牛顿插值法matlab程序
牛顿插值MATLAB算法
![牛顿插值MATLAB算法](https://img.taocdn.com/s3/m/41361fe95ef7ba0d4a733bae.png)
MATLAB程序设计期中作业——编程实现牛顿插值成员:刘川(P091712797)签名_____汤意(P091712817)签名_____王功贺(P091712799)签名_____班级:2009信息与计算科学学院:数学与计算机科学学院日期:2012年05月02日牛顿插值的算法描述及程序实现一:问题说明在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。
插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
如果这特定函数是多项式,就称它为插值多项式。
利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。
二:算法分析newton 插值多项式的表达式如下:010011()()()()()n n n N x c c x x c x x x x x x -=+-+⋅⋅⋅+--⋅⋅⋅-其中每一项的系数c i 的表达式如下:12011010[,,,][,,,][,,,]i i i i i f x x x f x x x c f x x x x x -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅=- 即为f (x)在点01,,,i x x x ⋅⋅⋅处的i 阶差商,([]()i i f x f x =,1,2,,i n =),由差商01[,,,]i f x x x ⋅⋅⋅的性质可知: ()01001[,,,]()i i i j j k j k k j f x x x f x x x ==≠⋅⋅⋅=-∑∏ 牛顿插值的程序实现方法:第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、、。
MAAB牛顿插值法例题与程序
![MAAB牛顿插值法例题与程序](https://img.taocdn.com/s3/m/33d09880bb68a98271fefab2.png)
题目一:多项式插值某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。
二、数学原理假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式:)())(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -⋯⋯-+⋯⋯+-++=αααα(1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =)((i=0,1,2……n )确定。
根据均差的定义,把x 看成[a,b]上的一点,可得f(x)=f (0x )+f[10x x ,](0x -x ) f[x,0x ]=f[10x x ,]+f[x,10x x ,](1x -x )……f[x,0x ,…x 1-n ]=f[x,0x ,…x n ]+f[x,0x ,…x n ](x-x n )综合以上式子,把后一式代入前一式,可得到:f(x)=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+…+f[x,0x ,…x n ](0x -x )…(x-x 1-n )+f[x,0x ,…x n ,x ])(x 1n +ω=N n (x )+)(x n R 其中N n (x )=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+ …+f[x,0x ,…x n ](0x -x )…(x-x 1-n )(2))(x n R =f(x)-N n (x )=f[x,0x ,…x n ,x ])(x 1n +ω(3) )(x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。
插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)
![插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)](https://img.taocdn.com/s3/m/34a93e4d7dd184254b35eefdc8d376eeafaa1750.png)
插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)插值是数值分析中的一种方法,通过已知数据点的函数值来估计函数在其他点的值。
MATLAB提供了多种方法来实现插值,包括牛顿差商插值、插值误差分析、龙格现象和切比雪夫插值。
下面将详细介绍这些方法的实现原理和MATLAB代码示例。
1.牛顿差商插值:牛顿差商插值是一种基于多项式插值的方法,其中差商是一个连续性的差分商。
该方法的优势在于可以快速计算多项式的系数。
以下是MATLAB代码示例:```matlabfunction [coeff] = newton_interpolation(x, y)n = length(x);F = zeros(n, n);F(:,1)=y';for j = 2:nfor i = j:nF(i,j)=(F(i,j-1)-F(i-1,j-1))/(x(i)-x(i-j+1));endendcoeff = F(n, :);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,返回值coeff表示插值多项式的系数。
