关于MATLAB边缘检测sobel算子

合集下载

实现用三种边缘检测算子对一幅图像提取边缘

实现用三种边缘检测算子对一幅图像提取边缘

实现用三种边缘检测算子对一幅图像提取边缘,给出结果并分析。

用sobel,log,candy三种算子对图像进行边缘提取:f = imread('E:\木子的U盘\大三的木子\第一学期\数字图像处理\xback.jpg');f = rgb2gray(f); %将图像转化为灰度图像[gsobel_default,ts] = edge(f,'sobel');%利用sobel算子的默认语法得到边缘图像subplot(231);imshow(gsobel_default);title('g sobel default');[glog_default,tlog]=edge(f,'log');%利用log算子的默认语法得到边缘图像subplot(233);imshow(glog_default);title('g log default');[gcanny_default,tc]=edge(f,'canny');%利用candy算子的默认语法得到边缘图像subplot(235);imshow(gcanny_default);title('g canny default');gSobel_best=edge(f,'sobel',0.05);%减少不必要的细节subplot(232);imshow(gSobel_best);title('g sobel best');gLog_best=edge(f,'log',0.003,2.25);%subplot(234);imshow(gLog_best);title('g log best');gCanny_best=edge(f,'canny',[0.04 0.10],1.5);%subplot(236);imshow(gCanny_best);title('g canny best');MATLAB图像显示如下:分析如下:sobel得出的结果与试图检测边缘的目标相差太远。

基于Sobel算子图像边缘检测的MATLAB实现

基于Sobel算子图像边缘检测的MATLAB实现

基于Sobel算子图像边缘检测的MATLAB 实现作者:吴术路来源:《电脑知识与技术》2010年第19期摘要:边缘检测在数字图像处理中有着重要的应用。

边缘是图像的最基本特征。

该文利用Sobel算子对图像进行水平和垂直的边缘提取,并对图像进行MATLAB仿真比较,仿真实验表明,该方法对图像边缘的检测精度较高,抗噪声能力强,提高了图像边缘检测效果。

关键词:边缘检测;Sobel算子;MATLAB中图分类号:TP391文献标识码:A文章编号:1009-3044(2010)19-5314-02Based on Sobel Edge Detection Operator of MATLAB ImplementationWU Shu-lu(Qinghai & TV University, Xi'ning 810008, China)Abstract: Edge detection in the digital image processing has important applications. Edge is the most basic features of the image. In this paper, Sobel operator to the image horizontal and vertical edge detection, and image comparison MATLAB simulation, simulation experiments show that the method has high precision in image detection, anti-noise ability and improving the image edge detection.Key words: edge detection; sobel operator; MATLAB边缘检测技术对于数字图像非常重要,边缘是所要提取目标和背景的边界线,提取出边缘才能将目标和背景区分开。

