安捷伦-液质联用技术(LCMS)及其应用(2)
液质联用技术的原理与应用 (2).
离子源
离子源是使样品分子、原子或自由基转变为气相离子
的器件,是质谱仪的“门户” 有机MS中几种常见的离子源
电子电离(Electron Ionization,EI)源
化学电离(CI)源
较“软”电离;需要试剂气;适合GC 大气压电离(Atmospheric Pressure Ionization,API)源 基质辅助激光解吸电离(MALDI)源 适合蛋白质分析 无机MS中几种常见的离子源 感耦等离子体(Inductively Coupled Plasma,ICP)源
ESI的特点
在大气压下进行 对比:EI在真空状态下进行 “软”电离 形成离子:加合离子[M+H]+、[M+Na]+、[M+NH4]+ 、[M+Cl]-等;去质子化分子[M―H]- 对比:EI是“硬”电离 单电荷与多电离离子 小分子以单电荷离子为主,大分子以多电荷离子为主
基质效应 可能存在基质增强或抑制 如何判断是否存在? 解决办法?(同位素标记内标、基质加标、改进样品前 处理……)
离子源发展史
1969年,Beckey
场解吸,打开了MS用于生物大分子分析的大门
1980s,Fenn(芬恩,1917~2010) 使电喷雾电离(Electrospray Ionization,ESI)取得重 大突破 1973年,Horning 大 气 压 化 学 电 离 ( Atmospheric Pressure Chemical Ionization,APCI) 1980年,Houk 以电感耦合等离子体(Inductively Coupled Plasma , ICP)为离子源,发明了ICP-MS,是元素分析的利器
离子源发展史
1987年,Tanaka(田中耕一,1959~) 将 基 质 辅 助 激 光 解 吸 电 离 ( Matrix-Assisted Laser Desorption/Ionization,MALDI)用于蛋白质分析; 因将 ESI 和 MALDI 引入生物大分子领域的卓越贡献, Tanaka与ESI的发明者Fenn分享了2002年诺贝尔化学 奖的一半
液质联用原理及应用
液相色谱—质谱联用的原理及应用液质联用与气质联用的区别:气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。
液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。
目前的有机质谱和生物质谱仪,除了GC-MS的EI和CI源,离子化方式有大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)与基质辅助激光解吸电离。
前者常采用四极杆或离子阱质量分析器,统称API-MS。
后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。
API-MS的特点是可以和液相色谱、毛细管电泳等分离手段联用,扩展了应用范围,包括药物代谢、临床和法医学、环境分析、食品检验、组合化学、有机化学的应用等;MALDI-TOF-MS的特点是对盐和添加物的耐受能力高,且测样速度快,操作简单。
质谱原理简介:质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。
以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。
常见术语:质荷比: 离子质量(以相对原子量单位计)与它所带电荷(以电子电量为单位计)的比值,写作m/Z.峰: 质谱图中的离子信号通常称为离子峰或简称峰.离子丰度: 检测器检测到的离子信号强度.基峰: 在质谱图中,指定质荷比范围内强度最大的离子峰称作基峰.总离子流图;质量色谱图;准分子离子;碎片离子;多电荷离子;同位素离子总离子流图:在选定的质量范围内,所有离子强度的总和对时间或扫描次数所作的图,也称TIC图.质量色谱图指定某一质量(或质荷比)的离子其强度对时间所作的图.利用质量色谱图来确定特征离子,在复杂混合物分析及痕量分析时是LC/MS测定中最有用的方式。
液质联用原理及应用 (2)
液相色谱—质谱联用的原理及应用液质联用与气质联用的区别:气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。
液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。
目前的有机质谱和生物质谱仪,除了GC-MS的EI和CI源,离子化方式有大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)与基质辅助激光解吸电离。
前者常采用四极杆或离子阱质量分析器,统称API-MS。
后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。
API-MS的特点是可以和液相色谱、毛细管电泳等分离手段联用,扩展了应用范围,包括药物代谢、临床和法医学、环境分析、食品检验、组合化学、有机化学的应用等;MALDI-TOF-MS 的特点是对盐和添加物的耐受能力高,且测样速度快,操作简单。
质谱原理简介:质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。
以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。
