线与所有圆心上的向量都垂直,即切线垂直于半径。
3.外切圆的切线证明:这种证明方法适用于外切圆。
具体步骤如下:(1)假设有一个三角形ABC,其中AB和BC是两条直线段,角ABC是直角。
证明圆的切线的七种常用方法
证明圆的切线的七种常用方法类型1、有公共点:连半径,证垂直方法1、勾股定理逆定理法证垂直1.如图,⊙O的直径AB=12,点P是AB延长线上一点,且PB=4,点C是⊙O上一点,PC=8. 求证:PC是⊙O的切线.方法2、特殊角计算法证垂直2. 如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD =5,求⊙O 的直径.方法3、等角代换法证垂直3.如图,在Rt△ABC中,∠C=90°,D为BC 的中点,以AC 为直径的⊙O交AB于点E . 求证:DE是⊙O 的切线.方法4、平行线性质法证垂直4.如图,已知四边形OABC的三个顶点A ,B ,C在以O为圆心的半圆上,过点C 作CD ⊥AB,分别交AB,AO 的延长线于点D,E,AE交半圆O于点F,连接CF,且∠E=30°,点B是︵AC的中点.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)求证:CF=OC;(3)若⊙O的半径是6,求DC的长.AB POCACBPD OAEBDOCA O F ECDB方法5、全等三角形法证垂直5.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF .求证:BF 是⊙O 的切线.类型2、无公共点:作垂直,证半径方法6、角平分线性质法证半径6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 是AB 上一点,DE =DC ,以点D 为圆心,BD 长为半径作OD ,AB =5,EB =2. (1)求证:AC 是OD 的切线;(2)求线段AC 的长.方法7、全等三角形法证半径7.如图,四边形ABCD 中,∠A =∠ABC =90°,AD +BC =CD ,以AB 为直径作⊙O . 求证:⊙O 与边CD 相切.A OBCD F A B C D EA OB C D。
完整word版证明圆的切线经典例题
证明圆的切线方法及例题证明圆的切线常用的方法有:一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD.∵AB是⊙O的直径,∴AD⊥BC.AB=BC,又∵4.3=∠∴∠⌒⌒,∠1=∠2. ∴BD=DE 又∵OB=OE,OF=OF,∴△BOF≌△EOF(SAS).∴∠OBF=∠OEF.∵BF与⊙O相切,∴OB⊥BF.0. ∴∠OEF=90∴EF与⊙O相切.说明:此题是通过证明三角形全等证明垂直的1例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与⊙O相切.证明一:作直径AE,连结EC.的平分线,AD是∠BAC ∵DAC. ∠∴∠DAB=,∵PA=PDDAC. ∠∠1+ ∴∠2=,∠DAB∵∠2=∠B+B. ∠∴∠1=E,又∵∠B=∠E 1=∠∴∠O的直径,∵AE是⊙0. E+∠EAC=90 ∴AC⊥EC,∠0. 1+∠EAC=90 ∴∠PA. ⊥即OA. 相切与⊙O ∴PAOE. OA,E交⊙O于,连结证明二:延长AD的平分线,∵AD是∠BAC ⌒⌒∴BE=CE,∴OE⊥BC.0. BDE=90E+∠∴∠∵OA=OE,∴∠E=∠1.∵PA=PD,∴∠PAD=∠PDA.又∵∠PDA=∠BDE,20∴∠1+∠PAD=90PA. ⊥即OA相切PA与⊙O ∴. 此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用说明:M ⊥DMAC于O交BC于D,3 例如图,AB=AC,AB是⊙O的直径,⊙. 与⊙O相切求证:DMOD. 证明一:连结∵AB=AC,∴∠B=∠C.,∵OB=OD∠B.∴∠1=DC. ∴∠1=∠∴OD∥AC.,∵DM⊥ACOD. DM ∴⊥相切O ∴DM与⊙AD. OD证明二:连结,是⊙ABO的直径,∵BC. ⊥AD ∴AB=AC,又∵2. ∠∴∠1= ∵DM⊥AC,0∴∠∠4=902+ OA=OD,∵ C3. 1=∠∴∠0.∴∠4=903+∠3DM. OD⊥即O 的切线∴DM 是⊙证明二是通过证两角互余证明垂直的,证明一是通过证平行来证明垂直的.说明:.解题中注意充分利用已知及图上已知0,CAB=30BD=OB,O的直径,点C在⊙O上,且∠4 例如图,已知:AB是⊙.的延长线上D在AB 的切线DC是⊙O求证:BC. 、证明:连结OCOA=OC,∵0. 30A=∠1=∠∴∠0. ∠A+∠1=60 ∴∠BOC=D又∵OC=OB,. ∴△OBC是等边三角形OB=BC. ∴OB=BD,∵OB=BC=BD. ∴CD. ⊥∴OC.是⊙∴DCO 的切线但这种方法较此题解法颇多,说明:此题是根据圆周角定理的推论3证明垂直的,.好2OP. =OD,且CD⊥ABOA·的直径,如图,例5 AB是⊙O. 的切线是⊙求证:PCOOC 连结证明:2,OA=OC∵OA=OD·OP,2 OPOC ∴=OD·,4OCOP?. OCOD又∵∠1=∠1,∴△OCP∽△ODC.∴∠OCP=∠ODC.∵CD⊥AB,0. ∴∠OCP=90∴PC是⊙O的切线.说明:此题是通过证三角形相似证明垂直的例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.证明:取FG中点O,连结OC.∵ABCD是正方形,∴BC⊥CD,△CFG是Rt△∵O是FG的中点,∴O是Rt△CFG的外心.∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4.∵AD=CD,DE=DE,0,ADE=∠CDE=45 ∠∴△ADE≌△CDE(SAS)5∴∠4=∠1,∠1=∠3.0, 3=902+∠∵∠0. 2=901+ ∠∴∠即CE⊥OC.∴CE与△CFG的外接圆相切二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.. 是垂足AC,F连结证明一:DE,作DF⊥的切线,AB是⊙D ∵AB. ⊥∴DE,⊥AC ∵DF0. ∠DFC=90 ∴∠DEB=AB=AC,∵C.B=∠∴∠BD=CD,又∵)CDF(AAS ∴△BDE≌△DF=DE. ∴. 上在⊙D ∴F的切线AC是⊙D ∴. F是垂足AC,AD,作DF⊥,证明二:连结DE D相切,与⊙∵ABAB.⊥∴DE BD=CD,,∵AB=AC2.∴∠1=∠6,⊥AC⊥AB,DF ∵DEDE=DF. ∴. D 上∴F在⊙.D 相切∴AC与⊙的,证明二是利用角平分线的性DF=DE证明一是通过证明三角形全等证明说明:.的,这类习题多数与角平分线有关质证明DF=DE0. COD=90BD,若∠切于例8 已知:如图,AC,BD与⊙OA、B,且AC∥.CD是⊙O的切线求证:. ,E为垂足证明一:连结OA,OB,作OE⊥CD相切,∵AC,BD与⊙OOB. AC ∴⊥OA,BD⊥∵AC∥BD,0. ∠4=1801+∴∠∠2+∠3+0,∵∠COD=90 O00. ,∠1+4=90 ∴∠2+∠3=90∠0. ∠5=90∵∠4+5.1=∠∴∠BDO. △∴Rt△AOC∽Rt OCAC?. ∴ODOB∵OA=OB,ACOC?. ∴ODOA0,∠COD=90又∵∠CAO=∴△AOC∽△ODC,∴∠1=∠2.又∵OA⊥AC,OE⊥CD,7OE=OA. ∴. O 上∴E点在⊙.O的切线∴CD是⊙F. CA延长线于,延长DO交OB,作OE⊥CD于E证明二:连结OA,相切,BD与⊙O ∵AC,OB. BD ⊥∴AC⊥OA,BD,∵AC ∥BDO. F= ∠∴∠OA=OB ,又∵AAS)AOF ≌△BOD (∴△OF=OD. ∴0∵∠COD=90 ,2. ∠∴CF=CD ,∠1=,OE⊥CD AC 又∵OA⊥,OE=OA. ∴. 上E 点在⊙O∴.是⊙O的切线CD∴OF. F,连结中点CD于E,取CD并延长,作证明三:连结AOOE⊥OAC与⊙相切,∵AO. ∴AC ⊥BD,AC∵∥BD.AO⊥∴,与⊙O相切于B ∵BDB. AO 的延长线必经过点∴.O∴AB是⊙的直径OA=OBBDAC ∵∥,,CF=DF,8∴OF∥AC,∴∠1=∠COF.0,CF=DF,∵∠COD=901CD??CFOF. ∴2∴∠2= ∠COF.∴∠1= ∠2.∵OA⊥AC,OE⊥CD ,∴OE=OA.∴E点在⊙O 上.∴CD 是⊙O 的切线说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A、O、B三点共线.以上介绍的是证明圆的切线常用的两种方法供同学们参考. 9。
圆的切线证明方法专题(基础篇)(专项练习)
