最新初一数学月考试卷
七年级数学第一次月考卷(人教版2024)(考试版)【测试范围:第一、二章】A4版
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第二章(人教版2024)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.12024-的相反数是( )A .2024-B .12024C .12024-D .以上都不是2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .880.1610´B .98.01610´C .100.801610´D .1080.1610´3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤a -一定是负数,其中正确的个数是( )A .1B .2C .3D .44.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5mm 的零部件,其中()4.50.2mm ±范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A .4.4mmB .4.5mmC .4.6mmD .4.8mm5.下列各组数相等的有( )A .()22-与22-B .()31-与()21--C .0.3--与 0.3D .a 与a 6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“5.6cm ”对应数轴上的数为( )A . 1.4-B . 1.6-C . 2.6-D .1.67.观察下图,它的计算过程可以解释( )这一运算规律A .加法交换律B .乘法结合律C .乘法交换律D .乘法分配律8.如图,A 、B 两点在数轴上表示的数分别为a ,b ,有下列结论:①0a b -<;②0a b +>;③()()110b a -+>;④101b a ->-.其中正确的有( )个.A .4个B .3个C .2个D .1个9. 定义运算:()1a b a b Ä=-.下面给出了关于这种运算的几种结论:①()226Ä-=,②a b b a Ä=Ä,③若0a b +=,则()()2a a b b ab Ä+Ä=,④若0a b Ä=,则0a =或1b =,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32´方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66´方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A .160B .128C .80D .48第II 卷二、填空题(本题共6小题,每小题3分,共18分.)11.甲地海拔高度为50-米,乙地海拔高度为65-米,那么甲地比乙地 .(填“高”或者“低”).12.绝对值大于1且不大于5的负整数有 .13.若2(21)a -与23b -互为相反数,则b a = .14.电影《哈利•波特》中,小哈利波特穿越墙进入“394站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于23-,83处,2AP PB =,则P 站台用类似电影的方法可称为“ 站台”.15.若2a b c d a b c d +++=,则abcd abcd 的值为 .16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示1-的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字 的点与数轴上表示2023的点重合.三、解答题(本题共8小题,共72分.第17-18题每题6分,第19-20题每题8分,第21-22题每题10分,第23-24题每题12分,解答应写出文字说明、证明过程或演算步骤.)17.计算.(1)()()()()59463473---+--+(2)3112(3)(2)(4)(5)14263---+----18.计算:(1)134 2.5624æö´--+--ç÷èø;(2)()()241110.5233éù---´---ëû.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是3-.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,4-,152,122-,| 1.5|-,( 1.6)-+.20.(1)已知5a =,3b =,且a b b a -=-,求a b -的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: ()a b x a b cd cd+-+++的值.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减5+2-4-13+6-6+3-(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.23.观察下列三列数:1-、3+、5-、7+、9-、11+、……①3-、1+、7-、5+、11-、9+、……②3+、9-、15+、-、……③+、21-、27(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;-,求k的值.(3)若在每行取第k个数,这三个数的和正好为10124.如图,数轴上有A ,B ,C 三个点,分别表示数208--,,16,有两条动线段PQ 和MN (点Q 与点A 重合,点N 与点B 重合,且点P 在点Q 的左边,点M 在点N 的左边),24PQ MN ==,,线段MN 以每秒1个单位的速度从点B 开始向右匀速运动,同时线段PQ 以每秒3个单位的速度从点A 开始向右匀速运动.当点Q 运动到点C 时,线段PQ 立即以相同的速度返回;当点Q 回到点A 时,线段PQ 、MN 同时停止运动.设运动时间为t 秒(整个运动过程中,线段PQ 和MN 保持长度不变).(1)当20t =时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ PM =时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.。
初一月考试卷人教版2024湖北黄冈数学
初一月考试卷人教版2024湖北黄冈数学一、下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2(答案)B。
解析:正整数是大于0的整数,0不是正整数,-1是负整数,2是正整数但比1大,所以最小的正整数是1。
二、若a=3,b=2,则a加b的平方等于多少?A. 5B. 13C. 11D. 9(答案)B。
解析:根据题意,需要先计算b的平方,即2的平方等于4,然后再将a与b的平方相加,即3加4等于7加4等于13。
三、下列哪个选项表示的是互为相反数的两个数?A. 5和-5B. 5和5C. -5和-5D. 5和0(答案)A。
解析:互为相反数的两个数,它们的和等于0。
5和-5的和为0,所以它们互为相反数。
四、一个角的余角是这个角的补角的四分之一,求这个角的度数。
A. 30度B. 45度C. 60度D. 90度(答案)C。
解析:设这个角为x,则其余角为90-x,补角为180-x。
根据题意,90-x等于四分之一倍的180-x,解方程得x等于60度。
五、下列哪个选项的图形是轴对称图形?A. 等腰梯形B. 平行四边形C. 一般三角形D. 梯形(答案)A。
解析:轴对称图形是指沿一条直线折叠后,两边能够完全重合的图形。
等腰梯形有一条对称轴,沿此轴折叠后两边能够完全重合,所以它是轴对称图形。
六、小明有12本书,给了小红3本后,他还剩下多少本书?A. 6本B. 9本C. 12本D. 15本(答案)B。
解析:小明原来有12本书,给了小红3本后,他剩下的书为12减3等于9本。
七、下列哪个数不是质数?A. 2B. 3C. 4D. 5(答案)C。
解析:质数是只有1和它本身两个正因数的自然数,且必须大于1。
2、3、5都是质数,而4除了1和它本身外,还有2是它的因数,所以4不是质数。
八、若一个长方形的长为8厘米,宽为x厘米,且它的周长为20厘米,则x等于多少?A. 2厘米B. 3厘米C. 4厘米D. 6厘米(答案)A。
解析:长方形的周长等于两倍的长加两倍的宽,即2乘8加2乘x等于20,解方程得x等于2厘米。
2024-2025学年河南省郑州七中教育集团七年级(上)月考数学试卷(9月份)(含答案)
2024-2025学年河南省郑州七中教育集团七年级(上)月考数学试卷(9月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在−2,0,−1,2这四个数中,最小的数是( )A. −2B. 0C. −1D. 22.下列式子中,正确的是( )A. |−5|=5B. −|−5|=5C. |−0.5|=−12D. −|−12|=123.数轴上表示−3的点与表示+5的点的距离是( )A. 3B. −2C. +2D. 84.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是( )A. 100gB. 150gC. 300gD. 400g5.如图,把图形绕着给定的直线旋转一周后形成的几何体是( )A. B. C. D.6.一潜水艇所在的海拔高度是−60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔( )A. −60米B. −80米C. −40米D. 40米7.下列说法正确的是( )A. 一个数的绝对值一定是正数B. 任何正数一定大于它的倒数C. a的相反数的绝对值与a的绝对值的相反数相等D. 绝对值最小的有理数是08.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A. B. C. D.9.若实数a满足a−|a|=2a,则( )A. a>0B. a<0C. a≥0D. a≤010.下列说法中错误的有( )(1)任何数都有倒数; (2)m +|m|的结果必为非负数; (3)−a 一定是一个负数;(4)绝对值相等的两个数互为相反数; (5)在原点左边离原点越远的数越小.A. 2个B. 3个C. 4个D. 5个二、填空题:本题共5小题,每小题3分,共15分。