2.插值误差分析:插值误差是指插值函数与原始函数之间的差异。
一般来说,通过增加插值节点的数量或使用更高次的插值多项式可以减小插值误差。
以下是MATLAB代码示例:```matlabfunction [error] = interpolation_error(x, y, x_eval)n = length(x);p = polyfit(x, y, n-1);y_eval = polyval(p, x_eval);f_eval = sin(pi*x_eval);error = abs(f_eval - y_eval);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,x_eval表示插值节点的x坐标,error表示插值误差。
3.龙格现象:龙格现象是插值多项式在等距插值节点上错误增长的现象。
matlab(迭代法_牛顿插值)
![matlab(迭代法_牛顿插值)](https://img.taocdn.com/s3/m/b32a3729700abb68a982fbfb.png)
实验报告内容:一:不动点迭代法解方程二:牛顿插值法的MA TLAB实现完成日期:2012年6月21日星期四数学实验报告一日期:2012-6-21hold on>> fplot(g,[-2,2])>> fplot(f,[-2,2])>> hold off>> grid输出结果如下所示:所以,确定初值为x0=1二:不断迭代算法:第一步:将f(x0)赋值给x1第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步编写计算机程序:clearf=inline('0.5*sin(x)+0.4');x0=1;x1=f(x0);k=1;while abs(x1-x0)>=1.0e-6x0=x1;x1=f(x0);k=k+1;fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1)end显示结果如下:k=2,x0=0.820735492,x1=0.765823700k=3,x0=0.765823700,x1=0.746565483k=4,x0=0.746565483,x1=0.739560873k=5,x0=0.739560873,x1=0.736981783k=6,x0=0.736981783,x1=0.736027993k=7,x0=0.736027993,x1=0.735674699k=8,x0=0.735674699,x1=0.735543758k=9,x0=0.735543758,x1=0.735495216k=10,x0=0.735495216,x1=0.735477220k=11,x0=0.735477220,x1=0.735470548k=12,x0=0.735470548,x1=0.735468074k=13,x0=0.735468074,x1=0.735467157>>。
拉格朗日插值、牛顿插值的matlab代码
![拉格朗日插值、牛顿插值的matlab代码](https://img.taocdn.com/s3/m/540fea34f7ec4afe05a1df41.png)
实验五多项式插值逼近信息与计算科学金融崔振威201002034031一、实验目的:拉格朗日插值和牛顿插值的数值实现二、实验内容:p171.1、p178.1、龙格现象数值实现三、实验要求:1、根据所给题目构造相应的插值多项式,2、编程实现两类插值多项式的计算3、试分析多项式插值造成龙格现象的原因主程序1、拉格朗日function [c,l]=lagran(x,y)%c为多项式函数输出的系数%l为矩阵的系数多项式%x为横坐标上的坐标向量%y为纵坐标上的坐标向量w=length(x);n=w-1;l=zeros(w,w);for k=1:n+1v=1;for j=1:n+1if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j)) %对多项式做卷积运算endendl(k,:)=v;endc=y*l;牛顿插值多项式主程序function [p2,z]=newTon(x,y,t)%输入参数中x,y为元素个数相等的向量%t为插入的定点%p2为所求得的牛顿插值多项式%z为利用多项式所得的t的函数值。
n=length(x);chaS(1)=y(1);for i=2:nx1=x;y1=y;x1(i+1:n)=[];y1(i+1:n)=[];n1=length(x1);s1=0;for j=1:n1t1=1;for k=1:n1if k==j %如果相等则跳出循环continue;elset1=t1*(x1(j)-x1(k));endends1=s1+y1(j)/t1;endchaS(i)=s1;endb(1,:)=[zeros(1,n-1) chaS(1)];cl=cell(1,n-1); %cell定义了一个矩阵for i=2:nu1=1;for j=1:i-1u1=conv(u1,[1 -x(j)]); %conv()用于多项式乘法、矩阵乘法cl{i-1}=u1;endcl{i-1}=chaS(i)*cl{i-1};b(i,:)=[zeros(1,n-i),cl{i-1}];endp2=b(1,:);for j=2:np2=p2+b(j,:);endif length(t)==1rm=0;for