边缘提取和边缘检测matlab程序代码大全

边缘提取和边缘检测matlab程序代码大全

附录Part1:对cameraman原始图像处理的仿真程序:clcclear allclose allA = imread('cameraman.bmp'); % 读入图像subplot(2,4,1);imshow(A);title('原图');x_mask = [1 0;0 -1]; % 建立X方向的模板y_mask = rot90(x_mask); % 建立Y方向的模板I = im2double(A); % 将图像数据转化为双精度dx = imfilter(I, x_mask); % 计算X方向的梯度分量dy = imfilter(I, y_mask); % 计算Y方向的梯度分量grad = sqrt(dx.*dx + dy.*dy); % 计算梯度grad = mat2gray(grad); % 将梯度矩阵转换为灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 用阈值分割梯度图像subplot(2,4,2);imshow(BW); % 显示分割后的图像即边缘图像title('Roberts');y_mask = [-1 -2 -1;0 0 0;1 2 1];x_mask = y_mask';I = im2double(A);dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy); % 计算梯度grad = mat2gray(grad);level = graythresh(grad);BW = im2bw(grad,level);subplot(2,4,3);imshow(BW); % 显示分割后的图像即边缘图像title('Sobel');y_mask = [-1 -1 -1;0 0 0;1 1 1];x_mask = y_mask';dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy); % 计算梯度grad = mat2gray(grad);level = graythresh(grad);BW = im2bw(grad,level); % 用阈值分割梯度图像subplot(2,4,4);imshow(BW); % 显示分割后的图像即边缘图像title('Prewitt');mask=[0,-1,0;-1,4,-1;0,-1,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58); % 用阈值分割梯度图像subplot(2,4,5);imshow(BW); % 显示分割后的图像,即梯度图像title('Laplacian');mask=[0,0,-1,0,0;0,-1,-2,-1,0;-1,-2,16,-2,-1;0,-1,-2,-1,0;0,0,-1,0,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58);subplot(2,4,6);imshow(BW); % 显示分割后的图像,即梯度图像title('log');BW1 = edge(I,'canny'); % 调用canny函数subplot(2,4,7);imshow(BW1); % 显示分割后的图像,即梯度图像title('Canny');mask1=[-1 -2 -1;0 0 0;1 2 1]; % 建立方向模板mask2=[-2 -1 0;-1 0 1;0 1 2];mask3=[-1 0 1;-2 0 2;-1 0 1];mask4=[0 1 2;-1 0 1;-2 -1 0];mask5=[1 2 1;0 0 0;-1 -2 -1];mask6=[2 1 0;1 0 -1;0 -1 -2];mask7=[1 0 -1;2 0 -2;1 0 -1];mask8=[0 -1 -2;1 0 -1;2 1 0];d1 = imfilter(I, mask1); % 计算8个领域的灰度变化d2 = imfilter(I, mask2);d3 = imfilter(I, mask3);d4 = imfilter(I, mask4);d5 = imfilter(I, mask5);d6 = imfilter(I, mask6);d7 = imfilter(I, mask7);d8 = imfilter(I, mask8);dd = max(abs(d1),abs(d2)); % 取差值变化最大的元素组成灰度变化矩阵dd = max(dd,abs(d3));dd = max(dd,abs(d4));dd = max(dd,abs(d5));dd = max(dd,abs(d6));dd = max(dd,abs(d7));dd = max(dd,abs(d8));grad = mat2gray(dd); % 将灰度变化矩阵转化为灰度图像BB = grad;FW=median(BB(:))/0.6745;B = BB.*BB;B = sum(B(:));FX= sqrt(B/256^2);FS=sqrt(max(FX^2-FW^2,0));T=sqrt(2)*FW^2/FS; % 计算最佳阈值grad = mat2gray(BB);BW2=im2bw(grad,T); % 用最佳阈值分割梯度图像subplot(2,4,8);imshow(BW2); % 显示分割后的图像,即边缘图像title('sobel改进算子');Part2加入高斯噪声后的cameraman仿真程序:clcclear allclose allA = imread('cameraman.bmp'); % 读入图像V=0.009;X=imnoise(A,'gaussian',0,V);subplot(2,4,1);imshow(X);%添加均值为0、方差0.09的高斯噪声x_mask = [1 0;0 -1]; % 创建X方向的模板y_mask = rot90(x_mask); % 创建Y方向的模板I = im2double(X); % 图像数据双精度转化dx = imfilter(I, x_mask); % X方向的梯度分量的计算dy = imfilter(I, y_mask); % Y方向的梯度分量的计算grad = sqrt(dx.*dx + dy.*dy); % 梯度计算grad = mat2gray(grad); % 梯度矩阵转换成灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 使用阈值分割梯度图像subplot(2,4,2);imshow(BW); % 显示分割后的图像即边缘图像title('Roberts');y_mask = [-1 -2 -1;0 0 0;1 2 1];x_mask = y_mask';dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy);grad = mat2gray(grad); % 梯度矩阵转为灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 用阈值分割梯度图像subplot(2,4,3);imshow(BW); % 显示分割后的图像即边缘图像title('Sobel');y_mask = [-1 -1 -1;0 0 0;1 1 1];x_mask = y_mask';dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy);grad = mat2gray(grad);level = graythresh(grad);BW = im2bw(grad,level);subplot(2,4,4);imshow(BW); % 