11.−114的倒数与14的相反数的积是______.12.若一个棱柱有30条棱,那么该棱柱有______个面.13.巴黎与北京的时差为−7ℎ(负号表示同一时刻巴黎时间比北京晚),小明与爸爸在巴黎乘坐上午10:00(巴黎本地时间)的飞机约11小时达到北京,那么到达的北京时间是______.14.数轴上与表示−2这个点的距离等于6个单位长度的点所表示的数是______.15.若|x−2|=5,|y|=4,且x >y ,则x +y 的值为______.三、解答题:本题共7小题,共56分。
江西丰城中学2023-2024学年七年级上学期10月月考数学试卷(含答案)
丰城中学2023-2024学年度上学期第一次阶段考试初一数学总分120分时长120分钟考试范围(第一、二章)一、单选题(共6小题,每小题3分,共18分)1.下列说法正确的是()A.是单项式B.的次数是3C.是三次三项式D.的系数为2.在,,,,0,,中,非负数有()A.4个B.5个C.6个D.7个3.卢塞尔体育场是卡塔尔世界杯的主体育场,由中国建造,是卡塔尔规模最大的体育场.世界杯之后,将有约170000个座位将捐赠给需要体育基础设施的国家,其中大部分来自世界杯决赛场地卢塞尔体育场,170000这个数用科学记数法表示为()A.B.C.D.4.如图,数轴上的两点A,B表示的数分别为a,b,下列结论正确的是()A.B.C.D.5.一组按规律排列的式子:,,,,,则第个式子是()A.B.C.D.6.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数-1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数的点与圆周上表示数字()的点重合.A.0B.1C.2D.3二.填空题(共6小题,每小题3分,共18分)7.数轴上表示−1.2的点与表示2.5的点之间有 个整数点.8.若单项式:与的和仍是单项式,则.9.若、、都是非零有理数,其满足,则的值为__________.10.和互为相反数,和互为倒数,是最大的负整数,则的值为.11.已知有理数a≠1,我们把称为a的差倒数,例如2的差倒数是=﹣1,﹣1的差倒数是.如果a1=,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,那么a1+a2+…+a60的值是 .12.若有理数满足,,且,则的值为.三.计算题(共5小题,每小题6分,共30分)13.(1)计算:(﹣+﹣)×(﹣24)(2)计算:﹣24÷(﹣8)﹣×(﹣2)214.在数轴上表示下列各数,并用“<”将这些数连接起来:,,,.15.已知多项式是六次多项式,单项式与该多项式的次数相同,求的值.16.先化简,再求值:,其中x,y满足.17.有理数a,b,c在数轴上的位置如图所示.(1)填空:______0;c-a______0;______0;(填“>”,“<”,“=”号)(2)化简.四.解答题(共3小题,每小题8分,共24分)18..已知:,.(1)计算的表达式;(2)若代数式的值与字母的取值无关,求代数式的值.19.对于任意四个有理数a,b,c,d,都可以组成两个有理数对(a,b)与(c,d),我们规定:(a,b)★(c,d)=bc﹣ad.例如:(1,2)★(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)(2,﹣3)★(3,- )= .(2)计算(2,﹣2)★(a,3﹣a);(3)当x+y=2,xy=﹣3时,求(x+y,2x+y)★(2x﹣y,4x﹣y+5)的值20.出租车司机小李某天从家出发,上午营运都是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车路程(单位:千米)如下:.﹣2,+5,﹣1,+10,﹣15,﹣3.(1)将最后一位乘客送到目的地时,小李距家多远?此时在家的东边还是西边?(2)若出租车起步价为8元,起步路程为3千米(即乘车路程不超过3千米都为8元),若乘车路程超过3千米,则超过部分每千米加收1.2元.问司机小李今天上午共收入多少元?(3)若汽车耗油量为0.1升/千米,小李从家出发到最后回到家里,这天小李共耗油多少升?五.解答题(共2小题,每小题9分,共18分)21.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与另外两个点的距离恰好满足2倍的数量关系,则称该点是另外两个点的“联盟点”.例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数,点B表示数3,下列各数,,0,1所对应的点分别是,其中是点A,B的“联盟点”的是___________;(2)点A表示数,点B表示数5,P为数轴上的一个动点:①若点P在点A的左侧,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是另外两个点的“联盟点”,求此时点P表示的数.22.理解与思考:整体代换是数学的一种思想方法,例如:,则;我们将作为一个整体代入,则原式.仿照上面的解题方法,完成下面的问题:(1)若,则;(2)如果,求的值;(3)若,,求的值.六.解答题(12分)23.点A、B、C在数轴上表示的数a、b、c满足,且a是绝对值最小的有理数.(1)a值为____________,b的值为____________,c的值为____________;(2)已知点P、点Q是数轴上的两个动点,点P从点B出发,以4个单位/秒的速度向右运动,点Q从点C出发,速度为2个单位/秒.①若在点P出发的同时点Q向左运动,几秒后点P和点Q在数轴上相遇?②若点P运动到点A处,动点Q再出发也向右运动,则P运动几秒后这两点之间的距离为2个单位?初一数学段考参考答案1-6 BB C A C C7-12 4 6 0 -5 30 -9,3,913.(1)原式=18﹣4+9=23;(2)原式=2﹣1=1.14.15.解:∵多项式是六次多项式,单项式与该多项式的次数相同,∴,解得:,则16.解:原式当时,原式17.(1)∵,∴,故答案为:<,>,<;(2)18.(1)解:;(2)解:,代数式的值与字母的取值无关,,,.19.(1)-8(2)-6(3)-3xy-5(x+y)=-120.解:(1),,(千米);答:将最后一位乘客送到目的地时,小李距出发地6千米,此时在出发地的西边;(2)由题意得,每次行车里程的收入分别为8元,10.4元,8元,16.4元,22.4元,8元,(元,答:司机小李今天上午共收入73.2元;(3)依题意得:(千米),(升.答:这天上午小李共耗油4.2升.21.(1)解:设点表示的数为,且点是点的“联盟点”,∴根据,0,1三个数在数A、B之间,可得或,∴或,当时,解得或(舍),当时,解得或(舍),∴是点的“联盟点”,故答案为:,;(2)①设点表示的数是,点P在点A的左侧,∴,,,∵点是点的“联盟点”,∴,∴,解得,即点表示的数是;②设点表示的数是,点在点的右侧,当是点的“联盟点”时,,∴,解得;当A是点,的“联盟点”时,,∴,解得;当是点,的“联盟点”时,或,∴或,解得或;综上所述:点表示的数为或或.22.(1)解:∵,∴,∴.故答案为:2023.(2)解:∵,∴.(3)解:∵,,∴,,∴.23.(1)解:,,,,,是绝对值最小的有理数,,故答案为:0,,;(2)解:①设时点P和点Q相遇,根据题意得:,解得,故4秒后点P和点Q在数轴上相遇;②设P点运动时,这两点之间的距离为2个单位,表示的数是,点A表示的数是0,,点P运动到点A的时间为:,在点P追上点Q前,两点之间的距离为2个单位,得:,解得,在点P追上点Q后,两点之间的距离为2个单位,得:,解得,故P运动秒或秒后这两点之间的距离为2个单位。
2024-2025学年七年级数学上学期第一次月考卷及答案(人教版)
2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七上第一章~第二章。
5.难度系数:0.8。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列说法中不正确的是( ).A .-3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .-2 000既是负数,也是整数,但不是有理数D .0是正数和负数的分界2.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出100元记作100−元,那么80+元表示( ) A .支出80元B .收入80元C .支出20元D .收入20元3.在数轴上表示2−与8的点的距离是( ) A .6B .10C .10−D .15−4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075.将()()()3652−−+−−+−写成省略括号和加号的形式是( )A .1B .1−C .10D .10−8.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,例如将2(101),2(1011)换算成十进制数应为: 2102(101)1202124015=×+×+×=++=;32102(1011)12021212802111=×+×+×+×=+++=.按此方式,将二进制2(1001)换算成十进制数的结果为( ) A .17B .9C .10D .189.下列说法中正确的个数有( ).①最大的负整数是1−;②相反数是本身的数是正数;③有理数分为正有理数和负有理数:④数轴上表示a −的点一定在原点的左边:⑤几个有理数相乘,负因数的个数是奇数个时,积为负数. A .1个B .2个C .3个D .4个abc19.(9分)上午八时,张、王两同学分别从A、B两地同时骑摩托车出发,相向而行.已知张同学每小时比王多行2千米,到上午十时,两人仍相距36千米的路程.相遇后,两人停车闲谈了15分钟,再同时按各自的方向和原来的速度继续前进,到中午十二时十五分,两人又相距36千米的路程.A、B两地间的路程有多少千米?20.(10分)操作与探索:请你自己画出数轴并表示有理数:52−,3.①大于3−并且小于3的整数有哪几个?②在数轴上表示到1−的点的距离等于2个单位长度的点表示的数是什么?21.(10分)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”, ()()()()3333−÷−÷−÷−记作()3−④,读作:“()3−的圈4次方”.一般地,把n 个a 相除记作a ⓝ,读作“a 的圈n 次方”.22.(12分)递等式计算,能简便计算的要简便计算:×,请在下面长方形内写出相应的算式.请你按照小布的方法计算2.4 2.1有理数x的点与表示6的点之间的距离.这种数形结合的方法,可以用来解决一些问题.如图,已知数之间的距离PA=________(用含2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2023-2024学年第一学期联盟校第二次月考初一数学试卷
