模拟电子技术基础课课件-5放大电路的频率响应

合集下载

《模拟电子技术》课件第5章放大电路的频率响应

《模拟电子技术》课件第5章放大电路的频率响应

中频增益或通 带源电压增益
f
H
1 2πRC
上限频率
②高频响应和上限频率
共射放大电路
A VSH A VSM 1
1 j( f
/
fH )
RC低通电路
A VH
1
1 j( f
/
fH )
频率响应曲线变化趋势相同
幅频响应
20l g|A VSH | 20l g|A VSM |
20lg
1
1 ( f / fH )2
最大误差 -3dB
1 fH 2 πRC
fH称转折频率,上限截止 频率(上限频率),AVH(s) 的极点频率。
10
2. 低频特性
---- RC高通电路
RC高通电路
RC电路的电压增益:
AVH
Vo Vi
R
R
1
j ωC
1
1 1
j 2 πfR C

fL
1 2 πR
C
AVH
Vo Vi
1
1 j(fL /
f)
gmV b'e rce—c-e间的动态电阻(约100kΩ)
Cbe --发射结电容
互导
gm
iC vBE
VCE
iC vBE
VCE
2.混合等效电路中各元件的讨论: 简化模型 rce RL 略去rce
rbc
1 jω Cbc
略 去rbc
混合型高频小信号模型
晶体管的混合Π型等效电路
3.混合型等效电路的获得 低频时,混合模型与H参数模型等价
β0
1 ( f / fβ )2
的相频响应 arctg f
fβ fβ ——共发射极截止频率

【图文】模拟电子技术基础课件第15讲 放大电路的频率响应

【图文】模拟电子技术基础课件第15讲 放大电路的频率响应

讨论一:讨论一:时间常数分析 ' 分别考虑C1、C2、Ce、C π所确定的截止频率。

C2、Ce短路,C π开路,求出短路, ' 开路, C1、Ce短路,C π开路,求出短路, '开路, C1、C2短路, C 短路, ' 开路,开路,求出πτ 1 = ( Rs + Rb1 ∥ Rb2 ∥ rbe C1 τ2 = ( Rc + RL C2 rbe + Rs ∥ Rb1 ∥ Rb2 τ e = ( Re ∥ C e 1+ β C1、 C2、 Ce短路,求出短路, ' π ' τ C = [ rb'e ∥ ( rbb' + Rs ∥ Rb1 ∥ Rb2 ] Cπ讨论一:讨论一:电压放大倍数分析τ 1 = ( Rs + Rb1 ∥ Rb2 ∥ rbe C1 τ 2 = ( Rc + RL C2 rbe + Rs ∥ Rb1 ∥ Rb2 τ e = ( Re ∥ C e 1+ β ' π f L1 = 1 (2πτ 1 f L2 = 1 (2πτ 2 f L3 = 1 (2πτ e f H = 1 (2 πτ C ' π很小!很小! ' τ C = [ rb'e ∥ ( rbb' + Rs ∥ Rb1 ∥ Rb2 ] Cπ j3 f 3 f L1 f L2 f L3 & & Au = Aum ⋅ (1 + jf f L1 (1 + jf f L2 (1 + jf f L3 (1 + jf f H讨论二已知某放大电路的幅频特性如图所示,特性如图所示,讨论下列问题: & Au = ? 1. 该放大电路为几级放大电路该放大电路为几级放大电路? 2. 耦合方式耦合方式?3. 在 f =104Hz 时,增益下降多少?附加相移=?增益下降多少?附加相移φ’=?4. 在 f =105Hz 时,附加相移?附加相移φ’≈?5. 画出相频特性曲线;画出相频特性曲线;6. fH=?清华大学华成英 hchya@。

