2019中考模拟卷数学及答案

合集下载

2019年黑龙江省哈尔滨市中考数学模拟试卷含答案

2019年黑龙江省哈尔滨市中考数学模拟试卷含答案

2019年黑龙江省哈尔滨市中考数学模拟试卷含答案一、选择题(每小题3分,共计30分)1.向东走5m记作+5m,那么向西走3m记作()A.+3m B.﹣3m C.﹣(﹣3)m D.|﹣3|m2.下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x73.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个C.3个 D.4个4.由四个相同的小正方体堆成的物体如图所示,它的俯视图是()A. B.C.D.5.某种商品的进货检为每件a元,零售价为每件90元,若商品按八五折出售,仍可获利10%,则下列方程正确的是()A.85%a10%×90 B.90×85%×10%=aC.85%(90﹣a)=10% D.(1+10%)a=90×85%6.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,点A是反比例函数(x>0)图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为()A.1 B.2 C.4 D.不能确定8.如图,滑雪场有一坡角为20°的滑雪道,滑雪道的长AC为100米,则滑雪道的坡顶到坡底的竖直高度AB的长为()A.B.C.1OOcos20°D.100sin20°9.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A.B.C.D.10.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度快二、填空题(每小题3分,共计30分)11.将886 000 000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.化简计算:2+4=.14.分解因式:ax2﹣2a2x+a3=.15.已知扇形的面积为12πcm2,半径为12cm,则该扇形的圆心角是.16.抛物线y=x2﹣2x﹣1的对称轴为.17.甲、乙、丙、丁4名同学进行一次乒乓球单打比赛,要从中随机选出2名同学打第一场比赛,其中有乙同学参加的概率是.18.矩形ABCD中,AB=10,BC=3,E为AB边的中点,P为CD边上的点,且△AEP是腰长为5的等腰三角形,则DP=.19.如图,已知⊙O内切于△ABC,切点分别为D、E、F,若∠A=50°,则∠EDF=.20.已知:如图,在△ABC中,∠BAC=90°,点D在AB上,点E在CA的延长线上,连接DC、DE,∠EDC=45°,BD=EC,DE=5,tan∠DCE=,则CE=.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求值:(2﹣)÷,其中x=2sin30°+tan60°.22.如图,每个小方格都是边长为1的小正方形.(1)△ABC向右平移6个单位,画出平移后的△A1B1C1;(2)将△A1B1C1绕点O顺时针旋转90°,画出旋转后的△A2B2C2;(3)连接A1B、A2B、A1A2,并直接写出△BA1A2的面积.23.为了强化司机的交通安全意识,我市利用交通安全宣传月对司机进行了交通安全知识问卷调查.关于酒驾设计了如下调查问卷:随机抽取部分问卷,整理并制作了如下统计图:根据上述信息,解答下列问题:(1)本次调查的样本容量是多少?(2)补全条形图,并计算B选项所对应扇形圆心角的度数;(3)若我市有3000名司机参与本次活动,则支持D选项的司机大约有多少人?24.已知:如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:四边形ABFC是平行四边形;(2)在不添加任何辅助线的情况下,请直接写出图中与△ABC面积相等的三角形.25.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为90万元,今年销售额只有80万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知B款汽车每辆进价为7.5万元,每辆售价为10.5万元,A款汽车每辆进价为6万元,若卖出这两款汽车15辆后获利不低于38万元,问B款汽车至少卖出多少辆?26.如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.(1)求证:∠DAC=∠ACO+∠ABO;(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求证:EF=EB;(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点,与y轴交于点C,BO=CO.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的一动点,连接AP,交y轴于点D,连接CP,设P点横坐标为t,△CDP的面积为S,求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点P作PE⊥x轴于点E,连接PB,过点A作AF⊥PB于点F,交线段PE于点G,若点H在x轴负半轴上,PH=2GE,点M(0,m)在y轴正半轴上,连接PM、PH,∠HPM=2∠BHP,PH=2PM,求m的值.参考答案与试题解析一、选择题(每小题3分,共计30分)1.向东走5m记作+5m,那么向西走3m记作()A.+3m B.﹣3m C.﹣(﹣3)m D.|﹣3|m【考点】11:正数和负数;14:相反数;15:绝对值.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,从而得出答案.【解答】解:∵向东走5m记作+5m,∴向西走3m记作﹣3m;故选B.2.下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x7【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方;4C:完全平方公式.【分析】根据单项式乘法、完全平方公式、合并同类项法则、幂的乘方的运算方法,利用排除法求解.【解答】解:A、2x2•x3=2x5,故本选项正确;B、应为(x﹣2)2=x2﹣4x+4,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、应为(x3)4=x12,故本选项错误.故选:A.3.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个C.3个 D.4个【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第1个图形,是轴对称图形,也是中心对称图形,符合题意;第2个图形,是轴对称图形,不是中心对称图形,不合题意;第3个图形,是轴对称图形,也是中心对称图形,符合题意;第4个图形,是轴对称图形,也是中心对称图形,符合题意.故选:C.4.由四个相同的小正方体堆成的物体如图所示,它的俯视图是()A. B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从物体上面看所得到的图形即可.【解答】解:从物体上面看,是三个正方形左右相邻,故选C.5.某种商品的进货检为每件a元,零售价为每件90元,若商品按八五折出售,仍可获利10%,则下列方程正确的是()A.85%a10%×90 B.90×85%×10%=aC.85%(90﹣a)=10% D.(1+10%)a=90×85%【考点】89:由实际问题抽象出一元一次方程.【分析】根据进价+进价乘利润等于标价乘打折数,从而可以列出相应的方程,本题得以解决.【解答】解:由题意可得,a(1+10%)=90×85%,故选D.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+1≤3,得:x≤1,∴不等式组的解集为﹣3<x≤1,故选:A.7.如图,点A是反比例函数(x>0)图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为()A.1 B.2 C.4 D.不能确定【考点】G5:反比例函数系数k的几何意义.【分析】可以设出A的坐标,△ABC的面积即可利用A的坐标表示,据此即可求解.【解答】解:设A的坐标是(m,n),则mn=2.则AB=m,△ABC的AB边上的高等于n.则△ABC的面积=mn=1.故选:A.8.如图,滑雪场有一坡角为20°的滑雪道,滑雪道的长AC为100米,则滑雪道的坡顶到坡底的竖直高度AB的长为()A.B.C.1OOcos20°D.100sin20°【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】根据正弦的定义进行解答即可.【解答】解:∵sin∠C=,∴AB=AC•sin∠C=100sin20°,故选:D.9.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A.B.C.D.【考点】S9:相似三角形的判定与性质.【分析】由平行线分线段成比例定理和相似三角形的性质即可得出结论.【解答】解:∵DE∥BC,DF∥BE,∴,△ADE∽△ABC,,,,∴,∴选项A、B、C正确,D错误;故选:D.10.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度快【考点】E6:函数的图象.【分析】根据函数图象所给的信息,逐一判断.【解答】解:A、由函数图象可知,甲走完全程需要4分钟,乙走完全程需要3.8分钟,乙队率先到达终点,本选项错误;B、由函数图象可知,甲、乙两队都走了1000米,路程相同,本选项错误;C、因为4﹣3.8=02分钟,所以,乙队比甲队少用0.2分钟,本选项正确;D、根据0~2.2分钟的时间段图象可知,甲队的速度比乙队的速度快,本选项错误;故选C.二、填空题(每小题3分,共计30分)11.将886 000 000用科学记数法表示为8.86×108.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:886 000 000=8.86×108,故答案为:8.86×108.12.在函数y=中,自变量x的取值范围是x≠﹣.【考点】E4:函数自变量的取值范围.【分析】根据分母不等于0列不等式求解即可.【解答】解:由题意得,4x+2≠0,解得x≠﹣.故答案为:x≠﹣.13.化简计算:2+4=5.【考点】78:二次根式的加减法.【分析】先进行二次根式的化简,再结合二次根式的加减法运算法则进行求解即可.【解答】解:原式=2×2+4×=4+=5.故答案为:5.14.分解因式:ax2﹣2a2x+a3=a(x﹣a)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取a,再利用完全平方公式分解即可.【解答】解:原式=a(x2﹣2ax+a2)=a(x﹣a)2,故答案为:a(x﹣a)215.已知扇形的面积为12πcm2,半径为12cm,则该扇形的圆心角是30°.【考点】MO:扇形面积的计算.【分析】首先设圆心角为n°,再根据扇形面积的计算公式S=,代入相关数值进行计算即可.【解答】解:设圆心角为n°,由题意得:=12π,解得:n=30,故答案为:30°.16.抛物线y=x2﹣2x﹣1的对称轴为x=1.【考点】H3:二次函数的性质.【分析】根据对称轴方程即可求出答案.【解答】解:由抛物线的解析式可知:对称轴为:x=﹣=1故答案为:x=117.甲、乙、丙、丁4名同学进行一次乒乓球单打比赛,要从中随机选出2名同学打第一场比赛,其中有乙同学参加的概率是.【考点】X6:列表法与树状图法.【分析】列表得出所有等可能的情况数,找出有乙同学参加的情况数,即可求出所求.【解答】解:列表如下:所有等可能的情况有12种,其中含有乙的情况有6种,则P(有乙同学参加)==,故答案为:18.矩形ABCD中,AB=10,BC=3,E为AB边的中点,P为CD边上的点,且△AEP是腰长为5的等腰三角形,则DP=4或1或9.【考点】LB:矩形的性质;KH:等腰三角形的性质;KQ:勾股定理.【分析】首先根据题意画出图形,共分3种情况,画出图形后根据勾股定理即可算出DP的长.【解答】解:(1)如图1,当AE=EP=5时,过P作PM⊥AB,∴∠PMB=90°,∵四边形ABCD是矩形,∴∠B=∠C=90°,∴四边形BCPM是矩形,∴PM=BC=3,∵PE=5,∴EM===4,∵E是AB中点,∴BE=5,∴BM=PC=5﹣4=1,∴DP=10﹣1=9;(2)如图2,当AE=AP=5时,DP===4;(3)如图3,当AE=EP=5时,过P作PF⊥AB,∵四边形ABCD是矩形,∴∠D=∠DAB=90°,∴四边形BCPF是矩形,∴PF=AD=3,∵PE=5,∴EF==4,∵E是AB中点,∴AE=5,∴DP=AF=5﹣4=1.故答案为:1或4或9.19.如图,已知⊙O内切于△ABC,切点分别为D、E、F,若∠A=50°,则∠EDF=65°.【考点】MI:三角形的内切圆与内心.【分析】连接OE、OF,根据切线的性质得到∠OEA=∠OFA=90°,求出∠EOF,根据圆周角定理计算即可.【解答】解:连接OE、OF,∵⊙O内切于△ABC,∴∠OEA=∠OFA=90°,∴∠EOF=180°﹣∠A=130°,由圆周角定理得,∠EDF=∠EOF=65°,故答案为:65°.20.已知:如图,在△ABC中,∠BAC=90°,点D在AB上,点E在CA的延长线上,连接DC、DE,∠EDC=45°,BD=EC,DE=5,tan∠DCE=,则CE=.【考点】T7:解直角三角形.【分析】过E作EF⊥CD于F,解直角三角形即可得到结论.【解答】解:过E作EF⊥CD于F,∵∠EDC=45°,∴EF=DF=DE,∵DE=5,∴EF=5,∵tan∠DCE==,∴CF=,∴CE===,故答案为:.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求值:(2﹣)÷,其中x=2sin30°+tan60°.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】首先对括号内的分式进行通分相加,把除法转化为乘法,计算乘法即可化简,然后化简x的值,代入求解即可.【解答】解:原式=•=•=.当x=2sin30°+tan60°=2×+=1+时,原式===.22.如图,每个小方格都是边长为1的小正方形.(1)△ABC向右平移6个单位,画出平移后的△A1B1C1;(2)将△A1B1C1绕点O顺时针旋转90°,画出旋转后的△A2B2C2;(3)连接A1B、A2B、A1A2,并直接写出△BA1A2的面积.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出旋转后的△A2B2C2即可;(3)连接A1B、A2B、A1A2,利用矩形的面积减去三个顶点上三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)如图,S△BA1A2=5×6﹣×3×5﹣×3×3﹣×2×6=30﹣﹣﹣6=12.23.为了强化司机的交通安全意识,我市利用交通安全宣传月对司机进行了交通安全知识问卷调查.关于酒驾设计了如下调查问卷:随机抽取部分问卷,整理并制作了如下统计图:根据上述信息,解答下列问题:(1)本次调查的样本容量是多少?(2)补全条形图,并计算B选项所对应扇形圆心角的度数;(3)若我市有3000名司机参与本次活动,则支持D选项的司机大约有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)用E小组的频数除以该组所占的百分比即可求得样本容量;(2)用总人数乘以该组所占的百分比即可求得A组的人数,总数减去其他小组的频数即可求得B小组的人数;(3)总人数乘以支持D选项的人数占300人的比例即可;【解答】解:(1)样本容量:69÷23%=300 …(2)A组人数为300×30%=90(人)B组人数:300﹣(90+21+80+69)=40(人)…补全条形图人数为40 …圆心角度数为360°×=48°…(3)3000×=800(人),答:支持D选项的司机大约有800人.24.已知:如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:四边形ABFC是平行四边形;(2)在不添加任何辅助线的情况下,请直接写出图中与△ABC面积相等的三角形.【考点】L7:平行四边形的判定与性质.【分析】(1)先证明△ABE≌△FCE,推出AE=EF,又BE=CE,即可推出四边形ABFC是平行四边形;(2)根据等底同高三角形面积线段,三角形的中线分成的两个三角形的面积相等,即可判定;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠ABE=∠FCE,在△ABE和△FCE中,∴△ABE≌△FCE,∴AE=EF,∵BE=CE,∴四边形ABFC是平行四边形.(2)图中与△ABC面积相等的三角形有:△ACF,△BCF,△ABF,△ACD.25.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为90万元,今年销售额只有80万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知B款汽车每辆进价为7.5万元,每辆售价为10.5万元,A款汽车每辆进价为6万元,若卖出这两款汽车15辆后获利不低于38万元,问B款汽车至少卖出多少辆?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设今年5月份A款汽车每辆售价为x万元,则去年同期A款汽车每辆售价为(x+1)万元,根据数量=总价÷单价结合今年5月份与去年同期销售数量相等,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设B款汽车卖出m辆,则A款汽车卖出(15﹣m)辆,根据总利润=单辆利润×销售数量结合获利不低于38万元,即可得出关于m的一元一次不等式,解之取其最小值即可.【解答】解:(1)设今年5月份A款汽车每辆售价为x万元,则去年同期A款汽车每辆售价为(x+1)万元,根据题意得:=,解得:x=8,经检验,x=8是原方程的解.答:今年5月份A款汽车每辆售价为8万元.(2)设B款汽车卖出m辆,则A款汽车卖出(15﹣m)辆,根据题意得:(10.5﹣7.5)×m+(8﹣6)×(15﹣m)≥38,解得:m≥8.答:若卖出这两款汽车15辆后获利不低于38万元,B款汽车至少卖出8辆.26.如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.(1)求证:∠DAC=∠ACO+∠ABO;(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求证:EF=EB;(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.【考点】MR:圆的综合题.【分析】(1)如图1中,连接OA,只要证明∠CAB=∠1+∠2=∠ACO+∠ABO,由点C是中点,推出=,推出∠BAC=∠DAC,即可推出∠DAC=∠ACO+∠ABO;(2)想办法证明∠EFB=∠EBF即可;(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF 于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.首先证明△EFB是等边三角形,再证明△ACK≌△ACT,Rt△DKC≌Rt△BTC,延长即可解决问题;【解答】解:(1)如图1中,连接OA,∵OA=OC,∴∠1=∠ACO,∵OA=OB,∴∠2=∠ABO,∴∠CAB=∠1+∠2=∠ACO+∠ABO,∵点C是中点,∴=,∴∠BAC=∠DAC,∴∠DAC=∠ACO+∠ABO.(2)如图2中,∵∠BAD=∠BAC+∠DAC=2∠CAB,∠COB=2∠BAC,∴∠BAD=∠BOC,∵∠DAB=∠OBA+∠EBA,∴∠BOC=∠OBA+∠EBA,∴∠EFB=∠EBF,∴EF=EB.(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF 于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.∵∠EBA+∠G=90°,∠CFB+∠HOF=90°,∵∠EFB=∠EBF,∴∠G=∠HOF,∵∠HOF=∠EOG,∴∠G=∠EOG,∴EG=EO,∵OH⊥AB,∴AB=2HB,∵OE+EB=AB,∴GE+EB=2HB,∴GB=2HB,∴cos∠GBA==,∴∠GBA=60°,∴△EFB是等边三角形,设HF=a,∵∠FOH=30°,∴OF=2FH=2a,∵AB=13,∴EF=EB=FB=FH+BH=a+,∴OE=EF﹣OF=FB﹣OF=﹣a,OB=OC=OE+EC=﹣a+2=﹣a,∵NE=EF=a+,∴ON=OE=EN=(﹣a)﹣(a+)=﹣a,∵BO2﹣ON2=EB2﹣EN2,∴(﹣a)2﹣(﹣a)2=(a+)2﹣(a+)2,解得a=或﹣10(舍弃),∴OE=5,EB=8,OB=7,∵∠K=∠ATC=90°,∠KAC=∠TAC,AC=AC,∴△ACK≌△ACT,∴CK=CT,AK=AT,∵=,∴DC=BC,∴Rt△DKC≌Rt△BTC,∴DK=BT,∵FT=FC=5,∴DK=TB=FB﹣FT=3,∴AK=AT=AB﹣TB=10,∴AD=AK﹣DK=10﹣3=7.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点,与y轴交于点C,BO=CO.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的一动点,连接AP,交y轴于点D,连接CP,设P点横坐标为t,△CDP的面积为S,求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点P作PE⊥x轴于点E,连接PB,过点A作AF⊥PB于点F,交线段PE于点G,若点H在x轴负半轴上,PH=2GE,点M(0,m)在y轴正半轴上,连接PM、PH,∠HPM=2∠BHP,PH=2PM,求m的值.【考点】HF:二次函数综合题.【分析】(1)由ax2﹣2ax﹣3a=0时,解得x=3或﹣1,推出A(﹣1,0),B(3,0),推出OA=1,OB=3,推出OC=OB=3,推出﹣3a=3,可得a=﹣1,即可解决问题;(2)如图1中,作PE⊥x轴于E,PK⊥y轴于K.P(t,﹣t2+2t+3,由∠PAE=∠DAO,可得tan∠PAE=tan∠DAO,可得=,即=,可得OD=3﹣t,CD=3﹣OD=t,再根据S=PK•CD=计算即可;(3)首先证明△PKM≌△PKN,推出PM=PN,MK=NK,再证明△HON≌△PKN,推出PK=HO,由∠3=∠5,可得tan∠3=tan∠5,可得=,BE=OB﹣OE=3﹣t,即=,可得GE=1,推出OH=2EG=2,推出PK=2,PE=3,推出OK=3=OC,推出点K与点C重合,由此即可解决问题.【解答】解:(1)当ax2﹣2ax﹣3a=0时,解得x=3或﹣1,∴A(﹣1,0),B(3,0),∴OA=1,OB=3,∴OC=OB=3,∴﹣3a=3,∴a=﹣1,∴y=﹣x2+2x+3.(2)如图1中,作PE⊥x轴于E,PK⊥y轴于K.∵点P在第一象限,横坐标为t,∴P(t,﹣t2+2t+3),∵∠PKO=∠COB=∠PEO=90°,∴四边形KPEO是矩形,∴PK=OE=t,PE=OK,∴PE=﹣t2+2t+3,AE=t+1,∵∠PAE=∠DAO,∴tan∠PAE=tan∠DAO,∴=,∴=,∴OD=3﹣t,∴CD=3﹣OD=t,∴S=PK•CD=t2.(3)设PH交y轴于点N.∵∠PKO=∠PKM=∠HON=90°,∴PK∥x轴,∴∠1=∠PHB,∵∠MPH=2∠PHB,∴MPH=2∠1,即∠1=∠2,∵∠PKM=∠PKN,PK=PK,∴△PKM≌△PKN,∴PM=PN,MK=NK,∵PH=2PM,∴PN=HN,∵∠HON=∠PKN,∠1=∠BHP,∴△HON≌△PKN,∴PK=HO,KN=ON,∵AF⊥PB,∴∠AFB=90°,∴∠3+∠4=90°,∵∠PEB=90°,∴∠4+∠5=90°,∴∠3=∠5,∴tan∠3=tan∠5,∴=,∵BE=OB﹣OE=3﹣t,∴=,∴GE=1,∴OH=2EG=2,∴PK=2,PE=3,∴OK=3=OC,∴点K与点C重合,∴KN=,∴OM=3KN=,即m=。