常见术语:质荷比: 离子质量(以相对原子量单位计)与它所带电荷(以电子电量为单位计)的比值,写作m/Z.峰: 质谱图中的离子信号通常称为离子峰或简称峰.离子丰度: 检测器检测到的离子信号强度.基峰: 在质谱图中,指定质荷比范围内强度最大的离子峰称作基峰.总离子流图;质量色谱图;准分子离子;碎片离子;多电荷离子;同位素离子总离子流图:在选定的质量范围内,所有离子强度的总和对时间或扫描次数所作的图,也称TIC图.质量色谱图指定某一质量(或质荷比)的离子其强度对时间所作的图.利用质量色谱图来确定特征离子,在复杂混合物分析及痕量分析时是LC/MS测定中最有用的方式。
安捷伦-液质联用技术(LCMS)及其应用 (2)
+
溶剂蒸发
分析物离子
溶剂离子束
盐/离子对 中性化和物
+
Rayleigh Limit
Reached
++
++
+-+--+-- +++
+
++--++ ++-- ++
+
+
库仑爆炸 (Coulomb Explosions)
by Li Ping
+ 溶剂离子束 + 分析物离子
7
液质联用的电喷雾(ESI)接口
液相的入口 雾化气入口
m/z-->
350
400
450
500
550
600
650
700
by Li Ping
16
安捷伦液-质联用仪介绍
by Li Ping
17
液质(LC/MS)联用系统的示意图
离子源
离子束 聚焦
M/Z 分析器
检测器
LC 接口
HPLC
by Li Ping
数据 处理
Abund. 100 80 60 40 20 0 100
10
液质联用的大气压化学电离源(APCI)接口
锥孔
透镜
高能打拿极/ 电子倍增器
毛细管 八极杆 四极杆
+
+ +
+
++
+ + + + + + + ++
+
液质气质联用仪用途
液质气质联用仪用途
液质气质联用仪(LC-MS)是一种结合液相色谱(LC)和质谱(MS)技术的分析仪器。
它的用途非常广泛,涵盖了许多不同领域
的应用。
首先,液质气质联用仪在生物医药领域中被广泛应用。
它可以
用于药物代谢研究,药物残留检测,生物标志物的鉴定等。
在药物
开发过程中,LC-MS可以帮助科学家们快速准确地分析药物的成分
和代谢产物,从而加快新药研发的速度。
其次,在环境监测领域,液质气质联用仪也发挥着重要作用。
它可以用于检测水体和土壤中的污染物,如农药残留、重金属等,
有助于保护环境和人类健康。
此外,食品安全领域也是液质气质联用仪的重要应用领域之一。
它可以用于检测食品中的添加剂、农药残留、食品中的毒素等,确
保食品安全和质量。
在化学和生物化学研究中,液质气质联用仪也被广泛应用于分
析样品中的化合物、蛋白质和代谢产物等,为科学家们提供了强大
的分析工具。
总之,液质气质联用仪在医药、环境、食品和科学研究等领域都有着重要的用途,它的高灵敏度、高分辨率和高通量分析能力使其成为现代分析化学领域中不可或缺的工具之一。
液相色谱-质谱联用(lcms)的原理及应用 _钓渔翁
液相色谱-质谱联用(lcms)的原理及应用_钓渔翁液相色谱-质谱联用(lc/ms)的原理及应用液相色谱—质谱联用的原理及应用简介1977年,LC/MS开始投放市场1978年,LC/MS首次用于生物样品分析1989年,LC/MS/MS取得成功1991年,API LC/MS用于药物开发1997年,LC/MS/MS用于药物动力学高通量筛选2002年美国质谱协会统计的药物色谱分析各种不同方法所占的比例。
1990年,HPLC高达85%,而2000年下降到15%,相反,LC/MS所占的份额从3%提高到大约80%。
我们国家目前在这方面可能相当于美国1990年的水平。
为此我们还有很长的一段路要走色谱质谱的在线联用将色谱的分离能力与质谱的定性功能结合起来,实现对复杂混合物更准确的定量和定性分析。
而且也简化了样品的前处理过程,使样品分析更简便。
色谱质谱联用包括气相色谱质谱联用(GC-MS)和液相色谱质谱联用(LC-MS),液质联用与气质联用互为补充,分析不同性质的化合物。
液质联用与气质联用的区别:气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。
液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。
现代有机和生物质谱进展在20世纪80及90年代,质谱法经历了两次飞跃。
在此之前,质谱法通常只能测定分子量500Da以下的小分子化合物。
20世纪70年代,出现了场解吸(FD)离子化技术,能够测定分子量高达1500~2000Da的非挥发性化合物,但重复性差。
20世纪80年代初发明了快原子质谱法(FAB-MS),能够分析分子量达数千的多肽。
随着生命科学的发展,欲分析的样品更加复杂,分子量范围也更大,因此,电喷雾离子化质谱法(ESI-MS)和基质辅助激光解吸离子化质谱法(MALDI-MS)应运而生。
安捷伦-液质联用技术(LCMS)及其应用
) y c n e u q e r f oi d a r a f o e d u til p m a k a e p ( V ) e g atl o v C D ( U
elopatcO
s e g atl o v c d d n a c a
reilpitluM nortcelE
rettuhS
d ei r a v e r a V d n a U : e g n a r g ni r u s a e m f o g ni n n a c S t f π � soc V + U
?