模拟电子技术_ ( 放大电路的频率响应)_

模拟电子技术_ ( 放大电路的频率响应)_

频率响应的基本概念1.绪论2.晶体二极管及应用电路3.晶体三极管及基本放大电路4.场效应管及基本放大电路5.放大电路的频率响应(4学时)6.负反馈放大电路7.双极型模拟集成电路8.双般型模拟集成电路的分析与应用 9.MOS 模拟集成电路(自学) 10.直流稳压电源电路课程主要内容1/68主讲:刘颖第五章放大电路的频率响应问题:1.什么是电路的频率响应?2.工程上如何绘制频率响应曲线?3. 三极管的高频模型与低频模型(h参数模型)有何不同?4.耦合电容、旁路电容、三极管结电容对电路频率特性有怎样的影响?第五章放大电路的频率响应5.1 频率响应的基本概念5.2 晶体三极管的高频模型5.3 频率响应的分析方法5.4 单管共射放大电路的频率响应5.5 共集、共基放大电路的频率响应5.6 多级放大电路的频响5.1 频率响应的基本概念CE 组态基本放大电路5.1.1. 放大电路频率响应概念 概念:放大电路增益随着频率变化而变化的特性称为频率响应特性,可表示为 其中:()()()j U U A j A j f f feϕ=()()U A j f f ϕ称为增益的幅频特性 称为增益的相频特性4/685/68 -180° -90° -270°A U|A U (j f )|fφ(f )f中频段:A U =常数 低频段高频段A U 下降中频段:相位差 φ =常数 低频段高频段φ 改变增益幅度|A U (j f )∣与频率f 的关系称为幅频特性。

增益相位φ(j f )与频率f 的关系称为称为相频特性。

幅频特性曲线相频特性曲线说明:放大电路的频率响应特性是增益幅频特性和相频特性统称。

幅度频率失真:幅频特性偏离中频值的现象相位频率失真:相频特性偏离中频值的现象♦ 中频增益: 中间频率段的增益♦ 频率失真f L f h 0.707A UA UA (j f )f幅频特性曲线-180° -90° -270°φ(f )f相频特性曲线5.1.2. 放大电路的带宽放大电路的带宽:也称通频带、有效带宽,带宽BW=f h -f L上限截止频f h 、下限截止频f L 定义:增益下降到中频增益的0.707倍(即3dB 处)所对应的频率。

模电课件 第五章 放大电路的频率响应.ppt

模电课件 第五章 放大电路的频率响应.ppt
模电课件
3、混合π模型的主要参数
rbe
(1

0)
UT I EQ
gm

I c U be

0 Ib
U be

0 Ib
Ib rbe
0 I EQ 1 0 UT

I EQ UT


0








数,
0
1)
从半导体器件手册中可以查得参数Cob,与Cμ近似,计算时
2019/12/4
(C C C) (5.2.1)
模电课件

0
1 j
f
f
2、 的波特图
2019/12/4

20 lg 20 lg 0 20 lg

1

f f
2

arctan f
f
20lg 0 20lg


Irbe
Ic
IC

Ub(e rg1bmeUbjeC)
1 rbe
0
rbe
jC
1
0 特殊的C j rbeC
的频率响应与低通电路相似,fβ为 的截止频率,称为共射
截止频率。
特殊的C
1
1
f 2 2 rbeC
rbb 为基区体电阻,rbe 为发射结电阻,rbc rbc ,rbe rbe 。
根据半导体物理的分析,Ic与Ube 成线性关系,与频率无关。gm为
跨导,是一个常数,表明
2019/12/4
U
be
对模I电c课的件 控制关系,Ic

g mU be。

模拟电子技术课件:第15讲 放大电路的频率响应

模拟电子技术课件:第15讲 放大电路的频率响应

4. 电压放大倍数的波特图
全频段放大倍数表达式:
Aus
U o U s
Ausm ( j
f) fL
(1 j f )(1 j f )
fL
fH
Ausm
(1 fL )(1 j f )
jf
fH
5. 带宽增益积:定性分析
Ausm
Ri Rs
Ri
rb'e rbe
[gm (Rc
∥ RL )]
fbw= fH- fL≈ fH
fL
fH
fL> fL1, fH< fH1,频带变窄!
≈0.643fH1
二、多级放大电路的频率响应
对于N级放大电路,若各级的下、上限频率分别为fL1~
fLn、 fH1~ fHn,整个电路的下、上限频率分别为fL、 fH,