显示分割后的图像即边缘图像title('Prewitt');mask=[0,-1,0;-1,4,-1;0,-1,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58); % 用阈值分割梯度图像subplot(2,4,5);imshow(BW); % 显示分割后的图像,即梯度图像title('Laplacian');mask=[0,0,-1,0,0;0,-1,-2,-1,0;-1,-2,16,-2,-1;0,-1,-2,-1,0;0,0,-1,0,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58); % 用阈值分割梯度图像subplot(2,4,6);imshow(BW); % 显示分割后的图像,即梯度图像title('log');BW1 = edge(I,'canny'); % 调用canny函数subplot(2,4,7);imshow(BW1); % 显示分割后的图像,即梯度图像title('Canny');mask1=[-1 -2 -1;0 0 0;1 2 1]; % 建立方向模板mask2=[-2 -1 0;-1 0 1;0 1 2];mask3=[-1 0 1;-2 0 2;-1 0 1];mask4=[0 1 2;-1 0 1;-2 -1 0];mask5=[1 2 1;0 0 0;-1 -2 -1];mask6=[2 1 0;1 0 -1;0 -1 -2];mask7=[1 0 -1;2 0 -2;1 0 -1];mask8=[0 -1 -2;1 0 -1;2 1 0];d1 = imfilter(I, mask1); % 计算8个领域的灰度变化d2 = imfilter(I, mask2);d3 = imfilter(I, mask3);d4 = imfilter(I, mask4);d5 = imfilter(I, mask5);d6 = imfilter(I, mask6);d7 = imfilter(I, mask7);d8 = imfilter(I, mask8);dd = max(abs(d1),abs(d2)); % 取差值变化最大的元素组成灰度变化矩阵dd = max(dd,abs(d3));dd = max(dd,abs(d4));dd = max(dd,abs(d5));dd = max(dd,abs(d6));dd = max(dd,abs(d7));dd = max(dd,abs(d8));grad = mat2gray(dd); % 将灰度变化矩阵转化为灰度图像BB = grad;FW=median(BB(:))/0.6745;B = BB.*BB;B = sum(B(:));FX= sqrt(B/256^2);FS=sqrt(max(FX^2-FW^2,0));T=sqrt(2)*FW^2/FS; % 计算最佳阈值grad = mat2gray(BB); % 将梯度矩阵转化为灰度图像BW2=im2bw(grad,T); % 用最佳阈值分割梯度图像subplot(2,4,8);imshow(BW2); % 显示分割后的图像,即边缘图像title('sobel改进算子');加入椒盐噪声的边缘检测程序:function jingdianI=imread('lenna.bmp');I1=imnoise(I,'salt & pepper');%添加椒盐噪声,默认值为0.02 figure,imshow(I1);%添加均值为0、方差0.002的高斯噪声title('添加椒盐噪声后原图')B1=edge(I1,'roberts');B2=edge(I1,'sobel');B3=edge(I1,'prewitt');B4=edge(I1,'canny');B5=edge(I1,'log');subplot(2,3,1);imshow(B1);title('roberts算子检测');subplot(2,3,2);imshow(B2);title('sobel算子检测');subplot(2,3,3);imshow(B3);title('prewitt算子检测');subplot(2,3,4);imshow(B4);title('canny算子检测');subplot(2,3,5)imshow(B5);title('log算子检测');B1=edge(I1,'roberts');%调用roberts算子检测图像B2=edge(I1,'sobel');%调用soble算子进行边缘检测B3=edge(I1,'prewitt');%调用prewitt算子进行边缘检测B4=edge(I1,'canny');%调用canny算子对图像进行边缘检测B5=edge(I1,'log');%调用log算子对图像进行边缘检测subplot(2,3,1);%设置图像布局imshow(B1);title('roberts算子检测');%现实图像并命名为roberts算子检测subplot(2,3,2);imshow(B2);title('sobel算子检测');subplot(2,3,3);imshow(B3);title('prewitt算子检测');subplot(2,3,4);imshow(B4);title('canny算子检测');subplot(2,3,5)imshow(B5);title('log算子检测');mask1=[-1 -2 -1;0 0 0;1 2 1]; % 建立方向模板mask2=[-2 -1 0;-1 0 1;0 1 2];mask3=[-1 0 1;-2 0 2;-1 0 1];mask4=[0 1 2;-1 0 1;-2 -1 0];mask5=[1 2 1;0 0 0;-1 -2 -1];mask6=[2 1 0;1 0 -1;0 -1 -2];mask7=[1 0 -1;2 0 -2;1 0 -1];mask8=[0 -1 -2;1 0 -1;2 1 0];I = im2double(I1); % 将数据图像转化为双精度d1 = imfilter(I, mask1); % 计算8个领域的灰度变化d2 = imfilter(I, mask2);d3 = imfilter(I, mask3);d4 = imfilter(I, mask4);d5 = imfilter(I, mask5);d6 = imfilter(I, mask6);d7 = imfilter(I, mask7);d8 = imfilter(I, mask8);dd = max(abs(d1),abs(d2)); % 取差值变化最大的元素组成灰度变化矩阵dd = max(dd,abs(d3));dd = max(dd,abs(d4));dd = max(dd,abs(d5));dd = max(dd,abs(d6));dd = max(dd,abs(d7));dd = max(dd,abs(d8));grad = mat2gray(dd); % 将灰度变化矩阵转化为灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 用阈值分割梯度图像BB = grad;FW=median(BB(:))/0.6745;B = BB.*BB;B = sum(B(:));FX= sqrt(B/256^2);FS=sqrt(max(FX^2-FW^2,0));T=sqrt(2)*FW^2/FS; % 计算最佳阈值grad = mat2gray(BB); % 将梯度矩阵转化为灰度图像BW2=im2bw(grad,T); % 用最佳阈值分割梯度图像subplot(2,3,6);imshow(BW2); % 显示分割后的图像,即边缘图像title('加入椒盐噪声的sobel改进算子');。