2019年湖北省武汉市武昌区中考模拟数学试卷(二) (解析版)

2019年湖北省武汉市武昌区中考模拟数学试卷(二) (解析版)

2019年湖北省武汉市武昌区中考模拟数学试卷(二)一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣23.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称5.如图所示的几何体的俯视图是()A.B.C.D.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1二.填空题(共6小题)11.化简的结果是.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是(填“甲”或“乙”或“丙”或“丁”)13.化简的结果是.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了名学生,扇形统计图中,D类所对应的扇形圆心角大小为;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.参考答案与试题解析一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.【分析】依据相反数的定义求解即可.【解答】解:3的相反数是﹣3.故选:A.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+2≥0,解得x≥﹣2.故选:B.3.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球【分析】根据白色的只有两个,不可能摸出三个进行解答.【解答】解:A.摸出的是2个白球、1个黑球是随机事件;B.摸出的是3个黑球是随机事件;C.摸出的是3个白球是不可能事件;D.摸出的是2个黑球、1个白球是随机事件,故选:C.4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:∵点A(1,2),B(﹣1,2),∴点A与点B关于y轴对称,故选:B.5.如图所示的几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.【分析】分别利用有35名学生以及购票恰好用去750元,得出等式求出答案.【解答】解:设买了x张甲种票,y张乙种票,根据题意可得:.故选:B.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.【分析】首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y =﹣x+5的情况,再利用概率公式求解即可求得答案.【解答】解:列表得:12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)∵共有16种等可能的结果,数字x、y满足y=﹣x+5的有(1,4),(2,3),(3,2),(4,1),∴数字x、y满足y=﹣x+5的概率为:.故选:B.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种【分析】先确定从甲到丙的路线,再确定从丙到乙的路线,两种路线的乘积即为所求;【解答】解:从甲到丙有4条路线,从丙到乙有10条路线,∴从甲处到乙处经过丙处的走法共有4×10=40种,故选:C.9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣【分析】根据a+b+c=0,4a+c=2b,可以求得a、b、c之间的关系,从而可以求得该函数的对称轴,本题得以解决.【解答】解:∵a+b+c=0,4a+c=2b,∴c=﹣2a,a=b,∵二次函数y=ax2+bx+c(a≠0),∴对称轴是直线x==,故选:D.10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1【分析】连OM,ON,利用切线长定理知OM,ON分别平分角BMN,角CNM,再利用三角形和四边形的内角和可求得△OBM与△NOC还有一组角相等,由此得到它们相似,通过相似比可解决问题.【解答】解:连OM,ON,如图∵MD,MF与⊙O相切,∴∠1=∠2,同理得∠3=∠4,而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC∴∠2+∠3+∠B=180°;而∠1+∠MOB+∠B=180°,∴∠3=∠MOB,即有∠4=∠MOB,∴△OMB∽△NOC,∴=,∴BM•CN=BC2,∴=.故选:B.二.填空题(共6小题)11.化简的结果是.【分析】根据二次根式的性质解答.【解答】解:==.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是甲(填“甲”或“乙”或“丙”或“丁”)【分析】首先比较平均数,平均数相同时选择方差较小的参加比赛即可.【解答】解:∵=>>,∴从甲和丁中选择一人参加比赛,∵S甲2<S乙2<S丙2<S丁2,∴选择甲参赛;故答案为:甲.13.化简的结果是.【分析】首先通分,然后根据分式加减法的运算方法,求出算式的值是多少即可.【解答】解:,=+,=,=.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.【分析】根据折叠的性质得到AD=ED=AE,∠ADF=∠EDF=∠ADE,推出△DAE 的等边三角形,根据等边三角形的性质得到∠ADE=60°,求得∠ADF=30°,于是得到结论.【解答】解:如图,连接AE,∵把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,∴AD=ED=AE,∠ADF=∠EDF=ADE,∴△DAE的等边三角形,∴∠ADE=60°,∴∠ADF=30°,∴cos∠ADF=,故答案为:.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.【分析】作辅助线,先确定OQ长的最大时,点P的位置,当BP过圆心C时,BP最长,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,根据勾股定理计算t的值,可得k 的值.【解答】解:如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为2,∴BP长的最大值为2×2=4,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=3,∵B在直线y=3x上,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴32=(t+3)2+(﹣3t)2,解得t=0(舍)或﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=(﹣)×(﹣)=.故答案为:.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.【分析】作辅助线CK⊥AB,EH⊥AB,由两直线垂直得∠BMD=∠CKD=∠BHE=90°,角角边证明△CKD≌△BHE,其性质得DK=EH;设CK=x,根据直角三角的性质,线段的和差得AK=,EH=DK=x﹣,BH=4+﹣x;建立等量关系4+﹣x=x,求得CK=,DK═,最后由勾股定理,面积公式求得四边形CEDB的面积为.【解答】解:分别过点C、E两点作CK⊥AB,EH⊥AB交AB于点K和点H,设CK=x,如图所示:∵CD⊥BE,∴∠BMD=90°,∴∠EBH+∠CDB=90°,同理可得:∠EBH+∠BEH=90°,∴∠CDB=∠BEH,又∵CK⊥AB,EH⊥AB,∴∠CKD=∠BHE=90°,在△CKD和△BHE中,,∴△CKD≌△BHE(AAS),∴DK=EH,又∵Rt△AKC中,∠A=30°,∴AC=2x,AK=,又∵AC=AE+EC,CE=2,∴AE=2x﹣2,∴EH=DK=x﹣,又∵DK=DB+BK,BD=1,∴BK=x﹣﹣1,又∵AK=AH+BH+BK,∴BH=4+﹣x,又∵BH=CK,∴4+﹣x=x,解得:x=,∴DK=x﹣=,在Rt△CDK中,由勾股定理得:CD2=CK2+DK2==,∴===.故答案为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.【分析】分别求出每(2a2)2a=4a4;a•3a3=3a4;a5÷a=a4;再运算即可;【解答】解:(2a2)2﹣a•3a3+a5÷a=4a4﹣3a4+a4=2a4;18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.【分析】直接利用平行线的性质得出∠ABC=∠DCF,再利用已知得出∠E=∠F.【解答】证明:∵AB∥CD,∴∠ABC=∠DCF.又∵∠ADC=∠ABC∴∠ADC=∠DCF.∴DE∥BF.∴∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了45名学生,扇形统计图中,D类所对应的扇形圆心角大小为104°;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在C等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?【分析】(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度);(2)B等级学生:45﹣8﹣20﹣13=4,据此补全条形统计图;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).【解答】解:(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度),故答案为45,104°;(2)B等级学生:45﹣8﹣20﹣13=4补全条形统计图如下共有45名学生,因此中位数为第23,落在C等级.故答案为C;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).答:该校九年级900名学生中估计C等级的学生约有400人.20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.【分析】(1)根据要求作图即可(2)根据要求作图即可【解答】解:(1)如图所示(2)如图所示,每格单位长度都为1,即可得E(5,0),F(4,﹣2),I(2,﹣1)21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.【分析】(1)连接OG.根据切线的性质得到∠OGE=90°,证明∠EKG=∠AGE,根据等腰三角形的判定定理证明结论;(2)连接OC,设CH=4k,根据余弦的定义、勾股定理用k表示出AC、AH,根据勾股定理列式求出k,设⊙O半径为R,根据勾股定理列式求出R,根据余弦的定义求出OF,计算即可.【解答】(1)证明:连接OG.∵EF是⊙O的切线,∴∠OGE=90°,即∠OGA+∠AGE=90°.∵OA=OG,∴∠OGA=∠OAG,∴∠OAG+∠AGE=90°.∵CD⊥AB,∴∠AHK=90°,则∠OAG+∠AKH=90°.∴∠AKH=∠AGE.∵∠AKH=∠EKG,∴∠EKG=∠AGE,∴EG=EK;(2)如图,连接OC,设CH=4k,∵cos∠ACH==,∴AC=5k,由勾股定理得,AH==3k,∵AC∥EF,∴∠CAK=∠EGA,又∠AKC=∠EKG,而由(1)知∠EKG=∠EGA,∴∠CAK=∠CKA,∴CK=AC=5k,HK=CK﹣CH=k.在Rt△AHK中,AH2+HK2=AK2,即(3k)2+k2=()2,解得,k=1,则CH=4,AC=5,AH=3,设⊙O半径为R,在Rt△OCH中,OH2+CH2=OC2,即(R﹣3)2+42=R2,解得,R=,由AC∥EF知,∠CAH=∠F,则∠ACH=∠GOF,在Rt△OGF中,cos∠ACH=cos∠GOF==,解得,OF=,∴BF=OF﹣OB=.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.【分析】(1)设该科幻小说第一次购进m套,根据题意列方程即可得到结论;(2)根据题意列函数关系式即可;(3)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)求得对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,解方程得到a1=2,a2=58,于是得到a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;解方程得到a=,但6<a<7,故舍去.于是得到结论.【解答】解:(1)设该科幻小说第一次购进m套,则=,∴m=1000,经检验,当m=1000时,m(m+500)≠0,则m=1000是原方程的解,答:该科幻小说第一次购进1000套;(2)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(3)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960∴a1=2,a2=58,又0<a≤6,则a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;∴当x=38时,w取得最大值,则(38﹣20﹣a)(﹣10×38+500)=1960,∴a=,但6<a<7,故舍去.综上所述,a=2.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)【分析】(1)设AC=2k,BC=3k,求出AD,BD即可解决问题.(2)过点P作PG∥AC交AB于点G.证明△PCE∽△PGF,即可解决问题.(3)设PF=x,AP=2nx,利用勾股定理构建方程求出n即可.【解答】解:(1)如图1中,∵BC=AC,∴可以假设AC=2k,BC=3k,∵∠ACB=∠ADC=90°,∴AB=k,∵•AC•BC=•AB•CD,∴CD=k,∴AD==k,BD=k,∴=,故答案为.(2)过点P作PG∥AC交AB于点G.∴∠PGF=∠CAD,∠GPC=90°,∵CD⊥AB,∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠PCE=90°,∴∠PCE=∠CAD,∴∠PCE=∠PGF,又∵PF⊥AP,∴∠CPE+∠APG=∠FPG+∠APG=90°,∴∠CPE=∠GPF,∴△PCE∽△PGF,∴=,又∵点P是BC的中点,∴AC=2PG,∴==n.(3)由(2)可知=n,则可以假设PF=x,PE=nx,∵∠GPB=90°,PF=BF,则PF=BF=GF=x,则AG=2x,∵△PCE∽△PGF,∴==n,则CE=nGF=nx,又∵∠ACB=90°,则AE=PE=nx,在Rt△APF中,AP2+PF2=AF2,则x2+(2nx)2=(3x)2,∴n=,故答案为.24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.【分析】(1)抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x ﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,即可求解;(2)分点G在点B下方、点G在点B上方两种情况,分别求解即可;(3)由△P AS∽△BPT,则,即可求解.【解答】解:(1)∵抛物线过点A(1,0),且对成轴为直线x=2,则抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),令x=0则3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3…①;(2)过点B作BM∥x轴交对称轴于点M,设对称轴与x轴交于点N.∴,又AN=1,则BM=2,点B的坐标为(4,3),∵直线AB的解析式为y=kx+m,则,则,则y=x﹣1,①若点G在点B下方,则过点G作GQ∥y轴交AB于Q,则设点G(t,t2﹣4t+3),Q (t,t﹣1),∴S△BAG=6=S△AQG+S△BGQ=GQ×3=(t﹣1﹣t2+4t﹣3),即:t2﹣5t+8=0,△<0,无解;②若点G在点B上方,则过点G作GH∥AB交x轴于H,则S△BAG=6=S△ABH,即:AH×3=6,则AH=4,则H(﹣3,0),则可设直线GH的解析式为:y=x+t,将H(﹣3,0)代入得,t=3.∴直线GH的解析式为y=x+3…②,联立①②并解得:x=0或5(舍去0),∴G(5,8);(3)分别过点A,B作直线y=﹣的垂线,垂足分别为S,T,则△P AS∽△BPT,则,直线l的解析式为y=kx﹣k…③,联立①③并解得:x=1或k+3,则点B(k+3,k2+2k),设:PS=x,则x(k+2﹣x)=(k2+2k+)有两个相等实数根,△=(k+2)2﹣2k2﹣4k﹣1=0,解得:k=(舍去负值),故:k=.。

新疆乌鲁木齐市多校联合2019年中考数学模拟试卷(解析版)(5月份)

新疆乌鲁木齐市多校联合2019年中考数学模拟试卷(解析版)(5月份)

2019年新疆乌鲁木齐市多校联合中考数学模拟试卷(5月份)一、选择题(共9小题,每小题5分,共45分)每题的选项中只有一项符合题目要求1.(5分)3的相反数是(A. - 3B. D.1_~32.(5 分)如图,AB//CD,匕1 = 30° ,则匕2的度数是(3. A. 120° B.130°C.150°D.135°(5分)下列运算正确的是()a 2,2 4A. x +x =工D 3. 2 6B. x =x C.C 4 ・ 2_o 22x —x —2xD.(3x) 2 = 6*23)C ' 1)4. (5分)如图所示的几何体的主视图是)A.C. D.□5.(5分)小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是(A.平均数B.中位数C.众数D.方差)(5分)下列对一元二次方程 Ax -3=。

根的情况的判断,正确的是()6. A.有两个不相等实数根 B.有两个相等实数根C.有且只有一个实数根D.没有实数根7. (5 分)如图,AB 是的直径,弦 CD±AB 于点 E, OC=5cm, CD=8cm,则 AE=(cDA.8cmB.5cmC.3cmD.2cm8.(5分)学校有〃位师生乘坐m辆客车外出参观,若每辆客车坐45人,则还有28人没有上车;若每辆客车坐50人,则空出一辆客车,并且有一辆还可以坐12A.下列五个式子:@45/^+28=50(m-1)-12;②45m+28=50m-(12+50);②n+28_n+12@n-28n+(50+12)45~5045~50-⑤45m+28=50(m- 2)+38.其中正确的有()A.1个B.2个C.3个D.4个9.(5分)如图,在正方形ABCD中,E,F分别为AO,的中点,P为对角线位)上的一个动点,则下列线段的长等于AF+EP最小值的是()A.ABB.DEC.BDD.AF二、填空题(共6小题,每小题5分,共30分)请把答案填在答卷中的相应位置处.10.(5分)一个暗箱里装有10个黑球,8个白球,6个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是.(2x-l>011.(5分)不等式组的解集是_______.3x>2x+212.(5分)直线y=kx与双曲线y=:Z交于点(a,1),则.x13.(5分)国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是.14.(5分)如图,在RtAABC中,ZC=90°,ZBAC=60°,将AABC绕点A逆时针旋转60°后得到若AC=l,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留It).15.(5分)如图,正方形ABCD的边长是2,点E是CD边的中点,点F是边BC上不与点B,C重合的一个动点,把ZC沿直线EF折叠,使点。