fL fLk
f
H
f Hk
(k 1,2,, n)
fbw fbwk
由于
rb'e rbe
[gm (Rc
∥ RL )]
fH
2π [rb'e ∥(rbb'
1
Rb ∥ Rs )]Cπ'
Cπ' Cπ (1 gmRL' )Cμ
若rbe<<Rb、 Rs<<Rb、gmRL' 1、gmRL' Cμ ,则可以证明
图示电路的
约为常量
Aum fH
1 2π(rbb' Rs )Cμ
说明决定于 管子参数
20lg Au
n 20lg Auk
k 1
n
k
k 1
求解使增益下降3dB的频 率,经修正,可得

《模拟电子技术基础》第5章 放大电路的频率响应

《模拟电子技术基础》第5章 放大电路的频率响应

Au
1 1 ( f fH)2
arctan( f fH )
频率响应概述
【 】 内容 回顾
(3)几个结论
① 电路低频段的放大倍数需乘因子
jf fL 1 jf fL
1
电路高频段的放大倍数需乘因子 1 jf fL
② 当 f=fL时放大倍数幅值约降到0.707倍,相角超前45º; 当 f=fH时放大倍数幅值也约降到0.707倍,相角滞后45º。
③ 截止频率决定于电容所在回路的时间常数
f L(H)
1

④ 频率响应有幅频特性和相频特性两条曲线。
放大电路的频率参数
高通 电路
低通 电路
下限频率
fbw fH fL 上限频率
在低频段,随着信号频率逐渐降低,耦合电容、旁路电 容等的容抗增大,使动态信号损失,放大能力下降。
在高频段,随着信号频率逐渐升高,晶体管极间电容和 分布电容、寄生电容等杂散电容的容抗减小,使动态信号 损失,放大能力下降。
适应任何频率信号的等效电路
高频等效电路
用三极管高频等效 模型代替三极管; 保留电路中的电容; 其他部分画成交流通 路。
1、中频电压放大倍数 Aum、Ausm 断路
短路
Aum
Uo Ui
g mUbe rbe rbe
RC // U be
RL
中频电压 放大倍数 的计算与 h参数交 流等效电 路法计算 结果完全 相同!
rb'e
(1
) UT
IE
gm
0
rb'e
I EQ UT
0 gm rb'e
0Ib gmUb'e gmIbrb'e

5.2.2 晶体管电流放大倍数 的频率响应

模拟电子技术基础 第五章 频率响应PPT课件

模拟电子技术基础 第五章  频率响应PPT课件

第5章 频率响应
UCRUCRUCRsississisCrCrRbCrRbbRbebsebseesee((rr(RCrrbRbCrrbRbCbbSbeMbSeMbSeMrrrrbbrrbCbbeCbbCebebb)Ub)Ub)Ueeesss((1(1R1RRssrgsrbgrbgbmemermeRrbrRbRebeLeLUL)U)UC)CsCsbsbbeee
U1 -
Z1
Z
N
A(jω) =
U2 U1
(a)
I2 +
U2 -
Z2
图5–7 (a)原电路;
(b)等效后的电路
I1 +
U1 -
N
Z1
A(jω) =
U2 U1
第5章 频率响应
I2 +
Z2
U2

