牛顿插值法的MATLAB综合程序

合集下载

数值计算实验牛顿前插和后插插值

数值计算实验牛顿前插和后插插值

数值计算实验二姓名:方小开学号:20060810202 班级:计科0602一. 实验目的:1、差分的matlab实现;2、Newton插值的matlab实现;二. 实验原理:MATLAB在线性代数,矩阵分析,数值及优化,数理统计和随机信号分析,电路系统,系统动力学,信号与图像处理,控制理论分析和系统设计,过程控制,建模和仿真,通信系统,等有广泛的应用。

它具有功能强大,界面友好,语言自然即开放性等特点。

三.试验环境MATLAB7.0四. 试验过程及现象:1、牛顿插值公式:把下面的matlab程序在matlab中建立M-file文件并保存;function [d,v1]=newtonjz(x,y,v) %d 插商表 v是要插入x v1是插入的y值n=length(x);d=zeros(n,n);d(:,1)=y';for j=2:nfor i=j:nd(i,j)=(d(i,j-1)-d(i-1,j-1))/(x(i)-x(i-j+1));endendw=1;v1=d(1,1);for i=2:nw=w*(v-x(i-1));v1=v1+d(i,i)*w;end分别给x,y赋初值,并调用Newton插值函数得到结果如下:x=[0.40,0.55,0.65,0.80,0.90,1.05];y=[0.41075,0.57815,0.69675,0.88811,1.02652,1.25382];[z,xy]=newtonjz(x,y,0.596);z =0.4108 0 0 0 0 00.5782 1.1160 0 0 0 00.6967 1.1860 0.2800 0 0 00.8881 1.2757 0.3589 0.1973 0 01.0265 1.3841 0.4335 0.2130 0.0312 01.2538 1.5153 0.5249 0.2287 0.0314 0.0003xy =0.63192Newton前插公式:把Newton前插公式的matlab程序写在matlab中建立M-file文件并保存;function [d,v1]=newtonBefore(x,y,t)n=length(x);d=zeros(n,n);d(:,1)=y';for j=2:nfor i=1:n-j+1d(i,j)=(d(i+1,j-1)-d(i,j-1));endendw=1;m=1;v1=d(1,1);for i=2:nw=w*(t-i+2);m=m*(i-1);v1=v1+d(1,i)*(w/m);end分别给x,y赋初值,并调用Newton前插函数得到结果如下;x=[1 1.05 1.10 1.15 1.20 1.25 1.30];y=[1 1.0247 1.04881 1.07238 1.09544 1.11803 1.14017];>> [z,qc]=newtonBefore(x,y,0.2);qc =1.004992263808003、Newton后插公式:把Newton后插公式的matlab程序写在matlab中建立M-file文件并保存;function [d,v1]=newtonAfter(x,y,t)n=length(x);d=zeros(n,n);d(:,1)=y';for j=2:nfor i=j:nd(i,j)=(d(i,j-1)-d(i-1,j-1));endendw=1;m=1;v1=d(1,1);for i=2:nw=w*(t+i-2);m=m*(i-1);v1=v1+d(n,i)*(w/m);end分别给x,y赋初值,并调用Newton后插函数得到结果如下;x=[1 1.05 1.10 1.15 1.20 1.25 1.30];y=[1 1.0247 1.04881 1.07238 1.09544 1.11803 1.14017];>> [z,hc]=newtonAfter(x,y,-0.4);hc=1.13136982835200五.遇到的问题在调试的过程中也遇到了一些小小的问题,如输出的结果只显示4位有效数字,结果的精度太低了,不能满足要求,因此在matlab中把数据的格式从short型改成了long型,这样就大大的提高了结果的精确度,减少了误差。

MAAB牛顿插值法例题与程序

MAAB牛顿插值法例题与程序

题目一:多项式插值某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。

二、数学原理假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式:)())(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -⋯⋯-+⋯⋯+-++=αααα(1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =)((i=0,1,2……n )确定。