专题2.10 圆的切线证明方法专题(基础篇)(专项练习) 1.如图,AD 是⊙O 的弦,AB 经过圆心O 交⊙O 于点C ,∠A =∠B =30°,连接BD .求证:BD 是⊙O 的切线.2.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB =2∠PCB ,求证:PC 是⊙O 的切线.3.如图,AD ,BD 是O 的弦,AD BD ⊥,且28BD AD ==,点C 是BD 的延长线上的一点,2CD =,求证:AC 是O 的切线.4.如图,点P 是O 的直径AB 延长线上的一点(PB OB <),点E 是线段OP 的中点.在直径AB 上方的圆上作一点C ,使得EC EP =.求证:PC 是O 的切线.5.如图,在△ABC 中,∠A=45°,以AB 为直径的⊙O 交于AC 的中点D ,连接CO ,CO 的延长线交⊙O 于点E ,过点E 作EF ⊥AB ,垂足为点G .(1)求证:BC 时⊙O 的切线;(2)若AB=2,求线段EF 的长.6.如图,AB 是O 的直径,CD 是O 的切线,切点为C ,BE CD ⊥,垂足为E ,连接,AC BC .(1)求证:BC 平分ABE ∠;(2)若60A ∠=︒,2OA =,求CE 的长.7.如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD外角∠DAF的平分线.(1)求证:AM是⊙O的切线.(2)若C是优弧ABD的中点,AD=4,射线CO与AM交于N点,求ON的长.8.如图,在△ABC中,AB=AC,O是边AC上的点,以OC为半径的圆分别交边BC、AC 于点D、E,过点D作DF⊥AB于点F.(1)求证:直线DF是⊙O的切线;(2)若OC=1,∠A=45°,求劣弧DE的长.9.如图,已知△ABC内接于⊙O,点D在OC的延长线上,CD=CB,∠D=∠A(1)求证:BD是⊙O的切线;(2)若BC=2,求BD的长.10.已知:如图,AB是O的直径,点C在O上,BD平分 ABC,AD=AE,AC与BD 相交于点E.(1) 求证:AD是O的切线.(2) 若AD=DE=2,求BC的长.11.如图,已知AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE是⊙O的切线;(3)若⊙O的半径为6,∠BAC=60°,则DE=________.12.已知AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.(1) 如图①,△OPC的最大面积是________;(2) 如图②,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.13.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1) 求证:EF 是O 的切线;(2) 若9OC =,4AC =,8AE =,求BE 的长.14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,且DC =AD .过点A 作⊙O 的切线,过点C 作DA 的平行线,两直线交于点F ,FC 的延长线交AB 的延长线于点G .(1) 求证:FG 与⊙O 相切;(2) 连接EF ,若AF =2,求EF 的长.15.如图,Rt △ABC ,∠ABC =90°,点O 在AB 上,AD ⊥CO 交CO 延长线于点D ,∠DAO =∠ACO ,以点O 为圆心,OB 为半径作圆.(1) 求证:AC 是⊙O 的切线;(2) 已知68CB AB ==,,求OC 的长?16.如图所示,AB 为⊙O 的直径,在△ABC 中,AB =BC ,AC 交⊙O 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1) 证明DE 是⊙O 的切线;(2) AD =8,P 为⊙O 上一点,P 到弦AD 的最大距离为8.① 尺规作图作出此时的P 点,保留作图痕迹;② 求DE 的长.17.如图,线段AB 经过O 的圆心O ,交圆O 于点A ,C ,1BC =,AD 为O 的弦,连接BD ,30BAD ABD ∠=∠=︒,连接DO 并延长交O 于点E ,连接BE 交O 于点M .(1) 求证:直线BD 是O 的切线;(2) 求线段BM 的长.18.如图,Rt ABC △中,90C ∠=︒,点O 在AC 上,以OA 为半径的半圆O 分别交AB ,AC 于点D ,E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1) 求证:BF DF =;(2) 若4AO CE ==,1CF =,求BF 的长.19.如图,在Rt △AOB 中,∠AOB =90°,⊙O 与AB 相交于点C ,与AO 相交于点E ,连接CE ,已知∠AOC =2∠ACE .(1) 求证:AB 为⊙O 的切线;(2) 若AO =20,BO =15,求AE 的长.20.如图,ABC 内接于O ,AC 是O 的直径,点D 是O 上一点,连接CD 、AD ,过点B 作BE AD ⊥,交DA 的延长线于点E ,AB 平分CAE ∠.(1) 求证:BE 是O 的切线;(2) 若30ACB ∠=︒,O 的半径为6,求BE 的长.21.如图,在Rt △ABC 中,∠ABC =90°,∠BAC 的平分线交BC 于点O ,D 为AB 上的一点,OD =OC ,以O 为圆心,OB 的长为半径作⊙O .(1) 求证:AC 是⊙O 的切线;(2) 若AB =6,BD =2,求线段AC 的长.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作DE⊥AC交AC于点E.(1) 试判断直线DE与⊙O的位置关系,并说明理由;(2) 若⊙O的半径为5,BC=16,求DE的长.∠=︒,以AC为直径作O,交AB于点D,E为BC的23.如图,在Rt ABC中,ACB中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是O的切线;(2)若2CF=,4DF=,求O的半径.24.如图,AB为⊙O的直径,点C在⊙O上,点P在BA的延长线上,连接BC,OC,PC.若AB=6,AC的长为π.(1) 求∠AOC的度数;(2) 若BC=PC,求证:直线PC与⊙O相切.参考答案1.证明见分析【分析】连接OD,求出∠ODB=90°,根据切线的判定推出即可.解:如图,连接OD,∵OD=OA,∴∠ODA=∠DAB=30°,∴∠DOB=∠ODA+∠DAB=60°,∴∠ODB=180°﹣∠DOB﹣∠B=180°﹣60°﹣30°=90°,即OD⊥BD,∴直线BD与⊙O相切.【点拨】此题主要考查了切线的判定,三角形的内角和以及三角形的外角性质,关键是证明OD⊥BD.2.证明见分析.【分析】利用半径OA=OC可得∠COB=2∠A,然后利用∠COB=2∠PCB即可证得结论,再根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线.解:连接AC,∵OA=OC,∴∠A=∠ACO.∴∠COB=2∠ACO.又∵∠COB=2∠PCB,∴∠ACO=∠PCB.∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°,即OC⊥CP.∵OC是⊙O的半径,∴PC是⊙O的切线.【点拨】此题主要考查了圆的切线的判定及圆周角定理的运用,关键是利用半径OA =OC 可得∠COB =2∠A .3.证明见分析.【分析】先由勾股定理的逆定理证明垂直,再由切线的判断进行解答即可.证明:连接AB ,∵AD BD ⊥,且28BD AD ==∴AB 为直径,AB 2=82+42=80,∵CD =2,AD =4∴AC 2=22+42=20∵CD =2,BD =8,∴BC 2=102=100∴222AC AB CB +=,∴90BAC ∠=︒∴AC 是O 的切线.【点拨】本题考查切线的判定,圆周角定理的推论,勾股定理的逆定理,解题关键是作出辅助线构造直角三角形.4.证明见分析【分析】连接OC ,根据线段中点的定义得到OE =EP ,求得OE =EC =EP ,得到∠COE =∠ECO ,∠ECP =∠P ,利用三角形内角和定理求出90ECO ECP ∠+∠=︒,根据切线的判定定理即可得到结论.证明:连接OC ,∵点E 是线段OP 的中点,∴OE EP =,∵EC EP =,∴OE EC EP ==,∴COE ECO ∠=∠,ECP P ∠=∠,∵180COE ECO ECP P ∠+∠+∠+∠=︒,∴90ECO ECP ∠+∠=︒,∴OC PC ⊥,∵OC 是O 的半径,∴PC 是O 的切线.【点拨】本题考查了切线的判定,等边对等角,三角形内角和定理,熟练掌握切线的判定定理是解题的关键.5.(1)证明参见分析;(2 试题分析:(1)连接BD ,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)根据AB=2,则圆的直径为2,所以半径为1,即OB=OE=1,利用勾股定理求出CO 的长,再通过证明△EGO ∽△CBO 得到关于EG 的比例式可求出EG 的长,进而求出EF 的长.解:(1)如图:连接BD ,∵AB 为⊙O 的直径,∴∠ADB=90°,∴BD ⊥AC ,∵AD=CD ,∴AB=BC ,∴∠A=∠ACB=45°,∴∠ABC=90°,∴BC 是⊙O 的切线;(2)∵AB=2,∴BO=1,∵AB=BC=2,∴EF ⊥AB ,BC ⊥AB ,∴EF ∥BC ,∴△EGO ∽△CBO ,∴EG EOBC CO =,∴2EG =,∴考点:1.切线的判定;2.相似三角形的判定与性质;3.勾股定理的运用.6.(1)详见分析;(2)CE 【分析】(1)利用切线的性质得OC ⊥DE ,再证明OC ∥BE 得到∠OCB =∠CBE ,加上∠OCB =∠CBO ,所以∠OBC =∠CBE ;(2)利用圆周角定理得到∠ACB =90°,再证明△OAC 等边三角形得到AC =OA =2,再利用勾股定理可计算出BC =Rt △CBE 中利用含30度的直角三角形三边的关系求CE 的长.(1)证明:∵CD 是O 的切线,∴OC DE ⊥,又∵BE DE ⊥,∴OC BE ,∴OCB CBE ∠=∠,∴OBC CBE ∠=∠,即BC 平分ABE ∠;(2)解:∵AB 为O 的直径,∴90ACB ∠=︒,∵60A ∠=︒,∴OAC 是等边三角形,2AC OA ==.∴24AB OA ==,∴BC =∵1302OBC AOC ∠=∠=︒,且OBC CBE ∠=∠, ∴30CBE ∠=︒.∴12CE BC ==【点拨】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线;常常“遇到切点连圆心得半径”.7.(1)证明见分析;(2)ON . 