(b)
图5–7 (a)原电路;
(b)等效后的电路
第5章 频率响应
Z1Z1ZU11IU1I1 11UUII1111 UU 1U1UUZZ1U11ZU1UUZ1U12U2221111ZUUZ2ZZUU2UU12U2U2121212 111Z1ZAZAuZAu Au u
(5–1) (5–2a) (5–2b)
第5章 频率响应
图5–2给出了不产生线性失真的振幅频率响应和相 位频率响应,称之为理想频率响应。
|Au(jω)|
(jω)
K
0
0
ω
ω
∞ω
(a)
(b)
图5–2 (a)理想振幅频率响应;(b)理想相位频率响应
第5章 频率响应
5–1–2实际的频率特性及通频带定义 实际的振幅频率特性一般如图5–3所示。在低频和
三、高频增益表达式及上限频率
第5章 频率响应

第5章放大电路的频率响应

第5章放大电路的频率响应
+ Ui C + Uo


(b) 高频段极间电容的影响
结束
第 5章
放大电路的频率响应
一、高通电路
图5.1.1 高通电路及频率响应
结束
第 5章
放大电路的频率响应
RC高通电路的电压增益: ( s) U R 1 o Au ( s ) 1 1 U i ( s) R 1 j C jRC 1 1 1 fL L 令 2RC RC
A ush
R rbe //(rbb Rs // Rb ) U U U U 0 s be 0 U U U U
s s s be
1 Ri rbe jRC ( g m R L) 1 Rs Ri rbe 1 jRC
f fL f 2 1 ( ) fL
f 180 (90 arctg ) fL f 90 arctg fL
结束
第 5章
放大电路的频率响应
三、高频电压放大倍数
图5.4.4 单管共射放大电路的高频等效电路
结束
第 5章
放大电路的频率响应
rbe rbe Ri Us Ui U s rbe rbe Rs Ri
'


U b'e (1
U ce U b 'e


(c)
)
1 j C m


U ce U b'e


K ,则
U b'e (1 K ) U b 'e I 1 1 j C m j (1 K )C m
'

结束
第 5章
放大电路的频率响应

模拟电子技术基础--第5章--放大电路的频率响应

模拟电子技术基础--第5章--放大电路的频率响应
' k ≈ − g m RL
等效变换后电流不变
X C 'µ
ɺ X Cµ U b'e = ≈ ' ɺ I Cµ 1 + g m RL
' ' Cµ ≈ (1 + g m RL )Cµ
k −1 ⋅ Cµ 同理可得,C ≈ k
'' µ
晶体管简化的高频等效电路
' 为什么不考虑 Cµ'?
如何得到模型中的参数?
' ' C π = C π + Cµ

I EQ UT
=?
低中频时 C
b ′c
和 C
b ′e
视为开路
rbe = rbb′ + rb′e
又因为
所以
gm =
ɺ V b ′e = ɺ g mVb′e β
rb′e
ɺ I b rb ′e ɺ = βI b
IE = VT
UT rbe = rb + (1 + β ) re = rb + (1 + β ) IE
3. 晶体管的频率参数
共基截 止频率 共射截 止频率
ɺ β=
特征 频率
集电结电容
β0
1+ j
f fβ
ɺ f β 、fα、f T、Cob (C µ )。 使 β = 1时的频率为f T f T ≈ fα ≈ β 0 f β 1 fβ = 2 π rb'e ( C π + Cµ )
手册 查得 通过以上分析得出的结论: 通过以上分析得出的结论: 低频段和高频段放大倍数的表达式; ① 低频段和高频段放大倍数的表达式; 截止频率与时间常数的关系; ② 截止频率与时间常数的关系; 波特图及其折线画法; ③ 波特图及其折线画法; 的求法。 ④ Cπ的求法。