中考第一次模拟测试《数学卷》含答案解析

中考第一次模拟测试《数学卷》含答案解析

一、选择题(每小题3分,共12小题,满分36分)1.(2019·温州)计算:(-3)×5的结果是A.-15 B.15 C.-2 D.22.(2019•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.3.(2019·浙江温州)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为A.0.25×1018B.2.5×1017C.25×1016D.2.5×10164.(2019•福建)如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.5.(2019•广东)数据3,3,5,8,11的中位数是A.3 B.4 C.5 D.66.(2019·浙江衢州)下列计算正确的是A.a6+a6=a12B.a6×a2=a8C.a6÷a2=a3D.( a6)2=a87.(2019•甘肃)如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是A.48°B.78°C.92°D.102°8.(2019•湖南长沙)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A. 303 n mileB. 60 n mileC. 120 n mileD. (30303)+n mile9.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--10.(2019•南充)关于x 的一元一次方程2x a –2+m =4的解为x =1,则a +m 的值为 A .9B .8C .5D .411.(2019•山西)不等式组13224x x ->⎧⎨-<⎩的解集是A .x >4B .x >-1C .-1<x <4D .x <-112.(2019•安徽)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE +PF =9的点P 的个数是( )A. 0B. 4C. 6D. 8二、填空题(每小题3分,共4小题,满分12分)13.(2019·浙江台州)分解因式:ax 2–ay 2=__________.14. (2019•江苏苏州)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________15.(2019•广州增城)如图,点P 为等边ABC △内一点,若3PC =,4PB =,5PA =,则BPC ∠的度数是__________.16.(2019·浙江宁波)如图,过原点的直线与反比例函数y kx=(k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为__________.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.(2019·湖南益阳)计算:0114sin 60(2019)()232-+--+-.18.(2019•福建)先化简,再求值:(x -1)÷(x -21x x-),其中x 2+119.(2019•安徽)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格: 编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸(cm) 8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08 b 按照生产标准,产品等次规定如下:尺寸(单位:cm) 产品等次8.97≤x≤9.03 特等品8.95≤x≤9.05 优等品8.90≤x≤9.10 合格品x<8.90或x>9.10 非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)仅算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值,(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.20.(2019•吉林)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离CE(结果精确到1cm).(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)21.(2019•湖南娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱) 销售价(元/箱)甲25 35乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元? 22.(2019•广东)如图1,在平面直角坐标系中,抛物线y =233373848x x +-与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE . (1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答这样的点P 共有几个?23.(2019•福建)如图,四边形ABCD 内接于⊙O ,AB =AC ,AC ⊥BD ,垂足为E ,点F 在BD 的延长线上,且DF =DC ,连接AF 、CF .(1)求证:∠BAC =2∠CAD ;(2)若AF =10,BC =45,求tan ∠BAD 的值.答案与解析一、选择题(每小题3分,共12小题,满分36分)1.(2019·温州)计算:(-3)×5的结果是A.-15 B.15 C.-2 D.2【答案】A【解析】(-3)×5=-15,故选A.2.(2019•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.【答案】A【解析】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:A.3.(2019·浙江温州)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016【答案】B【解析】科学记数法表示:250000000000000000=2.5×1017,故选B.4.(2019•福建)如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.【答案】C【解析】几何体的主视图为:,故选C.5.(2019•广东)数据3,3,5,8,11的中位数是A.3 B.4 C.5 D.6【答案】C【解析】把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是5.故选C.6.(2019·浙江衢州)下列计算正确的是A.a6+a6=a12B.a6×a2=a8C.a6÷a2=a3D.( a6)2=a8【答案】B【解析】A、a6+a6=2a6,故此选项错误;B、a6×a2=a8,故此选项正确;C、a6÷a2=a4,故此选项错误;D、(a6)2=a12,故此选项错误;故选B.7.(2019•甘肃)如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是A.48°B.78°C.92°D.102°【答案】D【解析】∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°,∴∠2=∠3=180°–48°–30°=102°.故选D.8.(2019•湖南长沙)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A. 303 n mileB. 60 n mileC. 120 n mileD. (30303)+n mile【答案】D【解析】过C 作CD ⊥AB 于D 点,∴∠ACD =30°,∠BCD =45°,AC =60. 在Rt △ACD 中,cos ∠ACD =CDAC, ∴CD =AC •cos ∠ACD =603303= 在Rt △DCB 中,∵∠BCD =∠B =45°, ∴CD =BD =3∴AB =AD +BD =30+3答:此时轮船所在的B 处与灯塔P 的距离是(30+3nmile . 故选D .9.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--【答案】D【解析】()226534y x x x =-+=--,即抛物线的顶点坐标为()3,4-,把点()3,4-向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为()4,2-,所以平移后得到的抛物线解析式为()242y x =--.故选D .10.(2019•南充)关于x 的一元一次方程2x a –2+m =4的解为x =1,则a +m 的值为 A .9 B .8C .5D .4【答案】C【解析】因为关于x 的一元一次方程2x a –2+m =4的解为x =1,可得:a –2=1,2+m =4,解得:a =3,m =2,所以a +m =3+2=5,故选C .11.(2019•山西)不等式组13224x x ->⎧⎨-<⎩的解集是A .x >4B .x >-1C .-1<x <4D .x <-1【答案】A【解析】13224x x ->⎧⎨-<⎩①②,由①得:x >4,由②得:x >-1,不等式组的解集为:x >4,故选A . 12.(2019•安徽)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE +PF =9的点P 的个数是( )A. 0B. 4C. 6D. 8【答案】D【分析】P 点是正方形的边上的动点,我们可以先求PE +PF 的最小值,然后根据PE +PF =9判断得出其中一边上P 点的个数,即可解决问题.【解析】如图,作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM2245EC+=CM则在线段BC存在点H到点E和点F的距离之和最小为59在点H右侧,当点P与点C重合时,则PE+PF=12∴点P在CH上时,5PE+PF≤12在点H左侧,当点P与点B重合时,BF22210FN+=BN∵AB=BC,CF=AE,∠BAE=∠BCF∴△ABE≌△CBF(SAS)∴BE=BF=10∴PE+PF=10∴点P在BH上时,5PE+PF<10∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.二、填空题(每小题3分,共4小题,满分12分)13.(2019·浙江台州)分解因式:ax2–ay2=__________.【答案】a(x+y)(x–y)【解析】ax2–ay2=a(x2–y2)=a(x+y)(x–y).故答案为:a(x+y)(x–y).15. (2019•江苏苏州)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________【答案】827【解析】小正方体的个数为3×3×3=27个由图直接数出恰有三个面涂有红色的小正方体的个数为8个, 所以取得的小正方体恰有三个面涂有红色的概率为827,故填82715.(2019•广州增城)如图,点P 为等边ABC △内一点,若3PC =,4PB =,5PA =,则BPC ∠的度数是__________.【答案】150°【解析】以BP 为边作等边BPD △,连接AD ,如图,则460BD BP DP DBP BDP ===∠=∠=︒,, ∵ABC △是等边三角形,∴60AB BC ABC =∠=︒,, ∵60ABD ABP CBP ABP ∠+∠=∠+∠=︒,∴ABD CBP ∠=∠,在△ABD 与△CBF 中,AB BC ABD CBP BD BP =⎧⎪∠=∠⎨⎪=⎩,∴ABD CBP △≌△,∴3BPC BDA AD PC ∠=∠==,,在ADP △中,∵543PA PD AD ===,,, ∴222AP DP AD +=, ∴APD △是直角三角形, ∴90ADP ∠=︒,∴150ADB ADP BDP ∠=∠+∠=︒, ∴150BPC ∠=︒.16.(2019·浙江宁波)如图,过原点的直线与反比例函数y kx=(k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为__________.【答案】6【解析】如图,连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF ,∵过原点的直线与反比例函数y kx=(k >0)的图象交于A ,B 两点, ∴A 与B 关于原点对称, ∴O 是AB 的中点, ∵BE ⊥AE , ∴OE =OA , ∴∠OAE =∠AEO , ∵AE 为∠BAC 的平分线, ∴∠BAE =∠DAE , ∴∠DAE =∠AEO , ∴AD ∥OE , ∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8, ∴S △ACE =S △AOC =12, 设点A (m ,k m), ∵AC =3DC ,DH ∥AF , ∴3DH =AF , ∴D (3m ,3k m), ∵CH ∥GD ,AG ∥DH , ∴△DHC ∽△AGD , ∴S △HDC 14=S △ADG , ∵S△AOC =S△AOF+S梯形AFHD+S△HDC1122k =+⨯(DH +AF )×FH +S △HDC114223k k m =+⨯⨯2m 112142243236k k km k m +⨯⨯⨯=++=12, ∴2k =12,∴k =6; 故答案为6.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.(2019·湖南益阳)计算:0114sin 60(2019)()2-+--+-.【解析】原式=41﹣2+=1.18.(2019•福建)先化简,再求值:(x -1)÷(x -21x x-),其中x +1【答案】1+2【解析】原式=(x −1)÷2221(1)(1)1x x x xx x x x -+=-⋅=--,当x +1时,1=. 19.(2019•安徽)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格:按照生产标准,产品等次规定如下:注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)仅算在内. (1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由 (2)已知此次抽检出的优等品尺寸的中位数为9cm. (i )求a 的值,(ii )将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于9cm ,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率. 【答案】(1)不合格,见解析;(2)(i )a =9.02,(ii )49.【解析】(1)不合格.因为15×80%=12,不合格的有15-12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴8.98a=92,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种,∴抽到两种产品都是特等品的概率P=4 921.(2019•吉林)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离CE(结果精确到1cm).(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)【答案】花洒顶端C到地面的距离CE为192cm.【解析】如图,过点C作CF⊥AB于F,则∠AFC=90°,在Rt△ACF中,AC=30,∠CAF=43°,∵cos∠CAF=AF AC,∴AF =AC •cos ∠CAF =30×0.73=21.9,∴CE =BF =AB +AF =170+21.9=191.9≈192(cm). 答:花洒顶端C 到地面的距离CE 为192cm .21.(2019•湖南娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:求:(1)购进甲、乙两种矿泉水各多少箱? (2)该商场售完这500箱矿泉水,可获利多少元?【答案】(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元.【解析】(1)设购进甲矿泉水x 箱,购进乙矿泉水y 箱,依题意,得:500253514500x y x y +=⎧⎨+=⎩,解得:300200x y =⎧⎨=⎩.答:购进甲矿泉水300箱,购进乙矿泉水200箱. (2)(3525)300(4835)2005600-⨯+-⨯=(元). 答:该商场售完这500箱矿泉水,可获利5600元.22.(2019•广东)如图1,在平面直角坐标系中,抛物线y =2848x x +-与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE . (1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?【答案】(1)A (1,0),B (–7,0),D (–3,–23);(2)见解析;(3)①点P 的横坐标为–11或–373或–53;②这样的点P 共有3个. 【解析】(1)令233373848x x +-=0, 解得x 1=1,x 2=–7.∴A (1,0),B (–7,0). 由y =233373848x x +-=23(3)238x +-得,D (–3,–23);(2)∵DD 1⊥x 轴于点D 1,∴∠COF =∠DD 1F =90°,∵∠D 1FD =∠CFO ,∴△DD 1F ∽△COF ,∴11D D COFD OF=, ∵D (–3,–23), ∴D 1D =23,OD =3,∵AC =CF ,CO ⊥AF ,∴OF =OA =1, ∴D 1F =D 1O –OF =3–1=2,∴321OC=, ∴OC 3∴CA =CF =FA =2,∴△ACF 是等边三角形,∴∠AFC =∠ACF , ∵△CAD 绕点C 顺时针旋转得到△CFE , ∴∠ECF =∠AFC =60°,∴EC ∥BF , ∵EC =DC=6, ∵BF =6,∴EC =BF ,∴四边形BFCE 是平行四边形; (3)∵点P 是抛物线上一动点, ∴设P 点(x2x x +-), ①当点P 在B 点的左侧时, ∵△PAM 与△DD 1A 相似, ∴11DD D A PM MA =或11DD D AAM PM=,41x =-=,解得:x 1=1(不合题意舍去),x 2=–11或x 1=1(不合题意舍去)x 2=–373; 当点P 在A 点的右侧时, ∵△PAM 与△DD 1A 相似,∴11DD PM AM D A =或11D APM MA DD =,∴284814x x x +=-或28481x x x -=-, 解得:x 1=1(不合题意舍去),x 2=–3(不合题意舍去)或x 1=1(不合题意舍去),x 2=–53(不合题意舍去); 当点P 在AB 之间时, ∵△PAM 与△DD 1A 相似, ∴PMAM =11DD D A 或PM MA =11D A DD ,∴28481x x x +-=-或28481x x x -=-,解得:x1=1(不合题意舍去),x2=–3(不合题意舍去)或x1=1(不合题意舍去),x2=–53;综上所述,点P的横坐标为–11或–373或–53;②由①得,这样的点P共有3个.23.(2019•福建)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.【解析】(1)∵AB=AC,∴AB AC=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°-∠BAC)=90°-∠BAC,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=5设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==。

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)一.选择题(满分30分,每小题3分)1.我市有一天的最高气温为5℃,最低气温为﹣4℃,则这天的最高气温比最低气温高()A.9℃B.4℃C.﹣4℃D.﹣9℃2.下列运算中,计算正确的是()A.(3a2)3=27a6B.(a2b)3=a5b3C.x6+x2=x3D.(a+b)2=a2+b23.下列图形中,可以看作是中心对称图形的是()A.B.C.D.4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣15.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.6.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3 B.k<3 C.k≥3 D.k>37.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.148.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. +=t B. +=tC.•+•=t D. +=t9.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2B.4 C.8 D.410.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为()A.购买A类会员卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.因式分解:4x2y﹣9y3=.14.若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.计算结果为.16.如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为.17.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为cm.18.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是.19.如图,P是边长为3的等边△ABC边AB上一动点,沿过点P的直线折叠∠B,使点B落在AC上,对应点为D,折痕交BC于E,点D是AC的一个三等分点,PB的长为.20.如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F,点M是线段CE延长线上的一点,且∠MAF为直角,则DM的长为.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式÷(﹣2)的值,其中x=2sin60°+tan45°.22.(7分)在如图所示的方格纸中,将等腰△ABC绕底边BC的中点O旋转180°.(1)画出旋转后的图形;(2)观察:旋转后得到的三角形与原三角形拼成什么图形?(3)若要使拼成的图形为正方形,那么△ABC应满足什么条件?23.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.24.(8分)已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.25.(10分)某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(进价、售价均保持不变,利润=销售总收入﹣进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?26.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.(1)如图1,求证:OE=AD;(2)如图2,连接CE,求证:∠OCE=∠ABD;(3)如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.27.(10分)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.参考答案一.选择题1.解:5﹣(﹣4)=5+4=9℃.故选:A.2.解:A、(3a2)3=27a6,故A正确;B、(a2b)3=a6b3,故B错误;C、x6与x2不是同类项,不能合并,故C错误;D、(a+b)2=a2+2ab+b2,故D错误;故选:A.3.解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.4.解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.5.解:几何体的俯视图是:故选:C.6.解:∵双曲线y=在每一个象限内,y随x的增大而减小,∴k﹣3>0∴k>3故选:D.7.解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .8.解:设小水管的注水速度为x 立方米/分钟,可得:,故选:C .9.解:∵四边形ABCD 是平行四边形, ∴BC =AD =6,OA =OC , ∵AC ⊥BC ,AB =10, ∴==8,∴AO =CO =AC =4, ∴OB ===2;故选:A.10.解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当40≤x≤50时,1050≤y A≤1300;1000≤y B≤1200;1000≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.二.填空题11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.解:原式=y(4x2﹣9y2)=y(2x+3y)(2x﹣3y),故答案为:y(2x+3y)(2x﹣3y)14.解:解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:﹣2≤m<1,故答案为﹣2≤m<1.15.解:原式===x.故答案为:x.16.解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.=lr17.解:∵S扇形∴120π=•10π•r∴r=24;故答案为24.18.解:由题意得:=解得:n=16;故答案为:16.19.解:两种情形:①如图1中,当AD=AC=1时,设PB=x,∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∵∠PDE=∠B=60°,∠PDC=∠PDE+∠EDC=∠A+∠APD,∴60°+∠EDC=60°+∠APD,∴∠EDC=∠APD,∴△APD∽△CDE,∴==,∴==,∴BE=DE=,EC=,∵BE+EC=3,∴+=3,∴x=.②如图2中,当AD=AC=2时,由△APD∽△CDE,可得==,∴==,∴DE=,EC=,∵BE+EC=3,∴=3,∴x=,综上所述,PB的长为或.20.解:作MN⊥AD垂足为N.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,∵BF=BF,∴△BFA≌△BFC,∴∠BAF=∠BCF=∠CED=∠AEM,∵∠MAF=∠BAD=90°,∴∠BAF=∠MAE,∴∠MAE=∠AEM,∴MA=ME∵AE=ED=AD=2,∴AN=NE==1,∵∠MNE=∠CDE=90°,∴MN∥CD,∴=,∵CD=4,∴MN=2,在RT△MND中,∵MN=2,DN=3,∴DM===,故答案为.三.解答题21.解:原式=÷=÷=•=,当x=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)旋转后的图形如图所示.(2)旋转后得到的三角形与原三角形拼成菱形.理由:设△ABC绕0旋转180°后得到△A′B′C′,则△ABC≌△A′B′C′,∵O是BC的中点,∴B点的对应点B′与C重合,C点的对应点C′与B重合,∴A′B=AC,A′C=AB,∵AB=AC,∴A′B=AB=AC=A′C,∴四边形ABA’C是菱形.(3)当△ABC是等腰直角三角形时,拼成的图形是正方形.理由:由(2)知,四边形ABA,C是菱形,又因为∠BAC=90°,所以四边形ABA’C是正方形.23.解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.24.解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED 的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EFC中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CEB中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴FA=FC,∴FE=FB,∴△BEF是等腰三角形.25.解:(1)设A、B两种型号的空调的销售单价分别为x元,y元,根据题意,得:,解得:,答:A、B两种型号的空调的销售单价分别为2500元,2100元;(2)设采购A种型号的空调a台,则采购B型号空调(30﹣a)元,根据题意,得:2000a+1700(30﹣a)≤54000,解得:a≤10,答:A种型号的空调最多能采购10台.26.解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD.(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∵∠BOA=60°,∴∠EOC=60°,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD.(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.27.解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=3,∴∠OBC=∠OCB=45°,AM=MB=AB sin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△PBC∵﹣<0,故S有最大值,此时x=,△PBC故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,AQ+Q C最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.。

2019年最新广东省中考数学模拟试卷及答案解析

2019年最新广东省中考数学模拟试卷及答案解析

2019年最新广东省中考数学模拟试卷及答案解析广东省中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.数字1的倒数是()。

A。

-2.B。

2.C。

1.D。

-12.下列图案中既是中心对称图形,又是轴对称图形的是()。

A。

B。

C。

D。

3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为xxxxxxxx00人,这个数用科学记数法表示为()。

A。

44×10^8.B。

4.4×10^9.C。

4.4×10^8.D。

4.4×10^104.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()。

A。

32,31.B。

31,32.C。

31,31.D。

32,355.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()。

A。

35°。

B。

45°。

C。

50°。

D。

55°6.下列运算正确的是()。

A。

2a+3b=5ab。

B。

a^2·a^3=a^5.C。

(2a)^3=6a^3.D。

a^6+a^3=a^97.一元二次方程x^2-4x+2=0的根的情况是()。

A。

有两个不相等的实数根。

B。

有两个相等的实数根C。

只有一个实数根。

D。

没有实数根8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()。

A。

10.B。

13.C。

17.D。

13或179.不等式组的解集在数轴上表示正确的是()。

A。

B。

C。

D。

10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC-CD-DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm^2),则y关于x的函数图象是()。

2019届九年级数学 中考模拟试卷含解析

2019届九年级数学 中考模拟试卷含解析

2019届浙教版九年级中考数学模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9C.10 D.113.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45D.475.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣29.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4=.12.(4分)要使分式有意义,则字母x的取值X围是.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m=.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号【分析】根据题意,利用有理数的乘法法则判断即可.【解答】解:a,b,c为非零有理数,它们的积必为正数的是a>0,b与c同号.故选:A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9 C.10 D.11【分析】根据已知中三视图,由正视图和侧视图可判断该楼的层数,进而解答即可.【解答】解:由主视图和左视图发现该楼一共有三层,房子的最多间数见俯视图:2+2+2+3+1=10,故选:C.【点评】此题考查了由三视图判断几何体的知识,解题的关键是根据主视图和左视图中小长方形的层数确定楼的层数.3.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣【分析】首先得出的取值X围,进而分别得出a,b的值进而得出答案.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴5+的整数部分为a=8,5﹣的小数部分为b:5﹣﹣1=4﹣,∴a+b=12﹣.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.47【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:把这些数从小到大排列为:40,42,43,45,47,47,58,最中间的数是45,故这组数据的中位数是45.故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=【分析】根据切线的性质、切线长定理判断即可.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴∠PAO=∠PBO=90°,OP平分∠APB,PA=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.【点评】本题考查的是切线的性质,掌握切线长定理是解题的关键.6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C. D.【分析】根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.【点评】本题考查了平方根的定义,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:D.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣2【分析】根据题意和平移的特点,可以求得点BB随之运动得到的图象的函数表达式,从而可以解答本题.【解答】解:∵半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴,∴当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为:y=(x﹣3﹣1)2﹣1=(x﹣4)2﹣1,故选:A.【点评】本题考查二次函数图象上点的坐标特征、平移的性质,解答本题的关键是明确点B 是点A向右平移一个单位长度的对应点.9.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM ≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB 中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【解答】解:延长AG交CD于M,如图1∵ABCD是正方形∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC∵AD=CD,∠ADB=∠BDC,DG=DG∴△ADG≌△DGC∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC∴△ADM≌△CDF∴FD=DM且AE=DF∴AE=DM且AB=AD,∠ADM=∠BAD=90°∴△ABE≌△ADM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°∴∠BAM+∠ABE=90°,即∠AHB=90°∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD==∵DH≥OD﹣OH∴DH≥﹣1∴DH的最小值为﹣1故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1【分析】如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.只要证明△AOH∽△OCJ,可得=()2,推出=,由此即可解决问题;【解答】解:如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.∵CA=CB,OA=OB,∴CO⊥AB,∵cos∠CAB==,设AO=k,AC=5k,则OC=2k,∴OC=2OA,∵∠AHO=∠CJO=∠AOC=90°,∴∠AOH+∠COJ=90°,∠COJ+∠OCJ=90°,∴∠AOH=∠OCJ,∴△AOH∽△OCJ,∴=()2,∴=,∴k2=﹣4k1,故选:D.【点评】本题考查反比例函数图象上的点的特征,解直角三角形、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4= 4(2m+1)(2m﹣1).【分析】原式提取4,再利用平方差公式分解即可.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)要使分式有意义,则字母x的取值X围是x≠﹣3 .【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.【点评】本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m= ﹣1 .【分析】根据反比例函数的一般形式,可以得到x的次数是﹣1;根据当x>0时,y随x的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:,解得:m=﹣1.故答案为﹣1【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= 3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x 2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来;(2)根据分式的加减法的法则计算即可.【解答】解:(1)解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:,(2)++=﹣+==.【点评】本题考查的是分式的加减法,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=【分析】根据平方差公式、完全平方公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:原式=x2﹣y2﹣(x2﹣2xy+y2)﹣xy+2y2=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2018,y=时,原式=2018×=1.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的方法.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.【分析】(1)根据等腰三角形的定义和正切函数的定义确定点C位置,据此连接三顶点即可得;(2)根据平行四边形的定义作图可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,▱ABCD即为所求,CE==.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握等腰三角形、平行四边形及正切函数的定义、勾股定理.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【解答】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC∴BC=2DF=2.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S 四边形DBEC=2S△BCD=S△ABC=AB•BC=×4×2=4.【点评】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题,难度中等.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.【点评】本题考查了条形统计图、全面调查和抽样调查、总体、个体、样本、样本容量、用样本估计总体以及扇形统计图,解题的关键是:(1)用喜欢“转发内容”的人数÷其所占样本容量的比例求出样本容量;(2)用样本容量减去A、C、D、E的数据,求出喜欢给别人评论的人数;(3)根据扇形统计图,列式计算;(4)根据数量关系,列式计算.22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.【分析】应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.【解答】解:过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)∵PQ∥MN,DH∥CA∴四边形CAHD是平行四边形.∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)在Rt△DBG中,∵∠DBG=∠BDG=45°,∴BG=DG,设BG=DG=x,在Rt△DHG中,得HG=x,(6分)又BH=AB﹣AH=110﹣50=60,∴60+x=x,∴x=30+30≈82.0(米).答:河流的宽为82.0米.(7分)【点评】本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.【分析】(1)根据图象坐标求出BC解析式;(2)①根据(1)中函数关系式,求点D坐标;②根据图象求出甲乙两车速度,计算MN距离;(3)由②中乙的速度列出s乙与时间t(h)的函数表达式,并画图象.【解答】解:(1)根据图象,点C表示甲行驶1.5小时时,甲乙两车相遇.设直线BC的函数解析式为:y=kt+b把B(0.5,60),D(1.5,0)解得∴BC解析式为:y=﹣60t+90(2)①把t=2.25代入y=﹣60t+90y=﹣60×2.25+90=45∴点D坐标为(2.25,45)②设甲的速度为akm/h,乙的速度为bkm/h由题意得∴∴MN之间距离为:3.5×20=70km(3)乙离M地的路程为s乙=70﹣40t【点评】本题为一次函数实际应用问题,考查一次函数图象的实际意义,待定系数法求函数关系式和二元一次方程组.。