i=1:nrm=rm+p2(i)*t^(n-i);endz=rm;elsek1=length(t);rm=zeros(1,k1);for j=1:k1for i=1:nrm(j)=rm(j)+p2(i)*t(j)^(n-i);endz=rm;endendplot(t,z,'y',x,y,'*r') %输出牛顿插值多项式的函数图p171.1(a)、f(x)=e x解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[exp(0) exp(0.2) exp(0.4) exp(0.6) exp(0.8) exp(1)]y =1.0000 1.2214 1.4918 1.82212.2255 2.7183>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0139 0.0349 0.1704 0.4991 1.0001 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0139 a1=0.0349 a2=0.1704 a3=0.4991 a4=1.0001 a5=1.0000(b)、f(x)=sin(x)解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[sin(0) sin(0.2) sin(0.4) sin(0.6) sin(0.8) sin(1)];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0073 0.0016 -0.1676 0.0002 1.0000 0l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0073 a1=0.0016 a2=-0.1676 a3=0.0002 a4=1.0000 a5=0(c)、f(x)=(x+1)x+1解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[1 1.2^1.2 1.4^1.4 1.6^1.6 1.8^1.8 2^2];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.3945 -0.0717 0.7304 0.9415 1.0052 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.3945 a1=-0.0717 a2=0.7304 a3=0.9415 a4=1.0052 a5=1.0000P178.12、a0=5 a1=-2 a2=0.5 a3=-0.1 a4=0.003x0=0 x1=1 x2=2 x3=3 c=2.5解:在matlab窗口中输入:>> x=[5 -2 0.5 -0.1];>> y=[0 1 2 3];>> t=0:0.1:2.5;>> [u,v]=newTon(x,y,t)可得出输出结果:u =0.1896 -0.7843 -1.3928 2.8688v =2.8688 2.7218 2.5603 2.3855 2.1983 2.0000 1.7917 1.5745 1.3497 1.1182 0.8813 0.6401 0.3957 0.1493 -0.0980 -0.3451 -0.5908 -0.8340 -1.0735 -1.3082 -1.5370 -1.7588 -1.9723 -2.1765 -2.3702 -2.5523由此可以求出牛顿多项式为:f(x)=0.1896x^3--0.7843^x2--1.3928x+2.8688输出的图为:结果分析:利用牛顿插值多项式的函数,通过调用函数可以求得牛顿多项式与给定的点的值,并通过matlab做出函数图像。
牛顿插值法matlab程序例题
![牛顿插值法matlab程序例题](https://img.taocdn.com/s3/m/0ba1c0664a35eefdc8d376eeaeaad1f3469311e2.png)
牛顿插值法是一种常用的数值分析方法,用于构造一个多项式函数,以便在给定的数据点上进行插值。
这个主题在数学和工程领域中有着广泛的应用,特别是在数据拟合和函数逼近方面。
牛顿插值法的核心思想是通过不断地添加新的数据点来构造一个多项式,并利用已知数据点来确定多项式的系数,从而实现对未知数据点的插值预测。
在Matlab中,实现牛顿插值法并不困难,我们可以利用已有的函数和工具来简化计算过程。
下面,我们将通过一个具体的例题来讲解如何使用Matlab编写牛顿插值法的程序,并分析其结果。
我们需要明确牛顿插值法的数学原理。
给定n个互不相同的节点\(x_0, x_1, ... , x_n\),以及在这些节点上的函数值\(f(x_0), f(x_1), ... , f(x_n)\),我们希望构造一个n次插值多项式p(x),满足p(x_i) = f(x_i),i=0,1,...,n。
牛顿插值多项式的一般形式为:\[p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + ... + a_n(x -x_0)(x - x_1)...(x - x_{n-1})\]其中,\[a_i\]表示插值多项式的系数。
通过牛顿插值法的迭代过程,可以逐步求解出这些系数,进而得到插值多项式的表达式。
接下来,我们将以一个具体的例题来演示如何在Matlab中实现牛顿插值法。
假设我们有如下的数据点和函数值:\(x = [1, 2, 3, 4]\)\(f(x) = [1, 4, 9, 16]\)我们希望利用这些数据点来构造一个插值多项式,并在给定的区间上进行插值计算。