2023-2024学年第一学期联盟校第二次月考初一数学试卷(满分:100分时间:90分钟)一.选择题(共10题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合要求的。
)1.﹣2023的绝对值是()A.﹣2023B.C.D.20232.2023年9月23日亚运会在杭州正式开幕。
据杭州文旅大数据统计,亚运会期间,外地游客量超过20000000人次,请将20000000用科学记数法表示为()A.2×106B.0.2×108C.2×107D.2×1083.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.=C.x﹣2=y﹣2D.x+7=y﹣74.下列各图中,表示“射线CD”的是()A.B.C.D.5.下列计算正确的是()A.3ab+2ab=5ab B.5y2﹣2y2=3C.7a+a=7a2D.m2n﹣2mn2=﹣mn2 6.某网店进行促销,将原价a元的商品以(0.9a﹣20)元出售,该网店对该商品促销的方法是()A.原价降价20元后再打9折B.原价打9折后再降价20元C.原价降价20元后再打1折D.原价打1折后再降价20元7.若∠A=32°18′,∠B=32°15′30″,∠C=32.25°,则()A.∠C>∠A>∠B B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠A>∠B>∠C 8.某校教师举行茶话会。
若每桌坐10人,则空出一张桌子;若每桌坐8人,还有4人不能就座。
设该校准备的桌子数为x,则可列方程为()A.10(x﹣1)=8x﹣4B.10(x+1)=8x﹣4C.10(x﹣1)=8x+4D.10(x+1)=8x+49.一个小立方体的六个面上分别标有A、B、C、D、E、F,从三个不同方向看到的情形如图所示,则字母B的对面是字母()A.点D B.点E C.点F D.点A10.如图,在一个长方形(长为5cm ,宽未知)木框中,一些大小不一的长方形纸片不重叠地放在里面,在长方形木框里面左侧是2个相同的大长方形纸片,右侧是4个相同的小长方形纸片,右侧的小长方形纸片长为n cm ,宽为m cm ,则此长方形木框的周长是()A .(6m ﹣2n +10)cmB .(6m +2n +10)cmC .2(3m +n )cmD .2(3m ﹣n )cm二.填空题(本题共6小题,每小题3分,共18分)11.单项式﹣5mn 3的系数为.12.从一个九边形的一个顶点出发有条对角线。
2024-2025学年初中七年级上学期第一次月考数学试题及答案(人教版)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
北京师范大学附属实验中学2023-2024学年七年级下学期月考数学试题(含答案)
北师大实验中学2023—2024学年度第二学期初一数学阶段练习试卷说明:1.本试卷考试时间为90分钟,总分数为110分.2.本试卷共7页,四道大题,26道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(每小题3分,共24分,在每小题给出的四个选项中,只有一个选项符合题意)1.的立方根是()A .2 B . C .4 D .2.通过平移图中的吉祥物“海宝”得到的图形是()A . B . C . D .3中,无理数是( )ABC .3.1415D .4.如图,点E ,B ,C ,D 在同一条直线上,,则的度数是( )A .B .C .D .5.下列说法正确的是()A .经过一点有且只有一条直线与已知直线平行;8-2-4-237237,50A ACF DCF ∠=∠∠=︒ABE ∠50︒130︒135︒150︒B .直线外一点到这条直线的垂线段,叫做点到直线的距离;C .“相等的角是对顶角”是真命题;D .同一平面内,不相交的两条直线是平行线.6.下列式子正确的是()ABC .D .7.如图,两直线平行,则().A . B . C .D .8.如图,如果将图中任意一条线段沿方格线的水平或竖直方向平移1格称为“1步”,那么通过平移要使图中的3条线段首尾相接组成一个三角形,最少需要()A .4步 B .5步 C .6步 D .7步二、填空题:(每小题2分,共16分)9.已知是方程的解,则k 的值是__________.10.如图,直线交于点平分,则__________°.11.对于命题“若,则”,举出能说明这个命题是假命题的一组a ,b 的值,则__________,__________.12.如图,直径为1个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B ,则的长度为3=±2=-2=4=AB CD 、123456∠+∠+∠+∠+∠+∠=630︒720︒800︒900︒42x y =⎧⎨=-⎩4y kx =+,AB CD ,O OE ,123BOC ∠∠=︒AOD ∠=a b >22a b >a =b =AB__________;若点A 对应的数是,则点B 对应的数是__________.13.已知,则的值是__________.14.如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路,宽均为1米,其它部分均种植花草,则种植花草的面积为__________平方米.15.如果与的两边分别垂直,比的2倍少,则的度数是__________.16.如图,直线,直线l 与直线相交于点E ,F ,点P 是射线上的一个动点(不包括端点E ),将沿折叠,使顶点E 落在点Q 处.若,点Q 恰好落在其中一条平行线上,则的度数为__________.备用图三、解答题(共60分)17.(本题8分)计算:(1(218.(本题10分)(1) (2)19.(本题6分)如图,过三角形的顶点B 画直线,过点C 画的垂线段.1-2|2|(25)0x y x y -++-=x y -α∠β∠α∠β∠42︒α∠AB CD ∥,AB CD EA EPF △PF 52PEF ∠=︒EFP ∠-26x y x y =⎧⎨-=⎩2207441x y x y ++=⎧⎨-=-⎩ABC BE AC ∥AB CF20.(本题8分).如图,的平分线交于点F ,交的延长线于点.求证:.请将下面的证明过程补充完整:证明:,∴__________.(理由:__________)平分,∴__________=__________..,.∴____________________.(理由:__________).(理由:__________)21.(本题8分)已知:如图,四边形中,为对角线,点E 在边上,点F 在边上,且.(1)求证:;(2)若平分,,求的度数.22.(本题7分)列方程组解应用题学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?,AD BC BAD ∠∥CD BC ,E CFE E ∠=∠180B BCD ∠+∠=︒AD BC ∥E =∠AE BAD ∠BAE E ∴∠=∠CFE E ∠=∠ CFE BAE ∴∠=∠∥180B BCD ∴∠+∠=︒ABCD ,AD BC AC ∥BC AB 12∠=∠EF AC ∥CA ,50BCD B ∠∠=︒120D ∠=︒BFE ∠(2)实际购买时,正逢该商店进行促销,所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元,请直接写出学校购买篮球和足球的个数各是多少.23.(本题6分)已知有序数对及常数k ,我们称有序数对为有序数对的“k 阶结伴数对”.如的“1阶结伴数对”为,即.(1)有序数对的“3阶结伴数对”为__________;(2)若有序数对的“2阶结伴数对”为,求a ,b 的值;(3)若有序数对的“k 阶结伴数对”是它本身,则a ,b 满足的等量关系是__________,此时k 的值是__________.24.(本题7分)如图,已知线段,点C 是线段外一点,连接,.将线段沿平移得到线段.点P 是线段上一动点,连接.图1 图2 备用图(1)依题意在图1中补全图形,并证明:;(2)过点C 作直线,在直线l 上取点M ,使.①当时,在图2中画出图形,并直接用等式表示与之间的数量关系;②在点P 运动的过程中,当点P 到直线l 的距离最大时,的度数是__________(用含的式子表示)B 卷四、探究题(本题共10分)25.一副三角板按如图所示叠放在一起,若固定,将绕着公共顶点A ,按顺时针方向旋转度,当的一边与的某一边平行时,相应的旋转角的值是____________________.26.已知,直线,点E 为直线上一定点,射线交于点平分(),a b (),ka b a b +-(),a b ()3,2()132,32⨯+-()5,1()2,1-(),a b ()1,5()(),0a b b ≠AB AB AC ()90180CAB αα∠=︒<<︒AC AB BD AB ,PC PD CPD PCA PDB ∠=∠+∠l PD ∥12MDC CDP ∠=∠120α=︒BDM ∠BDP ∠BDP ∠αAOB △ACD △α()0180α︒<<︒ACD △AOB △αAB CD ∥CD EK AB ,F FG.图1 图2 备用图(1)如图1,当时,__________°;(2)点P 为线段上一定点,点M 为直线上的一动点,连接,过点P 作交直线于点N .