82
gniP iL yb
子离组 / 子离 个 03 � 组 05 集 采
子离负正集采时同
:
92
gniP iL yb
息 信片碎些一和量子 分得获时同是好最 . 物知未选筛常经我
:
DIC
图谱的下件条压 电撞碰同不在得获能 次一望希我 压电撞 碰的优最道知不我但 , 物知未选筛在正我
03
gniP iL yb
) S M( 仪 析 分 谱 质t
体 气 量 大 生 产 后 发 挥 相 动 流y 物 合 混 离 分 效 高y
)SM(
)CLPH(
) C L P H( 相 液t
4
gniP iL yb
)IcPA( 源离电学化压气大 · )ISE( 雾喷电 ·
法 方的用常最前目 :)IPA( 源离电压气大 Ë )IBP( 束子粒 Ë 用使少 很经已 : 口接 SM-CL )PST( 雾喷热 Ë 用停经已前目 :SM-CL 的式 )tleb gnivom( 带送传 Ë
样合混示演物药胺磺
nacS/MIS :
43
gniP iL yb
液相色谱质谱联用技术应用基本原理和应用LCMS
液相色谱质谱联用技术应 用基本原理和应用LCMS
北沙参 植物与药材
液相色谱质谱联用技术应 用基本原理和应用LCMS
10个香豆素对照品
CH3O
HO
O
O
O
O
O
OH
东莨菪内酯
花椒毒酚
OCH 3
OCH3
O
O
O
OCH 3
异茴芹内酯
O
O
O
佛手柑内酯
O
O
O
OCH3
花椒毒素
O O
O
O
O
氧化前胡素
O
O
O
补骨脂素
O
LC-MS可解决的问题:
• 定性:结构信息,保留时间 • 定量:峰面积,峰高 • 可检测极微量的物质
液相色谱质谱联用技术应 用基本原理和应用LCMS
如何完成工作?
大气压
HPLC仪
离子源
真空系统
质量分析器 离子检测器
数据采集 系统
液相色谱质谱联用技术应 用基本原理和应用LCMS
离子源
1 电喷雾电离(ESI) LC/MS 2 大气压化学电离(APCI) LC/MS 3 基质辅助激光解吸电离(MALDI)
对溶剂选择、流速和添加物 的依赖性较小
LCMS原理以及应用 ppt课件
LCMS原理以及应用
通常通过由惰性气体分子,例如氮气,氩气或 氦气,碰撞所选择的分子离子来实现的。这种 通过中性分子的碰撞把能量传递给离子的过程 就是所谓的“碰撞诱导解离(CID)” 。这种 能量传递足以使分子键断裂和所选择的离子重 排 碎片离子被用于对原来的分子离子的结构判断。
基础知识
优点: 1. 灵敏度高,10-7—10-8g,单离子检测可达10-12g 2. 快速,几分甚至几秒 3. 测定分子量,确定分子式 4. 分析范围广,便于混合物分析 5. 新的电离、检测技术
局限性: (1)异构体,立体化学方面区分能力差。 (2)重复性稍差,要严格控制操作条件 (3)有离子源产生的记忆效应,污染等问题。 (4)价格稍显昂贵,操作有点复杂 (5)质量歧视效应
合物,而APCI更适合于分析极性较小的化合物。 • 多电荷:APCI源不能生成一系列多电荷离子
LCMS
Drying gas
Nebulizer Gas
From LC
CDL 分液器 聚焦镜
Q-array
入口镜 四极杆
八极
前杆
ESI/APCI
隔离板
废液管 旋转泵 TMP 1
Detector
TMP 2
质量分析器
离子源
1.电感耦合等离子体离子化(icp) 由于该条件下化合物分子结构已经被破坏,所以仅适用于元素分析。
2.电子轰击电离(ei) 能提供有机化合物最丰富的结构信息,有较好的重现性,其裂解规律的研究也最为完善。 缺点在于不适用于难挥发和热稳定性差的样品。