模拟电子技术5

模拟电子技术5

1
(
2
π
C
' π
)
A u A u m ( 1 jffL )(1 1 j j 3 ff3 fL f) L (2 f L 1 1 j f f L 2fL 3)(3 1 jffH )
n个放大管
m
fL 1.1
f
2 Lk
k1
1 1.1
fH
n1 f2
k1 Hk
1.1为修正 系数
结论:1. 放大电路的级数越多,频带越窄; 2. 若 fLk 远高于其它各级,则 fL≈fLk; 3. 若fHk远低于其它各级,则 fH≈fHk;
例5-2:某电路各级均为共射电路,求:fL, fH, Au。
例5-1:
Au
(1j
10jf f )(1j
f
)
10 105
试求解:
(1)Aum=?fL=?fH =?
(2)画出波特图。
100 j f
A u
(1
j
f
10 )( 1 j
f
)
10
10 5
A u m 100
f L 10 Hz
f H 10 5 Hz
5.4.3 放大电路频率响应的改善 和增益带宽积
若R : brbe Ri Rb//rberbe RbRs Rb//Rs Rs C' (1gmRL ' )CC,gmRL ' 1 C' CC' gmRL ' C
| Ausmfbw|2r1bb'C
| Ausmfbw|2r1bb'C
因 rbb’ 和 Cμ由晶体管决定,故管子选定后, 放大电路增益带宽积就大体确定。即:增益 增大多少倍,带宽几乎就变窄多少倍。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在低频段,随着信号频率逐渐降低,耦合电容、旁路 电容等的容抗增大,使动态信号损失,放大能力下降。
在高频段,随着信号频率逐渐升高,晶体管极间电容和 分布电容、寄生电容等杂散电容的容抗减小,使动态信号 损失,放大能力下降。
§5.2 晶体管的高频等效电路
一、混合π模型
一、混合π模型
1. 模型的建立:由结构而建立,形状像Π,参数量纲各不相同。
90o arctan
f
fL
使输出电压幅值下降到 70.7%,相位为±45º的信 号频率为截止频率。
二、高通电路和低通电路
2. 低通电路:信号频率越低,输出电压越接近输入电压。
. I
Uo滞后Ui,当 f 时;
. Ui
Uo 0,Uo滞后Ui 90。
.
Uo
1
A
UO
Ui
jC 1
R
1
1 j RC
相频特性,用三段直线取代曲线;以10fL和0.1fL为两个拐点。
20 lg
Au
20lg
f fL
20lg
1
f fL
2
2、低通
Au
1
2
1
f fH
arctan
f fH
2
20lg Au 20lg
1

f fH
四、放大电路中的频率参数
结电容
高通 电路
低通 电路
下限频率
fbw fH fL 上限频率
1、高通
2
f
f
20 lg Au
20lg 20lg fL
1
fL
在电路的近似分析中,为简单起见,常将波特图的曲线折线 化,称为近似的波特图。
近似的波特图:对于高通电路,在对数幅频特性中,以截止频率fL为拐点,有两段直线近
似曲线。当 f fL 以0dB的近似直线,当 f fL以斜率为20dB/十倍频的直线近似。对于
要想制作宽频带放大电路 需用高频管,必要时需采用 共基电路。
若rbe<<Rb、 Rs<<Rb、gmRL' 1、gmRL' Cμ ,则可以证明
图示电路的
约为常量
Aum fH
1 2π(rbb' Rs )Cμ
说明决定于 管子参数
二、多级放大电路的频率响应
1. 讨论: 一个两级放大电路每一级(已考虑了它们的相互
影响)的幅频特性均如图所示。
20lg Au 20lg Au1 20lg Au2
同理可得,Cμ''
k
k
1