Matlab实现:图像边缘提取

Matlab实现:图像边缘提取

Matlab实现:图像边缘提取1、边缘提取算法⽅法⼀:⼀阶微分算⼦Sobel算⼦Sobel算⼦检测⽅法对灰度渐变和噪声较多的图像处理效果较好,Sobel算⼦对边缘定位不是很准确,图像的边缘不⽌⼀个像素。

Roberts算⼦Roberts算⼦检测⽅法对具有陡峭的低噪声的图像处理效果较好,但是利⽤roberts算⼦提取边缘的结果是边缘⽐较粗,因此边缘的定位不是很准确。

Prewitt算⼦Prewitt算⼦检测⽅法对灰度渐变和噪声较多的图像处理效果较好。

但边缘较宽,⽽且间断点多。

Canny算⼦Canny算⼦是⽬前边缘检测最常⽤的算法,效果也是最理想的。

Canny⽅法不容易受噪声⼲扰,能够检测到真正的弱边缘。

优点在于,使⽤两种不同的阈值分别检测强边缘和弱边缘,并且当弱边缘和强边缘相连时,才将弱边缘包含在输出图像中。

⽅法⼆:⼆阶微分算⼦Laplacian算⼦Laplacian算⼦法对噪声⽐较敏感,所以很少⽤该算⼦检测边缘,⽽是⽤来判断边缘像素视为与图像的明区还是暗区。

2、实验结果分析⼀、边缘提取:Sobel算⼦检测⽅法对灰度渐变和噪声较多的图像处理效果较好,sobel算⼦对边缘定位不是很准确,图像的边缘不⽌⼀个像素;Roberts算⼦检测⽅法对具有陡峭的低噪声的图像处理效果较好,但是利⽤roberts算⼦提取边缘的结果是边缘⽐较粗,因此边缘的定位不是很准确;Prewitt算⼦检测⽅法对灰度渐变和噪声较多的图像处理效果较好。