2019年浙江省丽水市莲都区中考数学模拟试卷(6月份)(解析版)

2019年浙江省丽水市莲都区中考数学模拟试卷(6月份)(解析版)

2019年浙江省丽水市莲都区中考数学模拟试卷(6月份)一、选择题(本大题共10小题,共30.0分)1.-2的相反数是()A. 2B.C.D.2.计算:(-a2)3()A. B. C. D.3.下列立体图形中,主视图是三角形的是()A.B.C.D.4.分式-可变形为()A. B. C. D.5.如图,要测量小河两岸相对的A、B两点之间的距离,可以在小河边取AB的垂线BC上的一点D,若测得BD=60米,∠ADB=40°,则AB等于()A. 米B. 米C. 米D. 米6.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为()A. B. C. D.7.三角形的两边长分别为3和4,第三边长是方程x2-13x+40=0的根,则该三角形的周长是()A. 12B. 13C. 15D. 12或158.在平面直角坐标系中,将点A(-1,1)向右平移2个单位长度得到点B,则点B关于x轴的对称点B的坐标为()A. B. C. D.9.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.B.C.D.10.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A. 乙的速度是甲速度的倍B.C. 学校到新华书店共3800米D. 甲第25分钟到达新华书店二、填空题(本大题共6小题,共24.0分)11.分解因式:2m2-2=______.12.若a-2b=-3,则代数式1-a+2b的值为为______.13.某校901班共有50名同学,如图是该次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数),则测试成绩的中位数所在的组别是______.14.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AEC=40°,则∠BDC的度数为______.15.如图①,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若直角三角形一个锐角为30°,将各三角形较短的直角边分别向外延长一倍,得到图②所示的“数学风车”设AB=a,则图中阴影部分面积为______(用含a的代数式表示)16.如图,矩形纸片ABCD中,AB=4,点E在边CD上移动连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′CE,点B、C的对应点分别为点B′、C′(1)当点E与点C重合时,设B′C′与AD的交点为F,若AD=4DF,则AD=______(2)若AD=6,B′C′的中点记为P,则DP的取值范围是______三、解答题(本大题共8小题,共66.0分)17.计算:.18.解方程组:19.图是5×5的网格图,每个小正方形的边长为1,请按要求作格点图形(图形的每个顶点都在格点上)(1)在图①中以线段PQ为一边作一个等腰直角三角形;(2)在图②中,作△DEF相似于△ABC,且△ABC与△DEF的相似比是1:.20.为做好全国文明城市的创建工作,我市交警连续10天对某路口100个“50岁以下行人”和100个“50岁及以上行人”中出现交通违章的情况进行了调查统计,将所得数据绘制成如下统计图.请根据所给信息,解答下列问题(1)求这10天“50岁及以上行人”中每天违章人数的众数;(2)某天中午下班时段经过这一路口的“50岁以下行人”为300人,请估计大约有多少人会出现交通违章行为;(3)请选择适当的统计量分析“岁以下行人”和“30岁以行人”交通违章行为的现并就“文明城市创建减少交通违章”提出合理建议.21.已知,平面直角坐标系中,关于x的二次函数y=x2-2mx+m2-2(1)若此二次函数的图象过点A(-1,-2),求函数的表达式;(2)若(x1,y1),(x2,y2)为此二次函数图象上两个不同点,且x1+x2=4时y1=y2,试求m的值;(3)点P(-2,y3)在抛物线上,求y3的最小值.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CAB=2∠CBF(1)求证:直线BF是⊙O的切线;(2)若BC=2,sin∠CBF=,求BF的长.23.平面直角坐标系中,横坐标为2的点A在反比例函数y=(k>0)的图象上,过点A作AB⊥x轴于点B,.(1)求k的值;(2)在x轴的负半轴上找点P,将点A绕点P顺时针旋转90°,其对应点A落在此反比例函数第三象限的图象上,求点P的坐标;(3)直线y=x+n(n<0)与AB的延长线交于点C,与反比例函数图象交于点E,若点E到直线AB 的距离等于AC,求n的值.24.如图,在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点P为对角线BD上的动点,设BP=t(t>0),作PH⊥BC于点H,连接EP并延长至点F,使得PF=PE,作点F关于BD的对称点G,FG交BD于点Q,连接GH,GE.(1)求证:EG∥PQ;(2)当点P运动到对角线BD中点时,求△EFG的周长;(3)在点P的运动过程中,△GEH是否可以为等腰三角形?若可以,求出t的值;若不可以,说明理由.答案和解析1.【答案】A【解析】解:-2的相反数是:-(-2)=2,故选:A.根据一个数的相反数就是在这个数前面添上“-”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】B【解析】解:(-a2)3=-a6,故选:B.根据积的乘方计算即可.此题考查积的乘方,关键是根据法则进行计算.3.【答案】C【解析】解:A、正方体主视图是正方形,故此选项错误;B、圆柱主视图是矩形,故此选项错误;C、圆锥主视图是三角形,故此选项正确;D、三棱柱主视图是矩形(中间有一条虚线),故此选项错误;故选:C.主视图是从物体正面看所得到的图形,据此作答.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.【答案】D【解析】解:-=-=,故选:D.先提取-1,再根据分式的符号变化规律得出即可.本题考查了分式的基本性质的应用,能正确根据分式的基本性质进行变形是解此题的关键,注意:分式本身的符号,分子的符号,分母的符号,变换其中的两个,分式的值不变.5.【答案】A【解析】解:在Rt△ABD中,∠ABD=90°,∠ADB=40°,BD=60米,∴tan∠ADB=,∴AB=BD•tan∠ADB=60tan40°米.故选:A.在Rt△ABD中,利用正切的定义可得出tan∠ADB=,代入数据后即可求出AB的长度,此题得解.本题考查了解直角三角形的应用,利用正切的定义,找出AB=BD•tan∠ADB是解题的关键.6.【答案】C【解析】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,∴从中随机摸出一个小球,其标号是奇数的概率为:.故选:C.由在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】A【解析】解:解方程x2-13x+40=0可得x=5或x=8,当第三边为5时,则三角形的三边长为3、4、5,满足三角形三边关系,其周长为12,当第三边为8时,则三角形的三边长为3、4、8,不满足三角形三边关系,舍去,∴该三角形的周长为12,故选:A.解方程可求得三角形的第三边,再根据三角形三边关系进行取舍即可求得答案.本题主要考查一元二次方程的解法及三角形三边关系,求得方程的两根是解题的关键,注意分类讨论.8.【答案】B【解析】解:∵将点A(-1,1)向右平移2个单位长度得到点B∴B(1,1)∴B关于x轴的对称点(1,-1)故选:B.利用两个点关于x轴对称的点的特征和平移的坐标变化规律本题利用两个点关于x轴对称的点的特征和平移的坐标变化规律,数形结合思想是解决本题的关键.9.【答案】D【解析】解:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选:D.由题意可知:MN为AB的垂直平分线,可以得出AD=BD;CD为直角三角形ABC斜边上的中线,得出CD=BD;利用三角形的内角和得出∠A=∠BED;因为∠A≠60°,得不出AC=AD,无法得出EC=ED,则∠ECD=∠EDC不成立;由此选择答案即可.此题考查了线段垂直平分线的性质以及直角三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.10.【答案】C【解析】解:由图象得出甲步行720米,需要9分钟,∴甲的运动速度为:720÷9=80(m/分),∵甲19分钟运动距离为:19×80=1520(m),当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达新华书店,此时乙运动19-9=10(分钟),乙比甲多走480米,∴乙的运动速度为:(1520+480)÷10=200(m/分),∴200÷80=2.5,∴乙的速度是甲速度的2.5倍,故选项A说法正确;设乙x分后追上甲,根据题意得:720+80x=200x,解得x=6∴a=9+6=15,故选项B说法正确;学校到新华书店距离为:10×200=2000(m),故选项C说法错误;甲运动时间为:2000÷80=25(分钟),故甲第25分钟到达新华书店,故选项D说法正确;故选:C.根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.本题考查一次函数的应用,解答此类问题的关键是明确题意,利用数形结合的思想解答.11.【答案】2(m+1)(m-1)【解析】解:2m2-2,=2(m2-1),=2(m+1)(m-1).故答案为:2(m+1)(m-1).先提取公因式2,再对剩余的多项式利用平方差公式继续分解因式.本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式进行二次因式分解.12.【答案】4【解析】解:∵a-2b=-3,∴1-a+2b=1-(a-2b)=1+3=4.故答案为:4.直接把已知代入进而得出答案.此题主要考查了代数式求值,正确把原式变形是解题关键.13.【答案】第4组【解析】解:由题意可知,本题共4+6+4+14+22=50个数据,中位数为第25和第26个数的平均数,所以这个样本的中位数在第4组.故答案为:第4组.求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数即为中位数.由题意可知,本题共4+6+4+14+22=50个数据,中位数为第25和第26个数的平均数,通过图表得知这个样本的中位数在第4组.此题同时考查了中位数的求法,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.14.【答案】130°【解析】解:如图,连接BE.∵AB是直径,∴∠AEB=90°,∵∠AEC=40°,∴∠BEC=90°-40°=50°,∵∠CDB+∠BEC=180°,∴∠BDC=130°,故答案为:130°利用圆内接四边形的对角互补,求出∠BEC即可解决问题.本题考查圆周角定理、圆内接四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】(2+)a2【解析】解:如图,设AC=x,则BC=AD=a+x,∵∠ADC=30°,∴AD=AC,∴a+x=x,∴x=,∴AC=,∴图中阴影部分面积=4×AC2=4××()2=(2+)a2.故答案为:(2+)a2.如图,设AC=x,则BC=AD=a+x,根据直角三角形的性质得到a+x=x,求得AC=,根据三角形的面积公式即可得到结论.本题考查了勾股定理的证明,含30°直角三角形的性质,三角形的面积的计算,正确的识别图形是解题的关键.16.【答案】41≤DP≤5【解析】解:∵四边形ABCD为矩形,∴AB=CD=4,AD∥BC,∴∠DAC=∠ACB,如图1,当点E与点C重合时,由翻折知,△AB'C≌△DCA,∴∠ACB'=∠ACB,∴∠DAC=∠ACB',∴AF=CF,设DF=x,则AD=4x,∴AF=CF=AD=DF=3x,在Rt△CDF中,CF2=DF2+CD2,∴(3x)2=x2+42,解得,x1=-(舍去),x2=,∴AD=4x=4,故答案为:4;(2)如图2,点P的轨迹是以A为圆心,AP的长为半径的圆上的一段弧,当点E与点D重合时DP的值最大,∵点P是B'C'的中点,∴B'P=C'P=×6=3,B'A=C'D=4,∴AP=DP==5,∴DP的最大值为5,由图可看出,当点P在AD上时,即在点P'处时,DP的值最小,此时,AP=AP'=5,∴DP'=AD-AP'=6-5=1,∴DP的最小值为1,故答案为:1≤DP≤5.(1)根据题意画出图形,利用矩形的性质及轴对称的性质证明AF=CF,设DF=x,则AD=4x,AF=3x,在Rt△CDF中,利用勾股定理可求出x的值,进一步写出AD的值;(2)由题意可判断出点P的轨迹是以A为圆心,AP的长为半径的圆上的一段弧,作出图形,由图可看出当点E与点D重合时DP的值最大,利用勾股定理可求出其最大值;由图可看出,当点P在AD上时,即在点P'处时,DP的值最小,可通过DA-AP'直接求出其最小值,可进一步写出DP的取值范围.本题考查了矩形的性质,轴对称的性质,勾股定理等,解题关键是能够随着点E的运动,判断出点P的轨迹,并作出图.17.【答案】解:=2-2-1+1 =0.【解析】本题涉及零指数幂、负指数幂、二次根式化简、特殊角的锐角三角函数值4个考点,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.【答案】解:把①代入②,可得:y=-(y+2)+4,整理,可得:2y=2,解得y=1,∴x=1+2=3,∴原方程组的解是.【解析】应用代入消元法,求出方程组的解是多少即可.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.19.【答案】解:(1)如图所示,△PQM即为所求;(2)∵AB=2,BC=,AC==,△ABC与△DEF的相似比是1:.∴===,∴DE=2,EF=2,DF=2,∴△DEF即为所求.【解析】(1)根据等腰直角三角形的性质即可得到结论;(2)根据相似三角形的判定定理即可得到结论.本题考查了作图-应用与设计作图,勾股定理.20.【答案】解:(1)这10天“50岁及以上行人”中每天违章人数的众数为8人;(2)估计大约出现交通违章行为的人数为300×=135(人);(3)由折线统计图知,50岁及以上行人违章次数明显多于50岁及以下人数,所以应加大对老年人的交通安全教育.【解析】(1)根据众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)根据折线图中的数据提出合理的建议均可,答案不唯一.本题考查的是折线统计图的运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21.【答案】解:(1)∵函数图象过点(-1,-2),∴将点代入y=x2-2mx+m2-2,解得m=-1,∴函数的表达式为y=x2+2x-1;(2)∵(x1,y1)(x2,y2)为此二次函数图象上两个不同点∴x1≠x2,∵y1=y2,∴x12-2mx1+m2-2=x22-2mx2+m2-2,∴(x1+x2)(x1-x2)=2m(x1-x2),∵x1+x2=4,∴m=2;(3)∵点P(-2,y3)在抛物线上,∴y3=4+4m+m2-2=(m+2)2-2,∴当m=-2时,y3有最小值是-2.【解析】(1)直接将点(1,-3)代入即可;(2)利用等式的性质,求解m;(3)P点代入二次函数y=x2-2mx+m2-2,得到y3=(m+2)2-2,根据二次函数的性质即可求得y3的最小值为-2.本题考查待定系数法求二次函数解析式;二次函数图象上点的特征.熟练掌握二次函数的性质是解决本题的关键.22.【答案】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵BC=2,∴BE=CE=,∴AB=AC=6,∴AE==,∴CG===2,∴AG==4,∵CG∥BF,∴△ACG∽△AFB,∴=,∴BF==3.【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)过点C作CG⊥AB于G.根号三角函数的定义得到BE=CE=,求得AB=AC=6,根据勾股定理得到AE==,根据三角形的面积得到CG===2,根据相似三角形的性质即可得到结论.本题考查了切线的判定与性质、勾股定理、直角所对的圆周角是直角、解直角三角形等知识点.23.【答案】解:(1),设:OA=a,则AB=2a,OB=2,由勾股定理得:(a)2=(2a)2+4,解得:a=2,则点A(2,4),则k=2×4=8;(2)点A绕点P顺时针旋转90°,点A对应点A′落在此反比例函数第三象限的图象上,过点A′作AG⊥x轴交于点G,设点P(a,0),∵∠PAB+∠BPA=90°,∠BPA+∠A′PG=90°,∴∠A′PG=∠PAB,∠ABP=∠A′GP=90°,PA=PA′,∴△PAB≌△A′PG(AAS),∴PG=AB=4,GA′=PB=2-a,则点A′的坐标为(a+4,a-2),则(a+4)(a-2)=8,解得:a=-1-(正值已舍去)故点P坐标为(-1-,0);(3)设线y=x+n(n<0)与AB和双曲线分别交于点C、点E(E′)过点E(E′)作E(′E)F(F′)⊥AB交于点F(F′),①当直线与双曲线交点为E时,则点C(2,1+n),AC=4-1-n=3-n,将直线表达式与反比例函数表达式联立并整理得:x2+2nx-16=0,解得:x=-n±,则x E=-n+,则EF=-n+-2,E到直线AB的距离为FE等于AC,则-n+-2=3-n,解得:n=-3(正值已舍去);②当直线与双曲线交点为E′时,同理可得:n=-;故:n的值为-3或-.【解析】(1),设:OA=a,则AB=2a,OB=2,由勾股定理,即可求解;(2)证明△PAB≌△A′PG(AAS),确定点A′的坐标为(a+4,a-2),即可求解;(3)分当直线与双曲线交点为E、直线与双曲线交点为E′两种情况,分别求解即可.本题考查的是反比例函数综合运用,涉及到三角形全等、一元二次方程运用等,其中(3),要分类求解,避免遗漏.24.【答案】(1)证明:如图1,∵F、G关于BD对称,∴FG⊥BD,FQ=QG,∵PF=PE,∴PQ是△EFG的中位线,∴EG∥PQ;(2)解:∵PH⊥BC,DC⊥BC,∴PH∥DC,∴,当P为BD的中点时,即BP=PD,∴BH=CH,此时E与H重合,如图2,∴PH=DC=AB=×6=3,∴EF=2PE=6,Rt△BCD中,BC=8,CD=6,∴BD=10,∴△BCD的周长=6+8+10=24,∵EG∥BD,∴∠G=∠PQF=90°=∠C,∵∠PFQ=∠CBD,∴△BCD∽△FGE,∴△ 的周长△ 的周长,即△ 的周长,∴△EFG的周长=;(3)解:Rt△BPH中,BP=tcos∠PBH=∴,BH=t∵E是BC的中点∴BE=CE=BC=4在点P的运动过程中,△GEH可以为等腰三角形,有以下三种情况:①当EH=EG=4-t时,如图3,Rt△EMG中,cos∠MEG=,EM=EG=(4-t)=5-t,∴BM=BE-EM=4-(5-t)=t-1,由(1)知:PQ=EG=2-t,∴BQ=BP-PQ=t-(2-t)=t-2,Rt△BQM中,cos∠QBM=,即=,t=2;②当EG=GH时,如图4,过G作GK⊥BC于K,∴EK=KG==2-t,cos∠KEG==,∴EG=EK,ER=EG=EK=EK=(2-t)=-t,∴BR-4-ER=4-+t=t+,∵PQ=EG=(2-t)=-t,∴BQ=BP-PQ=t-(-t)=t-,Rt△BQR中,cos∠QBR==,即=,t=;③当EH=EG时,如图5,延长FG交BC于K,EH=EG=4-t,∴PQ=2-t,∴BQ=t+PQ=2+t,Rt△EGK中,cos∠GEK=,EK==5-t,BK=4+5-t=9-t,Rt△BQK中,cos∠QBK=,=,t=,综上,t的值为2或或.【解析】(1)根据三角形的中位线可得结论;(2)证明△BCD∽△FGE,根据相似三角形对应边长的比等于对应周长的比,可得△EFG的周长;(3)分三种情况讨论:根据cos∠DBC=,列方程解出即可.本题考查四边形综合题、相似三角形的判定和性质、直角三角形的判定、等腰三角形的判定和性质、三角形的中位线定理、三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,学会用转化的思想思考问题,学会构建方程解决问题,属于中考压轴题.。

2019年浙江省温州市中考数学模拟试卷(二)(解析版)

2019年浙江省温州市中考数学模拟试卷(二)(解析版)
14.【答案】
【解析】
解:将圆形补全,设圆心为O,连接DO,过点O作OE⊥AD于点E,
由题意可得出:∠DAB=∠ABC=90°,
∵AC=1.2米,AB=0.6米,
11.【答案】2(a+1)(a-1)
【解析】
解:原式=2(a2-1)
=2(a+1)(a-1).
故答案为:2(a+1)(a-1).
原式提取2,再利用平方差公式分解即可.
此题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.
12.【答案】0,-2
【解析】
解:x2+2x=0
x(x+23,AC=4,求线段AP的长.
22. 如图,已知二次函数图象与x轴交于点A(-1,0),B(3m,0),交y轴于点C(0,3m)(m>0).
(1)当m=2时,求抛物线的表达式及对称轴.
(2)过OB中点M作x轴垂线交抛物线于点D过点D作DF∥x轴.交抛物线于点E,交直线BC于点F,当 时,求m的值.
【解析】
解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,
观察图象可知点B,M间的距离大于等于2- 小于等于1,
当正方形和正六边形的边重合时,点B,M间的距离可能是1或 -1,
故选:D.
如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2- 小于等于1,由此即可判断.
24. 如图,在矩形ABCD中,AB=8,BC=6,点E,F分别从点B,D同时出发沿AB延长线和射线DA以相同的速度运动,连结EF,交射线DB于点G.连结CG.
(1)当BE=2时,求BD,EG的长.
(2)当点F在线段AD上时,记∠DCG为∠1,∠AFE为∠2,那么 的值是否会变化?若不变,求出该比值;若变化,请说明理由.