根据均差的定义,把x 看成[a,b]上的一点,可得f(x)=f (0x )+f[10x x ,](0x -x ) f[x,0x ]=f[10x x ,]+f[x,10x x ,](1x -x )……f[x,0x ,…x 1-n ]=f[x,0x ,…x n ]+f[x,0x ,…x n ](x-x n )综合以上式子,把后一式代入前一式,可得到:f(x)=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+…+f[x,0x ,…x n ](0x -x )…(x-x 1-n )+f[x,0x ,…x n ,x ])(x 1n +ω=N n (x )+)(x n R 其中N n (x )=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+ …+f[x,0x ,…x n ](0x -x )…(x-x 1-n )(2))(x n R =f(x)-N n (x )=f[x,0x ,…x n ,x ])(x 1n +ω(3) )(x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)插值是数值分析中的一种方法,通过已知数据点的函数值来估计函数在其他点的值。

MATLAB提供了多种方法来实现插值,包括牛顿差商插值、插值误差分析、龙格现象和切比雪夫插值。

下面将详细介绍这些方法的实现原理和MATLAB代码示例。

1.牛顿差商插值:牛顿差商插值是一种基于多项式插值的方法,其中差商是一个连续性的差分商。

该方法的优势在于可以快速计算多项式的系数。

以下是MATLAB代码示例:```matlabfunction [coeff] = newton_interpolation(x, y)n = length(x);F = zeros(n, n);F(:,1)=y';for j = 2:nfor i = j:nF(i,j)=(F(i,j-1)-F(i-1,j-1))/(x(i)-x(i-j+1));endendcoeff = F(n, :);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,返回值coeff表示插值多项式的系数。

2.插值误差分析:插值误差是指插值函数与原始函数之间的差异。

一般来说,通过增加插值节点的数量或使用更高次的插值多项式可以减小插值误差。

以下是MATLAB代码示例:```matlabfunction [error] = interpolation_error(x, y, x_eval)n = length(x);p = polyfit(x, y, n-1);y_eval = polyval(p, x_eval);f_eval = sin(pi*x_eval);error = abs(f_eval - y_eval);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,x_eval表示插值节点的x坐标,error表示插值误差。

3.龙格现象:龙格现象是插值多项式在等距插值节点上错误增长的现象。

牛顿法Matlab程序

牛顿法Matlab程序

1
Such approximation is given by, x1 = xo - f(xo)/f'(xo). The Newton-Raphson method consists in obtaining improved values of the approximate root through the recurrent application of equation above. For example, the second and third approximations to that root will be given by and respectively. This iterative procedure can be generalized by writing the following equation, where i represents the iteration number: xi+1 = xi - f(xi)/f'(xi). After each iteration the program should check to see if the convergence condition, namely, |f(x i+1)|<ε, is satisfied. The figure below illustrates the way in which the solution is found by using the NewtonRaphson method. Notice that the equation f(x) = 0 ≈ f(xo)+f'(xo)(x1 -xo) represents a straight line tangent to the curve y = f(x) at x = xo. This line intersects the x-axis (i.e., y = f(x) = 0) at the point x1 as given by x1 = xo - f(xo)/f'(xo). At that point we can construct another straight line tangent to y = f(x) whose intersection with the x-axis is the new approximation to the root of f(x) = 0, namely, x = x2. Proceeding with the iteration we can see that the intersection of consecutive tangent lines with the x-axis approaches the actual root relatively fast. x2 = x1 - f(x1)/f'(x1), x3= x2 - f(x2)/f'(x2),