①如图2,当点M 在点F 右侧时,求与的数量关系;②当点M 在直线上运动时,的一边恰好与射线平行,直接写出此时的度数(用含α的式子表示).,AFK FED α∠∠=60α=︒GFK ∠=EF AB PM PN PM ⊥CD BMP ∠PNE ∠AB MPN ∠FG PNE ∠北师大实验中学2023—2024学年度第二学期初一数学阶段练习参考答案一.选择题1.B 2.D 3.A 4.B 5.D 6.C 7.D 8.B二.填空题9.;10.46;11.答案不唯一,如:;12.;13.;14.1421;15.或;16.或三.解答题17.(1)原式 4分 (2)原式4分18.(1) 5分 (2)5分19.平行线2分,垂线段4分20.每空1分,.(理由:两直线平行,内错角相等)平分,..,..(理由:同位角相等,两直线平行).(理由:两直线平行,同旁内角互补)21.(1)证:又 3分(2)解:,,平分1.5-1,2a b ==-,1ππ-1-42︒106︒38︒64︒16313=⨯-=-4120.9554=-+=-126x y =⎧⎨=⎩532x y =-⎧⎪⎨=⎪⎩AD BC ∥DAE E ∴∠=∠AE BAD ∠DAE BAE ∴∠=∠BAE E ∴∠=∠CFE E ∠=∠ CFE BAE ∴∠=∠AB CD ∴∥180B BCD ∴∠+∠=︒AD BC∥2ACB∴∠=∠12∠=∠ 1ACB∴∠=∠EF AC ∴∥,50AD BC B ∠=︒ ∥120D ∠=︒180130BAD B ∴∠=︒-∠=︒18060BCD D ∠=︒-∠=︒CA BCD ∠1302ACB BCD ∴∠=∠=︒230∴∠=︒又. 5分22.(1)解:设篮球x 元/个,足球y 元/个,根据题意,得,解得答:蓝球80元/个,足球75元/个 5分(2)篮球5个,足球24个或篮球20个,足球8个. 2分23.(1); 1分(2)根据题意,得,解得 3分(3). 2分24.(1)证明:补全图形如图所示,作, 1分∵将线段沿平移得到线段,,,,,即3分(2)解:①点M 在直线的上方时,如图所示:; 1分点M 在直线的下方时,如图所示:; 1分2100BAC BAD ∴∠=∠-∠=︒EF AC∥100BFE BAC ∴∠=∠=︒5101150961170x y x y +=⎧⎨+=⎩8075x y =⎧⎨=⎩(5,3)--215a b a b +=⎧⎨-=⎩23ab =⎧⎨=-⎩12,2a b k ==PQ AC ∥AC AB BD ,BD AC BD AC ∴=∥PQ BD ∴∥,PCA CPQ PDB DPQ ∴∠=∠∠=∠CPD CPQ DPQ PCA PDB ∴∠=∠+∠=∠+∠CPD PCA PDB∠=∠+∠CD 2360BDM BDP ∠+∠=︒CD 2120BDM BDP ∠-∠=︒②. 1分B 卷:25.,,,,5分26.(1)60; 1分(2)①过点P 作,则,如图,,,,即,,,,,2分②如图,当时,延长交于点H ,,当时,如图所示,过点P 作,则,,故的度数为或. 2分90α-︒30︒45︒75︒135︒165︒PQ AB ∥PQ AB CD ∥∥180BMP MPQ ∴∠+∠=︒QPN PNE ∠=∠PN PM ⊥90MPN ∴∠=︒90MPQ QPN ∠+∠=︒9090MPQ QPN PNE ∴∠=-∠=︒-∠180BMP MPQ ∠+∠=︒ 901)80(BMP PNE ∴∠+︒-∠=︒90BMP PNE ∴∠-∠=︒PN FG ∥GF CD 902PNC GHC α∴∠=∠=︒-PM FG ∥PQ AB ∥PQ AB CD ∥∥2PNE α∠=PNE ∠902α︒-2α。
2024-2025学年人教版七年级上册 第一次月考数学模拟试卷(含答案)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、选择题1. −4的倒数是( )A.14B.−14C.4D.−42. 下列各数中是有理数的是( )A.π2B.πC.12D.0.1010010001⋯3. 《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10∘C记作+10∘C,则−2∘C表示气温为( )A.零上8∘C B.零下8∘C C.零上2∘C D.零下2∘C4. −114的倒数乘14的相反数,其结果是( )A.5B.−5C.15D.−155. 在下列各数:−(+2),−32,(−13)4,−225,−(−1)2023,−∣−3∣中,负数的个数是( )A.2个B.3个C.4个D.5个6. 如图,数轴上A,B两点所表示的两数的关系不正确的是( )A.两数的绝对值相等B.两数互为相反数C.两数互为倒数D.两数的平方相等7. 已知点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为( )A.−2或1B.−2或2C.−2D.18. 已知两个有理数a,b,如果ab<0,且a+b<0,那么( )A.a>0,b<0B.a<0,b>0C.a−b<0D.a,b异号,且负数的绝对值较大9. 式子∣x−1∣−3取最小值时,x等于( )A.1B.2C.3D.410. 已知a,b,c为非零的实数,且不全为正数,则a∣a∣+ab∣ab∣+ac∣ac∣+bc∣bc∣的所有可能结果的绝对值之和等于( )A.4B.6C.8D.10二、填空题11. 南海海域面积约为3500000 km2,该面积用科学记数法应表示为km2.12. 用>,<,=号填空.−(+34)−∣−23∣,−227−3.14,−(−0.3)∣−13∣.13. 近似数2.30万精确到位.14. 若a,b互为相反数,c,d互为倒数,则a+b2+2cd=.15. 你会玩“二十四点”游戏吗?现有“2,−3,−4,5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):=24.16. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,得到的结果依次是−2,−3,3,5,从轻重的角度看,最接近标准的工件是第个.17. 点M表示的有理数是−1,点M在数轴上移动5个单位长度后得到点N,则点N表示的有理数是.18. 如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推,求出12+14+18+⋯+126的值.三、解答题(共5题)19. 观察下列各数,按要求完成下列各题5,−12,(−2)2,−5,∣−1.5∣,+(−2),0,−∣−0.5∣,−(−72)2(1) 将下列各数填在相应的括号里.整数集合:{ };分数集合:{ };正数集合:{ };负数集合:{ }.(2) 在数轴上表示出所有的分数.(3) 用“<”把各负数连接起来.20. 计算.(1) −20−(+14)+(−18)−(−13).(2) (14+16−12)×(−12).(3) −12024−6÷(−2)×∣−13∣.(4) [2−(1−0.5×23)]×[7+(−1)3].21. 阅读材料:计算 130÷(23−110+16−25).分析:利用通分计算 23−110+16−25 的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数是: =(23−110+16−25)÷130=(23−110+16−25)×30=23×30−110×30+16×30−25×30=10.故 原式=110.请你根据对所提供材料的理解,选择合适的方法计算:148÷(112−316+524+23).22. 某高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5,+6.(1) 养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2) 养护过程中,最远处离出发点有多远?(3) 若汽车耗油量为 0.5 升/千米,则这次养护共耗油多少升?23. 如图,数轴上A,B两点分别对应有理数a,b;A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=∣a−b∣,如:∣5−(−2)∣实际上可理解为数轴上表示5与−2的两点之间的距离.利用数形结合思想回答下列问题.(1) ∣8−(−1)∣=.(2) 写出所有符合条件的整数x,使∣x+2∣+∣x−1∣=3成立.(3) 根据以上探索猜想,对于任何有理数x,∣x−3∣+∣x−8∣是否有最小值?如果有,指出当x满足什么条件时∣x−3∣+∣x−8∣取得最小值,并写出最小值,如果没有,请说明理由.答案一、选择题1. B2. C3. D4. C5. C6. C7. A8. D9. A10. C二、填空题11. 3.5×10612. <;<;<13. 百14. 215. 答案不唯一16. 117. −6或418. 6364三、解答题19.(1) 5,−12,(−2)2,+(−2),0;−5,∣−1.5∣,−(−72);25,(−2)2,∣−1.5∣,−(−72);−12,−52,+(−2),−∣−0.5∣(3) ∵∣−12∣=1,∣−52∣=52,∣+(−2)∣=2,∣−∣−0.5∣∣=0.5,∴∣−∣−0.5∣∣<∣−12∣<∣+(−2)∣<∣−52∣,∴−∣−0.5∣>−12>+(−2)>−52,∴−52<+(−2)<−12<−∣−0.5∣.20.(1) 原式=−20−14−18+13=−39.(2) 原式=−3−2+6=1.(3) 原式=−1+3×13=−1+1=0.(4) 原式=(2−1+13)×6=6+2=8.21. 原式的倒数是:(1 12−316+524+23)÷148=(112−316+524+23)×48 =4−9+10+32=37.故原式=137.22.(1) 17+(−9)+7+(−15)+(−3)+11+(−6)+(−8)+5+6=5(千米).答:养护小组最后到达的地方在出发点的北方距出发点5千米.(2) 第一次17千米,第二次17+(−9)=8,第三次8+7=15,第四次15+(−15)=0,第五次0+(−3)=−3,第六次−3+11=8,第七次8+(−6)=2,第八次2+(−8)=−6,第九次−6+5=−1,第十次−1+6=5.答:最远距出发点17千米.(3) (17+∣−9∣+7+∣−15∣+∣−3∣+11+∣−6∣+∣−8∣+5+6)×0.5=87×0.5=43.5(升).答:这次养护共耗油43.5升.23.(1) 9(2) ∵∣x+2∣+∣x−1∣=3,∴x=−2,−1,0,1.(3) 对于任何有理数x,∣x−3∣+∣x−8∣有最小值.当3≤x≤8时,原式可以取得最小值,最小值为5.。