精编2019级深圳市中考数学模拟试卷(有标准答案)(2)(Word版)

精编2019级深圳市中考数学模拟试卷(有标准答案)(2)(Word版)

广东省深圳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B. C.D.62.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)图中立体图形的主视图是()A.B.C.D.4.(3.00分)观察下列图形,是中心对称图形的是()A.B. C.D.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,106.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A.B.C.D.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9= .14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.18.(6.00分)先化简,再求值:,其中x=2.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B. C.D.6【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)图中立体图形的主视图是()A.B.C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)观察下列图形,是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、+无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A.B.C.D.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,),∴BP=|﹣n|,∴S△BOP=|﹣n|×m=|12﹣mn|∵PA∥x轴,∴A(,n),∴AP=|﹣m|,∴S△AOP=|﹣m|×n=|12﹣mn|,∴S△AOP =S△BOP,故②正确;如图,过点P作PF⊥OA于F,PE⊥OB于E,∴S△AOP =OA×PF,S△BOP=OB×PE,∵S△AOP =S△BOP,∴OB×PE=OA×PE,∵OA=OB,∴PE=PF,∵PE⊥OB,PF⊥OA,∴OP是∠AOB的平分线,故③正确;如图1,延长BP交x轴于N,延长AP交y轴于M,∴AM⊥y轴,BN⊥x轴,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO =S△BNO=6,∵S△BOP=4,∴S△PMO =S△PNO=2,∴S矩形OMPN=4,∴mn=4,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=,∴S△APB=AP×BP=×2|n|×=8,故④错误;∴正确的有②③,故选:B.【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9= (a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【分析】根据正方形的性质得到AC=AF,∠CAF=90°,证明△CAE≌△AFB,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠FAB=90°,∵∠ABF=90°,∴∠AFB+∠FAB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC= .【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE==,连接CF,∵AD平分∠CAB,BE平分∠ABC,∴CF是∠ACB的平分线,∴∠ACF=45°=∠AFE,∵∠CAF=∠FAE,∴△AEF∽△AFC,∴,∴AC===,故答案为.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×++1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)先化简,再求值:,其中x=2.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=把x=2代入得:原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD是菱形是解此题的关键.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,∵cosB==,在Rt△AMB中,BM=1,∴AB==;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得,即OP=FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点代入,解得:a=1,∴抛物线的解析式为:;(2)由知A(,﹣2),设直线AB解析式为:y=kx+b,代入点A,B的坐标,得:,解得:,∴直线AB的解析式为:y=﹣2x﹣1,易求E(0,1),,,若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴,设点P(t,﹣2t﹣1),则:解得,,由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,∵△POE的面积=,∴△POE的面积为或.(3)若点Q在AB上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2、ES=,由NE+ES=NS=QR可得﹣a+=2,解得:a=﹣,∴Q(﹣,);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(﹣,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(,2).综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

北京市海淀区2019年中考数学模拟试卷(含答案)

北京市海淀区2019年中考数学模拟试卷(含答案)

北京市海淀区2019年中考数学模拟试卷一.选择题(满分30分,每小题3分)1.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB2.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.3.下列计算正确的是()A.2a+3b=5ab B.=±6C.a6÷a2=a4D.(2ab2)3=6a3b54.在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7 B.2:2:7:7 C.2:7:7:2 D.2:3:4:5 5.如图所示是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是()A.(0,﹣2)B.(1,﹣2)C.(2,﹣1)D.(1,2)6.一个公园有A,B,C三个入口和D,E二个出口小明进入公园游玩,从“A口进D口出”的概率为()A.B.C.D.7.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.8.下列y关于x的函数中,当x>0时,函数值y随x的值增大而减小的是()A.y=x2B.y=C.y=D.y=9.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是(()A.1 B.2 C.3 D.410.(3分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.二.填空题(满分18分,每小题3分)11.若使代数式有意义,则x的取值范围是.12.点A(0,3),点B(4,0),则点O(0,0)在以AB为直径的圆(填内、上或外)13.若m+n=1,mn=2,则的值为.14.潜水艇上浮记为正,下潜记为负,若潜水艇原来在距水面50米深处,后来两次活动记录的情况分别是﹣20米,+10米,那么现在潜水艇在距水面米深处.15.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF =0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为米.16.样本数据2,4,3,5,6的极差是.三.解答题(共13小题,满分72分)17.(5分)计算:﹣|1﹣|﹣sin30°+2﹣1.18.(5分)解不等式组19.(5分)已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC ≌△DEF.20.(5分)关于x的分式方程﹣=总无解,求a的值.21.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.(5分)某市“每天锻炼一小时,幸福生活一辈子”活动已开展了一年,为了解该市此项活动的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查:A、从一个社区随机选取200名居民;B、从一个城镇的不同住宅楼中随机选取200名居民;C、从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象,然后进行调查.(1)在上述调查方式中,你认为比较合理的一个是(填番号).(2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图,在这个调查中,这200名居民每天锻炼2小时的人数是多少?(3)若该市有100万人,请你利用(2)中的调查结果,估计该市每天锻炼2小时及以上的人数是多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.23.(5分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BC于点E、F、G,连接ED、DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.24.(5分)老王的鱼塘里年初养了某种鱼2000条,到年底捕捞出售,为了估计鱼的总产量,从鱼塘里捕捞了三次,得到如下表的数据:若老王放养这种鱼的成活率是95%,则:(1)鱼塘里这种鱼平均每条重约多少千克;(2)鱼塘里这种鱼的总产量多少千克?25.(5分)如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.26.(5分)已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.27.(7分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.28.(7分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC 边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F (点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).29.(8分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.2.解:从上面看,是正方形右边有一条斜线,如图:故选:B.3.解:A、2a+3b,无法计算,故此选项错误;B、=6,故此选项错误;C、a6÷a2=a4,正确;D、(2ab2)3=8a3b6,故此选项错误;故选:C.4.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:7:2:7.故选:A.5.解:如图,黑棋②的坐标为(0,﹣2).故选:A.6.解:根据题意画树形图:共有6种等情况数,其中“A口进D口出”有一种情况,从“A口进D口出”的概率为;故选:D.7.解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,如右图所示,则AE=BE,CF=DF,∠OFP=∠OEP=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE=6,同理可得,OF=6,∴EP=6,∴OP=,故选:B.8.解:A、二次函数y=x2的图象,开口向上,并向上无限延伸,在y轴右侧(x>0时),y 随x的增大而增大;故本选项错误;B、一次函数y=x+1的图象,y随x的增大而增大;故本选项错误;C、正比例函数y=x的图象在一、三象限内,y随x的增大而增大;故本选项错误;D、反比例函数y=中k=1>0,所以当x>0时,y随x的增大而减小;故本选项正确;故选:D.9.解:①﹣②,得3y=k+7,∴y=;①+2×②,得3x=13k﹣8,∴x=∵x+y=9,∴=9即14k=28,∴k=2故选:B.10.解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:∵分式有意义,∴x的取值范围是:x+2≠0,解得:x≠﹣2.故答案是:x≠﹣2.12.解:如图,∵点A(0,3),点B(4,0),∴AB=,点C(2,1.5),∴OC==CA,∴点O(0,0)在以AB为直径的圆上,故答案为:上13.解:∵m+n=1,mn=2,∴原式==.故答案为:14.解:﹣20+10=﹣10,所以,现在潜水艇在原来的位置下面10米,∵潜水艇原来在距水面50米深处,∴现在潜水艇在距水面60米深处.故答案为:60.15.解:由题意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,则=,即=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(米),即旗杆的高度为11.5米;故答案为:11.5.16.解:样本数据2,4,3,5,6的极差是=6﹣2=4,故答案为:4.三.解答题(共13小题,满分72分)17.解:原式=3﹣+1﹣+=2+1.18.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.19.证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).20.解:去分母得:3﹣x﹣a(x﹣2)=﹣2,即(a+1)x=2a+5,当a=﹣1时,显然方程无解;当a≠﹣1时,x=,当x=2时,a不存在;当x=3时,a=2,综上,a的值为﹣1,2.21.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.22.解:(1)A、B两种调查方式具有片面性,故C比较合理;(2)由条形图可得,每天锻炼2小时的人数是52人;(3)设100万人中有x万人锻炼时间在2小时及以上,则有=,解之,得x=53(万);(4)这个调查有不合理的地方.比如:在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.(只要说法正确即可)23.解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作DH⊥BC于H,∵四边形EBGD为菱形ED=DG=2,∴∠ABC=30°,∠DGH=30°,∴DH=1,GH=,∵∠C=45°,∴DH=CH=1,∴CG=GH+CH=1+.24.解:(1)鱼的平均重量为:=1.84千克.答:鱼塘里这种鱼平均每条的质量约1.84千克;(2)鱼的总重量为2000×95%×1.84=3496千克.答:鱼塘里这种鱼的总质量估计是3496千克.25.解:∵PA切⊙O于A,AB是⊙O的直径,∴∠PAO=90°,∵∠P=30°,∴∠AOP=60°,∴∠B=∠AOP=30°.26.解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.27.解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.28.(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点,∴∠B=∠C,OB=OC,∴△OBG≌△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG+∠COH)=2α,∴∠EOF=∠B=α由(2)题可猜想应用EF=ED+DF=GE+FH(可通过半角旋转证明),则C△AEF=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,设AB=m,则OB=m cosα,GB=m cos2α.====1﹣cosα.故答案是:1﹣cosα.29.解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).。

中考模拟考试 数学卷 含答案解析

中考模拟考试 数学卷 含答案解析
大致为( )
A.
B.
C.
D.
二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)
11. 27 的立方根是________.
12.如图,在平面直角坐标系中,点 B 在 y 上, OA AB ,反比例函数 y k x 0 的图像经过点 A ,若
x ABO 的面积是 4 ,则 k 的值为___.
A. 30
B. 40
C. 60
7.在体育模拟考试中,某班 25 名男生的跳绳成绩如下表所示:
成绩/次 160 165 170 175 180
2
3
58
4
2
则这些同学跳绳成绩的中位数,众数分别是( )
A. 175,180
B. 175,190
C. 180,180
D. 180 ,190
碗多少元时,每天的牛肉汤营业额最大?最大营业额是多少元? 八、(本题满分 14 分)
23.如图,正方形 ABCD 边长为 2, E 、F 分别是 AD 、CD 上两动点,且满足 AE DF , BE 交 AF 于点 G .
(1)如图 1,判断线段 BE 、 AF 的位置关系,并说明理由;
(2)在(1)的条件下,连接 DG ,直接写出 DG 的最小值为
D. 无解
【详解】∵ x2 5x 6 的值为 0 2x 6
∴ x2 5x 6 0 , 2x 6 0 x2 5x 6 0 (x 2)(x 3) 0
解得 x=2 或 x=3
又∵ 2x 6 0 , x 3
∴x=2 故选:B 【点睛】本题考查了分式方程为 0 的条件:分式的分子为 0,且分母不为 0.
(1)请在平面直角坐标系中做出 ABC 绕原点 O 逆时针旋转 90 后得到 △A1B1C1 (点 A, B,C 的对应点分

2019年江苏省南京市中考数学全真模拟试卷附解析

2019年江苏省南京市中考数学全真模拟试卷附解析

2019年江苏省南京市中考数学全真模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.右边物体的主视图是( )2.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =−+上的概率为( )A . 118B .112C .19D .163.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( )A .4B .3C .2D .1 4.在菱形ABCD 中,若∠A :∠B=2:1,则∠CAD 的平分线AE 与边CD 间的关系是( )A .相等B .互相垂直但边CD 不一定被AE 平分C .不垂直但边CD 被AE 平分D .垂直且边CD 被AE 平分5.如图,下列说法中。

正确的是( )A .∠1与∠4是同位角B .∠l 与∠3是同位角C .∠2与∠4是同位角D .∠2与∠3是同位角6.下列计算中正确的是( )A .2233546y yx x y ⋅=B .3213423(2)(4)8n n n n n x y x y x y +−+−−−=C . 22222()()n n n n x y xy x y −+−−=−D .23226(7)(5)2a b ab c a b c =− 7.三角形的一边长为(3a b +)cm ,这条边上的高为2a cm ,这个三角形的面积为( )A .5a b + cm 2B . 262a ab + cm 2C . 23a ab + cm 2D . 232a ab + cm 28.如图所示,将一张正方形纸片沿图①中虚线剪开后,能拼成图②中的四个图形,则其中轴对称图形的个数是( )A .1个B .2个C .3个D .4个9.下面两图是某班全体学生上学时,乘车、步行、骑车的人数分布条形统计图和扇形统计图(两图均不完整),则下列结论中错误的是( )A . 该班总人数为50人B . 骑车人数占总人数的20%C . 乘车人数是骑车人数的2.5倍D . 步行人数为30人10.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( )A .41B .61C .51D .203 二、填空题11.一只口袋内装有3个红球,3 个白球,5个黄球,这些球除颜色外没有其它区别,从中任意取一球,则取得红球的概率为 .12.如图所示,以五边形的各顶点为圆心,l cm 长为半径,画五个等圆,则图中阴影部分的面积之和为 cm 2.13.(1)x 的 3 倍不小于 9,用不等式表示为 ,它的解集为 ; (2)x 与 2 的和不大于 4,用不等式表示为 ,它的解集为 ;(3)x 的相反数的 2倍与13的差小于23,用不等式表示为 ,它的解集为 .14.等腰直角三角形的斜边上的中线长为 1,则它的面积是 .15.分解因式3()4()a b c b c +−+= .16.甲、乙两绳共长 17米,如果甲绳去掉15,乙绳增加1米,则两绳等长,设甲、乙两绳长分别为x 、y ,则可得方程组 .17.当3=x 或5−=x 时,代数式c bx x ++2的值都等于1,则bc 的值为 。

【2019年中考数学】山东省青岛市2019年中考数学模拟试卷(一)(含答案)

【2019年中考数学】山东省青岛市2019年中考数学模拟试卷(一)(含答案)

山东省青岛市2019年中考数学模拟试卷(一)(解析版)一、选择题(共9小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.52.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×109元 C.523×109元D.5.23×109元4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,955.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.19个B.15个C.12个D.10个6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.49.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x 的函数图象可能为()A.B.C.D.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH ⊥AB于H,连接OH,则∠DHO=度.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是个.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.三、解答题(共9题,94分)16.(9分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.19.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)19.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.99,tan15°≈0.29,sin95°≈0.99,cos95°≈0.26,tan95°≈3.93)20.(9分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(9分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过190元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=.∴=,=.∴=.同理,过点A作AH⊥BC于H,可证=.∴==的.请将上面的过程补充完整.(3)运用上述结论解答问题①如图4,在△ABC中,如果∠B=60°,∠C=45°,AB=2,那么AC=..②在锐角△ABC中,若∠B=30°,AB=2,AC=2,求S△ABC24.(12分)已知:矩形ABCD,DA=3cm,DC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求线段DN的长;(2)试求出多边形DAMN的面积S与t的函数关系式;(3)t为何值时,D,N,M三点共线?(4)t为何值时,以△DAN的一边所在直线为对称轴翻折△DAN,翻折前后的两个三角形所组成的四边形为菱形?2019年山东省青岛市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共9小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.5【分析】根据倒数的意义,乘积是1的两个数互为倒数,0 没有倒数,求一个数的倒数,把这个数的分子和分母掉换位置即可.【解答】解:﹣0.2的倒数等于﹣5,故选B【点评】此题考查的目的是理解倒数的意义,掌握求倒数的方法及应用,明确:1的倒数是1,0没有倒数.2.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由主视图的定义可得.【解答】解:这个几何体的主视图是,故选:D【点评】本题主要考查简单几何体的三视图,熟练掌握三视图的定义是解题的关键.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×109元 C.523×109元D.5.23×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:53200万=5.23×109,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,95【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.19个B.15个C.12个D.10个【分析】小明共摸了100次,其中20次摸到黑球,则有90次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【解答】解:3=12(个).故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1±x)2=b.9.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x 的函数图象可能为()A.B.C.D.【分析】本题需先设正方形的边长为m,然后得出y与x、m是二次函数关系,从而得出函数的图象.【解答】解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选A.【点评】本题主要考查了二次函数的图象和性质,在解题时要能根据几何图形求出解析式,得出函数的图象.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=2.【分析】直接利用绝对值的性质以及特殊角的三角函数值和二次根式的性质化简求出答案.【解答】解:(﹣1)2﹣×(2013﹣π)0+()﹣1=1﹣2×1+3=2,故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片组成的数恰好为“12”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,两张卡片组成的数恰好为“12”的只有1种情况,∴两张卡片组成的数恰好为“12”的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是﹣=2.【分析】设王师傅原计划每小时检修管道x米,根据在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,列方程即可.【解答】解:设王师傅原计划每小时检修管道x米,由题意得,﹣=2.故答案为﹣=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出等量关系,列出方程.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=45°.【分析】连接OA,OB.根据正方形的性质,得∠AOB=90°再根据圆周角定理,即可求解.【解答】解:连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°,故答案为:45°.【点评】此题主要考查了圆周角定理,综合运用了正方形的性质以及圆周角定理是解答此题的关键.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH ⊥AB于H,连接OH,则∠DHO=25度.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO==25°,故答案为:25.【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是5个.【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行2个小正方体,第一列第二行2个小正方体,第二列第三行1个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:2+2+1=5个.故答案为:5.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.【分析】如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.【解答】解:如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.半圆O即为所求.【点评】本题考查作图﹣应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.三、解答题(共9题,94分)16.(9分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.【分析】(1)通过解方程组可得到两直线的交点坐标;(2)先把括号内通分后进行同分母的减法运算,然后把分子因式分解后约分即可.【解答】解:(1)解方程组得,所以一次函数y=﹣2x+2和y=x﹣1的交点坐标为(1,0);(2)原式=•=•=a+3.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了分式的混合运算.19.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)【分析】(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200﹣120﹣50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1﹣25%﹣60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=95%,再估计该市近20000名初中生中达标的学习态度就很容易了.【解答】解:(1)50÷25%=200(人);故答案为:200;(2)C级人数:200﹣120﹣50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1﹣25%﹣60%)=54°.(4)20000×(25%+60%)=19000(名).答:估计该市初中生中大约有19000名学生学习态度达标.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?【分析】(1)由转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,直接利用概率公式求解即可求得答案;(2)首先求得转转盘获得购物券的平均值,再与15元比较,即可知哪种方式对这位顾客更合算.【解答】解:(1)∵转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,∴P(获得50元购物券)=,P(获得30元购物券)=,P(获得10元购物券)=;(2)转转盘:×50+×30+×10=<15,∴直接获得购物券的方式对这位顾客更合算.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.99,tan15°≈0.29,sin95°≈0.99,cos95°≈0.26,tan95°≈3.93)【分析】先根据等腰三角形的性质求出∠B的度数,过点A作AD⊥BC于点D,根据锐角三角函数的定义可求出BD的长,故可得出结论.【解答】解:∵△ABC是等腰三角形,∠A=150°,∴∠B=∠C==15°,过点A作AD⊥BC于点D,∴BD=AB•cos∠B≈12×0.99≈11.6cm,∴BC≈23.2>20cm,∴能画出一个半径为20cm的圆.【点评】本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.20.(9分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.21.(9分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,进而可证明BF=CF;(2)当AC=BC时,四边形BCFD为菱形,根据菱形的判定得出即可;【解答】解:(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∴CD=BF,∴BF=CF;(2)当AC=BC时,四边形BDCF为菱形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∵四边形BDCF是平行四边形,∴四边形BDCF是菱形.【点评】本题考查了平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过190元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤190;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣190)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为190元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1900﹣60=1340,解得x的值,根据100≤x≤190,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤190;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣190)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为190元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1900,则﹣x2+36x﹣1900﹣60=1340,解得x1=200,x2=160,∵100≤x≤190,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=.∴=CD,=CD.∴=.同理,过点A作AH⊥BC于H,可证=.∴==的.请将上面的过程补充完整.。