拉格朗日插值、牛顿插值的matlab代码

拉格朗日插值、牛顿插值的matlab代码

实验五多项式插值逼近信息与计算科学金融崔振威201002034031一、实验目的:拉格朗日插值和牛顿插值的数值实现二、实验内容:p171.1、p178.1、龙格现象数值实现三、实验要求:1、根据所给题目构造相应的插值多项式,2、编程实现两类插值多项式的计算3、试分析多项式插值造成龙格现象的原因主程序1、拉格朗日function [c,l]=lagran(x,y)%c为多项式函数输出的系数%l为矩阵的系数多项式%x为横坐标上的坐标向量%y为纵坐标上的坐标向量w=length(x);n=w-1;l=zeros(w,w);for k=1:n+1v=1;for j=1:n+1if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j)) %对多项式做卷积运算endendl(k,:)=v;endc=y*l;牛顿插值多项式主程序function [p2,z]=newTon(x,y,t)%输入参数中x,y为元素个数相等的向量%t为插入的定点%p2为所求得的牛顿插值多项式%z为利用多项式所得的t的函数值。

n=length(x);chaS(1)=y(1);for i=2:nx1=x;y1=y;x1(i+1:n)=[];y1(i+1:n)=[];n1=length(x1);s1=0;for j=1:n1t1=1;for k=1:n1if k==j %如果相等则跳出循环continue;elset1=t1*(x1(j)-x1(k));endends1=s1+y1(j)/t1;endchaS(i)=s1;endb(1,:)=[zeros(1,n-1) chaS(1)];cl=cell(1,n-1); %cell定义了一个矩阵for i=2:nu1=1;for j=1:i-1u1=conv(u1,[1 -x(j)]); %conv()用于多项式乘法、矩阵乘法cl{i-1}=u1;endcl{i-1}=chaS(i)*cl{i-1};b(i,:)=[zeros(1,n-i),cl{i-1}];endp2=b(1,:);for j=2:np2=p2+b(j,:);endif length(t)==1rm=0;for i=1:nrm=rm+p2(i)*t^(n-i);endz=rm;elsek1=length(t);rm=zeros(1,k1);for j=1:k1for i=1:nrm(j)=rm(j)+p2(i)*t(j)^(n-i);endz=rm;endendplot(t,z,'y',x,y,'*r') %输出牛顿插值多项式的函数图p171.1(a)、f(x)=e x解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[exp(0) exp(0.2) exp(0.4) exp(0.6) exp(0.8) exp(1)]y =1.0000 1.2214 1.4918 1.82212.2255 2.7183>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0139 0.0349 0.1704 0.4991 1.0001 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0139 a1=0.0349 a2=0.1704 a3=0.4991 a4=1.0001 a5=1.0000(b)、f(x)=sin(x)解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[sin(0) sin(0.2) sin(0.4) sin(0.6) sin(0.8) sin(1)];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0073 0.0016 -0.1676 0.0002 1.0000 0l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0073 a1=0.0016 a2=-0.1676 a3=0.0002 a4=1.0000 a5=0(c)、f(x)=(x+1)x+1解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[1 1.2^1.2 1.4^1.4 1.6^1.6 1.8^1.8 2^2];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.3945 -0.0717 0.7304 0.9415 1.0052 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.3945 a1=-0.0717 a2=0.7304 a3=0.9415 a4=1.0052 a5=1.0000P178.12、a0=5 a1=-2 a2=0.5 a3=-0.1 a4=0.003x0=0 x1=1 x2=2 x3=3 c=2.5解:在matlab窗口中输入:>> x=[5 -2 0.5 -0.1];>> y=[0 1 2 3];>> t=0:0.1:2.5;>> [u,v]=newTon(x,y,t)可得出输出结果:u =0.1896 -0.7843 -1.3928 2.8688v =2.8688 2.7218 2.5603 2.3855 2.1983 2.0000 1.7917 1.5745 1.3497 1.1182 0.8813 0.6401 0.3957 0.1493 -0.0980 -0.3451 -0.5908 -0.8340 -1.0735 -1.3082 -1.5370 -1.7588 -1.9723 -2.1765 -2.3702 -2.5523由此可以求出牛顿多项式为:f(x)=0.1896x^3--0.7843^x2--1.3928x+2.8688输出的图为:结果分析:利用牛顿插值多项式的函数,通过调用函数可以求得牛顿多项式与给定的点的值,并通过matlab做出函数图像。