人教2024版七年级数学第一次月考试卷
七年级数学 第1页,共4页七年级数学 第2页,共4页…○…………密…………封…………线…………内…………不…………要…………答…………题…………○………准考证号: 姓名: 班级:2024-2025学年度第一学期第一次学情评估试卷数学(时间:120分钟满分:120 分)题 号 一 二 三 四 五 总分 得 分一、选择题(3分×10=30分) 1、2020的绝对值是( )A 、2020B 、-2020C 、±2020D 、202012、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-5-2=-7D 、1)1(2-=- 3、下列各对数互为相反数的是( )A 、-8与-(+8)B 、-(+8)与8C 、-2与1/2D 、-8与+(-8)4、在3-,0.3,0,13这四个数中,绝对值最小的数是( ) A .3- B .0.3 C .0 D .135、两个互为相反数的有理数的和为( )A 、正数B 、负数C 、0D 、负数或0 6、温度由–4°C 上升7°C 后温度是 A .3°CB .–3°CC .11°CD .–11°C7、节约是一种美德,据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为( )A .3.5×107B .3.5×108C .3.5×109D .3.5×10108、数轴上点M 到原点的距离是5,则点M 表示的数是( )A .5B .﹣5C .5或﹣5D .不能确定 9、已知︱x ︱=2,︱y ︱=3,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±110、下列说法中:①减去一个负数等于加上这个数的相反数;②正数减负数,差为正数;③零减去一个数,仍得这个数;④两数相减,差一定小于被减数;⑤两个数相减,差不一定小于被减数;⑥互为相反数的两数相减得零。
人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷
人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷选择题(每题只有一个正确选项,每小题3分,满分36分)1.下列四个有理数中,最小的是()A.﹣(﹣4)B.|﹣2|C.0D.﹣32.70000000用科学记数法表示为()A.7×107B.70×107C.0.70×108D.7×1083.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃4.某中学开学后购买了一批篮球,随机检测了4个,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度看,最不接近标准的球是()A.B.C.D.5.下列各式进行的变形中,不正确的是()A.若3a=2b,则3a+2=2b+2B.若3a=2b,则9a=4bC.若3a=2b,则3a﹣5=2b﹣5D.若3a=2b,则6.若x=2是关于x的一元一次方程ax﹣b=1的解,则1﹣4a+2b的值是()A.2B.1C.0D.﹣17.下列去括号正确的是()A.﹣(a﹣b)=﹣a﹣b B.﹣2(x﹣4y)=﹣2x+4yC.+(﹣m+2)=﹣m+2D.x﹣(y﹣1)=x﹣y﹣18.点M在数轴上距原点6个单位长度,将M向右移动2个单位长度至N点,点N表示的数是()A.8B.﹣4C.﹣8或4D.8或﹣49.当x=1时,代数式ax5+bx3+cx+1值为2024,则当x=﹣1时,代数式ax5+bx3+cx+1值为()A.﹣2022B.﹣2021C.2024D.﹣202410.苯是一种石油化工基本原料,其产量和生产的技术水平是一个国家石油化工发展水平的标志之一,如图,小明用9根相同的木棒搭建的第1个图形就是类似于苯的结构简式,他继续用相同的木棒搭建与苯有关联的各个图形,按此规律,用含n的式子表示搭建第n (n为正整数)个图形所需木棒的根数()A.10n+1B.8n+1C.6n+1D.4n+1二、填空题(6小题,每题3分,共18分)11.比较大小:﹣﹣.12.若2a m b与是同类项,则m+n=.13.已知(m﹣1)x|m|﹣1=0,是关于x的一元一次方程,那么m=.14.若代数式x2﹣3kxy+y2﹣9xy+9不含xy项,则k的值为.15.若代数式4x﹣5与3x﹣9的值互为相反数,则x的值为.16.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出五张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为.第II卷人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷姓名:____________ 学号:____________准考证号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算:(1)(﹣20)+(+3)﹣(+7)﹣(﹣5);(2).18.解方程.(1)x+7=3﹣3x;(2).19.先化简,再求值:3(m2﹣2mn﹣n2)﹣(3m2﹣2mn﹣3n2),其中,n=﹣4.20.已知关于x的方程(m+2)x|m|﹣1+8n=0是一元一次方程.(1)求m的值;(2)若该方程的解与关于x的方程的解相同,求n的值.21.若A=x2﹣3x+6,B=5x2﹣x﹣6.(1)请计算:A﹣2B;(2)求当x=﹣2时,A﹣2B的值.22.已知a、b、c在数轴上对应的点如图所示,(1)化简:2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;(2)若(c+4)2与|a+c+10|互为相反数,且b=|a﹣c|,求(1)中式子的值.23.某工厂车间有28个工人,生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,每个A零件可获利10元,每个B零件可获利5元.(1)求该工厂有多少工人生产A零件?(2)因市场需求,该工厂每天要多生产出一部分A零件供商场零售使用,现从生产B 零件的工人中调出多少名工人生产A零件,才能使每日生产的零件总获利比调动前多600元?24.我们规定,若关于x的一元一次方程ax=b(a≠0)的解为x=a﹣b,则称该方程为“有趣方程”.例如,2x=的解为x=,而2﹣,则该方程2x=就是“有趣方程”.请根据上述规定解答下列问题:(1)若关于x的一元一次方程﹣2x=c是“有趣方程”,则c=.(2)若关于x的一元一次方程3x=a﹣ab(a≠0)是“有趣方程”,且它的解为x=a,求a、b的值.(3)若关于x的一元一次方程x=3m﹣mn和关于y的一元一次方程﹣3y=mn﹣2n都是“有趣方程”,求代数式2(mn﹣3n)+(27m﹣6mn)﹣3的值.25.已知:关于x,y的多项式﹣24xy3﹣xy+2nxy3+nx2y2+3mx2y2﹣y不含四次项.数轴上A、B两点对应的数分别是m、n.(1)点A表示的数为;点B表示的数为;(2)如图1,线段CD在线段AB上,且CD=4,点M为线段AD的中点,若AM=BD,求点C表示的数;(3)如图2,在(2)的条件下,线段CD沿着数轴以每秒2个单位长度的速度向右运动,同时点Q从B点出发,以每秒4个单位长度的速度向左运动,是否存在时间t,使AM﹣DC=BC,若存在,求出C点表示的数;若不存在,说明理由.。
人教版2024—2025学年七年级上学期数学第一次月考模拟试卷
人教版2024—2025学年七年级上学期数学第一次月考模拟试卷(考试考查范围:有理数、有理数运算、代数式、整式的加减) 姓名:____ 学号:_____ 座位号:______ 准考证号:______ 考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、﹣2024的绝对值等于( ) A .2024B .﹣2024C .20241D .±20242、我国是最早使用负数的国家,如果盈利20元记作“+20元”,那么亏损30元记作( ) A .﹣30元B .30元C .50元D .﹣50元3、一实验室检测A ,B ,C ,D 四个元件的质量(单位:g ),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .4、下列各对数中,互为相反数的是( ) A .﹣(+5)与+(﹣5) B .与﹣(+0.5) C .﹣|﹣0.01|与﹣(﹣)D .与0.35、若|m ﹣2|+(n ﹣3)2=0,则(m ﹣n )2024的值是( ) A .﹣1B .1C .2023D .﹣20236、下列说法中,正确的是( )A .正整数和负整数统称整数B .整数和分数统称有理数C .零既可以是正整数,也可以是负整数D .一个有理数不是正数就是负数7、若3a﹣2b=6,则代数式9a﹣6b﹣10的值是()A.﹣4B.4C.﹣8D.88、如果点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O9、若﹣1<m<0,m、m2、的大小关系是()A.B.C.D.10、a、b、c是有理数且abc<0,则++的值是()A.﹣3B.3或﹣1C.﹣3或1D.﹣3或﹣1二、填空题(每小题3分,满分18分)11、比较大小:﹣﹣.(填“>”、“<”或“=”)12、若3a n+1b2与a3b m+3的差仍是单项式,则m﹣n=.13、某种商品原价每件b元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是元.14、把数2024.09精确到十分位是.15、已知a,b互为相反数,m,n互为倒数,x是最小正整数,则(mn)2﹣+x=.16、如图,是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,按此规律排列下去,若第n个图案由1234个基础图形组成,则n的值为三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1)|﹣27|﹣(﹣12)+11;(2)﹣(﹣2)2﹣3÷(﹣1)3+(﹣2)3×(﹣3)2;18、化简:(1)6a2+2a+3﹣5a2﹣2a﹣2;(2)3x﹣[5x﹣2(x﹣4)].19、先化简,再求值:2m2n﹣[6mn﹣2(4mn﹣2n2)﹣m2n]+3n2,其中m=﹣2,n=﹣1.20、甲三角形的周长为3a2﹣6b+10,乙三角形的第一条边长为a2﹣2b,第二条边长为a2﹣3b,第三条边比第二条边短a2﹣2b﹣4.