牛顿插值matlab程序

合集下载

牛顿插值MATLAB算法

牛顿插值MATLAB算法

MATLAB程序设计期中作业——编程实现牛顿插值成员:刘川(P091712797)签名_____汤意(P091712817)签名_____王功贺(P091712799)签名_____班级:2009信息与计算科学学院:数学与计算机科学学院日期:2012年05月02日牛顿插值的算法描述及程序实现一:问题说明在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。

插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

如果这特定函数是多项式,就称它为插值多项式。

利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。

二:算法分析newton 插值多项式的表达式如下:010011()()()()()n n n N x c c x x c x x x x x x -=+-+⋅⋅⋅+--⋅⋅⋅-其中每一项的系数c i 的表达式如下:12011010[,,,][,,,][,,,]i i i i i f x x x f x x x c f x x x x x -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅=- 即为f (x)在点01,,,i x x x ⋅⋅⋅处的i 阶差商,([]()i i f x f x =,1,2,,i n =),由差商01[,,,]i f x x x ⋅⋅⋅的性质可知: ()01001[,,,]()i i i j j k j k k j f x x x f x x x ==≠⋅⋅⋅=-∑∏ 牛顿插值的程序实现方法:第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、、。

牛顿插值matlab程序

牛顿插值matlab程序

牛顿插值matlab程序牛顿插值是一种多项式插值方法,其基本思想是利用分差表来构造一个一次到n 次多项式,从而逼近给定的数据点集合。

牛顿插值法有着计算简单,精度高,兼容性好等优点。

在Matlab中,牛顿插值法的实现非常简单。

接下来将介绍如何使用Matlab编写牛顿插值程序。

首先,我们需要明确牛顿插值法的基本思想,这可以用一个公式表示:f(x)≈Nn(x)=y0+C1(x−x0)+C2(x−x0)(x−x1)+⋯+Cn(x−x0)(x−x1)⋯(x−xn−1)其中y0即为给定数据点中的第一个点的纵坐标,x0到xn-1为已知的节点,Ci 表示节点x0到xi的差商,x为我们要求解的插值点。

据此,我们可以编写如下的Matlab代码实现牛顿插值:matlabfunction [result] = newton_interpolation(x, y, z)% x, y为已知的节点,z为插值点n = length(x);diff = zeros(n, n);diff(:, 1) = y';for j = 2:nfor i = j:ndiff(i, j) = (diff(i, j-1) - diff(i-1, j-1)) / (x(i) - x(i-j+1));endendresult = diff(n, n);for k = n-1:-1:1result = diff(k, k) + (z - x(k)) * result;end我们首先定义一个函数newton_interpolation,其输入为已知节点x和纵坐标y,以及插值点z。

接着,我们使用双重循环来计算分差表,并按照公式计算插值多项式的值。

最后,我们得到了插值点z处的函数值。

需要注意的是,在计算分差表时,我们需要根据已知的节点计算出所有的差商,并记录在diff中。

在计算插值点z处的函数值时,我们需要按照公式从n-1到0依次计算出多项式的各项系数。

matlab中cvx牛顿法

matlab中cvx牛顿法

MATLAB中CVX牛顿法
在MATLAB中使用CVX来求解优化问题时,牛顿法通常作为内嵌的优化算法。

CVX是一个用于解决凸优化问题的MATLAB包,支持多种内嵌算法,包括牛顿法。

在使用CVX进行优化时,你需要先定义问题(包括变量、约束和目标函数),然后选择一个求解器来求解该问题。

牛顿法通常作为求解器选项之一,可以通过设置选项来实现。

以下是一个使用CVX进行优化问题求解并使用牛顿法的示例代码:
在上述代码中,我们首先导入了CVX包,然后定义了一个变量x,目标函数
为f,约束条件为x >= 0。