2019届浙江省绍兴市中考数学模拟试卷(解析版)

2019届浙江省绍兴市中考数学模拟试卷(解析版)

2019年浙江省绍兴市中考数学模拟试卷一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选,多选,错选,均不给分)1.﹣8的绝对值等于()A.8 B.﹣8 C.D.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×1093.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条4.如图是一个正方体,则它的表面展开图可以是()A.B.C.D.5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.6.如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③8.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是()A.B.C.D.9.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.1010.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.1326二、填空题(本大题有6小题,每小题5分,共30分)11.分解因式:a3﹣9a=.12.不等式>+2的解是 .13.如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A ,B ,AB=40cm ,脸盆的最低点C 到AB 的距离为10cm ,则该脸盆的半径为 cm .14.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元.15.如图,已知直线l :y=﹣x ,双曲线y=,在l 上取一点A (a ,﹣a )(a >0),过A 作x 轴的垂线交双曲线于点B ,过B 作y 轴的垂线交l 于点C ,过C 作x 轴的垂线交双曲线于点D ,过D 作y 轴的垂线交l 于点E ,此时E 与A 重合,并得到一个正方形ABCD ,若原点O在正方形ABCD 的对角线上且分这条对角线为1:2的两条线段,则a 的值为 .16.如图,矩形ABCD 中,AB=4,BC=2,E 是AB 的中点,直线l 平行于直线EC ,且直线l 与直线EC 之间的距离为2,点F 在矩形ABCD 边上,将矩形ABCD 沿直线EF 折叠,使点A 恰好落在直线l 上,则DF 的长为 .三、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:﹣(2﹣)0+()﹣2.(2)解分式方程:+=4.18.为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会实践活动天数的频数分布表根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.19.根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.20.如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向,如图2.(1)求∠CBA的度数.(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.22.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.23.对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A惯有点M的对称点的点B,点B关于直线l的对称轴为点C.①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.24.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).2019年浙江省绍兴市中考数学模拟试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选,多选,错选,均不给分)1.﹣8的绝对值等于()A.8 B.﹣8 C.D.【考点】绝对值.【分析】根据绝对值的定义即可得出结果.【解答】解:﹣8的绝对值为8,故选A.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.3.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【考点】轴对称图形.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.4.如图是一个正方体,则它的表面展开图可以是()A.B.C.D.【考点】几何体的展开图.【分析】根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.【解答】解:A、含有田字形,不能折成正方体,故A错误;B、能折成正方体,故B正确;C、凹字形,不能折成正方体,故C错误;D、含有田字形,不能折成正方体,故D错误.故选:B.5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.【考点】概率公式.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.6.如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°【考点】圆周角定理.【分析】直接根据圆周角定理求解.【解答】解:连结OC,如图,∵=,∴∠BDC=∠AOB=×60°=30°.故选D.7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③【考点】平行四边形的判定.【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有②③两块角的两边互相平行,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.8.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是()A.B.C.D.【考点】解直角三角形.【分析】设BC=x,由含30°角的直角三角形的性质得出AC=2BC=2x,求出AB=BC=x,根据题意得出AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,由等腰三角形的性质得出AM=AD=x,在Rt△AEM中,由三角函数的定义即可得出结果.【解答】解:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt△AEM中,cos∠EAD===;故选:B.9.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.10【考点】二次函数的性质.【分析】根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14,故选A.10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.1326【考点】用数字表示事件.【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【解答】解:1×73+3×72+2×7+6=510,故选C.二、填空题(本大题有6小题,每小题5分,共30分)11.分解因式:a3﹣9a=a(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】本题应先提出公因式a,再运用平方差公式分解.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).12.不等式>+2的解是x>﹣3.【考点】解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:3(3x+13)>4x+24,去括号,得:9x+39>4x+24,移项,得:9x﹣4x>24﹣39,合并同类项,得:5x>﹣15,系数化为1,得:x>﹣3,故答案为:x>﹣3.13.如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,则该脸盆的半径为25cm.【考点】垂径定理的应用.【分析】设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R,在RT△AOD 中利用勾股定理即可解决问题.【解答】解;如图,设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R,∵OC⊥AB,∵AD=DB=AB=20,在RT△AOD中,∵∠ADO=90°,∴OA2=OD2+AD2,∴R2=202+(R﹣10)2,∴R=25.故答案为25.14.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296元.【考点】一元一次方程的应用.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.15.如图,已知直线l:y=﹣x,双曲线y=,在l上取一点A(a,﹣a)(a>0),过A作x 轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为或.【考点】反比例函数与一次函数的交点问题;正方形的性质.【分析】根据点的选取方法找出点B、C、D的坐标,由两点间的距离公式表示出线段OA、OC的长,再根据两线段的关系可得出关于a的一元二次方程,解方程即可得出结论.【解答】解:依照题意画出图形,如图所示.∵点A的坐标为(a,﹣a)(a>0),∴点B(a,)、点C(﹣,)、点D(﹣,﹣a),∴OA==a,OC==.又∵原点O分对角线AC为1:2的两条线段,∴OA=2OC或OC=2OA,即a=2×或=2a,解得:a1=,a2=﹣(舍去),a3=,a4=﹣(舍去).故答案为:或.16.如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为2或4﹣2.【考点】矩形的性质;翻折变换(折叠问题).【分析】当直线l在直线CE上方时,连接DE交直线l于M,只要证明△DFM是等腰直角三角形即可利用DF=DM解决问题,当直线l在直线EC下方时,由∠DEF1=∠BEF1=∠DF1E,得到DF1=DE,由此即可解决问题.【解答】解:如图,当直线l在直线CE上方时,连接DE交直线l于M,∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵AB=4,AD=BC=2,∴AD=AE=EB=BC=2,∴△ADE、△ECB是等腰直角三角形,∴∠AED=∠BEC=45°,∴∠DEC=90°,∵l∥EC,∴ED⊥l,∴EM=2=AE,∴点A、点M关于直线EF对称,∵∠MDF=∠MFD=45°,∴DM=MF=DE﹣EM=2﹣2,∴DF=DM=4﹣2.当直线l在直线EC下方时,∵∠DEF1=∠BEF1=∠DF1E,∴DF1=DE=2,综上所述DF的长为2或4﹣2.故答案为2或4﹣2.三、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:﹣(2﹣)0+()﹣2.(2)解分式方程:+=4.【考点】实数的运算;解分式方程.【分析】(1)本题涉及二次根式化简、零指数幂、负整数指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)观察可得方程最简公分母为(x﹣1),将方程去分母转化为整式方程即可求解.【解答】解:(1)﹣(2﹣)0+()﹣2=﹣1+4=+3;(2)方程两边同乘(x﹣1),得:x﹣2=4(x﹣1),整理得:﹣3x=﹣2,解得:x=,经检验x=是原方程的解,故原方程的解为x=.18.为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会实践活动天数的频数分布表根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)利用表格中数据求出总人数,进而利用其频率求出频数即可,再补全条形图;(2)利用样本中不少于5天的人数所占频率,进而估计该市七年级学生参加社会实践活动不少于5天的人数.【解答】解:(1)由题意可得:a=20÷01×0.25=50(人),如图所示:;(2)由题意可得:20000×(0.30+0.25+0.20)=15000(人),答:该市七年级学生参加社会实践活动不少于5天的人数约为15000人.19.根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.【考点】一次函数的应用.【分析】(1)暂停排水时,游泳池内的水量Q保持不变,图象为平行于横轴的一条线段,由此得出暂停排水需要的时间;由图象可知,该游泳池3个小时排水900(m3),根据速度公式求出排水速度即可;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0),再求出(2,450)在直线y=kt+b上,然后利用待定系数法求出表达式即可.【解答】解:(1)暂停排水需要的时间为:2﹣1.5=0.5(小时).∵排水数据为:3.5﹣0.5=3(小时),一共排水900m3,∴排水孔排水速度是:900÷3=300m3/h;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0).∵t=1.5时,排水300×1.5=450,此时Q=900﹣450=450,∴(2,450)在直线Q=kt+b上;把(2,450),(3.5,0)代入Q=kt+b,得,解得,∴Q关于t的函数表达式为Q=﹣300t+1050.20.如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向,如图2.(1)求∠CBA的度数.(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).【考点】解直角三角形的应用-方向角问题.【分析】(1)根据三角形的外角的性质、结合题意计算即可;(2)作BD⊥CA交CA的延长线于D,设BD=xm,根据正切的定义用x表示出CD、AD,根据题意列出方程,解方程即可.【解答】解:(1)由题意得,∠BAD=45°,∠BCA=30°,∴∠CBA=∠BAD﹣∠BCA=15°;(2)作BD⊥CA交CA的延长线于D,设BD=xm,∵∠BCA=30°,∴CD==x,∵∠BAD=45°,∴AD=BD=x,则x﹣x=60,解得x=≈82,答:这段河的宽约为82m.21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【考点】二次函数的应用.【分析】(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.22.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.【考点】全等三角形的应用;二元一次方程组的应用;三角形三边关系.【分析】(1)相等.连接AC,根据SSS证明两个三角形全等即可.(2)分两种情形①当点C在点D右侧时,②当点C在点D左侧时,分别列出方程组即可解决问题,注意最后理由三角形三边关系定理,检验是否符合题意.【解答】解:(1)相等.理由:连接AC,在△ACD和△ACB中,,∴△ACD≌△ACB,∴∠B=∠D.(2)设AD=x,BC=y,当点C在点D右侧时,,解得,当点C在点D左侧时,解得,此时AC=17,CD=5,AD=8,5+8<17,∴不合题意,∴AD=13cm,BC=10cm.23.对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A惯有点M的对称点的点B,点B关于直线l的对称轴为点C.①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.【考点】几何变换综合题.【分析】(1)根据平移的性质得出点A平移的坐标即可;(2)①连接CM,根据中心和轴对称的性质和直角三角形的判定解答即可;②延长BC交x轴于点E,过C点作CF⊥AE于点F,根据待定系数法得出直线的解析式进而解答即可.【解答】解:(1)∵点P(2,3)经1次斜平移后的点的坐标为(3,5),点A的坐标为(1,0),∴点A经1次平移后得到的点的坐标为(2,2),点A经2次平移后得到的点的坐标(3,4);(2)①连接CM,如图1:由中心对称可知,AM=BM,由轴对称可知:BM=CM,∴AM=CM=BM,∴∠MAC=∠ACM,∠MBC=∠MCB,∵∠MAC+∠ACM+∠MBC+∠MCB=180°,∴∠ACM+∠MCB=90°,∴∠ACB=90°,∴△ABC是直角三角形;②延长BC交x轴于点E,过C点作CF⊥AE于点F,如图2:∵A(1,0),C(7,6),∴AF=CF=6,∴△ACF是等腰直角三角形,由①得∠ACE=90°,∴∠AEC=45°,∴E点坐标为(13,0),设直线BE的解析式为y=kx+b,∵C,E点在直线上,可得:,解得:,∴y=﹣x+13,∵点B由点A经n次斜平移得到,∴点B(n+1,2n),由2n=﹣n﹣1+13,解得:n=4,∴B(5,8).24.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).【考点】四边形综合题.【分析】(1)根据坐标轴上点的坐标特征可求直线l1与x轴,直线l2与AB的交点坐标;(2)分三种情况:①若点A为直角顶点时,点M在第一象限;若点P为直角顶点时,点M在第一象限;③若点M为直角顶点时,点M在第一象限;进行讨论可求点M的坐标;(3)根据矩形的性质可求N点的横坐标x的取值范围.【解答】解:(1)直线l1:当y=0时,2x+3=0,x=﹣则直线l1与x轴坐标为(﹣,0)直线l2:当y=3时,2x﹣3=3,x=3则直线l2与AB的交点坐标为(3,3);(2)①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(x,2x﹣3),则MN=x﹣4,∴2x﹣3=4+3﹣(x﹣4),x=,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M1(x,2x﹣3),过点M1作M1G1⊥OA,交BC于点H1,则Rt△AM1G1≌Rt△PM1H1,∴AG1=M1H1=3﹣(2x﹣3),∴x+3﹣(2x﹣3)=4,x=2∴M1(2,1);设M2(x,2x﹣3),同理可得x+2x﹣3﹣3=4,∴x=,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,);(3)x的取值范围为﹣≤x<0或0<x≤或≤x≤或≤x≤2.2019年7月12日。

山东省滨州市滨城区2019年中考数学模拟试卷(含答案解析)

山东省滨州市滨城区2019年中考数学模拟试卷(含答案解析)