在Matlab中,可以通过interp1函数来进行插值计算,该函数支持多种插值方法,包括牛顿插值法。
下面是一个简单的Matlab程序示例:```matlabx = [1, 2, 3, 4];y = [1, 4, 9, 16];xi = 2.5;yi = interp1(x, y, xi, 'spline');disp(['在x=',num2str(xi),'处的插值结果为:',num2str(yi)]);```在这段代码中,我们首先定义了给定的数据点x和对应的函数值y,然后利用interp1函数对x=2.5处的插值结果进行计算。
Langrage和Newton插值法的matlab实现
![Langrage和Newton插值法的matlab实现](https://img.taocdn.com/s3/m/6c836c7301f69e3143329482.png)
仅供参考1.已知数据如下:(1)用MATLAB语言编写按Langrage插值法和Newton插值法计算插值的程序,对以上数据进行插值;(2)利用MATLAB在第一个图中画出离散数据及插值函数曲线。
(1.1)langrage插值法编程实现syms xx0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];for i=1:5a=1;for j=1:5if j~=ia=expand(a*(x-x0(j)));endendb=1;for k=1:5if k~=ib=b*(x0(i)-x0(k));endendA(i)=expand(a/b);endL=0;for p=1:5L=L+y0(p)*A(p);endLL =-25/48*x^4+5/6*x^3-53/48*x^2+23/120*x+49/50(1.2)Newton插值程序实现clear allclcsyms xx0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];for k=1:5for i=1:ka=1;b=0;for j=1:kif j~=ia=a*(x0(i)-x0(j));endendb=b+y0(i)/a;endA(k)=b;endB=[1,(x-x0(1)),(x-x0(1))*(x-x0(2)),(x-x0(1))*(x-x0(2))*(x-x0(3)),(x-x 0(1))*(x-x0(2))*(x-x0(3))*(x-x0(4))];L1=A.*B;l=0;for m=1:5l=l+L1(m);endL=expand(l)L =61/100+13/30*x+383/48*x^2-155/24*x^3+475/48*x^4(2)画图x0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];subplot(1,2,1);plot(x0(1),y0(1),'+r',x0(2),y0(2),'+r',x0(3),y0(3),'+r',x0(4),y0(4),' +r',x0(5),y0(5),'+r')x=0:0.05:1;y=-25/48.*x.^4+5/6.*x.^3-53/48.*x.^2+23/120.*x+49/50;subplot(1,2,2);plot(x,y)2.给定函数21(),[1,1]125f x x x ,利用上题编好的Langrage 插值程序(或Newton 插值程序),分别取3个,5个、9个、11个等距节点作多项式插值,分别画出插值函数及原函数()f x 的图形,以验证Runge 现象、分析插值多项式的收敛性。
插值法(牛顿插值与拉格朗日插值法的M文件编写)
![插值法(牛顿插值与拉格朗日插值法的M文件编写)](https://img.taocdn.com/s3/m/6b4dc322192e45361066f56e.png)
牛顿插值与拉格朗日插值ployfit 实现多项式回归matlab 的m 文件:Function yint=newtint(x,y,xx)%newtint:newton interpolating polynomial%yint=newtint(x,y,xx):uses an (n-1)-order newton%to determine a value of the dependent variable (yint)%at a given value of the independent variable,xx.%input:%x=independent variable%y=dependent variable%xx=value of independent variable at which Interpolation is calculated % output:% yint=interpolated value of dependent variable%compute the finite divided differences in the form of a%difference tablen=length(x);If length(y)~=n,error('x and y must be same length');Endb=zeros(n,n);%assign dependent variables to the first column of b.b(:,1)=y(:);%the(:)ensures that y is a column vector.For j=2:nFor i=1:n-j+1b(I,j)=(b(i+1,j-1)-b(I,j-1))/(x(i+j-1)-x(i));EndEnd% use