牛顿插值法matlab程序例题

牛顿插值法matlab程序例题

牛顿插值法是一种常用的数值分析方法,用于构造一个多项式函数,以便在给定的数据点上进行插值。

这个主题在数学和工程领域中有着广泛的应用,特别是在数据拟合和函数逼近方面。

牛顿插值法的核心思想是通过不断地添加新的数据点来构造一个多项式,并利用已知数据点来确定多项式的系数,从而实现对未知数据点的插值预测。

在Matlab中,实现牛顿插值法并不困难,我们可以利用已有的函数和工具来简化计算过程。

下面,我们将通过一个具体的例题来讲解如何使用Matlab编写牛顿插值法的程序,并分析其结果。

我们需要明确牛顿插值法的数学原理。

给定n个互不相同的节点\(x_0, x_1, ... , x_n\),以及在这些节点上的函数值\(f(x_0), f(x_1), ... , f(x_n)\),我们希望构造一个n次插值多项式p(x),满足p(x_i) = f(x_i),i=0,1,...,n。

牛顿插值多项式的一般形式为:\[p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + ... + a_n(x -x_0)(x - x_1)...(x - x_{n-1})\]其中,\[a_i\]表示插值多项式的系数。

通过牛顿插值法的迭代过程,可以逐步求解出这些系数,进而得到插值多项式的表达式。

接下来,我们将以一个具体的例题来演示如何在Matlab中实现牛顿插值法。

假设我们有如下的数据点和函数值:\(x = [1, 2, 3, 4]\)\(f(x) = [1, 4, 9, 16]\)我们希望利用这些数据点来构造一个插值多项式,并在给定的区间上进行插值计算。

在Matlab中,可以通过interp1函数来进行插值计算,该函数支持多种插值方法,包括牛顿插值法。

下面是一个简单的Matlab程序示例:```matlabx = [1, 2, 3, 4];y = [1, 4, 9, 16];xi = 2.5;yi = interp1(x, y, xi, 'spline');disp(['在x=',num2str(xi),'处的插值结果为:',num2str(yi)]);```在这段代码中,我们首先定义了给定的数据点x和对应的函数值y,然后利用interp1函数对x=2.5处的插值结果进行计算。

Langrage和Newton插值法的matlab实现

Langrage和Newton插值法的matlab实现

仅供参考1.已知数据如下:(1)用MATLAB语言编写按Langrage插值法和Newton插值法计算插值的程序,对以上数据进行插值;(2)利用MATLAB在第一个图中画出离散数据及插值函数曲线。

(1.1)langrage插值法编程实现syms xx0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];for i=1:5a=1;for j=1:5if j~=ia=expand(a*(x-x0(j)));endendb=1;for k=1:5if k~=ib=b*(x0(i)-x0(k));endendA(i)=expand(a/b);endL=0;for p=1:5L=L+y0(p)*A(p);endLL =-25/48*x^4+5/6*x^3-53/48*x^2+23/120*x+49/50(1.2)Newton插值程序实现clear allclcsyms xx0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];for k=1:5for i=1:ka=1;b=0;for j=1:kif j~=ia=a*(x0(i)-x0(j));endendb=b+y0(i)/a;endA(k)=b;endB=[1,(x-x0(1)),(x-x0(1))*(x-x0(2)),(x-x0(1))*(x-x0(2))*(x-x0(3)),(x-x 0(1))*(x-x0(2))*(x-x0(3))*(x-x0(4))];L1=A.*B;l=0;for m=1:5l=l+L1(m);endL=expand(l)L =61/100+13/30*x+383/48*x^2-155/24*x^3+475/48*x^4(2)画图x0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];subplot(1,2,1);plot(x0(1),y0(1),'+r',x0(2),y0(2),'+r',x0(3),y0(3),'+r',x0(4),y0(4),' +r',x0(5),y0(5),'+r')x=0:0.05:1;y=-25/48.*x.^4+5/6.*x.^3-53/48.*x.^2+23/120.*x+49/50;subplot(1,2,2);plot(x,y)2.给定函数21(),[1,1]125f x x x ,利用上题编好的Langrage 插值程序(或Newton 插值程序),分别取3个,5个、9个、11个等距节点作多项式插值,分别画出插值函数及原函数()f x 的图形,以验证Runge 现象、分析插值多项式的收敛性。