接下来,我们通过cvx_solver('牛顿法')设置了求解器为牛顿法。

最后,我们调用cvx_solve(f, x)来求解优化问题,并使用disp(x)输出结果。

需要注意的是,CVX支持多种内嵌算法,包括牛顿法、梯度下降法、次梯度下降法等。

选择哪种算法取决于问题的性质和要求。

对于一些特殊问题或特定应用场景,可能需要对算法进行调整或定制化设置。

matlab牛顿法代码举例

matlab牛顿法代码举例

matlab牛顿法代码举例使用 MATLAB 实现牛顿法的示例代码。

牛顿法(也称为牛顿-拉弗森方法)是一种在实数和复数域上求解方程的数值方法。

该方法使用函数和其导数的值来寻找函数零点的近似值。

function [root, iter] = newtonMethod(func, dfunc, x0, tol, maxIter) "%"newtonMethod 使用牛顿法求解方程"%"输入:"%"func - 目标函数"%"dfunc - 目标函数的导数"%"x0 - 初始猜测值"%"tol - 容差,求解精度"%"maxIter - 最大迭代次数"%"输出:"%"root - 方程的根"%"iter - 迭代次数x = x0;for iter = 1:maxIterfx = func(x);dfx = dfunc(x);if abs(dfx) < epserror('导数太小,无法继续迭代');endxnew = x - fx/dfx;if abs(xnew - x) < tolroot = xnew;return;endx = xnew;enderror('超过最大迭代次数');end"%"示例: 求解 x^3 - x - 2 = 0func = @(x) x^3 - x - 2;dfunc = @(x) 3*x^2 - 1;x0 = 1; "%"初始猜测值tol = 1e-6; "%"容差maxIter = 1000; "%"最大迭代次数[root, iter] = newtonMethod(func, dfunc, x0, tol, maxIter);fprintf('根是: "%"f, 在 "%"d 次迭代后找到\n', root, iter);在这个代码中,newtonMethod 函数接收一个函数 func 及其导数 dfunc,一个初始猜测值,容差和最大迭代次数 maxIter。

牛顿插值法matlab程序例题

牛顿插值法matlab程序例题

牛顿插值法是一种常用的数值分析方法,用于构造一个多项式函数,以便在给定的数据点上进行插值。

这个主题在数学和工程领域中有着广泛的应用,特别是在数据拟合和函数逼近方面。

牛顿插值法的核心思想是通过不断地添加新的数据点来构造一个多项式,并利用已知数据点来确定多项式的系数,从而实现对未知数据点的插值预测。

在Matlab中,实现牛顿插值法并不困难,我们可以利用已有的函数和工具来简化计算过程。

下面,我们将通过一个具体的例题来讲解如何使用Matlab编写牛顿插值法的程序,并分析其结果。

我们需要明确牛顿插值法的数学原理。

给定n个互不相同的节点\(x_0, x_1, ... , x_n\),以及在这些节点上的函数值\(f(x_0), f(x_1), ... , f(x_n)\),我们希望构造一个n次插值多项式p(x),满足p(x_i) = f(x_i),i=0,1,...,n。

牛顿插值多项式的一般形式为:\[p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + ... + a_n(x -x_0)(x - x_1)...(x - x_{n-1})\]其中,\[a_i\]表示插值多项式的系数。

通过牛顿插值法的迭代过程,可以逐步求解出这些系数,进而得到插值多项式的表达式。

接下来,我们将以一个具体的例题来演示如何在Matlab中实现牛顿插值法。

假设我们有如下的数据点和函数值:\(x = [1, 2, 3, 4]\)\(f(x) = [1, 4, 9, 16]\)我们希望利用这些数据点来构造一个插值多项式,并在给定的区间上进行插值计算。

在Matlab中,可以通过interp1函数来进行插值计算,该函数支持多种插值方法,包括牛顿插值法。

下面是一个简单的Matlab程序示例:```matlabx = [1, 2, 3, 4];y = [1, 4, 9, 16];xi = 2.5;yi = interp1(x, y, xi, 'spline');disp(['在x=',num2str(xi),'处的插值结果为:',num2str(yi)]);```在这段代码中,我们首先定义了给定的数据点x和对应的函数值y,然后利用interp1函数对x=2.5处的插值结果进行计算。

matlab(迭代法-牛顿插值)

matlab(迭代法-牛顿插值)

实验报告内容:一:不动点迭代法解方程二:牛顿插值法的MATLAB实现完成日期:2012年6月21日星期四数学实验报告一日期:2012-6-21所以,确定初值为x0=1二:不断迭代算法:第一步:将f(x0)赋值给x1第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步编写计算机程序:clearf=inline('0.5*sin(x)+0.4');x0=1;x1=f(x0);k=1;while abs(x1-x0)>=1.0e-6x0=x1;x1=f(x0);k=k+1;fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1)end显示结果如下:k=2,x0=0.820735492,x1=0.765823700k=3,x0=0.765823700,x1=0.746565483k=4,x0=0.746565483,x1=0.739560873k=5,x0=0.739560873,x1=0.736981783k=6,x0=0.736981783,x1=0.736027993 k=7,x0=0.736027993,x1=0.735674699 k=8,x0=0.735674699,x1=0.735543758 k=9,x0=0.735543758,x1=0.735495216 k=10,x0=0.735495216,x1=0.735477220 k=11,x0=0.735477220,x1=0.735470548 k=12,x0=0.735470548,x1=0.735468074 k=13,x0=0.735468074,x1=0.735467157 >>。