【分析】(1)根据垂径定理得到AB 垂直平分CD ,根据线段垂直平分线的性质得到AC =AD ,得到∠BAD =12∠CAD ,由AM 是△ACD 的外角∠DAF 的平分线,得到∠DAM =12∠FAD ,于是得到结论;(2)证明△ACD 是等边三角形,得到CD =AD =4,根据直角三角形的性质即可得到结论.(1)证明:∵AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∴AB 垂直平分CD ,∴AC =AD ,∴∠BAD =12∠CAD ,∵AM 是△ACD 的外角∠DAF 的平分线,∴∠DAM =12∠FAD ,∴∠BAM =12(∠CAD+∠FAD)=90°,∴AB ⊥AM ,∴AM 是⊙O 的切线;(2)解:∵AC =AD ,C 是优弧ABD 的中点,∴AC =AD =CD ,∴△ACD 是等边三角形,∴CD =AD =4,60CAD ACD ︒∠=∠=由(1)知AB 垂直平分CD ,则AB 平分CAD ∠∴CE =DE =2,1302CAE CAD ︒∠=∠= OC OA =30ACO CAE ︒∴∠=∠=30OCE ACD ACO ︒∴∠=∠-∠=在Rt OCE 中,设OC x =,则12OE x = 根据勾股定理得222OE CE OC +=,即2221()22x x +=解得x =∴OC =OA ∵∠ANO =∠OCE =30°,∴ON =2OA . 【点拨】本题是圆与三角形的综合题,涉及的知识点主要有切线的判定、垂径定理、等边三角形的判定与性质、直角三角形30度角的性质,灵活利用圆与三角形的相关性质是解题的关键.8.(1)详见分析;(2)34π. 【分析】(1)连结OD ,根据等腰三角形的性质得到OD ∥AB ,根据平行线的性质得到∠ODF =90°,根据切线的判定定理证明;(2)根据平行线的性质得到∠AOD =180°﹣45°=135°,根据弧长公式计算即可. 证明:如图,连结OD ,∵AB=AC,∴∠B=∠ACB,∵OC=OD,∴∠ODC=∠ACB,∴∠B=∠ODC,∴OD∥AB,∵DF⊥AB,∴∠ODF=∠BFD=90°,∵OD为半径,∴直线DF是⊙O的切线;(2)解:∵∠A=45°,OD∥AB,∴∠AOD=180°﹣45°=135°,∴劣弧DE的长为1353 1804ππ⨯=.【点拨】本题主要考查了切线的判定及弧长的计算,熟练掌握切线的判定定理及弧长的计算公式是解题的关键.9.(1)见分析;(2)BD=【分析】(1)由等腰三角形的性质得出∠CBD+∠OBC=90°,则∠OBD=90°,可得出结论;(2)证明△OBC为等边三角形,得出∠BOC=60°,根据直角三角形的性质可得出答案.(1)证明:∵OB=OC,∴∠OBC=∠OCB,∴∠BOC+2∠OBC=180°,∵∠BOC=2∠A,∴∠A+∠OBC=90°,又∵BC=CD,∴∠D=∠CBD,∵∠A=∠D,∴∠CBD+∠OBC=90°,∴∠OBD=90°,∴OB⊥BD,∴BD是⊙O的切线;(2)解:∵∠OBD=90°,∠D=∠CBD,∴∠OBC=∠BOC,∴OC=BC,又∵OB=OC,∴△OBC为等边三角形,∴∠BOC=60°,∵BC=2,∴OB=2,∴BD=【点拨】本题考查切线的判定,等腰三角形的性质,圆周角定理,直角三角形的性质,等边三角形的判定与性质,熟练掌握切线的判定是解题的关键.10.(1)见分析【分析】(1)根据AB是O的直径,可得∠C=90°,由BD平分∠ABC,可得∠CBD=∠ABD,根据AD=AE,可得∠CEB=∠DEA,进而可得∠BAD=90°,即可得证;(2)连接AF,根据等腰三角形的性质可得DF=12DE=1,勾股定理求得AF,证明△AEF≌△BEC,即可求解.(1)∵AB是O的直径,∴∠C=90°,∴∠CBE+∠CEB=90°,∵BD平分∠ABC,∴∠CBD=∠ABD,∵AD=AE,∴∠D=∠AED,∵∠CEB=∠DEA,∴∠ABD+∠D=∠CBE +∠CEB=90°,即∠BAD=90°,∴AD是⊙O的切线,(2)连接AF,如图,∵AB是O的直径,∴∠AFB=90°,即AF BD⊥,∵AD=DE=2,∴DF=12DE=1,在Rt ADF∆中,AD=2,DF=1,∴AF=41-=3,∵∠DBA+∠D=∠EAB+∠DAE=90°,∠D=∠DAE=60°,∴∠DBA=∠EAB,∴AE=BE,又∠AFE=∠C=90°,∠AEF=∠CEB,∴△AEF≌△BEC(AAS),∴BC=AF【点拨】本题考查了直径所对的圆周角是直角,切线的判定,勾股定理,全等三角形的性质与判定,掌握以上知识是解题的关键.11.(1)见分析;(2)见分析;(3)【分析】(1)连接AD,由直径所对的圆周角度数及中点可证AD是BC的垂直平分线,根据线段垂直平分线的性质可得结论;(2)连接OD,由中位线的性质可得OD∥AC,由平行的性质与切线的判定可证;(3)易知ABC是等边三角形,由等边三角形的性质可得CB长及C∠度数,利用直角三角形30度角的性质及勾股定理可得结果.解:(1)连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∴⊥AD BC又∵DC=BD,∴AD是BC的垂直平分线∴AB=AC.(2)连接OD.∵DE⊥AC,∴∠CED=90°.∵O为AB中点,D为BC中点,∴OD∥AC.∴∠ODE=∠CED=90°.∴DE是⊙O的切线.=(3)由(1)得AC AB60BAC ∠=︒ABC ∴是等边三角形60,2612C BC AB ︒∴∠===⨯=162DC BD BC ∴=== 在Rt CED 中,906030CDE ︒︒︒∠=-=132CE CD ∴== 根据勾股定理得222CE DE CD +=DE ∴【点拨】本题考查了圆与三角形的综合,涉及的知识点主要有圆的切线的判定、圆周角定理的推论、垂直平分线的性质、等边三角形与直角三角形的性质,灵活的将图形与已知条件相结合是解题的关键.12.(1)4(2)见分析【分析】(1)因为OC 长度确定,所以当点P 到OC 的距离最大时△OPC 的面积最大,当OP ⊥OC 时,当点P 到OC 的距离最大,等于圆O 的半径,求出此时的△OPC 的面积即可;(2)连接AP ,BP ,利用同圆中,相等的圆心角所对的弦相等,可得AP =DB ,因为CP =DB ,所以AP =CP ,可证△APB ≌△CPO (SAS ),得到∠OPC =90°,即可证明CP 是切线.(1)解:∵AB =4,∴OB =2,OC =OB +BC =4.在△OPC 中,设OC 边上的高为h ,∵S △OPC 12=OC •h =2h , ∴当h 最大时,S △OPC 取得最大值.作PH ⊥OC ,如图①,则PO PH >,当OP ⊥OC 时,PO PH =,此时h 最大,如答图1所示:此时h =半径=2,14242OPC S ⨯⨯==.∴△OPC 的最大面积为4,故答案为:4.(2)证明:如答图②,连接AP ,BP .∵∠AOP =∠BOD ,∴AP =BD ,∵CP =DB ,∴AP =CP ,∴∠A =∠C ,在△APB 与△CPO 中,AP CP A C AB CO =⎧⎪∠=∠⎨⎪=⎩,∴△APB ≌△CPO (SAS ),∴∠APB =∠OPC ,∵AB 是直径,∴∠APB =90°,∴∠OPC =90°,∴DP ⊥PC ,∵DP 经过圆心,∴PC 是⊙O 的切线.【点拨】本题考查了圆,熟练掌握圆的半径、切线、弦与圆心角的关系等知识是解题的关键.13.(1)见分析(2)13【分析】(1)连接OE ,根据等边对等角可得OEA OAE ∠=∠,FEB B ∠=∠,根据对顶角相等,等量代换后可得90OEA FEB ∠+∠=︒即可得证;(2)过点O 作OG BE ⊥,根据垂径定理可得4AG AC ==,由945AO OC AC =-=-=,证明AOG ≌ABC ,可得5AB =,根据BE EA AB =+即可求解.(1)如图,连接OE ,Rt ABC △中,90ACB ∠=︒,90CAB B ∴∠+∠=︒,OE OA =,OEA OAE ∴∠=∠,OAE CAB ∠=∠,90OEA B ∴∠+∠=︒,BF EF =,FEB B ∴∠=∠,90OEA FEB ∴∠+∠=︒,即90FEO ∠=︒,OE 是半径,∴EF 是O 的切线; (2)如图,过点O 作OG BE ⊥,8AE =,124EG AG AE ∴===,9OC =,4AC =,945AO OC AC ∴=-=-=,在AOG 与ABC 中,904OGA BCA AG AC GAO CAB ∠=∠=︒⎧⎪==⎨⎪∠=∠⎩∴AOG ≌ABC ,5AB AO ∴==,5813BE BA AE ∴=+=+=,【点拨】本题考查了切线的判定定理,垂径定理,掌握以上知识是解题的关键. 14.(1)见分析(2)EF =【分析】(1)连接OC ,AC .先证明△ACD 为等边三角形.可得∠ACO =∠OAC =30°.再由FG ∥DA ,可得∠ACF =∠DAC =60°.从而得到∠OCF =90°.即可求证;(2)根据AD ∥FG ,可得∠AGF =∠DAE =30°.再根据直角三角形的性质可得FG =2AF =4,AG ADE ≌△GCE .可得AE=GE即可求解.(1)证明:连接OC,AC.∵AB是⊙O的直径,CD⊥AB,∴CE=DE,AD=AC.∵DC=AD,∴DC=AD=AC.∴△ACD为等边三角形.∴∠D=∠DCA=∠DAC=60°.∴∠AOC=30°,∵OA=OC,∴∠ACO=∠OAC=30°.∵FG∥DA,∴∠ACF=∠DAC=60°.∴∠OCF=90°.∴OC⊥FG.∵OC为半径,∴FG与⊙O相切.(2)解:∵AD∥FG,∴∠AGF=∠DAE=30°.∵AF为⊙O的切线,∴∠F AG=90°,∴FG=2AF=4,∴AG=在△ADE和△GCE中,∵∠AGF=∠DAE=30°.∠CEG=∠AED,DE=CE,∴△ADE≌△GCE.