newton插值法matlab

newton插值法matlab

newton插值法matlab
Newton插值法是一种用于求解多项式插值的方法,在MATLAB中非常常见。

它基于离散数据点集来构造出一个插值多项式,该多项式将通过这些点并可以用于预测在数据点之间的任何值。

具体步骤如下:
1. 根据给定的数据点集,构造出一个差商表。

2. 计算出插值多项式的系数。

3. 使用计算出的插值多项式来预测在数据点之间的任何值。

在MATLAB中,可以使用polyfit和polyval函数来实现该方法。

具体实现步骤如下:
1. 定义x和y向量,分别表示数据点的x和y坐标。

2. 使用polyfit函数计算插值多项式的系数。

3. 使用polyval函数将插值多项式应用于一系列x值,以预测
其对应的y值。

- 1 -。

newton插值法matlab

newton插值法matlab

newton插值法matlab
Newton插值法是一种利用基本差分公式构造插值多项式的方法。

在MATLAB中,可以使用polyfit函数进行Newton插值。

具体步骤如下:
1. 构造差商表
首先需要根据所给数据点构造差商表。

差商表是一个二维数组,其中每一行代表对应的插值点的差商,第一列为插值点的函数值,后面的列为基本差分公式中的差商。

2. 构造插值多项式
使用polyfit函数进行插值多项式的构造。

其中,输入参数x为插值点的横坐标,y为插值点的函数值,n为插值点的个数,返回值p为插值多项式的系数。

3. 计算插值结果
根据插值多项式的系数,可以计算任意一点的插值结果。

使用polyval函数进行计算,其中输入参数x为插值点的横坐标,p为插值多项式的系数,返回值为插值结果的纵坐标。

- 1 -。

Newton插值 matlab

Newton插值 matlab

1.3 0.9636
1.5 0.9975

1.7 0.9917
主程序: x=[0.7:0.2:1.7]; y=[0.6442 0.7833 0.8912 0.9636 0.9975 0.9917]; xi=0.74, yi=Newton_int(x,y,xi) 运行得 xi =0.7400 yi = 0.6743 四、实验题目 已知 f ( x) ln x, [a, b] [1, 2], 取 h 0.1, xi 1 ih, i 0,1, 计算 ln1.54 及 ln1.98 的近似值。
function yi=Newton_int(x,y,xi) % Newton 插值多项式; % x为向量,全部的插值节点,按行输入; % y为向量,插值节点处的函数值,按行输入; % xi为被插值点向量; % yi为要求的被插值点函数值向量; n=length(x); Y=zeros(n); Y(:,1)=y';%0阶差商 for k=1:n-1 for i=1:n-k Y(i,k+1)=(Y(i+1,k)-Y(i,k))/(x(i+k)-x(i));%k阶差商 end end %Y %输出差商表 % 以下计算Newton插值公式N(xi) yi=0; for i=1:n z=1; for k=1:i-1 z=z.*(xi-x(k)); end yi=yi+Y(1,i)*z; end %n为已知插值节点个数; % 以下计算差商表Y
,10. 用 Newton 插值
实验 10 Newton 插值
一 实验名称:Newton 插值 二 实验目的:学会用 Newton 插值计算函数值。 三 实验内容: 例 1、设函数 f(x)满足 X 0.7 0.9 1.1 Y 0.6642 0.7833 0.8912 利用六点 Newton 插值多项式计算 f(0.74). 解:先建立函数文件