但边缘较宽,⽽且间断点多;Laplacian算⼦法对噪声⽐较敏感,所以很少⽤该算⼦检测边缘,⽽是⽤来判断边缘像素视为与图像的明区还是暗区;Canny⽅法不容易受噪声⼲扰,能够检测到真正的弱边缘。

优点在于,使⽤两种不同的阈值分别检测强边缘和弱边缘,并且当弱边缘和强边缘相连时,才将弱边缘包含在输出图像中。

⼆、边缘复合增强Sobel、Robert、Prewitt算⼦的增强效果并不是很明显,尤其是Robert算⼦,因为它提取的边缘点过于稀疏和离散;Laplacian算⼦和canny算⼦的增强效果都⽐较理想,将边缘叠加上去后,整个⼿的轮廓和边缘都很清晰,直观上看,canny算⼦实现的效果⽐Laplacian算⼦好,最明显的地⽅就是⼿指尖的边缘。

关于MATLAB边缘检测sobel算子

关于MATLAB边缘检测sobel算子

关于MATLAB边缘检测sobel算子一、sobel介绍索贝尔算子是图像处理中的算子之一,主要用作边缘检测。

在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。

在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量。

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。

如果以代表原始图像,及分别代表经横向及纵向边缘检测的图像,其公式如下:图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。

然后可用以下公式计算梯度方向。

在以上例子中,如果以上的角度等于零,即代表图像该处拥有纵向边缘,左方较右方暗。

二、程序例1clear all;close all;f=imread('dsy.jpg');u=rgb2gray(f);F=double(f);U=double(u);[H,W]=size(u);uSobel=u;% ms=0;% ns=0;for i=2:H-1for j=2:W-1Gx=(U(i+1,j-1)+2*U(i+1,j)+F(i+1,j+1))-(U(i-1,j-1)+2*U(i-1,j)+F(i-1,j+1));Gy=(U(i-1,j+1)+2*U(i,j+1)+F(i+1,j+1))-(U(i-1,j-1)+2*U(i,j-1)+F(i+1,j-1));uSobel(i,j)=sqrt(Gx^2+Gy^2);% ms=ms+uSobel(i,j);% ns=ns+(uSobel(i,j)-ms)^2;endend% ms=ms/(H*W);% ns=ns/(H*W);subplot(1,2,1);imshow(f);title('原图');subplot(1,2,2);imshow(im2uint8(uSobel));title('Sobel处理后');% S=[ms ns];程序运行结果:例2hg=zeros(3,3); %设定高斯平滑滤波模板的大小为3*3delta=0.5;for x=1:1:3for y=1:1:3u=x-2;v=y-2;hg(x,y)=exp(-(u^2+v^2)/(2*pi*delta^2));endendh=hg/sum(hg(:));g = imread('jjj.jpg ');f=rgb2gray(im2double(g));subplot(2,2,1),imshow(f)title('原始图像');[m,n]=size(f);ftemp=zeros(m,n);rowhigh=m-1;colhigh=n-1;%%%高斯滤波%%%for x=2:1:rowhigh-1for y=2:1:colhigh-1mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];A=h.*mod;ftemp(x,y)=sum(A(:));endendf=ftempsubplot(2,2,2),imshow(f)title('高斯滤波器后的图像');%%%%3*3的soble算子%%%%%%%%sx=[-1 -2 -1;0 0 0;1 2 1];sy=[-1 0 1;-2 0 2;-1 0 1];for x=2:1:rowhigh-1for y=2:1:colhigh-1mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];fsx=sx.*mod;fsy=sy.*mod;ftemp(x,y)=max((abs(sum(fsx(:)))),(abs(sum(fsy(:)))));endendfs=im2uint8(ftemp);subplot(2,2,3),imshow(fs)title('用soble检测的原始图像');%%%域值分割%%%TH2=30; %设定阈值for x=2:1:rowhigh-1for y=2:1:colhigh-1if (fs(x,y)>=TH2)&((fs(x,y-1) <= fs(x,y)) & (fs(x,y) > fs(x,y+1)) )fs(x,y)=200;elseif(fs(x,y)>=TH2)&( (fs(x-1,y) <=fs(x,y)) & (fs(x,y) >fs(x+1,y))) fs(x,y)=200;else fs(x,y)=50;endendendsubplot(2,2,4),imshow(fs)title('用soble检测并细化后的图像')。