3. 晶体管简化的高频等效电路
为什么不考虑Cμ''? 如何得到模型中的参数?
0 Ib gmUb'e gm Ibrb'e
gm
0
rb'e
I EQ UT
rbb'、Cμ可从手册查得
rb'e
(1 0 )
UT I EQ
Cπ' Cπ Cμ'
=?
三、晶体管的频率参数
共射截 止频率
由于放大电路中耦合电容、旁路电容、半导 体器件极间电容的存在,使放大倍数为频率的 函数,这种函数关系称为频率响应或频率特性。
在使用一个放大电路时应了解其信号频率的 适用范围,在设计放大电路时,应满足信号频 率的范围要求。
在前面的电路分析中,均未考虑双极型管和单极 型管的级间电容的作用,即认为他们对信号频率呈 现的电抗值为无穷大,因而只使用对低频信号的分 析。
共基截 止频率
特征 频率
集电结电容
f、f、fT、Cob (C )。 使 1时的频率为fT
0
1 j f f
1 f 2 π rb'e( Cπ Cμ )
fT f 0 f 手册
通过以上分析得出的结论: 查得
① 低频段和高频段放大倍数的表达式;
② 截止频率与时间常数的关系;
③ 波特图及其折线画法;
Uo超前Ui,当 f 0时; . Uo 0,Uo超前Ui 90。
Ui
A
UO
Ui
1
R
R
1
jC
1 1
jRC

L
1 RC
1
fL
L 2
1
2
1
2 RC
jf
Au
1
1 L
1 1 fL
1
fL jf
j
jf
fL
f
Au
fL
1
f fL
2
90o arctan
f
fL
f
Au
fL
2
1
f fL
在放大电路中,有两种电容的存在:级间耦合 电容和极间电容。
信号频率直接决定电容对信号的影响,频率大
可以认为是短路,频率小可以认为是断路,在另外 的情况,考虑电容会分流,从而导致放大倍数数值 的降低,并产生相移。
二、高通电路和低通电路
1. 高通电路:信号频率越高,输出电压越接近输入电压。
. Uo
. I
阻值小
阻值大
gm为跨导,它不随信 号频率的变化而变。
连接了输入回路 和输出回路
2. 混合π模型的单向化(使信号单向传递)
ICμ
Ub'e Uce X Cμ
(1 k) Ub'e X Cμ
k gm RL'
等效变换后电流不变
X C'μ
Ub'e ICμ
1
X Cμ gmRL'
Cμ' (1 gmRL' )Cμ
§5.3 放大电路的频率响应
一、单管共射放大电路的频率响应 二、多级放大电路的频率响应
一、单管共射放大电路的频率响应
适用于信号频率从0~∞的 交流等效电路
中频段:C
短路,
C
' π
开路。
低频段:考虑C
的影响,C
' π
开路。
高频段:考虑
C
' π
的影响,C
短路。
1. 带宽增益积:定量分析
对于大多数放大电路,增 益提高,带宽都将变窄。
第五章 放大电路的频率响应
第五章 放大电路的频率响应
§5.1 频率响应的有关概念 §5.2 晶体管的高频等效电路 §5.3 放大电路的频率响应
§5.1 频率响应的有关概念
一、本章要研究的问题 二、高通电路和低通电路 三、放大电路中的频率参数
一、研究的问题
放大电路对信号频率的适应程度,即信号频 率对放大倍数的影响。
jC
H
1 RC
1
fH
H 2
1 2
1 2 RC
Au
1
1 j H
1 1 j
f
fH
Au
1
1
f fH
2
arctan
f fH
Au
1
2
1
f fH
arctan
f fH
使输出电压幅值下降 到70.7%,相位为 ±45º的信号频率为截 止频率。
三、波特图
输入信号的频率范围设置从几赫兹到几百兆赫兹,有的 甚至更宽;放大倍数可以从几倍到上百万倍,为了在同一坐 标系中表示如此宽的变化范围,在画频率特性曲线时常采用 对数坐标系,称为波特图。
④ Cπ的求法。
讨论一
1. 若干个放大电路的放大倍数分别为1、10、102、 103、104、105,它们的增益分别为多少? 2. 为什么波特图开阔了视野?同样长度的横轴,在 单位长度不变的情况下,采用对数坐标后,最高频 率是原来的多少倍?
O
f
10 20 30 40 50 60
10 102 103 104 105 106 lg f
相关文档
最新文档