∴AE=GE∴EF【点拨】本题主要考查了垂径定理,切线的性质和判定,直角三角形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,熟练掌握垂径定理,切线的性质和判定,直角三角形的性质,等边三角形的判定和性质,全等三角形的判定和性质是解题的关键.15.(1)见分析(2)OC=【分析】(1)证明∠BCO=∠ACO,推出OE=OB,即可证明AC是⊙O的切线;(2)证明△OBC≌△OEC,利用勾股定理求得AC=10,在Rt△AOE中,利用勾股定理列式计算可求得圆的半径,进一步求解即可.(1)证明:作OE⊥AC,垂足为E,∵AD⊥CO,∴∠ADO=90°,∴∠ADO=∠ABC=90°,∵∠AOD=∠BOC,∴∠DAO=∠BCO,∵∠DAO=∠ACO,∴∠BCO=∠ACO,∵OB⊥BC,OE⊥AC,∵OE=OB,∵OB是半径,∴AC是⊙O的切线;(2)解:∵OBC=∠OEC,∠BCO=∠ACO,OC=CO,∴△OBC≌△OEC,∴BC=EC=6,在Rt△ABC中,10AC=,∴AE=AC−EC=10−6=4,在Rt△AOE中,设半径为R,∵AE2+OE2=OA2,∴42+R2=(8−R)2,∴R=OC=3,∴在Rt△OBC中,OC==【点拨】本题考查了切线的判定和性质,勾股定理,全等三角形的判定和性质,熟练掌握切线的判定和性质是解题的关键.16.(1)见分析(2)①见分析;②DE=4.8【分析】(1)连接OD、BD,求出BD⊥AC,可得AD=DC,根据三角形的中位线得出OD∥BC,推出OD⊥DE,根据切线的判定推出即可;(2)①利用垂径定理作出AD的垂直平分线即可;②根据垂径定理以及勾股定理求得⊙O的半径和FO,再根据中位线中位线定理求得BD,然后根据三角形面积公式即可求解.(1)证明:连接OD,BD,∵AB为⊙O的直径,∴BD⊥AD,又∵AB=BC,△ABC是等腰三角形,∴BD又是AC边上的中线,∴OD是△ABC的中位线,∴OD∥BC,又DE⊥BC,∴DE⊥OD,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:①如图,作AD的垂直平分线与☉O相交于点P,点P即为所求.②如图,AD 的垂直平分线与AD 相交于点F ,连接BD ,∵PF ⊥AD ,∴AF =12AD =4, 设☉O 的半径为r ,在Rt △AFO 中,AF 2+FO 2=AO 2,即42+(8−r ) 2=r 2,解得r =5.∴FO =PF −PO =3,∵FO 是△ABD 的中位线,∴BD =2FO =6,∵AB 为⊙O 的直径,∴BD ⊥AC ,又∵AB =BC ,△ABC 是等腰三角形,∴AD =DC =8,∴BC =AB =10,在Rt △BDC 中,S △BDC =12BD ⋅CD =12BC ⋅DE , ∴DE =4.8.【点拨】本题考查了切线的判定和性质,等腰三角形的性质,垂径定理,勾股定理,三角形中位线等知识点的综合运用.17.(1)见分析【分析】(1)根据圆周角定理可得260BOD BAD ∠=∠=︒,从而得到90ODB ∠=︒ ,即可求证; (2)连接DM ,Rt △BOD 中,根据直角三角形的性质可得 BO =2OD ,从而得到1OD OC ==,BD =DE O 为的直径,可得2DE =,90DME ∠=︒,从而得到BE =1122BDE S BD DE BE DM =⋅=⋅△,可得DM =,再由勾股定理,即可求解.(1)证明:∵∠BOD =2∠BAD ,∴260BOD BAD ∠=∠=︒,又∵30ABD ∠=︒,∴90ODB ∠=︒ ,即OD BD ⊥,又∵OD 为O 的半径,∴直线BD 是O 的切线;(2)解:如图,连接DM ,Rt △BOD 中,30DBO ∠=︒,∴2BO OD OC BC ==+,又1BC =,OD OC =,∴1OD OC ==,∴BD =∵DE O 为的直径,∴2DE =,90DME ∠=︒,在Rt △BDE 中,BE == ∵1122BDE S BD DE BE DM =⋅=⋅△,∴BD DE DM BE ⋅==在Rt △BDM 中,BM = 【点拨】本题主要考查了切线的判定,圆周角定理,直角三角形的性质,勾股定理等知识,熟练掌握切线的判定,圆周角定理,直角三角形的性质,勾股定理是解题的关键. 18.(1)见分析(2)7(1) 连接OD ,得到OAD ADO ∠=∠,利用余角的性质得到B BDF ∠=∠,得出结果;(2) 连接OF ,构造直角三角形,利用勾股定理求解.(1)证明:连接OD ,如图,∵半圆O 的切线DF ,∴90ODF ∠=︒.∴90ADO BDF ∠+∠=︒.∵90C ∠=︒,∴90OAD B ∠+∠=︒.∵OA OD =,∴OAD ADO ∠=∠.∴B BDF ∠=∠.∴BF DF =.(2)解:连接OF .∵4AO CE ==,AO OE =,∴8OC =.∵9090C ODF ∠=︒=∠=︒,1CF =,∴2222265OF OC CF OD DF =+=+=.又∵4OD =,∴7DF BF ==.【点拨】本题考查切线的性质、等腰三角形的判定以及勾股定理,遇切线连接圆心和切点时解决问题的关键.19.(1)见分析(2)8(1)根据OC =OE ,得到∠OCE =∠OEC ,再根据∠AOC =2∠ACE ,得到∠OCA =∠OCE +∠ACE =12(∠OCE +∠OEC +∠AOC )=11802⨯=90°,即有OC ⊥AB ,结论得证; (2)利用勾股定理求出AB ,在根据三角形的面积的不同算法可求出OC ,即AE 可求.(1)证明:∵OC =OE ,∴∠OCE =∠OEC ,∵∠AOC =2∠ACE ,∴∠OCA =∠OCE +∠ACE =12(∠OCE +∠OEC +∠AOC ) =11802⨯=90°, ∴OC ⊥AB ,∴AB 为⊙O 的切线;(2)∵AO =20,BO =15,∴25AB , ∵1122OA OB AB OC ⨯⨯=⨯⨯, 即1120152522OC ⨯⨯=⨯⨯, ∴OC =12,∴AE =OA ﹣OE =20﹣12=8.【点拨】本题考查了切线的判定与性质、勾股定理以及三角形面积的知识,利用勾股定理解直角三角形是解答本题的关键.20.(1)见分析;(2)【分析】(1)根据切线的判定定理证明即可;(2)证明ABO 是等边三角形,利用30所对的直角边等于斜边的一半证明132AE AB ==,再由勾股定理,得BE (1)证明:连接BO .∵OA OB =,∴OAB OBA ∠=∠.∵AB 平分CAE ∠,∴OAB BAE ∠=∠,∴OBA BAE ∠=∠.∴OB AE ∥,∴18090EBO E ∠=︒-∠=︒,即BE OB ⊥,又∵OB 是O 的半径,∴BE 是O 的切线.(2)解:30ACB ∠=︒,∴60AOB ∠=︒.又∵OA OB =,∴ABO 是等边三角形,∴60OBA ∠=︒,6OA OB AB ===,∴30ABE ∠=︒, ∴132AE AB ==.由勾股定理,得BE =【点拨】本题考查切线的判定定理,等边三角形的判定及性质,30所对的直角边等于斜边的一半,勾股定理,解题的关键是熟练掌握以上知识点.21.(1)见分析(2)8【分析】(1)过O 作OE ⊥AC 于E ,先证Rt △ABO ≌Rt △AEO ,OB =OE ,即OE 为圆的半径,即可求证;(2)利用切线的性质可得AB =AE ,再证Rt △BOD ≌Rt △COE ,即有BD =CE =2,则AC 可求.(1)证明:过O 作OE ⊥AC 于E .∵AO 平分∠BAC ,且∠ABC =90°,OE ⊥AC ,∴OB =OE ,即OE 为圆的半径,∴AC 是⊙O 的切线;(2)∵∠ABC =90°,OB 为⊙O 半径,∴AB 是⊙O 的切线,又由(1)AC 是⊙O 的切线,∴AB =AE =6,在Rt △BOD 和Rt △COE 中,OB OE OD OC =⎧⎨=⎩, ∴Rt △BOD ≌Rt △COE ,∴BD =CE =2,∴AC =AE +CE =8【点拨】本题考查了切线的判定与性质,角平分线的性质定理,在OE ⊥AC 的条件下证得OE 为圆的半径是解答本题的关键.22.(1)DE 是⊙O 的切线,理由见分析;(2)DE 的长为245. 【分析】(1)连接OD ,根据等边对等角性质和平行线的判定和性质证得OD ⊥DE ,从而证得DE 是⊙O 的切线;(2)由等腰三角形的性质求出BD =CD =8,由勾股定理求出AD 的长,根据三角形的面积得出答案.(1)解:DE 是⊙O 的切线,理由如下:连接OD ,∵OB =OD ,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接AD,∵∠ADB=90°,AB=AC,∴BD=CD,∵⊙O的半径为5,BC=16,∴AC=AB=10,CD=8,∴AD= 6,∵S△ADC=12AC•DE=12AD•CD,∴DE=6824105 AD CDAC⋅⨯==.【点拨】本题考查了切线的判定与性质,圆周角定理,等腰三角形的性质和判定,三角形的内角和定理,勾股定理,三角形的面积等知识,掌握切线的判定与性质是解题的关键.23.(1)见分析(2)3【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.(1)解:如图,连接OD、CD.∵AC为⊙O的直径,∴∠ADC=90°,∴∠CDB=90°,即△BCD是直角三角形,∵E为BC的中点,∴∠CDE =∠DCE ,∵OD =OC ,∴∠ODC =∠OCD ,∵∠ACB =90°,∴∠OCD +∠DCE =90°,∴∠ODC +∠CDE =90°,即OD ⊥DE ,∴DE 是⊙O 的切线;(2)解:设⊙O 的半径为r ,∵∠ODF =90°,∴OD 2+DF 2=OF 2,即r 2+42=(r +2)2,解得:r =3,∴⊙O 的半径为3.【点拨】本题主要考查了圆切线的判定与性质,等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理等等,熟知圆切线的性质与判定是解题的关键.24.(1)60︒(2)见分析【分析】(1)由直径为6,求得⊙O 的周长,再由AC 的长为π,求得AOC ∠的度数.(2)由(1)知60AOC ∠=︒,由于OB OC =,可得1302OBC AOC ∠=∠=︒,再由BC PC =推出30P ∠=︒,从而证得OC CP ⊥,直线PC 与⊙O 相切.(1)解:∵6AB =,∴⊙O 的周长为6π.∵AC 的长为π, ∴1360606AOC ∠=⨯︒=︒. (2)证明:∵AB 为⊙O 的直径,点C 在⊙O 上,∴OB OC =, ∴12OBC OCB AOC ∠=∠=∠.∵60AOC ∠=︒, ∴1302OBC OCB AOC ∠=∠=∠=︒. ∵BC PC =,∴30CBO P ∠=∠=︒.在COP 中,∵60COA ∠=︒,30P ∠=︒,∴180180603090OCP COA P ∠=︒-∠-∠=︒-︒-︒=︒,∴OC CP ⊥,又∵点C 在⊙O 上,∴直线PC 与⊙O 相切.【点拨】本题考查了圆的相关性质,切线的判定,综合运用圆的性质确定相关角度是解题关键.。