the finite divided differences to interpolateXt=1;Yint=b(1,1);For j=1:n-1xt=xt*(xx-x(j));Yint=yint+b(1,j+1)*xt;End-------------------------------------------------------------------------------------------------------------拉格朗日插值方法m 文件的编写Function yint =lagrange(x,y,xx)%lagrange:lagrange interpolating polynomial%yint=lagrange(x,y,xx):uses an (n-1)-order% to determine a value of the dependent variable (yint) at% a given value of the independent variable ,xx.%input:% x=independent variable%y=dependent variable%xx=value of independent variable at which the interpolation is calculated %output:% yint=interpolated value of dependent variablen=length(x);If length(y)~=n,error('x and y must be same length');Ends=0;For i=1:nProduct=y(i);For j=1:nIf i~=jProduct =product*(xx-x(j))/(x(i)-x(j));End插值法2010年10月24日11:16EndEnds=s+product; EndYint=s;。
Newton插值 matlab
![Newton插值 matlab](https://img.taocdn.com/s3/m/36357a1ae87101f69e31958b.png)
1.3 0.9636
1.5 0.9975
1.7 0.9917
主程序: x=[0.7:0.2:1.7]; y=[0.6442 0.7833 0.8912 0.9636 0.9975 0.9917]; xi=0.74, yi=Newton_int(x,y,xi) 运行得 xi =0.7400 yi = 0.6743 四、实验题目 已知 f ( x) ln x, [a, b] [1, 2], 取 h 0.1, xi 1 ih, i 0,1, 计算 ln1.54 及 ln1.98 的近似值。
function yi=Newton_int(x,y,xi) % Newton 插值多项式; % x为向量,全部的插值节点,按行输入; % y为向量,插值节点处的函数值,按行输入; % xi为被插值点向量; % yi为要求的被插值点函数值向量; n=length(x); Y=zeros(n); Y(:,1)=y';%0阶差商 for k=1:n-1 for i=1:n-k Y(i,k+1)=(Y(i+1,k)-Y(i,k))/(x(i+k)-x(i));%k阶差商 end end %Y %输出差商表 % 以下计算Newton插值公式N(xi) yi=0; for i=1:n z=1; for k=1:i-1 z=z.*(xi-x(k)); end yi=yi+Y(1,i)*z; end %n为已知插值节点个数; % 以下计算差商表Y
,10. 用 Newton 插值
实验 10 Newton 插值
一 实验名称:Newton 插值 二 实验目的:学会用 Newton 插值计算函数值。 三 实验内容: 例 1、设函数 f(x)满足 X 0.7 0.9 1.1 Y 0.6642 0.7833 0.8912 利用六点 Newton 插值多项式计算 f(0.74). 解:先建立函数文件
Newton插值的matlab实现
![Newton插值的matlab实现](https://img.taocdn.com/s3/m/e5ecbe30a32d7375a41780d6.png)
Newton插值的matlab实现成员:黄全P092314746 28%付吉P091712737 24%颜学俭P091712716 24%罗国庭P091712739 24%指导老师:刘华2012年5月2日目录Newton插值的matlab实现 ....................................................................................................... - 1 - 一过程整理...................................................................................................................... - 3 - Newton插值的基本原理 ............................................................................................ - 3 - 二流程图............................................................................................................................ - 4 - 三算法设计...................................................................................................................... - 6 -3.1、Newton插值的matlab实现 .............................................................................. - 6 -3.2、程序..................................................................................................................... - 6 -3.3、例题..................................................................................................................... - 6 -3.4、命令执行图...................................................................................................... - 7 - 四参考文献........................................................................................................................ - 7 -一 过程整理Newton 插值的基本原理假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式:)())(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -⋯⋯-+⋯⋯+-++=αααα(1)其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =)((i=0,1,2……n )确定。
matlab_牛顿插值法_三次样条插值法
![matlab_牛顿插值法_三次样条插值法](https://img.taocdn.com/s3/m/09a209b4c77da26925c5b074.png)
(){}21()(11),5,10,20:12521()1,(0,1,2,,)()2,(0,1,2,,)()()235,20:1100(i i ii n n k k k Newton f x x n x f x x i i n f x nxy i n Newton N x S x n x k y f x =-≤≤=+=-+====-+= 题目:插值多项式和三次样条插值多项式。
已知对作、计算函数在点处的值;、求插值数据点的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max()n k n k n k n k n k n k kkN x S x k E N y N x E S y S x ==-=- 和;、计算,;解释你所得到的结果。
算法组织:本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式)(x N n 和三次样条插值多项式()n S x 。
如此,则第三、四问则迎刃而解。
计算两种插值多项式的算法如下:一、求Newton 插值多项式)(x N n ,算法组织如下:Newton 插值多项式的表达式如下:)())(()()(110010--⋅⋅⋅--+⋅⋅⋅+-+=n n n x x x x x x c x x c c x N其中每一项的系数c i 的表达式如下:1102110),,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅=-根据i c 以上公式,计算的步骤如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----),,,,(1),,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:所谓三次样条插值多项式)(x S n 是一种分段函数,它在节点i x 011()n n a x x x x b -=<<⋅⋅⋅<<=分成的每个小区间1[,]i i x x -上是3次多项式,其在此区间上的表达式如下:22331111111()[()()]()()666[,]1,2,,.i i i i i i i i i i i i i i i i i h x x h x x S x x x M x x M y M y M h h h x x x i n --------=-+-+-+-∈=⋅⋅⋅,,因此,只要确定了i M 的值,就确定了整个表达式,i M 的计算方法如下: 令:11111111116()6(,,)i i i i i i i i i i i i i ii i i i i i i h h h h h h y y y y d f x x x h h h h μλμ++++--+++⎧===-⎪++⎪⎨--⎪=-=⎪+⎩, 则i M 满足如下n-1个方程:1121,2,,1i i i i i i M M M d i n μλ-+++==⋅⋅⋅-,方程中有n+1个未知量,则令0M 和n M 分别为零,则由上面的方程组可得到(11)i M i n ≤≤-的值,可得到整个区间上的三次样条插值多项式)(x S n 。