(1)求乙三角形第三条边的长;(2)甲、乙两个三角形的周长哪个大?请说明理由;21、已知有理数x、y满足|x|=9,|y|=5.(1)若x<0,y>0,求x+y的值;(2)若|x+y|=x+y,求x﹣y的值.22、已知关于x的多项式2mx3﹣2x2+3x﹣(2x3+nx)不含三次项和一次项,求(m﹣n)3的值.23、(1)已知|x﹣5|+|y+4|=0,则x=,y=;(2)已知a、b互为相反数,|c﹣2024|=2024a+2024b,求a+b+c的值.24、定义新运算:X⊕Y=X﹣2Y.(1)计算(﹣2)⊕4的值;(2)当X=﹣a2﹣2ab+3b,Y=a2﹣ab﹣b,化简X⊕Y;(3)若|a+1|+(b﹣2)2=0.求第(2)问中X⊕Y的值.25、如图,在数轴上点A表示数a,点B表示数b,且(a+5)2+|b﹣16|=0.(1)填空:a=,b=;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,已知点C为数轴上一动点,且满足AC+BC=29,求出点C表示的数;(3)若点A以每秒3个单位长度的速度向左运动,同时点B以每秒2个单位长度的速度向右运动,动点D从原点开始以每秒m个单位长度运动,运动时间为t秒,运动过程中,点D始终在A,B两点之间上,且BD﹣5AD的值始终是一个定值,求此时m的值.。
2024年数学7年级上册月考试卷
2024年数学7年级上册月考试卷一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. (1)/(2)D. -(1)/(2)2. 下列各数中,是有理数的是()A. πB. √(2)C. 0D. sqrt[3]{9}3. 计算:1 - (-2)的结果是()A. -1B. 1C. 3D. -3.4. 单项式-(2)/(3)x^2y的系数是()A. -(2)/(3)B. (2)/(3)C. -2D. 2.5. 把3290000用科学记数法表示为()A. 3.29×10^6B. 3.29×10^5C. 32.9×10^5D. 0.329×10^76. 若a + 3 = 0,则a的值为()A. 3B. -3C. (1)/(3)D. -(1)/(3)7. 已知x = 2是方程2x + a = 3的解,则a的值为()A. -1B. 1C. 0D. -2.8. 一个数比它的相反数大12,则这个数是()A. 0B. -6C. 6D. 12.9. 化简:3(a - b)+2(b - a)的结果是()A. a - bB. a + bC. 5a - 5bD. 5a + 5b10. 某商品原价为a元,现按原价的8折出售,则售价是()A. 0.8a元B. 8a元C. (a)/(0.8)元D. a + 0.8元。
二、填空题(每题3分,共15分)11. 比较大小:-3___-4(填“>”“<”或“=”)。
12. 若x = 5,则x =___。
13. 多项式2x^2-3x + 1是___次___项式。
14. 若3x^my^2与-2x^3y^n是同类项,则m =___,n =___。
15. 某班有a名男生,女生人数比男生人数的2倍少5人,则女生有___人。
三、解答题(共55分)16. (8分)计算:(-12)+5 - (-14);-2^2×(1)/(4)+3^3÷(-3)^2。
河南省郑州市2023-2024学年七年级上学期月考数学试题
河南省郑州市2023-2024学年七年级上学期月考数学试题一、单选题1.下列四个数中,是正整数的是( ) A .﹣1B .0C .12D .12.如果温度上升10℃记作+10℃,那么温度下降5℃记作( ) A .+10℃B .-10℃C .+5℃D .-5℃3.32-的绝对值是( )A .23-B .32-C .23D .324.比-1小2的数是( ) A .3B .1C .-2D .-35.如图,在数轴上点M 表示的数可能是( )A .1.5B .﹣1.5C .﹣2.4D .2.46.经中国旅游研究院综合测算,今年“五一”假日期间全国接待国内游客1.47亿人次,1.47亿用科学记数法表示为( ) A .714.710⨯B .71.4710´C .81.4710⨯D .90.14710⨯7.近似数3.02×106精确到( ) A .百分位B .百位C .千位D .万位8.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分9.下列各组数中:①23-与23;②()23-与23;③()2--与()2-+;④()33-与33-;⑤32-与23,其中互为相反数的共有( )A .4对B .3对C .2对D .1对10.有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -大小关系是( )A .b a a b ->>->B .a a b b >->>-C .b a b a >>->-D .b a a b -<<-<11.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为( )A .3B .1-C .2-D .3-12.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是( )A .256B .900C .841D .1000二、填空题13.比较大小(填“>”或“<”):23 -34-. 14.若()2120a b -++=,则()2021a b +=.15.在数轴上的点A 表示的数是2-,则与点A 相距5个单位长度的点表示的数是. 16.按如图的程序计算,输出的结果是 .17.若21a =,236b =,且a b <,则a b -=.18.某同学把7×(□-3)错抄为7×□-3,抄错后算得答案为y ,若正确答案为x ,则x -y =三、解答题19.把下列各数在数轴上表示出来,并按从大到小的顺序用“>”连接起来,1.5-,0,38-,2.5,()1--,4--20.计算:(1)()()3211234⎡⎤--⨯--⎣⎦;(2)()457369612⎛⎫-⨯-+- ⎪⎝⎭;(3)()2499155⨯-(用简便方法计算)(4)()()()()223234232⎡⎤-+-⨯-+--÷-⎣⎦. 21.学习了绝对值的概念后,我们知道:一个非负数的绝对值等于它本身,负数的绝对值|等于它的相反数,也即当0a ≥时,a a =,当0a <时,a a =-,根据以上内容完成下面的问题:(1)23-=______; (2)3.14π-=______;(3)如果有理数a b <,则a b -=______; (4)请利用你探究的结论计算下面式子:111111112324320092008-+-+-+⋅⋅⋅+-. 22.郑州地铁1号线是河南省郑州市第一条建成运营的地铁线路,起于河南工业大学站,途经中原区、二七区、管城区、金水区、郑东新区,止于河南大学新区站,其中的15个站点如图所示.小亮从郑州火车站开始乘坐地铁,在图中15个地铁站点做值勤志愿服务,到A 站下车时,本次志愿者活动结束,约定向文苑北路站方向为正,当天的乘车记录如下(单位:站):+6,+2,-3,+9,-3,-4,+2,-5. (1)请你通过计算说明A 站是哪一站?(2)已知相邻两站之间的平均距离为1.4千米,求小亮在志愿者服务期间乘坐地铁行进的路程是多少千米? 23.观察下列运算:()()31518++=+※()()14721--=+※ ()()21416-+=-※()()15823+-=-※()01515-=+※()13013+=+※(1)请你认真思考上述运算,归纳※运算的法则: 两数进行※运算,______特别地,0和任何数进行※运算,或任何数和0进行※运算,结果等于______. (2)计算:()()11012+-⎡⎤⎣⎦※※(括号的作用与它在有理数运算中的作用一致) 24.观察下列三行数,回答问题:1-,2,3-,4,5-,…;1,4,9,16,25,…; 0,3,8,15,24,…. (1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系? (3)取每行数的第10个数,计算这三个数的和. 25.如图所示,点A 在数轴上所对应的数为2-.(1)点B 在点A 右边,且距A 点4个单位长度,点B 所对应的数是______.(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,同时点B以每秒2个单位所在的点时,求A、B两点间距离.长度沿数轴向右运动,当点A运动到6(3)在(2)的条件下,A点静止不动,B点沿数轴向左运动,经过t秒点A与点B相距4个单位长度,求t的值.。
2023—2024学年度第一学期第一次月考试题 初一数学