圆的切线专题证明题
1、.已知:如图,CB是⊙O的直径,BP是和⊙O相切于点B的切线,⊙O的弦AC平行于OP.(1)求证:AP是⊙O的切线.(2)若∠P=60°,PB=2cm,求AC.2、⊿ABC中,AB=AC,以AB为直径作⊙O交BC于D,D E⊥AC于E。
求证:DE为⊙O的切线3、、如图,AB=BC,以AB为直径的⊙O交AC于D,作D E⊥BC于E.(1)求证:DE为⊙O的切线(2)作DG⊥AB交⊙O于G,垂足为F,∠A=30°。
AB=8,求DG的长4、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上. 求证:PE是⊙O的切线.APOB5、如图,D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.求证:BD是⊙O的切线;6.如图,在中,,以为直径的分别交、于点、,点在的延长线上,且求证:直线是⊙0的切线;7、如图9,直线n切⊙O于A,点P为直线n上的一点,直线PO交⊙O于C、B,D在线段AP上,连接DB,且AD=DB.(1)判断DB与⊙O的位置关系,并说明理由。
(2)若AD=1,PB=BO,求弦AC的长8、如图10,⊙O直径AB=4,P在AB的延长线上,过P作⊙O切线,切点为C,连接AC。
(1)若∠CPA=30°,求PC的长(2)若P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的值。
9.如图,MN为⊙O的切线,A为切点,过点A作AP⊥MN,交⊙O的弦BC于点P。
若PA=2cm,PB=5cm,PC=3cm,求⊙O的直径.10.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.11、如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F. (1)求证:DE是⊙O的切线;(2)若DE=3,⊙O的半径为5,求BF的长。
中考圆综合6种证明切线的模型
中考圆综合6种证明切线的模型【模型l:双切线】例1.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.练习1.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE与⊙O相切;.OE DCB A【模型2角平分线模型】例2.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,∠BAC 的平分线交⊙O 于点D ,交⊙O 的切线BE 于点E ,过点D 作DF ⊥AC ,交AC 的延长线于点F .(1)求证:DF 是⊙O 的切线;练习2.如图,AB 是O ⊙的直径,点C 在O ⊙上,CAB ∠的平分线交O ⊙于点D ,过点D 作AC 的垂线交AC的延长线于点E ,连接BC 交AD 于点F .(1)求证:ED 是O ⊙的切线;【模型3:弦切角】例3.如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;.练习3.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CB D.(1)求证:CD是⊙O的切线;【模型4:等腰三角形】例4.如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;练习4:已知:如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O 的切线交AB于点E,交AC的延长线于点F.(1)求证:DE⊥AB;【模型5:二倍角的使用】例5.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;.练习5:如图,AB为⊙O的直径,C,D为⊙O上不同于A,B的两点,过点C作⊙O的切线CF交直线AB于点F,直线DB⊥CF于点E.(1)求证:∠ABD=2∠CAB;.【模型6:垂直导角】.例6.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO 延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.,弦CF与OB交于点E,过点F,A分别练习6.如图,在⊙O中,AB为直径,OC AB作⊙O的切线交于点H,且HF与AB的延长线交于点D.(1)求证:DF=DE;.。
证明圆的切线的七种常用方法-圆的切线证明7种方法
证明圆的切线的七种常用方法证明一条直线是圆的切线的方法及辅助线的作法1、连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“连半径,证垂直”2、作垂直,证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”类型一、有公共点:连半径,证垂直方法1、勾股定理逆定理法证垂直1.如图,AB为⊙O的直径,点P为AB延长线上一点,点C为圆⊙O上一点,PC=8,PB =4,AB=12,求证:PC是⊙O的切线.方法2、特殊角计算法证垂直2、如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求∠P的度数;(2)求证:P A是⊙O的切线;(3)若PD=5,求⊙O的直径.方法3、等角代换法证垂直3、如图,已知Rt △ABC 中,∠C =90°,D 为BC 的中点,以AC 为直径的⊙O 交AB 于点E 。
求证:DE 是⊙O 的切线;方法4、平行线性质法证垂直4、如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF .且︒=∠30E ,点B 是的中点(1)判断直线DE 与半圆O 的位置关系,并说明理由;(2)求证CF=OC(2)若半圆O 的半径为6,求DC 的长.方法5 全等三角形法证垂直5、如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF ,求证:BF 是⊙O 的切线。
A B O D CF类型二、无公共点:做垂直,证半径方法6 角平分线的性质法证半径6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D ,AB =5,EB =2.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.方法7 全等三角形法证半径7.已知四边形ABCD 中,∠BAD =∠ABC =90°,CD BC AD =+,以AB 为直径的⊙O 。
2024九年级数学下册第五章圆专题二证明圆的切线的常用方法习题课件鲁教版五四制
(2)求证:直线PE是⊙O的切线. 证明:连接 EA.∵BE 为直径,∴∠BAE=90°. ∴EA⊥BA.∵A 为B︵E的中点,∴A︵B=A︵E,∴AB=AE, ∴∠ABE=45°.∵BA=AP,EA⊥BA,∴BE=PE, ∴∠P=∠ABE=45°. ∴∠PEB=90°,即 PE⊥BE, ∴直线 PE 是⊙O 的切线.
证明:连接 OC. ∵BC=CD,∴B︵C=C︵D,∴∠DAC=∠BAC. ∵OA=OC,∴∠BAC=∠OCA, ∴∠DAC=∠OCA,∴OC∥AE. 又∵CF⊥AE,∴OC⊥CF. ∵OC 为⊙O 的半径,∴CF 为⊙O 的切线.
(2)若 BC=3,CF=152,求⊙O 的半径. 解:∵BC=CD,BC=3,∴CD=3. ∵CF⊥AE,∴∠DFC=90°, ∴DF= CD2-CF2=95. ∵四边形 ABCD 内接于⊙O,
(方法二)连接OM,过点O作ON⊥CD于点N. ∵⊙O与BC相切于点M,∴OM⊥BC. ∴∠OMC=90°. ∵四边形ABCD为正方形,O为其对角线AC上一点, ∴∠OCM=∠OCN. ∵ON⊥CD,∴∠ONC=90°. ∴∠OMC=∠ONC.
∠OMC=∠ONC, 在△ OMC 和△ ONC 中,∠OCM=∠OCN,
证明:由题意知,∠EPO=∠BDO=90°.
在△ OPE 和△ ODB 中, ∠EPO=∠BDO, ∠EOP=∠BOD, OE=OB, ∴△OPE≌△ODB(AAS),∴OD=OP.
(2)FE是⊙O的切线. 证明:如图,连接EA.∵PE⊥AB,∴∠APE=90°. ∵AB是直径,∴∠C=90°. ∵OA=OE,∴∠2=∠AEO. ∵∠C=∠BDE=90°,∴CF∥OE, ∴∠ODP=∠AFP,∠1=∠AEO,
6 如图,O为正方形ABCD对角线AC上一点,以O为圆 心,OA长为半径的⊙O与BC相切于点M. 求证:CD与⊙O相切.