matlab牛顿插值法程序
![matlab牛顿插值法程序](https://img.taocdn.com/s3/m/2f5f4afe48649b6648d7c1c708a1284ac9500558.png)
matlab牛顿插值法程序牛顿插值法是一种数值分析方法,用于确定给定数据点之间的未知函数值。
该方法使用一个插值多项式,该多项式使得插值多项式通过给定的插值点,并且在插值点周围的函数值接近已知函数值。
该方法比其他插值方法更高,因为它使用被插值数据的微分。
下面是MATLAB中牛顿插值法的程序:function [f, c] = newton_interpolation(x, y)% x:插值节点不同的x值,必须有n个元素。
% y:相应在每个节点的y值,必须有n个元素。
% 返回:拟合的多项式和的权重向量c% 我们创建一个表格,其中包含x和y值的第一行n = length(x);delta=zeros(n,n);% 先把第一列设置为y值:delta(:,1)=y';%接下来,我们将使用牛顿插值法来填写余下的每个列for j=2:nfor i=j:ndelta(i,j) = ( delta(i,j-1) - delta(i-1,j-1) )/( x(i) - x(i-j+1));endend% 配置 c 数组% 从差分表中得出k次递归系数矩阵,目标是多项式系数c = zeros(1,n);c(1)=delta(1,1);% 获取插值多项式(通过牛顿插值法)syms t;L = c(1);for j=2:nprod = 1;for i=1:j-1prod = prod * ( t - x(i) );endL = L + c(j) * prod;end% 转换L成一个函数y=L(x)f = matlabFunction(L);end现在,当我们调用这个函数并输入我们想要插值的节点和相应的y值,我们会得到拟合的多项式和传递插值节点的权重向量。
matlab均差表牛顿插值
![matlab均差表牛顿插值](https://img.taocdn.com/s3/m/6c47162e001ca300a6c30c22590102020740f2ea.png)
matlab均差表牛顿插值
“matlab均差表牛顿插值”这个表述可能是指在MATLAB中使用均差表来进行牛顿插值的方法。
牛顿插值是一种数学方法,用于通过给定的数据点来逼近一个未知函数。
这种方法的基本思想是通过构造一个多项式来逼近给定的函数,该多项式能够很好地拟合这些数据点。
在MATLAB中进行牛顿插值,通常需要以下几个步骤:
1.确定插值节点:首先需要确定要进行插值的x值,即数据点的横坐标。
2.计算差商:在确定了插值节点后,需要计算差商,即相邻数据点之间的差
值的商。
这可以通过使用均差的概念来实现。
3.构建插值多项式:根据差商,可以构建一个插值多项式来逼近给定的函数。
这个多项式可以通过牛顿插值公式得出。
4.进行插值:使用构建的多项式,可以计算出在任意x值下的函数值,从而
实现插值。
总结来说,“matlab均差表牛顿插值”指的是在MATLAB中使用均差表的方法来进行牛顿插值,从而逼近一个未知函数。
这种方法能够提高插值的精度和稳定性,适用于处理大量数据点的场景。
newton插值法matlab
![newton插值法matlab](https://img.taocdn.com/s3/m/af759857793e0912a21614791711cc7931b778de.png)
newton插值法matlab一、引言在数值分析中,插值法可以用于在已知的一组数据中,根据数据间的数值规律推断出在某些未知数据点处的数值。
牛顿插值法是一种常用的插值方法,适用于等距节点及非等距节点问题。
二、牛顿插值法的原理假设已经有一组已知的n个节点(x0,y0)、(x1,y1)、...、(xn,yn),其中x0<x1<...<xn,牛顿插值法的思想是通过构造一个n次多项式,使得多项式在节点处与函数的值一致,从而在节点之间对函数进行插值。
具体算法如下:1. 假设插值多项式为f(x),则f(x)=b0+b1(x-x0)+...+bn(x-x0)(x-x1)...(x-x(n-1))其中,b0=y0,bi为差商。
2. 首先计算0阶差商:f[x0]=y0,1阶差商:f[x0,x1]=(y1-y0)/(x1-x0),以此类推。
3. 计算2阶差商,需要用到1阶差商,因此:f[x0,x1,x2]=(f[x0,x1]-f[x1,x2])/(x0-x2),以此类推,直到完成n-1阶差商。
4. 将差商代入插值公式,即可得到牛顿插值多项式。
三、Matlab代码实现假设已知节点(xi,yi)为(0,1)、(1,2)、(3,1)、 (4,3),要求在x=2处的插值结果。
代码如下:```% 定义节点数据x = [0 1 3 4];y = [1 2 1 3];% 计算差商表n = length(x);F = zeros(n,n);F(:,1) = y';for j=2:nfor i=j:nF(i,j) = (F(i,j-1)-F(i-1,j-1))/(x(i)-x(i-j+1));endend% 计算插值结果x0 = 2;result = F(1,1);for k=2:nresult = result + F(k,k)*prod(x0-x(1:k-1));end% 输出结果fprintf('f(%g)= %g\n',x0,result);```输出结果为f(2)= 1.28571428571428。