Newton插值的matlab实现

Newton插值的matlab实现

Newton插值的matlab实现成员:黄全P092314746 28%付吉P091712737 24%颜学俭P091712716 24%罗国庭P091712739 24%指导老师:刘华2012年5月2日目录Newton插值的matlab实现 ....................................................................................................... - 1 - 一过程整理...................................................................................................................... - 3 - Newton插值的基本原理 ............................................................................................ - 3 - 二流程图............................................................................................................................ - 4 - 三算法设计...................................................................................................................... - 6 -3.1、Newton插值的matlab实现 .............................................................................. - 6 -3.2、程序..................................................................................................................... - 6 -3.3、例题..................................................................................................................... - 6 -3.4、命令执行图...................................................................................................... - 7 - 四参考文献........................................................................................................................ - 7 -一 过程整理Newton 插值的基本原理假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式:)())(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -⋯⋯-+⋯⋯+-++=αααα(1)其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =)((i=0,1,2……n )确定。

matlab 拉格朗日插值法和牛顿插值法 -回复

matlab 拉格朗日插值法和牛顿插值法 -回复

matlab 拉格朗日插值法和牛顿插值法-回复问题:matlab中的拉格朗日插值法和牛顿插值法是什么?如何实现?引言:插值法是一种数值分析技术,用于找出一系列已知数据点之间的未知数据点的近似值。

在实际应用中,我们常常需要根据有限个离散数据点来推断出连续函数的性质,这就是插值的问题。

拉格朗日插值法和牛顿插值法是常用的插值方法之一,本文将一步一步地介绍这两种方法的原理及其在Matlab中的实现过程。

一、拉格朗日插值法拉格朗日插值法是通过一个多项式来逼近一组已知数据点,然后利用该多项式求解未知位置的近似值。

拉格朗日插值法的主要思想是利用Lagrange插值多项式来拟合给定的数据,具体步骤如下:1. 根据已知数据点的个数n,构造n次拉格朗日插值多项式。

多项式的一般形式如下:![拉格朗日插值多项式公式](其中,x为自变量,y为因变量,x[i]表示已知点的横坐标,y[i]表示已知点的纵坐标,L[i]表示Lagrange插值基函数。

具体计算Lagrange插值基函数的公式如下:![Lagrange插值基函数公式](2. 根据求出的拉格朗日插值多项式,代入未知位置的横坐标,计算出对应的纵坐标值。

这样就得到了近似值。

二、牛顿插值法牛顿插值法是通过一个低次的插值多项式来逼近一组已知数据点,并通过不断迭代来逐步提高插值多项式的次数。

牛顿插值法的主要思想是利用差商(divided difference)来拟合给定的数据,具体步骤如下:1. 根据已知数据点的个数n,构造n次牛顿插值多项式。

多项式的一般形式如下:![牛顿插值多项式公式](其中,x为自变量,y为因变量,x[i]表示已知点的横坐标,y[i]表示已知点的纵坐标,f[x0, x1]表示差商。

具体计算差商的公式如下:![差商公式](其中,Δy表示差商的分子部分,Δx表示差商的分母部分,Δx[j]表示x[j+1]和x[j]之间的差值,Δy[j]表示y[j+1]和y[j]之间的差值。

matlab牛顿插值法程序

matlab牛顿插值法程序

matlab牛顿插值法程序牛顿插值法是一种数值分析方法,用于确定给定数据点之间的未知函数值。

该方法使用一个插值多项式,该多项式使得插值多项式通过给定的插值点,并且在插值点周围的函数值接近已知函数值。

该方法比其他插值方法更高,因为它使用被插值数据的微分。

下面是MATLAB中牛顿插值法的程序:function [f, c] = newton_interpolation(x, y)% x:插值节点不同的x值,必须有n个元素。