中考数学总复习《圆的切线的证明》专项提升练习题-附答案
中考数学总复习《圆的切线的证明》专项提升练习题-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,O为菱形 ABCD对角线上一点,⊙O与BC相切于点M.求证:CD与⊙O相切.2.如图,在梯形ABCD中,AD∥BC,∠C=90°,AD+BC=AB,以AB为直径作⊙O,求证:CD是⊙O的切线.3.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC 于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.4.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接DB,过点E作EM∥BD,交BA 的延长线于点M.(1)求⊙O的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45º时,求图中阴影部分的面积.5.如图,在Rt△ABC中∠C=90°,BD平分∠ABC,交AC于点D,点O是AB边上的点,以BD为弦的⊙O 交AB于点E.(1)求证:AC是⊙O的切线;(2)若∠A=30°,OB=1求阴影部分的面积.6.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)求证:DE是⊙O的切线;(2)若CD=3cm,DE=2.5cm,求⊙O直径的长.7.如图,AB是⊙O的直径,点C、E在⊙O上,AC平分∠BAE,CM⊥AE于点D.求证:CM是⊙O的切线.8.如图,△ABC是⊙O的内接三角形,D是圆外一点,连接DA,∠DAC=∠ABC连接DC交⊙O于点E.(1)求证:AD是⊙O的切线;(2)若AD=4,E是CD的中点,求CE的长度.9.如图所示,AB是⊙O的直径,AD是弦,∠DAB=20°,延长AB到点C,使得∠ACD=50°,求证:CD是⊙O的切线.10.如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.(1)直线FC与⊙O有何位置关系?并说明理由;(2)若OB=BG=2,求CD的长.二、综合题11.如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.⌢的中点,EF∥12.如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是BDBC,交OC的延长线于点F.(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.13.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=12,OBBE = 23,求BE的长.14.如图,△BEF内接于⊙O,BE=BF,BO的延长线交EF于点D.C是⊙O外一点,连接OC,BC,OC⊥BE 于点A.已知OA=2,AB=4,AC=8.(1)求证:BC是⊙O的切线.(2)求EF的长.15.如图,△ABC内接于⊙O,AD平分∠BAC交BC边于点E,交⊙O于点D,过点A作AF⊥BC于点F,设⊙O的直径为d,AF=h.(1)过点D作直线MN∥BC,求证:MN是⊙O的切线;(2)若AB=4,AC=3,求dh的值.16.如图,AB是⊙O的直径,点C、D在⊙O上,且AC平分∠BAD,点E为AB的延长线上一点,且∠ECB=∠CAD.(1)填空:∠ACB= ,理由是(2)求证:CE与⊙O相切(3)若AB=6,CE=4,求AD的长17.如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.18.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.19.如图,已知ΔABC内接于⊙O,AB为⊙O的直径,BD⊥AB,交AC的延长线于点D.(1)若E是BD的中点,连结CE,试判断CE与⊙O的位置关系.(2)若AC=3CD,求∠A的大小.20.如图,四边形ABCD内接于⊙O,点E在CB的延长线上,连接AC,AE,∠ACB=∠BAE=45°(1)求证:AE是⊙O的切线;(2)若 AB=AD,AC=2 √2,tan∠ADC=3,求CD的长.21.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.(1)判断直线PQ与⊙O的关系;(2)若直径AB的长为4.当四边形AEOP为菱形时,求PE的长.答案1.证明:连接OM,过点O作ON⊥CD于垂足为N∵⊙O与BC相切于点M∴OM⊥BC,OM为半径∴∠OMC=∠ONC=90°∵AC是菱形ABCD的对角线∴∠ACB=∠ACD∵OC=OC∴△OMC≌△ONC(AAS)∴ON=OM=半径,∠ONC=90°∴CD与⊙O相切.2.证明:过点O作OE⊥CD于点E∵在梯形ABCD中,AD∥BC,∠C=90°∴AD⊥CD,BC⊥CD∴AD∥OE∥BC∵OA=OB∴OE是梯形ABCD的中位线(AD+BC)∴OE= 12∵AD+BC=AB∴OE= 1AB2∵以AB为直径作⊙O.∴直线CD是⊙O的切线.3.解:(1)连接OE.∵OE=OB∴∠OBE=∠OEB∵BE平分∠ABC∴∠OBE=∠EBC∴∠EBC=∠OEB∴OE∥BC∴∠OEA=∠C∵∠ACB=90°∴∠OEA=90°∴AC是⊙O的切线;(2)连接OE、OF,过点O作OH⊥BF交BF于H由题意可知四边形OECH为矩形∴OH=CE∵BF=6∴BH=3在Rt△BHO中,OB=5∴OH=4∴CE=4.4.(1)连结OE,如图:∵DE垂直平分半径OA∴OC=∴∠OEC=30°∴(2)由(1)知:∠AOE=60°∴∴∠BDE=60°∵BD∥ME∴∠MED=∠BDE=60°∴∠MEO=90°∴EM是⊙O的切线。
完整版)证明圆的切线经典例题
完整版)证明圆的切线经典例题证明圆的切线有以下两种常用方法:一、若直线l过圆O上某一点A,证明l是圆O的切线,只需连OA,证明OA⊥l即可。
这种方法简称“连半径,证垂直”,难点在于如何证明两线垂直。
举例来说,对于△ABC中,若AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,且B为切点的切线交OD 延长线于点F,要证明EF与圆O相切。
我们可以连结OE和AD,因为AB是圆O的直径,所以AD⊥BC。
又因为AB=BC,所以∠3=∠4,∠1=∠2,从而BD=DE。
又因为OB=OE,OF=OF,所以△BOF≌△EOF(SAS),因此∠OBF=∠OEF。
因为BF与圆O相切,所以OB⊥BF,即∠___。
因此EF与圆O相切。
这个例子是通过证明三角形全等证明垂直的。
二、若AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD,要证明___与圆O相切。
我们可以作直径AE,连结EC。
因为AD是∠BAC的平分线,所以∠DAB=∠DAC。
因为PA=PD,所以∠2=∠1+∠DAC。
因为∠2=∠B+∠DAB,所以∠1=∠B=∠E。
因为AE是圆O的直径,所以AC⊥EC,∠E+∠___,因此∠1+∠___,即OA⊥___。
因此PA与圆O相切。
这个例子是通过证明两角互余,证明垂直的,需要综合运用知识。
另外,对于例3中的问题,我们也可以通过连结OD和AD来证明DM与圆O相切。
因为AB是圆O的直径,所以AD⊥BC。
又因为AB=AC,所以∠1=∠2.因为DM⊥AC,所以∠2+∠4=90.因为OA=OD,所以∠1=∠3,∠3+∠4=90.因此OD⊥DM,即DM是圆O的切线。
本文将介绍证明圆的切线常用的三种方法。
第一种是利用相似三角形证明∠1=∠2.第二种是利用等腰三角形三线合一证明∠1=∠2.第三种是利用梯形的性质证明∠1=∠2,但需要先证明A、O、B三点共线。
对于第一种方法,我们可以通过观察图形发现,∆OAB与∆OCD相似,因为它们有两个对应角分别相等。
中考数学总复习《圆的切线证明》专题训练(附带答案)
中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。
圆中切线的证明-切线专题(无答案)
1.已知:如图,以ABC △的边AB 为直径的O 交边AC 于点D ,且过点D 的切线DE 平分边BC .(1)求证:BC 是O 的切线;(2)当ABC △满足什么条件时,以点O 、B 、E 、D 为顶点的四边形是正方形?请说明理由.A(1)证明:(2)ABC △满足的条件是 .理由:2.已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O 的位置关系,并证明你的结论;(2)若:8:5AD AO =,2BC =,求BD 的长.3如图,⊙O 的直径AB=6,C 为圆周上的一点,BC=3.过点C 作⊙O 的切线GE ,作AD ⊥GE 于点D ,交⊙O 于点F.(1)求证:∠ACG=∠B(2)计算线段AF 的长.A4.如图,AB 是⊙O 的直径,AC 是弦,点D 是BC 的中点,DP AC ⊥,垂足为点P .求证:PD 是⊙O 的切线. D B O C A P5、如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于点C ,AC 平分∠DAB 。
(1) 求证:AD ⊥CD ;(2) 若AD=3,AC=15,求AB 的长。
6.如图,已知AD 是O 的切线,切点为D AC ,经过圆心O ,交O 于B C ,两点,弦DE AC ⊥,垂足为F ,30A ∠=.(1)求BED ∠的度数;(2)DCE △是否是等边三角形?请说明理由;(3)若O 的半径2R =,试求CE 的长.7.如图,割线ABC 与⊙O 相交于B 、C 两点,D 为⊙O 上一点,E 为弧BC 的中点,OE 交BC 于点F ,DE交AC 于G ,∠ADG =∠AGD.(1)求证:AD 是⊙O 的切线;(2)若AB=2,AD=4,BC=6,EG=2,求⊙O 的半径.8.如图,线段AB 经过圆心O ,交⊙O 于A 、C 两点,点D 在⊙O 上,∠A =∠B =30°.(1)求证:BD 是⊙O 的切线;(2)若点N 在⊙O 上,且DN ⊥AB ,垂足为M , NC=10,求AD 的长9已知:如图(1)AB 是⊙O 的直径,CB ⊥AB ,AC 交⊙O 于E ,D 是的BC 的中点,求证:直线DE 是⊙O 的切线。
中考数学考点《圆的切线的证明》专项练习题-附答案