以下是程序运行截图:数学实验报告之二日期:2012-6-21【编写主程序】>> clear;clf>> x=0:0.1:5;>> y=sin(x);>> [yhat,dy]=newtint(x,y,0.59)运行结果如下yhat =0.5564dy =-7.2731e-013>>所以:函数在0.59处的近似值为0.5564,误差为dy = -7.2731e-013【实验结果】函数在0.59处的近似值为0.5564【误差分析】误差为dy = -7.2731e-013【心得体会】总算明白了计算机解数学题目的原理是什么了,以前不懂,看到计算机解出一个一个的数学题就觉得非常神奇,老师担心人类不如计算机聪明担心有一天人类会被计算机取代。

matlab实现牛顿差分及等距节点插值公式

matlab实现牛顿差分及等距节点插值公式

题目:探究matlab中牛顿差分及等距节点插值公式的实现在计算数学问题时,插值是一种常见的数值分析方法,它常常用于估计在已知数据点之间的数值。

而牛顿差分及等距节点插值公式,则是其中的一种重要方法。

本文将从简单到复杂,由浅入深地探讨matlab 中牛顿差分及等距节点插值公式的实现方法,以便读者更深入地理解这一主题。

1. 牛顿插值方法牛顿插值是一种使用多项式进行插值的数值方法,利用了拉格朗日插值多项式的一般形式,其在实际应用中具有良好的稳定性和精确度。

在matlab中,我们可以通过编写函数来实现牛顿插值方法,并根据所给定的数据点计算出插值多项式。

2. 差分及等距节点插值公式差分及等距节点插值公式是牛顿插值的一种具体形式,它通过相邻节点的差分来递推计算插值多项式的系数,从而实现对给定数据点的插值。

在matlab中,我们可以编写代码来实现这一方法,通过对数据点的差分计算来得到插值多项式的系数,并最终得到插值结果。

3. matlab中的实现步骤在matlab中,实现牛顿差分及等距节点插值公式主要包括以下几个步骤:3.1 准备数据点:首先需要准备好给定的数据点,这些数据点将作为插值的依据。

3.2 计算差商:利用给定的数据点,我们可以计算出插值多项式的系数,即差商。

这一步骤可以通过递推计算来实现。

3.3 构建插值多项式:根据得到的插值多项式的系数,我们可以构建出完整的插值多项式。

3.4 计算插值结果:我们可以利用构建好的插值多项式来计算任意点的插值结果。

4. 个人观点和理解在我看来,牛顿差分及等距节点插值公式是一种非常实用和有效的插值方法,在实际工程和科学计算中都有着广泛的应用。

在matlab中,通过编写相应的代码,我们可以很方便地实现这一方法,并得到高质量的插值结果。

掌握牛顿插值及其在matlab中的实现方法对我们来说是非常重要的。

总结回顾本文从简到繁,由浅入深地探讨了matlab中牛顿差分及等距节点插值公式的实现方法。

牛顿法matlab程序及例题

牛顿法matlab程序及例题

牛顿法matlab程序及例题牛顿法是一种求解非线性方程和优化问题的常用方法。

它利用函数的一阶和二阶导数信息来不断逼近函数的零点或极值点。

在MATLAB 中,可以用fzero函数实现非线性方程的求解,用fminunc函数实现优化问题的求解。

以下是一个简单的牛顿法的MATLAB程序示例:function [x, fx, n] = newton(f, df, x0, tol, max_iter) % f: 目标函数% df: 目标函数的一阶导数% x0: 初值% tol: 精度要求% max_iter: 最大迭代次数n = 0;while n < max_iterfx = f(x0);dfx = df(x0);if abs(dfx) < 1e-9error('牛顿法失败:一阶导数过小');endx = x0 - fx / dfx;if abs(x - x0) < tolreturn;endx0 = x;n = n + 1;enderror('牛顿法失败:达到最大迭代次数');下面是一个例题,通过牛顿法求解方程sin(x) = x / 2:f = @(x) sin(x) - x / 2;df = @(x) cos(x) - 1 / 2;[x, fx, n] = newton(f, df, 1, 1e-9, 100);fprintf('解:%.16f,函数值:%.16f,迭代次数:%d', x, fx, n);运行结果为:解:0.0000000000000000,函数值:0.0000000000000000,迭代次数:4可以看到,牛顿法很快就找到了方程的一个根。

需要注意的是,牛顿法可能会失败,特别是在一阶导数过小或初值离根太远的情况下。

因此,使用时需要谨慎,并进行必要的检查和处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档