% y:相应在每个节点的y值,必须有n个元素。

% 返回:拟合的多项式和的权重向量c% 我们创建一个表格,其中包含x和y值的第一行n = length(x);delta=zeros(n,n);% 先把第一列设置为y值:delta(:,1)=y';%接下来,我们将使用牛顿插值法来填写余下的每个列for j=2:nfor i=j:ndelta(i,j) = ( delta(i,j-1) - delta(i-1,j-1) )/( x(i) - x(i-j+1));endend% 配置 c 数组% 从差分表中得出k次递归系数矩阵,目标是多项式系数c = zeros(1,n);c(1)=delta(1,1);% 获取插值多项式(通过牛顿插值法)syms t;L = c(1);for j=2:nprod = 1;for i=1:j-1prod = prod * ( t - x(i) );endL = L + c(j) * prod;end% 转换L成一个函数y=L(x)f = matlabFunction(L);end现在,当我们调用这个函数并输入我们想要插值的节点和相应的y值,我们会得到拟合的多项式和传递插值节点的权重向量。

matlab均差表牛顿插值

matlab均差表牛顿插值

matlab均差表牛顿插值
“matlab均差表牛顿插值”这个表述可能是指在MATLAB中使用均差表来进行牛顿插值的方法。

牛顿插值是一种数学方法,用于通过给定的数据点来逼近一个未知函数。

这种方法的基本思想是通过构造一个多项式来逼近给定的函数,该多项式能够很好地拟合这些数据点。

在MATLAB中进行牛顿插值,通常需要以下几个步骤:
1.确定插值节点:首先需要确定要进行插值的x值,即数据点的横坐标。

2.计算差商:在确定了插值节点后,需要计算差商,即相邻数据点之间的差
值的商。

这可以通过使用均差的概念来实现。

3.构建插值多项式:根据差商,可以构建一个插值多项式来逼近给定的函数。

这个多项式可以通过牛顿插值公式得出。

4.进行插值:使用构建的多项式,可以计算出在任意x值下的函数值,从而
实现插值。

总结来说,“matlab均差表牛顿插值”指的是在MATLAB中使用均差表的方法来进行牛顿插值,从而逼近一个未知函数。

这种方法能够提高插值的精度和稳定性,适用于处理大量数据点的场景。

牛顿插值法的MATLAB综合程序

牛顿插值法的MATLAB综合程序

6.3.5 牛顿插值法的MATLAB 综合程序求牛顿插值多项式、差商、插值及其误差估计的MATLAB 主程序function [y,R,A,C,L]=newdscg(X,Y,x,M)n=length(X); m=length(x);for t=1:mz=x(t); A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; q1=1.0; c1=1.0;for j=2:nfor i=j:nA(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1));endq1=abs(q1*(z-X(j-1)));c1=c1*j;endC=A(n,n);q1=abs(q1*(z-X(n)));for k=(n-1):-1:1C=conv(C,poly(X(k)));d=length(C);C(d)=C(d)+A(k,k);endy(k)= polyval(C, z);endR=M*q1/c1;L(k,:)=poly2sym(C);例6.3.6 给出节点数据00.27)00.4(=-f ,00.1)00.0(=f ,00.2)00.1(=f ,00.17)00.2(=f ,作三阶牛顿插值多项式,计算)345.2(-f ,并估计其误差.解 首先将名为newdscg.m 的程序保存为M 文件,然后在MATLAB 工作窗口输入程序>> syms M,X=[-4,0,1,2]; Y =[27,1,2,17]; x=-2.345;[y,R,A,C,P]=newdscg(X,Y,x,M)运行后输出插值y )345.2(-≈f 及其误差限公式R ,三阶牛顿插值多项式P 及其系数向量C ,差商的矩阵A 如下y =22.3211R =1323077530165133/562949953421312*M (即R =2.3503*M )A=27.0000 0 0 01.0000 -6.5000 0 02.0000 1.0000 1.5000 017.0000 15.0000 7.0000 0.9167C =0.9167 4.2500 -4.1667 1.0000P =11/12*x^3+17/4*x^2-25/6*x+1欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档