3.化学电离(ci) 适合于色谱和质谱联用,低气压化学电离源可以在较低的温度下分析难挥发的样品,并能 使用难挥发的反应试剂,但是只能用于傅里叶变换质谱仪。
安捷伦-液质联用技术(LCMS)及其应用
含有气溶胶的分析物
[溶剂+H]++M--------->溶剂 +[M]+
溶剂在蒸发 器中蒸发
+
++ ++
+
+
+
+
+ +
+
+ +
++
++
+ +
++
+
电荷转移至 分 析物分子
蒸汽
通过电晕针放电形 成带电荷的反应剂 离子
流动相
分析物
++ + ++
分析物离子
by Li Ping
High fragmentor: 130 V
1
2
3
4
5
6
7 min
by Li Ping
108.1 218.1
245.1 311.1
156.1
100
200
300
m/z
31
312.1
可同时采集多种质谱信号: SIM/Scan
SIM 来定量所选的目 标化合物离子
对未知的化合物 SCAN
by Li Ping
40000
20000
100
200
300
m/z
1
2
3
4
5
min
by Li Ping
33
可同时采集多种质谱信号: 时间编程信号
Improve data quality and manage data file size:
液质联用仪的原理和应用
液质联用仪的原理和应用一、原理液质联用仪(Liquid Chromatography-Mass Spectrometry,LC-MS)是一种结合了液相色谱(Liquid Chromatography,LC)和质谱分析(Mass Spectrometry,MS)的技术。
液相色谱用于样品的分离和纯化,质谱分析用于样品中化合物的定性和定量分析。
1. 液相色谱原理液相色谱是一种在液体介质中进行的分离和纯化技术。
它利用样品组分在固定相上的发生吸附、离子交换、分配等作用,并通过改变流动相的组成和流速,实现对不同组分的分离。
常见的液相色谱技术包括高效液相色谱(High Performance Liquid Chromatography,HPLC)、超高效液相色谱(Ultra Performance Liquid Chromatography,UPLC)等。
2. 质谱分析原理质谱是一种对化合物进行分析和鉴定的方法。
其原理是将化合物分子在真空条件下电离,使其形成离子,然后通过电场和磁场的作用,对离子进行加速、分离和检测。
质谱分析能够提供化合物的分子量、结构、组成和化学性质等信息。
3. 液质联用仪原理液质联用仪将液相色谱和质谱分析技术相结合,实现对化合物的分离、纯化和分析。
其原理是将经过液相色谱系统分离纯化的样品,通过导入质谱分析系统进行在线检测和分析。
液质联用仪能够充分发挥液相色谱和质谱的优势,实现对复杂样品的高灵敏度、快速、准确的分析。
二、应用液质联用仪具有广泛的应用领域和分析对象。
下面列举了液质联用仪在药物、环境、食品等领域的应用。
1. 药物领域应用•药物代谢研究:液质联用仪可以用于分析药物代谢产物,了解药物在体内的代谢途径和代谢产物的结构,用于药物研发和药物安全性评价。
•药物残留分析:液质联用仪可用于药物残留在生物样品、环境样品和食品中的检测,用于药物质量控制和食品安全监测。
•药物纯度分析:液质联用仪可以分析药物的纯度和杂质,用于药物生产过程的控制和质量评估。
安捷伦液质联用
液相色谱-质谱联用仪的使用(AgilentLC-QQQ6490)文件编号:版次/修订次:编写:日期:审核:批准:批准日期:文件修订记录表修改序号修改章节号修改内容修改申请人批准人批准日期1初稿作成初版制作。