2019年山东省滨州市滨城区中考数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.若x=﹣4,则x的取值范围是()A.2<x<3B.3<x<4C.4<x<5D.5<x<62.下列运算结果为正数的是()A.(﹣1)2017B.(﹣3)0C.0×(﹣2017)D.﹣2+13.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.35.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④6.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0B.x2﹣36x+36=0C.4x2+4x+1=0D.x2﹣2x﹣1=07.方程解是()A.B.x=4C.x=3D.x=﹣48.已知▱ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时▱ABCD为矩形B.当AB=AD时▱ABCD为正方形C.当∠ABC=90°时▱ABCD为菱形D.当AC⊥BD时▱ABCD为正方形9.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°10.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)11.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°12.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二.填空题(共8小题,满分40分,每小题5分)13.代数式中x的取值范围是.14.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.15.一组数据2,7,x,y,4中,唯一众数是2,平均数是4,这组数据的方差是.16.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出△AOB 的位似△CDE,则位似中心的坐标为.17.如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为.18.如图,分别以正六边形ABCDEF的顶点A,D为圆心,以AB长为半径画弧BF,弧CE,若AB=1,则阴影部分的面积为.19.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG的值为.20.一列按某种规律排列的数如下:1,﹣1,1,2,﹣2,,3,﹣3,,4,﹣4,,…,则这列数中第2017个数是.三.解答题(共6小题,满分74分)21.先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.22.“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.23.如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.24.某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?25.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x、y轴的正半轴上,顶点B的坐标为(4,2).点M是边BC上的一个动点(不与B、C重合),反比例函数y=(k>0,x>0)的图象经过点M且与边AB交于点N,连接MN.(1)当点M是边BC的中点时.①求反比例函数的表达式;②求△OMN的面积;(2)在点M的运动过程中,试证明:是一个定值.26.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.2019年山东省滨州市滨城区中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】由于36<37<49,则有6<<7,即可得到x的取值范围.【解答】解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.2.【分析】根据实数的运算法则即可求出答案.【解答】解:(A)原式=﹣1,故A不是正数,(B)原式=1,故B是正数,(C)原式=0,故C不是正数,(D)原式=﹣1,故D不是正数,故选:B.【点评】本题考查实数运算,解题的关键是熟练运用实数运算法则,本题属于基础题型.3.【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.【点评】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.4.【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sin A===,∴tan A==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.5.【分析】数轴可知b<0<a,|b|>|a|,求出ab<0,a﹣b>0,a+b<0,根据以上结论判断即可.【解答】解:∵从数轴可知:b<0<a,|b|>|a|,∴①正确;②错误,∵a>0,b<0,∴ab<0,∴③错误;∵b<0<a,|b|>|a|,∴a﹣b>0,a+b<0,∴a﹣b>a+b,∴④正确;即正确的有①④,故选:B.【点评】本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据数轴得出b<0<a,|b|>|a|.6.【分析】根据方程的系数结合根的判别式,分别求出四个选项中方程的根的判别式,利用“当△=0时,方程有两个相等的实数根”即可找出结论.【解答】解:A、∵△=(﹣4)2﹣4×1×(﹣4)=32>0,∴该方程有两个不相等的实数根,A不符合题意;B、∵△=(﹣36)2﹣4×1×36=1152>0,∴该方程有两个不相等的实数根,B不符合题意;C、∵△=42﹣4×4×1=0,∴该方程有两个相等的实数根,C符合题意;D、∵△=(﹣2)2﹣4×1×(﹣1)=8>0,∴该方程有两个不相等的实数根,D不符合题意.故选:C.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.7.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.求解可得.【解答】解:两边都乘以(x﹣1)(x+2),得:2(x﹣1)=x+2,解得:x=4,检验:x=4时,(x﹣1)(x+2)=3×6=18≠0,∴原分式方程的解为x=4,故选:B.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.8.【分析】直接利用矩形、菱形的判定方法分析得出答案.【解答】解:A、当OA=OB时,可得到▱ABCD为矩形,故此选项正确;B、当AB=AD时▱ABCD为菱形,故此选项错误;C、当∠ABC=90°时▱ABCD为矩形,故此选项错误;D、当AC⊥BD时▱ABCD为菱形,故此选项.故选:A.【点评】此题主要考查了矩形、菱形的判定,正确掌握相关判定方法是解题关键.9.【分析】欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.【解答】解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.【点评】此题主要考查了圆周角定理的应用及三角形的外角性质.熟练掌握定理及性质是解题的关键.10.【分析】根据一次函数的性质,通过判断k和b的符号来判断函数所过的象限及函数与x轴y轴的交点.【解答】解:在y=5x﹣3中,∵5>0,∴y随x的增大而增大;∵﹣3<0,∴函数与y轴相交于负半轴,∴可知函数过第一、三、四象限;向下平移3个单位,函数解析式为y=5x﹣6;将点(0,﹣3)代入解析式可知,﹣3=﹣3,函数的图象与y轴的交点坐标是(0,﹣3),将点(1,2)代入解析式可知,2=5﹣3=2,故选:D.【点评】本题考查了一次函数的性质,知道系数和图形的关系式解题的关键.11.【分析】根据SAS即可证明△ABD≌△ACE,再利用全等三角形的性质以及等腰直角三角形的性质即可一一判断.【解答】解:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,故A正确∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,故B正确,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故C正确,∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°﹣90°﹣90°=180°,故D错误,故选:D.【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=×2t××(4﹣t)=﹣t2+2t;当2≤t<4时,S=×4××(4﹣t)=﹣t+4;只有选项D的图形符合.故选:D.【点评】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.二.填空题(共8小题,满分40分,每小题5分)13.【分析】根据二次根式和分式有意义的条件解答.【解答】解:依题意得:x﹣1>0,解得x>1.故答案是:x>1.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不能为零.14.【分析】根据一次函数的图象与系数的关系,利用一次函数的性质可知:当一次函数的系数小于零时,一次函数的函数值y随着自变量x的增大而减小,即可得到答案.【解答】解:∵一次函数y=kx﹣2,y随x的增大而减小,所以一次函数的系数k<0,故答案为:k<0.【点评】此题主要考查了一次函数图象与系数的关系,正确记忆一次函数的性质是解题关键.15.【分析】根据众数、平均数的概念,确定x、y的值,再求该组数据的方差.【解答】解:因为一组数据2,7,x,y,4中,唯一众数是2,平均数是4,可得x,y中一个是2,另一个为5,取x=2,则y=5,所以S2=[2×(2﹣4)2+(5﹣4)2+(4﹣4)2+(7﹣4)2]=3.6,故答案为:3.6【点评】本题考查了平均数、众数、方差的意义.①平均数平均数表示一组数据的平均程度;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.16.【分析】直接利用位似图形的性质得出位似中心.【解答】解:如图所示,点P即为位似中点,其坐标为(2,2),故答案为:(2,2).【点评】此题主要考查了位似变换,正确掌握位似中心的定义是解题关键.17.【分析】利用基本作图可判断MN垂直平分BC,根据线段垂直平分线的性质得到DB=DC,再证明DA=DC,从而得到CD=AB=2.【解答】解:由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠BCD,∵∠B+∠A=90°,∠BCD+∠ACD=90°,∴∠ACD=∠A,∴DA=DC,∴CD=AB=×4=2.故答案为2.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).18.【分析】连接OB、OC,根据正六边形的性质、扇形面积公式计算.【解答】解:连接OB、OC,∵六边形ABCDEF是正六边形,∴∠A=∠D==120°,∠BOC=60°,∴△OBC为等边三角形,∴OB=BC=AB=1,∴阴影部分的面积=×1××6﹣×2=﹣π,故答案为:﹣π.【点评】本题考查了正多边形和圆、扇形面积公式,解决此题的关键是熟练运用扇形面积公式S=.19.【分析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=2,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sin∠EFG的值.【解答】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB∴∠HDE=∠DAB=60°,∵点E是CD中点∴DE=CD=2在Rt△DEH中,DE=2,∠HDE=60°∴DH=1,HE=∴AH=AD+DH=5在Rt△AHE中,AE==2∵折叠∴AN=NE=,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=2∴BE=2∵CD∥AB∴∠ABE=∠BEC=90°在Rt△BEF中,EF2=BE2+BF2=12+(AB﹣EF)2.∴EF=∴sin∠EFG===故答案为:【点评】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.20.【分析】将以上数列每3个数分为1组,第n组的三个数为n、﹣n、,再由2017÷3=672…1知第2017个数为第672组第1个数,据此可得.【解答】解:将以上数列每3个数分为1组,则第1组为1、﹣1、1;第2组为2、﹣2、;第3组为3、﹣3、;第4组为4、﹣4、;…∵2017÷3=672…1,∴第2017个数为第672组第1个数,即第2017个数为672,故答案为:672.【点评】本题主要考查数字的变化规律,解题的关键是将数列每3个数分为1组,且第n组的三个数为n、﹣n、.三.解答题(共6小题,满分74分)21.【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x的值,最后代入计算可得.【解答】解:原式=(+)÷=•=,当x=tan45°+()﹣1=1+2=3时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.22.【分析】(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60,90.(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.【点评】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.23.【分析】(1)连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE =∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【解答】证明:(1)连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,(2分)∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(4分)(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,(7分)∴BD=8,∴在Rt△ABD中,AD====2.(8分)【点评】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.24.【分析】(1)根据“总利润=每件的利润×每天的销量”列方程求解可得;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.【解答】解:(1)依题意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴当x=5时,y取得最大值为2250元.答:y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.【点评】本题主要考查二次函数的应用和一元二次方程的应用,由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式是解题的关键.25.【分析】(1)①由矩形的性质及M是BC中点得出M(2,4),据此可得反比例函数解析式;②先求出点N的坐标,从而得出CM=BM=2,AN=BN=1,再根据S△OMN =S矩形OABC﹣S△OAN﹣S△COM﹣S△BMN计算可得.(2)设M(a,2),据此知反比例函数解析式为y=,求出N(4,),从而得BM=4﹣a,BN=2﹣,再代入计算可得.【解答】解:(1)①∵点B(4,2),且四边形OABC是矩形,∴OC=AB=2,BC=OA=4,∵点M是BC中点,∴CM=2,则点M(2,2),∴反比例函数解析式为y=;②当x=4时,y==1,∴N(4,1),则CM=BM=2,AN=BN=1,∴S△OMN =S矩形OABC﹣S△OAN﹣S△COM﹣S△BMN=4×2﹣×4×1﹣×2×2﹣×2×1=3;(2)设M(a,2),则k=2a,∴反比例函数解析式为y=,当x=4时,y=,∴N(4,),则BM=4﹣a,BN=2﹣,∴===2.【点评】本题是反比例函数的综合问题,解题的关键是掌握待定系数法求反比例函数解析式、矩形的性质、割补法求三角形的面积.26.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,=AM+MN+AN=AC+AN=3+.∴C△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的=﹣x2坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC﹣x+3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.。

2019年中考数学模拟试卷含答案

2019年中考数学模拟试卷含答案

2019年中考数学模拟试卷含答案2019年九年级数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.-3的相反数是()A。

3 B。

-3 C。

1/3 D。

-1/32.计算2×3的结果是()A。

5 B。

6 C。

23 D。

33.某市棚户区改造项目总占地亩。

这个数用科学计数法表示为()A。

1.29×10^5 B。

1.129×10^1 C。

1.129×10^4 D。

1.129×10^34.下列命题中错误的是()A。

两组对边分别对应相等的四边形是平行四边形B。

两条对角线相等的平行四边形是矩形C。

两条对角线垂直的平行四边形是菱形D。

两条对角线垂直且相等的四边形是正方形5.某同学一周中每天体育运动所花时间(单位:分钟)分别为:35,40,45,40,55,40,48.这组数据的中位数是()A。

35 B。

40 C。

45 D。

486.如图所示,△ABC中,点D、E分别是AC、BC边上的点,且DE∥AB,CD:AD=2:1,△ABC的面积是18,则△DEC的面积是()A。

8 B。

9 C。

12 D。

157.若关于x的一元二次方程kx^2-2x-1=0没有实数根,则k的取值范围是()A。

k>-1 B。

k>-1且k≠0 C。

k<1 D。

k<-18.如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2)。

设AE=x(0<x<2),则以下哪个选项是正确的?A。

当x=1时,点P是正方形ABCD的中心。

B。

当x=1/2时,EF+GH=AC。

C。

当0<x<2时,六边形AEFCHG面积的最大值是3.D。

当0<x<2时,六边形AEFCHG周长的值不变。

二、填空题(本大题共10小题,每小题3分,共30分,把答案填在相应的空格内)9.分解因式:2x^2-8=2(x+2)(x-2)10.二次根式1-x有意义的条件是x≤1.11.已知∠α=20°,则∠α的余角等于70°。

2019年四川省泸州市合江县中考数学模拟试卷(4月)(有答案含解析)

2019年四川省泸州市合江县中考数学模拟试卷(4月)(有答案含解析)

2019年四川省泸州市合江县中考数学模拟试卷(4月)一.选择题(共12小题,满分36分,每小题3分)1.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a2.下列运算正确的是()A.B.C.x6÷x3=x2D.(x3)2=x53.将数据162000用科学记数法表示为()A.0.162×105B.1.62×105C.16.2×104D.162×1034.如图所示几何体的主视图是()A.B.C.D.5.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣6.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2B.3C.4D.57.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.248.在函数y=中自变量x的取值范围在数轴上表示正确的为()A.B.C.D.9.将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A.50°B.110°C.130°D.150°10.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0B.﹣1C.﹣2D.﹣311.如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=,且AC:BD=2:3,那么AC 的长为()A.2B.C.3D.412.已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c>0;(2)﹣4a <b<﹣2a(3)abc>0;(4)5a﹣b+2c<0;其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共4小题,满分12分,每小题3分)13.分解因式:3x2﹣6x2y+3xy2=.14.已知圆锥的高为3cm,底面圆的直径为8cm,则它的侧面积为cm2.15.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C、D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E、F,则的值为.16.△ABC是等腰三角形,腰上的高为8cm,面积为40cm2,则该三角形的周长是cm.三.解答题(共3小题,满分18分,每小题6分)17.(6分)计算:|﹣1+|﹣﹣(5﹣π)0+4cos45°.18.(6分)计算:(1﹣)÷.19.(6分)【操作发现】(1)如图1,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°).旋转后三角板的一直角边与AB交于点D.在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请探究结果:①直接写出∠EAF的度数=度;若旋转角∠BCD=α°,则∠AEF=度(可以用含α的代数式表示);②DE与EF相等吗?请说明理由;【类比探究】(2)如图2,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于30°).旋转后三角板的一直角边与AB交于点D.在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①直接写出∠EAF的度数=度;②若AE=1,BD=2,求线段DE的长度.四.解答题(共2小题,满分14分,每小题7分)20.(7分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球标号的和等于4.21.(7分)今年3月12日植树节期间,学校预购进A、B两种树苗,若购进A种树苗3棵,B种树苗5棵,需2100元,若购进A种树苗4棵,B种树苗10棵,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,某湖心岛上有一亭子A,在亭子A的正东方向上的湖边有一棵树B,在这个湖心岛的湖边C处测得亭子A在北偏西45°方向上,测得树B在北偏东36°方向上,又测得B、C 之间的距离等于200米,求A、B之间的距离(结果精确到1米).(参考数据:≈1.414,sin36°≈0.588,cos36°≈0.809,tan36°≈0.727,cot36°≈1.376)23.(8分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.六.解答题(共2小题,满分24分,每小题12分)24.(12分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.25.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.2019年四川省泸州市合江县中考数学模拟试卷(4月)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】利用有理数大小的比较方法可得﹣a<b,﹣b<a,b>0>a进而求解.【解答】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.【点评】有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.2.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=|﹣5|=5,错误;B、原式=16,正确;C、原式=x3,错误;D、原式=x6,错误,故选:B.【点评】此题考查了二次根式的性质与化简,幂的乘方与积的乘方,同底数幂的乘法,以及负指数幂,熟练掌握运算法则是解本题的关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于162000有6位,所以可以确定n=6﹣1=5.【解答】解:162 000=1.62×105.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.【分析】从正面看几何体,确定出主视图即可.【解答】解:几何体的主视图为,故选:B.【点评】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.5.【分析】函数经过一定点,将此点坐标代入函数解析式(k≠0),即可求得k的值.【解答】解:设反比例函数的解析式为(k≠0).∵该函数的图象过点M(﹣1,2),∴2=,得k=﹣2.∴反比例函数解析式为y=﹣.故选:B.【点评】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.6.【分析】连接OA,由M为圆O中弦AB的中点,利用垂径定理的逆定理得到OM垂直于AB,由AB的长求出AM的长,在直角三角形OAM中,由AM与OM的长,利用勾股定理求出OA的长,即为圆O的半径.【解答】解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.【点评】此题考查了垂径定理的逆定理,以及勾股定理,熟练掌握定理是解本题的关键.7.【分析】根据菱形的性质即可求出答案.【解答】解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.【点评】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.8.【分析】根据二次根式的被开方数是非负数,分母不能为零,可得答案.【解答】解:函数y=中自变量x的取值范围x>1,故选:C.【点评】本题考查了函数值变量的取值范围,当函数表达式是整式时,自变量可取全体实数;函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.9.【分析】根据矩形性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【解答】解:∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选:C.【点评】本题考查了平行线性质,矩形性质,三角形外角性质的应用,解题的关键是求出∠2=∠FCD和∠FCD=∠1+∠A.10.【分析】由方程根的情况,根据根的判别式可得到关于a的不等式,可求得a的取值范围,则可求得答案.【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.【点评】本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.11.【分析】根据平行四边形的性质可知,OA=OC,OB=OD,由AC:BD=2:3,推出OA:OB =2:3,设OA=2m,OB=3m,在Rt△AOB中利用勾股定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AC:BD=2:3,∴OA:OB=2:3,设OA=2m,BO=3m,∵AC⊥BD,∴∠BAO=90°,∴OB2=AB2+OA2,∴9m2=5+4m2,∴m=±1,∵m>0,∴m=1,∴AC=2OA=4.故选:D.【点评】本题考查平行四边形的性质、勾股定理等知识,解题的关键是灵活应用平行四边形的性质解决问题,学会设未知数,把问题转化为方程去思考,属于中考常考题型.12.【分析】由抛物线开口向上得到a大于0,再由对称轴在y轴右侧得到a与b异号,即b小于0,由抛物线与y轴交于正半轴,得到c大于0,可得出abc的符合,对于(3)作出判断;由x=1时对应的函数值小于0,将x=1代入二次函数解析式得到a+b+c小于0,(1)错误;根据对称轴在1和2之间,利用对称轴公式列出不等式,由a大于0,得到﹣2a小于0,在不等式两边同时乘以﹣2a,不等号方向改变,可得出不等式,对(2)作出判断;由x=﹣1时对应的函数值大于0,将x=﹣1代入二次函数解析式得到a﹣b+c大于0,又4a大于0,c大于0,可得出a﹣b+c+4a+c 大于0,合并后得到(4)正确,综上,即可得到正确的个数.【解答】解:由图形可知:抛物线开口向上,与y轴交点在正半轴,∴a>0,b<0,c>0,即abc<0,故(3)错误;又x=1时,对应的函数值小于0,故将x=1代入得:a+b+c<0,故(1)错误;∵对称轴在1和2之间,∴1<﹣<2,又a>0,∴在不等式左右两边都乘以﹣2a得:﹣2a>b>﹣4a,故(2)正确;又x=﹣1时,对应的函数值大于0,故将x=﹣1代入得:a﹣b+c>0,又a>0,即4a>0,c>0,∴5a﹣b+2c=(a﹣b+c)+4a+c>0,故(4)错误,综上,正确的有1个,为选项(2).故选:A.【点评】此题考查了二次函数图象与系数的关系,利用了数形结合的思想,二次函数y=ax2+bx+c (a≠0),a的符号由抛物线的开口决定;b的符号由a及对称轴的位置确定;c的符号由抛物线与y轴交点的位置确定,此外还有注意利用特殊点1,﹣1及2对应函数值的正负来解决问题.二.填空题(共4小题,满分12分,每小题3分)13.【分析】原式提取公因式分解即可.【解答】解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)【点评】此题考查了提公因式法与公式法的综合运用,找出原式的公因式是解本题的关键.14.【分析】利用勾股定理可求得圆锥的母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面直径为8cm,底面半径=4,底面周长=8π.由勾股定理得,母线长=5,故圆锥的侧面积=×8π×5=20πcm2,故答案为:20π.【点评】此题主要考查了勾股定理以及圆锥的计算,利用圆的周长公式和扇形面积公式求解是解题关键.15.【分析】可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、BF的长度,即可解题.【解答】解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==a,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,BF=a,CE=a2,OE=a2,∴则==×=,故答案为:.【点评】本题考查了抛物线上点的计算,考查了三角形面积的计算,本题中求得点E、F、D的坐标是解题的关键.16.【分析】先根据三角形面积公式求出腰长,设AE=xcm,则BC=cm,BE=cm,在Rt △ACE中,根据勾股定理求出x,进一步得到BC,从而得到该三角形的周长,即可求解.【解答】解:腰长为40×2÷8=10(cm),如图1,等腰三角形顶角是锐角,如图2,等腰三角形顶角是钝角,设AE=x,则BC=,BE=,在Rt△ACE中,x2+()2=102,解得x=±4(负值舍去)或x=±2(负值舍去),∴BC=4或8,∴该三角形的周长是(20+4)或(20+8)cm.故答案为:(20+4)或(20+8).【点评】考查了勾股定理,等腰三角形的性质,三角形面积,难点是根据勾股定理得到底边的长.三.解答题(共3小题,满分18分,每小题6分)17.【分析】原式利用绝对值的代数意义,二次根式性质,零指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1﹣×2﹣1+4×=2﹣2.【点评】此题考查了实数的运算,零指数幂,绝对值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.【分析】先计算1﹣,再做除法,结果化为整式或最简分式.【解答】解:原式=(﹣)×=×=2.【点评】本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.19.【分析】(1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;作FH⊥EA交EA的延长线于H.解直角三角形即可解决问题;【解答】解:(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°,∵∠DCF=90°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90;②DE=EF;理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°,∵∠DCF=60°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF,作FH⊥EA交EA的延长线于H.在Rt△AFH中,AF=2,∠FAH=60°,可得AH=1,FH=在Rt△EFH中,EF==∴DE=EF=.故答案为:(1)90;2α;(2)120.【点评】本题是几何变换综合题目,考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.四.解答题(共2小题,满分14分,每小题7分)20.【分析】(1)先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号相同的占4种,然后根据概率的概念计算即可;(2)由(1)可知有16种等可能的结果数,其中两次取出的小球标号的和等于4的有3种,进而可求出其概率.【解答】解:(1)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号相同的有4种,所有两次摸出的小球标号相同的概率为=;(2)因为两次取出的小球标号的和等于4的有3种,所以其概率为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需2100元,若购进A种树苗4棵,B种树苗10棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设需购进A种树苗a棵,则购进B种树苗(30﹣a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据题意得:,解得:.答:购进A种树苗的单价为200元/棵,购进B种树苗的单价为300元/棵.(2)设需购进A种树苗a棵,则购进B种树苗(30﹣a)棵,根据题意得:200a+300(30﹣a)≤8000,解得:a≥10.∴A种树苗至少需购进10棵.【点评】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.五.解答题(共2小题,满分16分,每小题8分)22.【分析】本题可通过构建直角三角形来解答,过点C作AB的垂线交AB于H,要先求出CH的值然后再求AH,BH的值,进而得出AB的长.【解答】解:过点C作CH⊥AB,垂足为点H,由题意,得∠ACH=45°,∠BCH=36°,BC=200,在Rt△BHC中,,∴,∵sin36°≈0.588,∴BH≈117.6,又,∴.∵cos36°≈0.809,∴HC≈161.8,在Rt△AHC中,,∵∠ACH=45°,∴AH=HC,∴AH≈161.8,又AB=AH+BH,∴AB≈279.4,∴AB≈279(米),答:A、B之间的距离为279米.【点评】本题考查了直角三角形的应用,解答本题的关键是根据方向角构造直角三角形,利用三角函数解直角三角形.如果两个直角三角形有公共的直角边,先求出公共边一般是解题的常用方法.23.【分析】(1)由直线y=x+b与双曲线y=相交于A,B两点,A(2,5),即可得到结论;(2)过A作AD⊥y轴于D,BE⊥y轴于E根据y=x+3,y=,得到B(﹣5,﹣2),C(﹣3,0),求出OC=3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD =2.∵b =3,k =10,∴y =x +3,y =.由得:或,∴B 点坐标为(﹣5,﹣2).∴BE =5.设直线y =x +3与y 轴交于点C .∴C 点坐标为(0,3).∴OC =3.∴S △AOC =OC •AD =×3×2=3,S △BOC =OC •BE =×3×5=.∴S △AOB =S △AOC +S △BOC =. 【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键.六.解答题(共2小题,满分24分,每小题12分)24.【分析】(1)连接OE ,由FG =EG 得∠GEF =∠GFE =∠AFH ,由OA =OE 知∠OAE =∠OEA ,根据CD ⊥AB 得∠AFH +∠FAH =90°,从而得出∠GEF +∠AEO =90°,即可得证;(2)连接OC ,设OA =OC =r ,再Rt △OHC 中利用勾股定理求得r =,再证△AHC ∽△MEO得=,据此求解可得. 【解答】解:(1)如图,连接OE ,∵FG=EG,∴∠GEF=∠GFE=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵CD⊥AB,∴∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AH=3、CH=4,∴OH=r﹣3,OC=r,则(r﹣3)2+42=r2,解得:r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,即=,解得:EM=.【点评】本题主要考查切线的判定与性质,解题的关键是掌握等腰三角形的性质、切线的判定与性质、勾股定理及相似三角形的判定与性质.25.【分析】(1)将A(﹣1,0)、B(3,0)代入二次函数y=ax2+bx﹣3a求得a、b的值即可确定二次函数的解析式;(2)分别求得线段BC、CD、BD的长,利用勾股定理的逆定理进行判定即可;(3)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.【解答】解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).【点评】考查了二次函数综合题,此题是一道典型的“存在性问题”,结合二次函数图象和等腰三角形、直角梯形的性质,考查了它们存在的条件,有一定的开放性.。