中考数学考点《圆的切线的证明》专项练习题-附答案学校:班级:姓名:考号:1.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC与⊙D相切.2.已知AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE,过B作BF∥CD,交AC的延长线于点F,求证:BF是⊙O的切线.3.如图,点C在以AB为直径的⊙O上,弧AC=1弧BC,经过点C与⊙O相切的直线CE交BA的延长线2于点D,连接BC,过点D作DF∥BC.求证:DF是⊙O的切线.4.如图,Rt△ABC中∠C=90°,点O是AB边上一点,以OA为半径作⊙O,与边AC交于点D,连接BD,若∠DBC=∠A,求证:BD是⊙O的切线.5.如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)6.如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.7.如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.(1)AD是⊙O的切线吗?为什么?(2)若OD⊥AB,BC=5,求⊙O的半径.8.如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O 在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.9.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.10.如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.(1)求证:DE是⊙O的切线(2)若DE=3,⊙O的半径为5,求BF的长11.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)12.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为√5,OP=1,求BC的长.13.如图,点B、C、D都在半径为4的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长.14.如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.15.如图,△ABC的边AB为⊙O的直径,BC与⊙O交于点D,D为BC的中点,过点D作DE⊥AC于E.(1)求证:DE是⊙O的切线;(2)若AB=13,BC=10,求CE的长.16.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4 √2,求EF的长.17.如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)连接BT,若⊙O半径为1,AT= √3,求BT的长.18.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.19.如图,已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC,交⊙O于点D,交AC于点E,连接BD,BD 交AC于点F,延长AC到点P,连接PB.(1)若PF=PB,求证:PB是⊙O的切线;(2)如果AB=10,BC=6,求CE的长度.答案解析1.证明:过点D作DF⊥AC于F,如图所示:∵AB为⊙D的切线∴∠B=90°∴AB⊥BC∵AD平分∠BAC,DF⊥AC∴BD=DF∴AC与⊙D相切.2.【解答】证明:∵AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE ∴AB⊥CD∵BF∥CD∴BF⊥AB∴BF是⊙O的切线.3.解:连接OC,过点O作OG⊥DF,垂足为G弧BC∵弧AC =12∴∠AOC=13∠AOB=60°∴∠ABC=12∠AOC=30°∵CE切⊙O于点C∴OC⊥CE,即∠DCO=90°∴在ΔDOC中∵DF//CB∴∠ABC=∠GDO=30°∴∠CDO=∠GDO,即DO平分∠CDG∵OC⊥CE,OG⊥DF ∴OC=OG(角平分线性质)∴OG是⊙O的半径∴DF是⊙O的切线(垂径定理).4.证明:如图,连接OD.∵OA=OD∴∠A=∠ADO.∵∠C=90°∴∠CBD+∠CDB=90°又∵∠CBD=∠A∴∠ADO+∠CDB=90°∴∠ODB=180°﹣(∠ADO+∠CDB)=90°.∴直线BD与⊙O相切.5.(1)证明:如图1,连接BD、OD∵AB是⊙O直径∴BD ⊥AC∵AB=BC∴AD=DC∵AO=OB∴OD 是△ABC 的中位线∴DO ∥BC∵DE ⊥BC∴DE ⊥OD∵OD 为半径∴DE 是⊙O 切线;(2)解:如图2所示,连接OG ,OD∵DG ⊥AB ,OB 过圆心O∴弧BG=弧BD∵∠A=35°∴∠BOD=2∠A=70°∴∠BOG=∠BOD=70°∴∠GOD=140°∴劣弧DG 的长是140π×5180=359π.6.解:(1)证明:连接OG∵弦CD ⊥AB 于点H∴∠HKA+∠KAH=90°∵EG=EK∴∠EGK=∠EKG∵∠HKA=∠GKE∴∠HAK+∠KGE=90°∵AO=GO∴∠OAG=∠OGA∴∠OGA+∠KGE=90°∴GO⊥EF∴EF是⊙O的切线;(2)解:连接CO,在Rt△OHC中∵CO=13,CH=12∴HO=5∴AH=8∵AC∥EF∴∠CAH=∠F∴tan∠CAH=tan∠F=128=32在Rt△OGF中,∵GO=13∴FG=13tan∠E =263.7.解:(1)AD是⊙O的切线,理由如下:连接OA∵∠B=30°∴∠O=60°∵OA=OC∴∠OAC=60°∵∠CAD=30°∴∠OAD=90°又∴点A在⊙O 上∴AD是⊙O的切线;(2)∵∠OAC=∠O=60°∴∠OCA=60°∴△AOC是等边三角形∵OD⊥AB∴OD垂直平分AB∴AC=BC=5∴OA=5即⊙O的半径为5.8.(1)证明:连接OD,在△AOD中,OA=OD∴∠A=∠ODA又∵∠A+∠CDB=90°∴∠ODA+∠CDB=90°∴∠BDO=180°-90°=90°,即OD⊥BD ∴BD与⊙O相切.(2)解:连接DE,∵AE是⊙O的直径∴∠ADE=90°∴DE∥BC.又∵D是AC的中点,∴AE=BE.∴△AED∽△ABC.∴AC∶AB=AD∶AE.∵AC∶AB=4∶5令AC=4x,AB=5x,则BC=3x.∵BC=6,∴AB=10∴AE=5,∴⊙O的直径为5.9.(1)连接OA∵DA平分∠BDE∴∠BDA=∠EDA.∵OA=OD∴∠ODA=∠OAD∴∠OAD=∠EDA∴OA∥CE.∵AE⊥DE∴∠AED=90°.∴∠OAE=∠DEA=90°.∴AE⊥OA.∴AE是⊙O的切线;(2)∵BD是直径∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°∴∠BDE=120°.∵DA平分∠BDE∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°∴BD=2AD=4DE.∵DE的长是1cm∴BD的长是4cm.10.(1)证明:如图(1)连接OD.∵AD平分∠BAC,∴∠1=∠2.又∵OA="OD" ,∴∠1=∠3.∴∠2="∠3."∴OD∥AE.∵DE⊥AE∴DE⊥OD.而D在⊙O上∴DE是⊙O的切线.(2)过D作DG⊥AB 于G.∵DE⊥AE ,∠1=∠2.∴DG="DE=3" ,半径OD=5.在Rt△ODG中,根据勾股定理: OG===4 ∴AG=AO+OG=5+4=9.∵FB是⊙O的切线, AB是直径∴FB⊥AB.而DG⊥AB∴DG∥FB. △ADG∽△AFB∴∴.∴BF=.11.(1)解:直线CD与⊙O相切∵在⊙O中,∠COB=2∠CAB=2×30°=60°又∵OB=OC∴△OBC是正三角形∴∠OCB=60°又∵∠BCD=30°∴∠OCD=60°+30°=90°∴OC ⊥CD又∵OC 是半径∴直线CD 与⊙O 相切.(2)解:由(1)得△OCD 是Rt △,∠COB=60° ∵OC=1∴CD= √3∴S △COD = 12 OC •CD= √32又∵S 扇形OCB = π6∴S 阴影=S △COD ﹣S 扇形OCB = √32−π6=3√3−π6 .12.(1)证明:连接OB ,如图∵OP ⊥OA∴∠AOP=90°∴∠A+∠APO=90°∵CP=CB∴∠CBP=∠CPB而∠CPB=∠APO∴∠APO=∠CBP∵OA=OB∴∠A=∠OBA∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90° ∴OB ⊥BC∴BC 是⊙O 的切线;(2)解:设BC=x ,则PC=x在Rt △OBC 中,OB= √5 ,OC=CP+OP=x+1 ∵OB 2+BC 2=OC 2∴( √5 )2+x 2=(x+1)2解得x=2即BC 的长为2.13.(1)证明:连接OC,OC交BD于E∵∠CDB=30°∴∠COB=2∠CDB=60°∵∠CDB=∠OBD∴CD∥AB又∵AC∥BD∴四边形ABDC为平行四边形∴∠A=∠D=30°∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC 又∵OC是⊙O的半径∴AC是⊙O的切线(2)解:由(1)知,OC⊥AC.∵AC∥BD∴OC⊥BD∴BE=DE∵在直角△BEO中,∠OBD=30°,OB=4∴BE=OBcos30°=2 √3∴BD=2BE=4 √314.(1)解:∵AB是⊙O直径,C在⊙O上∴∠ACB=90°又∵BC=3,AB=5∴由勾股定理得AC=4(2)解:证明:连接OC∵AC是∠DAB的角平分线∴∠DAC=∠BAC又∵AD⊥DC∴∠ADC=∠ACB=90°∴△ADC∽△ACB∴∠DCA=∠CBA又∵OA=OC∴∠OAC=∠OCA∵∠OAC+∠OBC=90°∴∠OCA+∠ACD=∠OCD=90°∴DC是⊙O的切线.15.(1)证明:连接OD∵D为BC的中点,O为AB的中点∴OD∥AC;∵DE⊥AC∴DE⊥OD∴DE是圆O的切线(2)解:连接 AD∵AB是直径∴AD⊥BC;∵D为BC的中点∴AD 是BC 的垂直平分线∴AC=AB=13;∵∠C=∠C ,∠DEC=∠ADC=90°∴△CDE ∽△CAD∴EC CD = DC AD ,而AC=AB=13,CD= 12 BC=5 ∴CE= 2513 .16.(1)证明:连接OD∵AD 平分∠CAB∴∠OAD=∠EAD .∵OD=OA∴∠ODA=∠OAD .∴∠ODA=∠EAD .∴OD ∥AE .∵∠ODF=∠AEF=90°且D 在⊙O 上 ∴EF 与⊙O 相切.(2)证明:连接BD ,作DG ⊥AB 于G∵AB 是⊙O 的直径∴∠ADB=90°∵AB=6,AD=4 √2∴BD= √AB 2−AD 2 =2∵OD=OB=3设OG=x ,则BG=3﹣x∵OD 2﹣OG 2=BD 2﹣BG 2,即32﹣x 2=22﹣(3﹣x )2 解得x= 73∴OG= 73∴DG= √OD2−OG2 = 43√2∵AD平分∠CAB,AE⊥DE,DG⊥AB∴DE=DG= 43√2∴AE= √AD2−DE2 = 163∵OD∥AE∴△ODF∽△AEF∴DFEF =ODAE,即EF−EDEF=ODAE∴EF−43√2EF=3163∴EF= 6421√2.17.(1)证明:连接OT,如图1所示:∵OA=OT∴∠OAT=∠OTA又∵AT平分∠BAD∴∠DAT=∠OAT∴∠DAT=∠OTA∴OT∥AC又∵CT⊥AC∴CT⊥OT∴CT为⊙O的切线(2)解:连接BT,如图2所示:∵AB是⊙O直径∴AB=2,∠ATB=90°∴BT= √AB2−AT2 = √22+(√3)2 =1.18.(1)解:连接OC .∵AC=BC ,AD=CD ,OB=OC∴∠A=∠B=∠1=∠2.∵∠ACO=∠DCO+∠2∴∠ACO=∠DCO+∠1=∠BCD又∵BD 是直径∴∠BCD=90°∴∠ACO=90°又C 在⊙O 上∴AC 是⊙O 的切线(2)解:由题意可得△DCO 是等腰三角形 ∵∠CDO=∠A+∠2,∠DOC=∠B+∠1∴∠CDO=∠DOC ,即△DCO 是等边三角形. ∴∠A=∠B=∠1=∠2=30°,CD=AD=2 在直角△BCD 中BC= √BD 2−CD 2 = √42−22 =2 √3 . 又AC=BC∴AC=2 √3 .作CE ⊥AB 于点E .在直角△BEC 中,∠B=30°∴CE= 12 BC= √3∴S △ABC = 12 AB •CE= 12 ×6× √3 =3 √3 .19.(1)证明:∵PF=PB∴∠PFB=∠PBF又∵∠DFE=∠PFB∴∠DFE=∠PBF∵AB 是圆的直径∴∠ACB=90°,即AC ⊥BC . 又∵OD ∥BC∴OD ⊥AC .∴在直角△DEF 中,∠D+∠DFE=90° 又∵OD=OB∴∠D=∠DBO∴∠DBO+∠PBE=90°,即PB ⊥AB ∴PB 是⊙O 的切线;(2)解:∵OD ∥BC ,OA=OB ∴OE= 12 BC= 12 ×6=3.∵OD ⊥AB∴EC=AE .∵在直角△OAE 中,OA= 12 AB= 12 ×10=5∴AE= √OA 2−OE 2 = √52−32 =4. ∴EC=4。