年xx月xx日主要内容:仪器型号AgilentLC-QQQ6490硬件组成色谱系统、质谱系统数据采集系统、定性软件、定软件组成量软件材料的准备、初步方法的建立、方法建立方法的优化关机三大步一、仪器硬件组成1.色谱系统1.1流动相A.水溶剂:A1:纯水(避光,常更换,防止细菌滋生)A2:甲酸水、氨水等B.有机溶剂B1:纯乙腈、纯甲醇、纯异丙醇B2:含0.1%的甲酸乙腈溶液注:流动相越简单越好,避免加入无机盐(如H2SO4)甲醇与乙腈的比较:甲醇:与水相溶会发热;延滞性大,便宜;乙腈:溶解性不佳,乙腈会结晶;极性、溶解性和延滞性极性:水>甲醇>乙腈;延滞性(表面张力):水>甲醇>乙腈;洗脱能力:甲醇、乙腈>水流动相的配置:水相流动相通过0.22μm的膜以达到去除颗粒的目的。
超声(10~20min)以去除气泡;滤头应定期更换1.2色谱柱保护套(滤头、套管)注:进口:用扳手拧,出口管路应多留出一段),安装柱子时应避免这段管路。
色谱柱的冲洗:先用一定比例的流动相冲洗,再用纯有机溶剂进行冲洗;不用时,一般保存在规定的有机溶剂中。
C18柱(农药、兽药):吸附中弱极性的物质;亲水性柱:三聚氰胺、PSP柱规格:10cm×2.4~3.0μm,0.2~0.3mL/min;5cm×1.8μm0.2mL/min,其中柱压一般不超过350bar.一旦出现:柱压高:堵塞(系统+柱子);柱压低:漏气(系统+柱子)1.3六通阀1.4梯度洗脱注:从低比例有机溶剂的流动相开始,更改比例,但不要改变流速。
阶段A :现将柱子里、管路中极性杂质先冲出,如水中的极性物质;阶段B:有机溶剂比例的提升阶段,分离被测液中的各组分,加强被分离组分与流动相的作用力;对于多组分的分离,更改梯度的斜率,但都是使有机溶剂的比例;阶段C :稳定阶段:要有足够的时间使众多的弱极性杂质; 阶段D :为下一针做着准备。
液质联用仪原理及操作注意事项安捷伦ppt课件
高效液相色谱质谱联用(HPLC/MS)是指高效液 相色谱与质谱串联的技术,是将应用范围极广的 高效液相分离方法与灵敏、专属、能够提供分子 量和结构信息的质谱法结合起来的一种现代分析 技术。
HPLC-MS主要由HPLC仪、接口离子源(LC与MS连接装置)、 质量分析器、真空系统、计算机数据处理系统组成。
四、故障排除
信号低 质量准确度差 雾化器出口是小 液滴而不喷雾
1.确保雾化气压设定 足够高以利液相色谱 流动相气化 2.检查雾化器中针头 的位置 3停止溶剂流动,卸 下雾化装置,检查雾 化器末端是否损坏
无液流
1.检查溶液化学性质,确 定样品溶剂是合适的 2.保证用新样品,并且正 确存储样品 3.检查雾化器条件 4.清洁毛细管入口 5.检查毛细管有无损坏和 污染源自. MRM优化子离子碰撞能
三、液质操作系统的注意事项
•流动相以及样品必须过膜 (有机滤膜、水系膜) •流动相应超声脱气 10~20min,否则压力易 波动(装有在线脱气机, 影响会小一些) •反相常用流动相为甲醇、 乙腈、水以及缓冲盐溶液。
• 注意:LC中常采用无机缓冲 盐,LC/MS中则应该使用挥 发性的缓冲盐,如甲酸铵、 乙酸铵;或挥发性酸碱甲酸、 乙酸、氨水等调节pH
三、液质操作系统的注意事项
紫外检测器 UV
检 测 器 的 选 择
质谱检测器 MS
二极管阵列 检测器DAD
示差检测器 RID
荧光检测器 FLD
蒸发光散色 检测器ELSD
三、液质操作系统的注意事项
正 负 离 子 模 式 选 择 的 一 般 原 则 :
适用于碱性样品,可用乙酸或 甲酸对样品甲乙酸化。样品中 含有仲氨或叔氨时可优先考虑 使用正离子模式(如磺胺类、 喹诺酮类物质)