2023—2024学年度第一学期第一次月考试题初一数学试卷满分:150分 考试时间:120分钟一、选择(每小题3分,计24分.请把正确选项的字母填在答题纸相应的位置)1.43-的倒数是( ) A .43- B .34 C .34- D .43 2. 在,0,1,-2这四个数中,最小的数是( )A.B. 0C. 1D. -2 3.如图,表示的数轴正确的是( )A .B .C .D .4.若|2|2a a -=-,则a 的范围( )A .2a ≤B .2a >C .2a <D .2a ≥5.数a 、b 、c 在数轴上对应的位置如图,化简|a +b |﹣|c ﹣b |+|c +a ﹣b |的结果( )A .﹣bB .c ﹣aC .﹣c ﹣aD .2a +b6.已知有理数a 、b 、c ,其中a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的数,则a +b +c 的值是( )A .0B .﹣2C .﹣2或0D .﹣1或17.设[x ]表示不超过x 的最大整数,如[2.7]=2,[-4.5]=-5,则[3.7]和[-6.5]所表示的点在数轴上的距离是( )A. 4B. 11C. 10D.98.下列说法中,正确的个数是( )①若11a a=,则a ≥0;②若|a |>|b |,则有(a +b )(a ﹣b )是正数; ③A 、B 、C 三点在数轴上对应的数分别是﹣2、6、x ,若相邻两点的距离相等,则x =2;④若代数式2x +|9﹣3x |+|1﹣x |+2011的值与x 无关,则该代数式值为2021;⑤a +b +c =0,abc <0,则||||b c a c a b a b c +++++的值为±1. A .1个 B .2个 C .3个 D .4个二、填空(每小题3分,计30分.请把正确答案填在答题纸相应的位置)9.若海平面以上500米,记作+500米,则海平面以下100米可记作 .10.在数轴上,点A 表示的数是4,点B 与点A 的距离是5,则点B 表示的数是 . 11.若m ,n 为相反数,则m +(﹣2023)+n 为 .12. 绝对值不大于6的非负整数的和为 .13.若y x y x <==,8||,2||,则=+y x .14.数轴上一动点A ,向左移动2个单位长度到B ,再向右移动3个单位长度到C 点,若点 C 表示的数为5,则点A 表示的数为 .15.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,6),(-3,2),(1,-7),则车上还有__ ______人.16.小明在写作业时不慎将一滴墨水滴在数轴上,根据图所示的数轴,请你计算墨迹盖住的所有整数的和为______.17.观察下列等式(式子中的“!”是一种数学运算符号)1!1=,2!21=⨯,3!321=⨯⨯,4!4321=⨯⨯⨯,…,那么计算的值是______.18.将正偶数按下表排列5列:根据上面规律,则2000应在______.!!20222023三、解答题(共96分.请写出必要的计算步骤或推演过程)19.计算(每题4分,共16分)(1)10+(-12) (2) (-12)-(-17)+(-10)(3) 18-2+(-2)×3; (4) )36()1279543(-⨯+-- 20.(本题8分)把下列各数填在相应的括号里:-5,13+,0.62,0,-6.4,173-,7 (1)正整数:{ …}; (2)负整数:{ …};(3)分数:{ …}; (4)整数:{ …};21.(本题8分)用数轴上的点表示下列各数: 12-, 3-- , ()3-- ,0, 2.5- ,并用“<”把它们连接起来.22.(本题满分10分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求m 2﹣cd+的值。
2024七年级数学月考卷
2024七年级数学月考卷一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如:3(正整数)、0、 - 5(负整数)、1/2(分数)、0.333…(无限循环小数,也是分数)都是有理数。
2. 有理数的运算。
- 加法。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,(-3)+(-5)= - 8。
- 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)= - 2,(-3)+5 = 2。
- 一个数同0相加,仍得这个数,如0+3 = 3。
- 减法:减去一个数,等于加上这个数的相反数。
例如:3 - 5=3+( - 5)= - 2。
- 乘法。
- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,(-3)×(-5)=15,3×(-5)= - 15。
- 任何数同0相乘都得0。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
例如:6÷3 = 6×1/3 = 2,6÷(-3)=6×(-1/3)= - 2。
- 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
例如:2³表示3个2相乘,即2×2×2 = 8。
3. 有理数的混合运算顺序。
- 先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。
例如:2×(3 + 2²)=2×(3 + 4)=2×7 = 14。
二、整式的加减。
1. 单项式。
- 由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
例如:3x、 - 5、a都是单项式。
- 单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数和。
例如:3x的系数是3,次数是1; - 5的系数是 - 5,次数是0;a²b的系数是1,次数是3。
初一月考数学试题及答案
初一月考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的相反数是它本身,那么这个数是:A. 0B. 1C. -1D. 23. 一个数的绝对值是它与0的距离,那么|-5|的值是:A. 5B. -5C. 0D. 104. 以下哪个选项是正确的不等式?A. 3 > 5B. 3 < 5C. 3 = 5D. 3 ≥ 55. 一个角的补角是与它相加等于180°的角,那么45°的补角是:A. 135°B. 45°C. 90°D. 180°6. 一个数的平方是它本身,那么这个数是:A. 0 或 1B. -1 或 0C. 1 或 -1D. 0 或 -17. 一个数的立方是它本身,那么这个数是:A. 0, 1, -1B. 0, 1C. 1, -1D. 0, -18. 以下哪个选项是正确的分数比较?A. 1/2 > 2/3B. 1/2 < 2/3C. 1/2 = 2/3D. 1/2 ≥ 2/39. 一个数的因数是能够整除它的数,那么12的因数包括:A. 1, 2, 3, 4, 6, 12B. 1, 2, 3, 4, 6, 12, 24C. 1, 2, 3, 4, 6, 12, 24, 36D. 1, 2, 3, 4, 6, 12, 24, 36, 4810. 一个数的倍数是它乘以任何整数的结果,那么6的倍数包括:A. 6, 12, 18, 24B. 6, 12, 18, 24, 30C. 6, 12, 18, 24, 30, 36D. 6, 12, 18, 24, 30, 36, 42二、填空题(每题4分,共20分)1. 一个数的相反数是它加上_____的结果。
2. 如果一个数的绝对值是5,那么这个数可以是_____或_____。
3. 一个角的补角是与它相加等于_____°的角。
24-25学年七年级数学第三次月考卷01(考试版A4)【测试范围:七年级上册第一章~第五章】(人教版
2024-2025学年七年级数学上学期第三次月考卷01(人教版2024)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七年级上册第一章10%,第二章15%,第三章15%,第四章25%,第五章35%。
5.难度系数:0.8。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.―12021的相反数是()A.2021B.―2021C.12021D.―120212.作为第19届亚运会的主办城市,杭州凭借其独特的文化魅力和自然景观吸引了众多游客.据浙江省文旅厅公开数据,亚运会期间杭州的游客量高达843.2万人次,其中“843.2万”用科学记数法表示应为()A.8.432×102B.8.432×106C.8.432×107D.843.2×1043.下列运用等式的性质变形错误的是()A.由a=b,得a+3=b+3B.由a―5=b―5,得a=bC.由a=b,得―2a=―2b D.由a=b,得2ac =2bc4.下列说法错误的是( )A.2021 是单项式B.5πx3的次数是4C.ab-5是二次二项式D.多项式-2m2n+ab-7的常数项为-7 5.实数a,b在数轴上对应点的位置如图所示,下列判断正解的是()A.|a|<2B.2―a>2C.a+b>0D.ab>06.若方程ax2―2x―1=0的一个解是1,则a值为()A.3B.2C.1D.07.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是( )A.3B.6C.8D.98.多项式1+2xy―3xy2的次数及最高次项的系数分别是()A.3,-3B.2,-3C.5,-3D.3,19.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,一位母亲在从右到左依次排列的绳子上打结,采取满七进一的方式,用来记录孩子自出生后的天数.例如图1表示的是孩子出生后30天时打绳结的情况(因为:4×71+2×70=30),那么由图2可知,孩子出生后的天数是()天A.510B.511C.513D.52010.一件上衣按成本价提高50%后以105元售出,则这件上衣的利润为()A.35元B.25元C.30元D.20元11.整理一批数据,由一人做需要40 h,现在先安排一些人做2 h,然后再增加3人做4小时,刚好完成这项工作的910.问先安排做2h的人数是多少?若设先安排x人做2h,则可列方程为()A.2x40+4(x+3)40=910B.2x40+4(x+3)40=1C.x40+4(x+3)40=910D.2x40+4x+340=91012.如图所示运算程序中,若开始输入的x值为48,第一次输出的结果为24,第二次输入的结果为12.…… ,则第2018次输出的结果是()A.1B.6C.3D.4二、填空题(本题共6小题,每小题2分,共12分.)13.如果收入150元记作+150元,那么支出100元记作元.14.如果代数式6x―5与5x+16互为相反数,则x=.15.用四舍五入将数43.02精确到十分位为.16.已知2a﹣3b=5,则8+6b﹣4a= .17.将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图,字母m 所表示的数是.18.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22),若圈出的9个数中,最大数与最小数的和为46,则这9个数的和为.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)计算:(1)12―(+5)+(―8)―(―7);―(1―32)×2.