中考仿真模拟考试 数学试卷 含答案解析

中考仿真模拟考试 数学试卷 含答案解析
【答案】D
【解析】
【详解】解:∵△ABC沿DE折叠,使点A与点B重合,
∴EA=EB,
∵∠C=90°,AC=8,BC=6,
∴CE=CA-AE=8-BE,在Rt△BCE中,

∴BE= ,故选D.
考点:1.折叠问题;2.勾股定理.
7. 数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()
故③正确.
故选B.
考点:一次函数的应用.
10.如图,一次函数y=k1x+b的图象与反比例函数y= 的图象相交于A(2,3),B(6,1)两点,当k1x+b< 时,x的取值范围为()
A.x<2B.2<x<6C.x>6D.0<x<2或x>6
【答案】D
【解析】
分析:根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.
【详解】解:2019的相反数的倒数是
故选B.
【点睛】此题考查的是求一个数的相反数和倒数,掌握相反数的定义和倒数的定义是解决此题的关键.
2.”厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( )
A. B. C. D.
4.下列运算正确的是( )
A. B. C. D.
5.某校四个环保小组一天收集废纸的数量分别为:10,x,9,8,(单位千克)已知这组数据的众数与平均数相等,则这组数据的中位数是()
A.8 5B.9C.9.5D.8
6.下图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()

辽宁省抚顺市2019届中考数学模拟试卷(三)含答案解析

辽宁省抚顺市2019届中考数学模拟试卷(三)含答案解析

2019年辽宁省抚顺市中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,满分30分)1.如图所示的几何体的主视图是()A. B.C. D.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.B.C.D.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球4.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.5.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠26.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.7.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2.则m的取值范围是()A.m<0 B.m>0 C.m D.m8.如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()A.100°B.130°C.150°D.160°9.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为()A.B.C.D.10.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2二、填空题(共8小题,每小题3分,满分24分)11.从﹣1,0,1,2四个数中任意取出两个数,这两个数和为负数的概率是.12.已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(4,0),则c=.13.某小区2019年底绿化面积为1000平方米,计划2019年底绿化面积要达到1440平方米,如果每年绿化面积的增长率相同,那么这个增长率是.14.如图是一几何体的三视图,则这个几何体的全面积是.15.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要mm.16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为.17.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=.18.如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S1=,S n=(用含n的式子表示).三、解答题(共6小题,满分70分)19.如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC绕点O顺时针方向旋转90°后得△A1B1C1,画出△A1B1C1并直接写出点C1的坐标为;(2)以原点O为位似中心,在第四象限画一个△A2B2C2,使它与△ABC位似,并且△A2B2C2与△ABC的相似比为2:1.20.(1)计算:sin30°+3tan60°﹣cos245°.(2)如图,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD的长.21.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?22.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若⊙O的半径为3,求阴影部分的面积.23.如图,某数学活动小组要测量楼AB的高度,楼AB在太阳光的照射下在水平面的影长BC为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB的高度.(坡度为铅直高度与水平宽度的比)24.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(吨)近似满足函数关系y甲=0.3x;乙种水果的销售利润y乙(万元)与进货量x(吨)近似满足函数关系y乙=ax2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y乙为1.4万元;进货量x为2吨时,销售利润y乙为2.6万元.(1)求y乙(万元)与x(吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?2019年辽宁省抚顺市中考数学模拟试卷(三)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图所示的几何体的主视图是()A. B.C. D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在图中.【解答】解:几何体的主视图是.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【解答】解:在Rt△ABC中,由勾股定理,得AB==5.sinB==,故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则( ) A .这个球一定是黑球B .摸到黑球、白球的可能性的大小一样C .这个球可能是白球D .事先能确定摸到什么颜色的球【考点】可能性的大小.【分析】根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案.【解答】解:∵布袋中有除颜色外完全相同的11个球,其中10个黑球、1个白球,∴从布袋中随机摸出一个球是黑球的概率为,摸出一个球是白球的概率为,∴A 、这个球一定是黑球,错误;B 、摸到黑球、白球的可能性的大小一样,错误;C 、这个球可能是白球,正确;D 、事先能确定摸到什么颜色的球,错误;故选:C .【点评】此题考查了可能性大小以及概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.4.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是( )A .B .C .D . 【考点】概率公式.【分析】由一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,直接利用概率公式求解即可求得答案.【解答】解:∵一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴你抬头看信号灯时是绿灯的概率是: =.故选C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据x y实际意义x、y应大于0,其图象在第一象限.【解答】解:∵xy=4,∴xy=4,∴y=(x>0,y>0),当x=1时,y=4,当x=4时,y=1,故选:C.【点评】考查了反比例函数的图象及应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.7.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2.则m的取值范围是()A.m<0 B.m>0 C.m D.m【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征得x1=,x2=,而x1<x2<0时,y1<y2,则2﹣5m<0,然后解不等式即可.【解答】解:∵反比例函数y=的图象上有A(x1,y1)、B(x2,y2),∴x1=,x2=,∵x1<x2<0时,y1<y2,∴2﹣5m<0,∴m>.故选D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.8.如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()A.100°B.130°C.150°D.160°【考点】圆周角定理.【分析】首先在优弧AB上取点D,连接AD,BD,然后由圆周角定理,求得∠D的度数,又由圆的内接四边形的性质,求得∠ACB的度数.【解答】解:在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠D=∠AOB=50°,∴∠ACB=180°﹣∠D=130°.故选B.【点评】此题考查了圆周角定理以及圆的内接四边形的性质.注意准确作出辅助线是解此题的关键.9.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】先根据平行四边形的性质得AB∥CD,AB=CD,而E是AB的中点,BE=AB=CD,再证明△BEF∽△DCF,然后根据相似三角形的性质可计算的值.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∵E是AB的中点,∴BE=AB=CD;∵BE∥CD,∴△BEF∽△DCF,∴=()2=.故选C.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时主要利用相似比计算相应线段的长.10.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2【考点】正多边形和圆.【专题】压轴题.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF 中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.【点评】此题主要考查了正多边形与圆的关系,要熟练掌握,解答此题的关键是要明确正多边形的有关概念:①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.二、填空题(共8小题,每小题3分,满分24分)11.从﹣1,0,1,2四个数中任意取出两个数,这两个数和为负数的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有,12种等可能的结果数,再找出两个数和为负数的结果数,然后根据概率公式计算.【解答】解:画树状图为:,共有12种等可能的结果数,其中两个数和为负数的结果数为2,所以两个数和为负数的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.12.已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(4,0),则c=﹣4.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】由于已知抛物线与x轴的交点坐标,则可用交点式表示解析式为y=(x+1)(x﹣4),然后变形为一般式即可得到c的值.【解答】解:抛物线的解析式为y=(x+1)(x﹣4),即y=x2﹣3x﹣4,所以c=﹣4.故答案为﹣4.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.13.某小区2019年底绿化面积为1000平方米,计划2019年底绿化面积要达到1440平方米,如果每年绿化面积的增长率相同,那么这个增长率是20%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】一般用增长后的量=增长前的量×(1+增长率),如果设人均年收入的平均增长率为x,根据题意即可列出方程.【解答】解:设平均增长率为x,根据题意可列出方程为:1000(1+x)2=1440.解得:(1+x)2=1.44.1+x=±1.2.所以x1=0.2,x2=﹣2.2(舍去).故x=0.2=20%.答:这个增长率为20%,故答案为:20%【点评】本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键.14.如图是一几何体的三视图,则这个几何体的全面积是33π.【考点】圆锥的计算;由三视图判断几何体.【分析】首先确定几何体的形状,根据三视图中提供的数据即可计算.【解答】解:几何体是圆锥,底面直径是6,则底面周长是6π,母线长是8.则侧面积是:×6π×8=24π,底面面积是:9π.则全面积是:24π+9π=33π.故答案为:33π.【点评】本题主要考查了三视图,以及圆锥的侧面积的计算,正确根据三视图确定圆锥的底面直径以及母线长是解题的关键.15.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要12mm.【考点】正多边形和圆.【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.【解答】解:如图所示:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=12mm,∠AOB=60°,∴cos∠BAC=,∴AM=12×=6,∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=12mm.故答案为:12.【点评】本题考查了正多边形和圆的知识、三角函数;构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行计算是解决问题的关键.16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为.【考点】旋转的性质.【分析】先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF是△ABC的中位线,由三角形的面积公式即可得出结论.【解答】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AB=2BC=4,AC=2,∵△EDC 是△ABC 旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD 是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE ⊥AC ,∴DE ∥BC ,∵BD=AB=2,∴DF 是△ABC 的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S 阴影=DF ×CF=×=. 【点评】考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.17.如图,矩形ABCD 中,AD=2,AB=5,P 为CD 边上的动点,当△ADP 与△BCP 相似时,DP= 1或4或2.5 .【考点】相似三角形的判定;矩形的性质.【专题】分类讨论.【分析】需要分类讨论:△APD ∽△PBC 和△PAD ∽△PBC ,根据该相似三角形的对应边成比例求得DP 的长度.【解答】解:①当△APD ∽△PBC 时,=,即=, 解得:PD=1,或PD=4;②当△PAD∽△PBC时,=,即=,解得:DP=2.5.综上所述,DP的长度是1或4或2.5.故答案是:1或4或2.5.【点评】本题考查了矩形的性质,相似三角形的判定与性质.对于动点问题,需要分类讨论,以防漏解.18.如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S1=,S n=(用含n的式子表示).【考点】相似三角形的判定与性质;三角形的面积;等腰直角三角形.【专题】压轴题;规律型.【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,所以S2=×=,同样的道理,即可求出S3,S4…S n.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴S△AB1C1=×1×1=,连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,故答案为:;同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:.【点评】本题主要考查相似三角形的判定和性质,等腰直角三角形的定义和性质、三角形的面公式等知识点、本题关键在于作好辅助线,得到相似三角形,求出相似比,就很容易得出答案了,意在提高同学们总结归纳的能力.三、解答题(共6小题,满分70分)19.如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC绕点O顺时针方向旋转90°后得△A1B1C1,画出△A1B1C1并直接写出点C1的坐标为(2,3);(2)以原点O为位似中心,在第四象限画一个△A2B2C2,使它与△ABC位似,并且△A2B2C2与△ABC的相似比为2:1.【考点】作图-位似变换;作图-旋转变换.【专题】作图题.【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用关于原点中心对称的点的特征特征,把A、B、C点的横纵坐标都乘以﹣2得到A2、B2、C2的坐标,然后描点即可得到△A2B2C2.【解答】解:(1)如图,△A1B1C1为所作,点C1的坐标为(2,3);(2)如图,△A2B2C2为所作.故答案为(2,3).【点评】本题考查了位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.20.(1)计算:sin30°+3tan60°﹣cos245°.(2)如图,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD的长.【考点】解直角三角形;特殊角的三角函数值.【分析】(1)将特殊角的三角函数值代入求解;(2)根据三角函数的定义和直角三角形的解法解答即可.【解答】解:(1)sin30°+3tan60°﹣cos245°===;(2)Rt△DBC 中,sin∠DBC=,sin60°=,,BD=4,∠ABD=∠ABC﹣∠DBC=75°﹣60°=15°,∠A+∠ABC=90°,∠A=90°﹣∠ABC=90°﹣75°=15°,∴∠ABD=∠A,∴AD=BD=4.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.21.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?【考点】反比例函数的应用;一次函数的应用.【分析】(1)需要分类讨论:AD段为直线;AB段平行于x轴的直线;BC段为双曲线的一部分,利用待定系数法求解即可;(2)把x=16代入反比例函数解析式进行解答.【解答】解:(1)设AD解析式是y=mx+n(m≠0),则,解得,∴y=5x+8.∵双曲线y=经过B(12,18),∴18=,解得k=216.∴y=.综上所述,y与x的函数解析式为:y=;(2)当x=16时,y==13.5.答:当x=16时,大棚内的温度约为13.5度.【点评】此题主要考查了反比例函数的应用,求函数解析式时,一定要结合图形,对自变量x的取值范围进行分类讨论,以防漏解或错解.22.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若⊙O的半径为3,求阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OA,如图,先根据圆周角定理得到∠AOC=2∠B=120°,则∠AOP=60°,再计算出∠OCA的度数,接着利用AP=AC得到∠P=∠ACO=30°,然后根据三角形内角和可计算出∠PAO=90°,于是利用切线的判定定理可判断PA是⊙O的切线;(2)在Rt△AOP中,利用含30度的直角三角形三边的关系得到PO=2OA=6,PA=OA=3,然后根据三角形面积公式和扇形面积公式,利用S阴影部分=S△PAO﹣S扇形OAD进行计算即可.【解答】(1)证明:连接OA,如图,∵∠AOC=2∠B=120°,∴∠AOP=60°,∵OA=OC,∴∠OCA=∠OAC=(180°﹣120°)=30°,∵AP=AC,∴∠P=∠ACO=30°,∴∠PAO=180°﹣30°﹣60°=90°,∴OA ⊥PA ,∴PA 是⊙O 的切线;(2)解:在Rt △AOP 中,PO=2OA=6,PA=OA=3,∴S 阴影部分=S △PAO ﹣S 扇形OAD =•3•3﹣=.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积公式.23.如图,某数学活动小组要测量楼AB 的高度,楼AB 在太阳光的照射下在水平面的影长BC 为6米,在斜坡CE 的影长CD 为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE 的坡度为1:2.4,求楼AB 的高度.(坡度为铅直高度与水平宽度的比)【考点】解直角三角形的应用-坡度坡角问题.【分析】作DN ⊥AB ,垂足为N ,作CM ⊥DN ,垂足为M ,设CM=5x ,根据坡度的概念求出CM 、DM ,根据平行线的性质列出比例式,计算即可.【解答】解:作DN ⊥AB ,垂足为N ,作CM ⊥DN ,垂足为M ,则CM :MD=1:2.4=5:12,设CM=5x ,则MD=12x ,由勾股定理得CD==13x=13∴x=1∴CM=5,MD=12,四边形BCMN为矩形,MN=BC=6,BN=CM=5,太阳光线为平行光线,光线与水平面所成的角度相同,角度的正切值相同,∴AN:DN=1.5:1.35=10:9,∴9AN=10DN=10×(6+12)=180,AN=20,AB=20﹣5=15,答:楼AB的高度为15米.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键,注意平行线的性质的应用.24.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(吨)近似满足函数关系y甲=0.3x;乙种水果的销售利润y乙(万元)与进货量x(吨)近似满足函数关系y乙=ax2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y乙为1.4万元;进货量x为2吨时,销售利润y乙为2.6万元.(1)求y乙(万元)与x(吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意列出二元一次方程组,求出a、b的值即可求出函数关系式的解.(2)已知w=y甲+y乙=0.3(10﹣t)+(﹣0.1t2+1.5t),用配方法化简函数关系式即可求出w的最大值.【解答】解:(1)由题意,得:解得∴y乙=﹣0.1x2+1.5x.(2)W=y甲+y乙=0.3(10﹣t)+(﹣0.1t2+1.5t)∴W=﹣0.1t2+1.2t+3.W=﹣0.1(t﹣6)2+6.6.∴t=6时,W有最大值为6.6.∴10﹣6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.【点评】本题考查学生利用二次函数解决实际问题的能力,注意二次函数的最大值往往要通过顶点坐标来确定.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考模拟考试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910´ (B )64.3910´(C )54.3910´(D )343910´2.下列倡导节约的图案中,是轴对称图形的是(A )(B )(C )(D )3.正十边形的外角和为(A )180(B )360(C )720(D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO =BO ,则a 的值为(A )3-(B )2-(C )1-(D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .B根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM =∠COD (B )若OM =MN ,则∠AOB =20°(C )MN ∥CD(D )MN =3CD6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为 (A )3- (B )1- (C )1 (D )37.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0(B )1(C )2(D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类别5下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )①③ (B )②④(C )①②③(D )①②③④二、填空题(本题共16分,每小题2分) 9.若分式1x x-的值为0,则x 的值为______. 10.如图,已知ABC !,通过测量、计算得ABC !的面积约为______cm 2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:()1142604sin π----++().图3图2图118.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD =4,tan G =12,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息: a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l 的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的40/万元距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD =CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD =CM ,求直线DE 与图形G 的公共点个数.23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i +)天背诵第二遍,第(3i +)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首.解答下列问题:CBA(1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________; (3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .(1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC =2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C . (1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W .①当2k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y ax bx a=+-与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a -,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H 为射线OA上一定点,1OH =+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1; (2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON =QP ,并证明.28.在△ABC 中,D ,E 分别是ABC !两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.备用图图1BAOB(1)如图,在Rt △ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在△ABC 中,D E ,分别是AB AC ,的中点. ①若12t =,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.ABCDE AED CB2019年北京市中考数学答案一. 选择题.二. 填空题.9. 1 10. 测量可知11. ①②12. 45°13. 0 14. 12 15. =16. ①②③三. 解答题.17.【答案】18.【答案】2x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∵四边形ABCD为菱形∴AB=AD,AC平分∠BAD∵BE=DF∴AB BE AD DF-=-∴AE=AF∴△AEF是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)AO =1.21.【答案】(1)17(2)(3)2.7(4)①②22.【答案】(1)∵BD平分∠ABC∴∠=∠ABD CBD∴AD=CD(2)直线DE与图形G的公共点个数为1. 23.【答案】(1)如下图(2)4,5,6(3)2324.【答案】(1)AD,PC,PD;(2)(3)2.29或者3.9825.【答案】0,1(1)()(2)①6个②10k=--≤<或2k26.【答案】(1)1 (2,)Ba-;(2)直线1x=;(3)1a-≤2.27.【答案】(1)见图(2)在△OPM中,=180150OMP POM OPM OPM∠︒-∠-∠=︒-∠150OPN MPN OPM OPM∠=∠-∠=︒-∠OMP OPN∴∠=∠(3)OP=2.28.【答案】(1)如图:B C1801180180n r l πππ=== (2) ①1P y ≥或12P y ≤;②0t <≤。

相关文档
最新文档