圆正切线几种证法
圆正切线几种证法圆的切线是指圆上某点处的直线,这条直线只有一个交点与圆相切。
圆正切线是圆与其外部一点的切线,圆的正切线有多种证法。
下面将介绍几种不同的证法。
证法一:切线定理证法圆的切线定理是指直径与切线相垂直。
根据这个定理,我们可以通过证明直径与切线相垂直的关系来证明圆的正切线。
首先,我们设圆的直径为AB,切线上的切点为C。
通过证明角ACB为直角可以证明切线是圆的正切线。
根据几何学性质,我们可以得知,半径与切线的交点与圆心的连线垂直。
因此,我们可以得到角ACB为直角的结论,证明该切线是圆的正切线。
证法二:切线与半径的垂直证法根据几何学知识,圆的切线与半径的关系是相互垂直。
我们可以通过证明切线与半径相垂直来证明圆的正切线。
设圆的半径为OA,切线上的切点为B。
我们可以利用垂直平分线的性质来证明切线与半径的垂直关系。
由于切线只有一个交点与圆相切,我们可以得知,切线与半径的交点为直角。
因此,我们可以得到切线与半径相垂直的结论,证明该切线是圆的正切线。
证法三:正切线的判定证法正切线的判定是指判断一个直线是否为圆的正切线。
我们可以通过判断一个直线是否满足成为圆的正切线的条件来证明圆的正切线。
首先,我们需要确定圆的切点和切线的位置关系,根据切线与圆的位置关系可以判断该直线是否为圆的正切线。
如果直线与圆只有一个交点且与交点处的切线垂直,那么该直线就是圆的正切线。
通过以上几种不同的证法,我们可以得知圆的正切线有多种不同的证法。
无论采用哪种证法,都需要运用几何学的基本性质和定理来完成证明。
掌握了这些证法,我们可以更好地理解圆的切线性质,提高我们的几何学水平。
证明圆的切线方法
证明圆的切线方法圆的切线是指与圆相切且经过切点的直线。
证明圆的切线有多种方法,下面将详细介绍三种常用的方法。
方法一:使用勾股定理证明切线长度与切点到圆心距离的关系。
设圆的圆心为O,切点为A,切线与圆的交点为B。
我们需要证明OA⊥AB。
1.根据勾股定理,可知直角三角形OAB成立。
因为OA为半径,AB为切线,所以OA⊥AB取证。
2.为了得到与切线相垂直的线段,我们取切点A为起点,用圆心O为终点,连接AO。
3.连接OB。
4.观察△OAB和△OBA,它们有共边OA,且OO相等且共线,所以两个三角形是全等三角形。
5.根据全等三角形的性质可知,∠OAB=∠OBA,又∠OAB为直角,所以∠OBA也是直角。
6.根据直角三角形的定义可知,线段OB⊥AB。
因此,我们证明了圆的切线与半径的垂直。
方法二:使用割线定理证明切线的长度。
设圆的圆心为O,半径为r,切点为A,切线与圆的交点为B,圆上的一点为C。
1.连接OA、OB、OC。
2.观察△OAB和△OAC,它们有共边OA,且∠OAB为直角,所以两个三角形是相似三角形。
3.根据相似三角形的性质可知,AB/OB=OA/OC。
4.由于直角三角形中,OA=r,所以AB/OB=r/OC。
5.由于OA⊥AB,所以∠OAB=90°,所以∠OCB也是直角。
6.根据直角三角形的定义可知,线段OC⊥CB。
由于OC⊥AB,且OC⊥CB,所以线段AB⊥CB。
因此,我们证明了圆的切线与半径的垂直。
方法三:使用割线与切线的交角性质证明切线的存在性。
设圆上的一点为P,切点为A,切线与圆的交点为B。
1.连接OA、OP。
2.观察△OAP,根据三角形内角和定理可知∠OAP+∠OPA+∠POA=180°。
3.∠POA为平行于弧PA的圆心角,根据圆心角的定义可知∠POA=1/2×弧PA。
4.切线与弦的夹角等于相应弧所对的圆心角的一半,所以∠APB=1/2×弧PA。
5.因为直线和平行线有关的几何性质之一是,被两条平行线截取的弦上的两个圆心角相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1.如图,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.
2.如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2
=OD ·OP. 求证:PC 是⊙O 的切线.
3.如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300
,BP=OB ,点P 在AB 的延长线上. 求证:PC 是⊙O 的切线.
O
A
B
C
D
2 3
4
1
24.AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F.
求证:DE 是⊙O 的切线.
5.△ABC 中,AB=AE ,以AB 为直径,作⊙O 交BE 于C ,过C 作CD ⊥AE 于D ,DC 的延长线与AB 的延长线交于点P.
求证:PD 是⊙O 的切线.
6.在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC ,使∠FCA =∠AOE ,交AB 的延长线于点D.
求证:FD 是⊙O 的切线.
F E D
C B A O F
B
D
E O
C
3
7.如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,
且BAC D ∠=∠.求证:AD 是半圆O 的切线.
8.如图,已知△ABC 内接于⊙O,AC 是直径,D 是弧AB 的中点,过点D 作直线BC 的垂线,分别交CB 、CA 的延长线于
E 、
F .
(1)求证:EF 是⊙O 的切线.
(2)若EF =8,EC =6,求⊙O 的半径.
O B A
C
E
D
9.如图,在Rt△ABC中,∠C=90°,点D是AC的中点,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)若∠A+∠CDB=90°,求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.
10.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.
(1)求证:AC是⊙O的切线;
(2)已知AB=10,BC=6,求⊙O的半径r.
4
5
11.已知:如图,在Rt ABC △中,90C ∠=o
,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.
(1)判断直线BD 与O e 的位置关系,并证明你的结论;
(2)若:8:5AD AO =,2BC =,求BD 的长.
12.如图所示,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,且交⊙O 于点E ,若∠AEC=∠ODB .
(1)判断直线BD 和⊙O 的位置关系,并给出证明;
(2)当AB=10,BC=8时,求BD 的长.
D C
O
A
B
E
613.如图,AB 为⊙O 的直径,AD 平分BAC ∠交⊙O 于点D ,AC 交AC DE ⊥的延长线于点E ,B B F A ⊥交AD
的延长线于点F ,
14.如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,
且BAC D ∠=∠.
(1)求证:AD 是半圆O 的切线;
(2)若2=BC ,2=CE ,求AD 的长.
7
15.已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两
点, 交BD 于点G ,交AB 于点F .
(1)求证:AC 与⊙O 相切;
(2)当BD=2,sinC=
1
2
时,求⊙O 的半径.
16.如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为弧CF 的中点,连接BE 交AC 于点
M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H .
(1)求证:AB 是半圆O 的切线;
(2)若3AB =,4BC =,求BE 的长.
A A
A
A
817.AB 是⊙O 的直径,CD 是⊙O 的切线,切点为C.延长AB 交CD 于点E.连接AC,作∠DAC=∠ACD,作AF ⊥ED 于点F,交⊙
O 于点G.
(1)求证:AD 是⊙O 的切线;
(2)如果⊙O 的半径是6cm,EC=8cm,求GF 的长.
18.己知:如图,在Rt △ACB 中,∠ACB=90°,以AC 为直径作⊙0交AB 于点D.
(1)若tan ∠ABC=错误!未找到引用源。
4
3
,AC=6,求线段BD 的长.
(2)若点E 为线段BC 的中点,连接DE.求证:DE 是圆O 的切线.
19.已知,如图,直线MN交⊙
O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若6
DE=cm,3
AE=cm,求⊙O的半径.
20.如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.
(1)求证:AC平分BAD;
(2)若AC=25,CD=2,求⊙O的直径.
9
10
21.如图,AB 是0e 的的直径,BC ⊥AB 于点B ,连接OC 交0e 于点E ,弦AD//OC,弦DF ⊥AB 于点G.
(1)求证:点E 是»BD
的中点; (2)求证:CD 是0e 的切线; (3)若4
sin 5
BAD ∠=,0e 的半径为5,求DF 的长.
22.如图,在⊙O 中,弦BC 垂直于半径OA,垂足为E,D 是优弧错误!未找到引用源。
上一点,连接 BD,AD,OC,∠ADB =30°.
(1)求∠AOC 的度数;
(2)若弦BC =6cm,求图中阴影部分的面积.
23.如图,已知AB为⊙O的直径,BD为⊙O的切线,过点B的弦BC⊥OD交⊙O于点C,垂足为M.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=8cm时,求图中阴影部分的面积(结果不取近似值).
24.如图,已知:△ABC是⊙O的内接三角形,D是OA延长线上的一点,连接DC,且∠B=∠D=30°.
(1)判断直线CD与⊙O的位置关系,并说明理由.
(2)若AC=6,求图中弓形(即阴影部分)的面积.
11
25.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接BD,过点E作EM∥BD,交BA的延长线于点M.
(1)求⊙O的半径;
(2)求证:EM是⊙O的切线;
(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.
12。