(2)(―2)2÷4920.(10分)解方程:(1)5x+7=2x―5;(2)2x―53―3x+14=1.21.(6分)先化简,再求值:已知A=5a2―6ab,且B=―4a2+3ab+5,求A―2B的值.其中a=―1,b=―12.22.(8分)某仓库原有某种货物库存270千克,现规定运入为正,运出为负,一天中七次出入如下表(单位:千克)第一次第二次第三次第四次第五次第六次第七次―30+82―19+102―96+34―28(1)在第次记录时库存最多.(2)求最终这一天库存增加或减少了多少千克?(3)若货物装卸费用为每千克0.3元,问这一天需装卸费用多少元?23.(8分)阅读理解:你知道如何将无限循环小数写成分数形式吗?下面的解答过程会告诉你方法.例题:利用一元一次方程将0..7化成分数,设0..7=x ,由于0..7=0.777…,可知10×0..7=7.777…=7+0..7,于是7+x =10x 可解得,x =79,即0..7=79.请你仿照上述方法完成下列问题:(1)将0..4化成分数形式;(2)将0. .2.5化成分数形式.24.(10分)如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为am ,计算:(1)窗户的面积;(2)窗框的总长;(3)若a =1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).25.(10分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市民居民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.500.90(说明:①每户产生的污水量等于该户自来水用水量:②水费=自来水费用+污水处理费)已知小王家2024年7月用水16吨,交水费59.2元.8月份用水25吨,交水费99.7元.(1)求a、b的值.(2)如果小王家9月份用水36吨,求小王家这个月上交水费多少元?26.(12分)已知数轴上有两点A、B,点A表示的数是4,点B表示的数是﹣11,点C是数轴上一动点.(1)如图1,若点C在点B的左侧,且BC:AB=3:5,求点C到原点的距离.(2)如图2,若点C在A、B两点之间时,以点C为折点,将此数轴向右对折,当A、B两点之间的距离为1时,求C点在数轴上对应的数是多少?(3)如图3,在(1)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度的2倍少5个单位长度/秒.经过4秒,点P、Q之间的距离是点Q、R之间距离的一半,求动点Q的速度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学月考试卷
一、填空题(每空2分,共40分)
1. -2的相反数是_________,绝对值是________,倒数是________。
2. 股票上涨100点记为100+点,那么60-点表示
3. 比较大小:-
110_______-1
9
, -(-5) -|-5| ; 直接计算:(1)(-2.8)+(+1.9)= , (2)1
0.75(3)4
--= ,
(3)0(12.19)--= , (4)3(2)---=
4. 大润发出售的某种品牌的面粉袋上,标有质量为(25±0.2)的字样,从中任意拿
出两袋,它们的质量最多相差 kg 。
5. 把(+4)-(-6)-(+8)+(-9)写成省略加号的和的形式为 。
6. 绝对值大于1而不大于3的整数有 ,它们的积是 。
7. 用科学记数法表示:地球的表面积约是510 000 0002
km = 2
km 8. 若一个数平方等于它的本身,那么这个数是 。
9. 已知a 、b 互为相反数,c 、d 互为倒数,那么=-+cd b a 。
10. 有理数a 、b ,规定运算:b a *=b a -,则2*)3(-= 。
11. 如图所示是计算机程序计算,若开始输入1-=x ,则最后输出的结果是 。
12. 用我们学过的运算将3,4,6-,
10凑成24,算式为 。
二、选择题(下列各题只有一个是正确答案,请将答案写在方格中,每题2分,共12分)
13. 在数轴上与—3的距离等于4的点表示的数是
( )
A . 1
B .-7 C. 1或-7 D.无数个
14. 下列各式正确的是 ( )
A .33--=
B .+(-3)=3
C .(3)3--=
D .-(-3)=-3
15. 实数a 、b 在数轴上的位置如图所示,则a 与-b 的大小关系是( )
A .a >- b
B . a = -b
C . a < -b
D . 不能判断
16. 下列结论正确的是 ( )
A .两数之和为正,这两数同为正
B .两数之差为负,这两数为异号
C .几个数相乘,积的符号由负因数的个数决定
D .正数的任何次幂都是正数,负数的偶次幂是正数 17. 若,0,5,7>+==y x y x 且那么y x -的值是 ( )
A.2或12
B.2或-12
C.-2或12
D.-2或-12 18. 一个数的相反数比它的本身大,则这个数是 ( )
A.正数
B.负数
C.0
D.负数和0
三、解答题(共48分)
19. 计算(每题3分,共24分):
1. ()()18---
2. )5()2()10(8---+-+
3. ()⎪⎭
⎫ ⎝⎛-÷-455 4. ⎪⎭⎫
⎝⎛-+-⨯-31432124
5. 4
8165
⨯-÷-() 6. 36(6)72(8)-÷--÷-
7. ()()523421222
3
-⨯--⎪⎭
⎫ ⎝⎛-÷⨯-
8.先阅读第(1)小题,再计算第(2)小题:
(1)计算:)2
13(4324
)325(651-++-+- 解:原式= )213()4324()325()651(--+++--+--
=2
134324325651--++---- =)2
1
()3(4324)32()5()65()1(-+-+++-+-+-+-
=[]⎥⎦
⎤⎢⎣⎡-++-+-+-++-+-)21(43)32()65()3(24)5()1(
=15+)4
5(-
=13
4
3
(2)计算)211()322004(434000)2005(-+-++-
20. (4分)把下列各数填入表示它所在的数集的大括号:
-2.4,3,2.004,-310,14
1
,-•
•15.0,0,-(-2.28),3.14,-|-4|。
正数集合:( …) 负有理数集合:( …) 整数集合:( …) 负分数集合:( …)
21. (3分)将下列各数在数轴上表示出来,并按从小到大的顺序用 “﹤”号连接起来:
-3, -︱-2.5︱, -(-2
2
1
), 0, 4, -︱-4︱
22. (4分)已知(a+1)2+1-c =0,求c a +的值
23. (3分) 2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火
火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.
(1).若此时“珠峰大本营”的温度为-4°C ,试求峰顶的温度(结果保留整数)。
2’ (2).若在登攀过程中A 处测得气温是—16°C ,试求A 处的海拔高度。
1’
24. (4分)小明有5张卡片写着不同的数字的卡片,请你按要求抽出卡片,完成下
列各问题:
⑴从中取出2
张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少? 1’ ⑵从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?1’
⑶从中取出2张卡片,使这2张卡片上数字组成一个最大的数,如何抽取?最大的数是多少?1’
⑷从中取出4张卡片,用学过的运算方法,使结果为24。
如何抽取?写出运算式子(一种即可)。
1’
25. (3分)一病人发高烧进医院进行治疗,医生给他开了药并挂了水,同时护士每隔1
小时对病人测体温,及时了解病人的好转情况,现护士对病人测体温的变化数据
注:病人早晨进院时医生测得病人体温是
40.2℃。
问:(1)病人什么时候体温达到最高,最高体温是多少?1’ (2)病人中午12点时体温多高?1’
(3)病人几点后体温稳定正常(正常体温是37℃)1’
26. (4分) 点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为
AB ,在数轴上A 、B 两点之间的距离AB=|a-b|.
回答下列问题:
①数轴上表示2和5两点之间的距离是________,数轴上表示1和3-的两点之间的距离是________.(2分)
②数轴上表示x 和2-的两点之间的距离表示为__________.(1分)
③若x 表示一个有理数,则|1||3|x x -++有最小值吗?若有,请求出最小值.若没有,说出理由。
(2分)
闽教版小学三年级下Unit1-Unit3练习
一、写出这些字母的左邻右舍。
(6%)
A B
a b
1.Dd
2. Hh
3. Yy
4. Oo
5. Kk
6. Ll
二、选择符合情景的对话,把序号填入括号中。
(6%)新|课|标| 第|一|网()1.Can you ride a bike? A.Good idea.()2.What color is it? B.No, I can’t.()3.What’s this? C.I can skate, too.()4. I can skate. D.It’s green.()5.What about a rabbit? E. Thank you.()6.Here’s a present for you. F.It’s a bird.
三、选词填空。
(10%)
1. I am a fish. I can ___________. (swim run)
2. ---- Can you dance? ---- No, I ______ ____ (can can’t)
3. What about a ________( book red)?
4.----I am a cat. I________________ fish. (like don’t like).
5. Let’s go ________. (home like)
四、Write the words.
Unit1
生日买礼物贺卡足球蛋糕这里鸟Unit2
能游泳画画跑步骑自行车滑冰是。