matlab 拉格朗日插值法和牛顿插值法 -回复
![matlab 拉格朗日插值法和牛顿插值法 -回复](https://img.taocdn.com/s3/m/17d8869477a20029bd64783e0912a21614797fce.png)
matlab 拉格朗日插值法和牛顿插值法-回复Matlab 拉格朗日插值法和牛顿插值法引言:在数值分析中,插值法是一种通过已知数据点来估计介于这些数据点之间的未知数值的方法。
拉格朗日插值法和牛顿插值法是两种常用的插值方法,都有各自的优点和适用场景。
本文将详细介绍这两种方法的原理和实现方式,以及在Matlab 中如何使用它们来进行插值计算。
一、拉格朗日插值法1. 原理:拉格朗日插值法是使用一个N次的多项式来逼近未知函数。
给定一组数据点(x0, y0), (x1, y1), …, (xi, yi), …, (xn, yn),通过拉格朗日插值法可以得到一个多项式P(x),使得P(xi) = yi。
该多项式表示了数据点间的曲线关系,从而可以通过插值估算未知点的值。
2. 实现步骤:(1)创建一个N次多项式的拉格朗日插值函数;(2)计算每个插值点的权重系数,即拉格朗日插值函数的系数;(3)根据给定的数据点和权重系数,构建多项式;(4)通过多项式计算未知点的值。
3. Matlab 中的使用:在Matlab 中,可以使用"polyfit" 函数来实现拉格朗日插值法。
该函数可以拟合出一个多项式曲线,将给定的数据点映射到曲线上。
二、牛顿插值法1. 原理:牛顿插值法是通过构造一个差商表来逼近未知函数。
给定一组数据点(x0, y0), (x1, y1), …, (xi, yi), …, (xn, yn),通过牛顿插值法可以得到一个N次多项式P(x),满足P(xi) = yi。
该多项式的系数由差商构成,利用递归的方式逐层求解。
2. 实现步骤:(1)创建一个N次多项式的牛顿插值函数;(2)计算差商表,其中第一列为给定的数据点y值;(3)递归计算差商表中的其他列,直到得到最后的差商值;(4)根据差商表构建多项式;(5)通过多项式计算未知点的值。
3. Matlab 中的使用:在Matlab 中,可以使用"interp1" 函数结合牛顿插值法来进行插值计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
>> y=[1 2 17 64];
>> x0=0.5;
>> x1=2.5;
>> f=Newton(x,y,x0,x1)
g =
0.8750
g1 =
35.3750
差商表为
0 0 0 0
1.0000 1.0000 0 0
7.0000 6.0000 2.5000 0
3.0000 -4.0000 -5.0000 -2.5000
称 为牛顿(Newton)均差插值多项式。系数 就是书本表5-1中第一条斜线上对应的数值。
式(1-2)为插值余项,由插值多项式唯一性可知,它与书本式(5.1.19)是等价的,事实上,利用均差与导数关系式可由式(1-2)推出书本式(5.1.19)。但式(1-2)更有一般性,它对f是由离散点给出的情形或f导数不存在时均适用。
(2)上机实验程序,做好上机前的准备工作;
(3)调试程序,记录计算结果;
(4)分析和解释计算结果;
(5)按照要求书写实验报告。
3、实验内容:
(1)算法原理或计算公式
算法原理:根据均差定义,把x看成[a,b]上一点,可得
…
只要把后一式代入前一式,就得到
其中
由式(1-1)确定的多项式 显然满足插值条件,且次数不超过n次的多项式,其系数为
g=subs(f,'t',x0)
g1=subs(f,'t',x1)
A=zeros(n,n-1);
A=[y',A];
for j=2:n
for i=j:n
A(i,j)=(A(i,j-1)-A(i-1,j-1))/(x(i)-x(i+1-j));
end
end
disp('差商表为');
disp(A);
(4)运行结果
disp('x和y的维数不相等!');
return;
end
f=y(1);
y1=0;
l =1;
for(i=1:n-1)
for(j=i+1:n)
y1(j)=(y(j)-y(i))/(x(j)-x(i));
end
c(i)=y1(i+1);
l=l*(t-x(i));
f=f+c(i)*l;
y=y1;
end
f=simplify(f);
《计算方法》数值实验报告
班级
090712
学号
09071235
姓名
金志彬
实验室
3-128
设备编号
D12
日期
2012.06.05
实验题目
编写牛顿插值方法的MATLAB主程序并验算P183.11
1、实验目的:
通过编程实现牛顿插值方法,加深对多项式插值的理解。应用所编程序解决实际算例。
2、实验要求:
(1)认真分析课题要求,复习相关理论知识,选择适当的解决方案;
(2)程序设计思路
1)输入:n的值及 要计算的函数点x(本文取x0,x1两个函数点);
2)由
计算 的值;
3)输出: 。
(源程序
function f=Newton(x,y,x0,x1)
syms t;
if(length(x)==length(y))
n=length(x);
c(1:n)=0.0;
else
f =
1-2*t^2+3*t^3
4、实验小结体会:
1)通过本次实验让我从实践验证了理论-------插值多项式的基本思想;
2)牛顿插值法建立过程中用到了插商计算,这是有别于拉格朗日插值法的一部分,在已知点数较少的情况下用牛顿插值法较为准确;
3)通过编程,加深了matlab的熟悉特别是一些函数语句,进一步体会到了函数逼近的思想。