matlabcanny边缘检测代码接霍夫变换-概述说明以及解释

matlabcanny边缘检测代码接霍夫变换-概述说明以及解释

matlabcanny边缘检测代码接霍夫变换-概述说明以及解释1.引言1.1 概述边缘检测是图像处理中的一个重要任务,它广泛应用于计算机视觉、图像分析和模式识别等领域。

边缘检测的目标是找到图像中不同区域之间的边界,并将其表示为像素强度的变化。

Canny边缘检测算法是一种经典且常用的边缘检测方法。

它通过一系列的图像处理步骤来提取图像中的边缘信息。

Canny算法的特点是能够检测出细且准确的边缘,并且对于图像中的噪声具有较好的抵抗能力。

Matlab是一种功能强大的数学软件,广泛应用于科学计算、数据可视化和图像处理等领域。

Matlab提供了丰富的图像处理函数和工具箱,其中包括了Canny边缘检测的实现代码。

本文的主要目的是介绍Matlab中Canny边缘检测的代码实现,并结合Hough变换算法进行边缘检测的应用。

通过使用Matlab中的相关函数和工具,我们可以有效地实现Canny边缘检测,并结合Hough变换来进一步处理和分析图像中的边缘特征。

本文将首先回顾Canny边缘检测算法的原理和步骤,然后介绍Matlab中的Canny边缘检测代码的使用方法。

接着,我们将介绍Hough 变换算法的原理和应用,并展示如何将Canny边缘检测与Hough变换相结合来实现更精确的边缘检测。

最后,我们将对Canny边缘检测和Hough变换的优缺点进行讨论,总结这两种方法在边缘检测中的应用。

同时,我们也将展望未来的研究方向,探讨如何进一步改进和优化边缘检测算法,以满足不断发展的图像处理需求。

通过阅读本文,读者将能够理解Canny边缘检测算法和Hough变换算法的原理,掌握Matlab中相关代码的使用方法,并了解边缘检测在实际应用中的优势和局限性。

希望本文能为读者在图像处理领域的学习和研究提供一定的帮助和启示。

文章结构是指文章的整体框架和组织形式。

一个良好的文章结构可以使读者更好地理解和领会文章的内容,同时也有助于文章的逻辑性和条理性。

MATLAB的边缘检测函数中隐含的细化(非极大值抑制)算法

MATLAB的边缘检测函数中隐含的细化(非极大值抑制)算法

MATLAB的边缘检测函数中隐含的细化(⾮极⼤值抑制)算法前段时间做了⼀个车牌检测识别的项⽬,我的任务是将MATLAB中的算法移植成C++代码。

在车牌区域提取的过程中,⽤到了⽔平⽅向的Sobel算⼦检测垂直边缘,⼀开始我直接把MATLAB中的bw = edge(I, 'sobel', 'vertical');语句改写成OpenCV中的cv::Mat sobel_kernel = (cv::Mat_<float>(3,3) << -0.125, 0, 0.125,-0.25, 0, 0.25,-0.125, 0, 0.125);cv::Mat edges;cv::filter2D(gray_img, edges, gray_img.type(), sobel_kernel);之后,整个检测算法产⽣了⼀些意想不到的输出。

追根溯源,我发现问题的根源就是在这个边缘检测步骤⾥:MATLAB的edge函数产⽣的是⼀个细化的⼆值边缘,⽽OpenCV中输出的是模板卷积后的浮点型的梯度值,若直接对其阈值化,将产⽣⼀个粗边缘,如下图所⽰(从左到右分别为edge函数输出边缘,OpenCV中直接使⽤Sobel算⼦及阈值化产⽣的边缘,原图)研究了⼀下edge的实现代码,我发现这么⼀个函数computeEdgesWithThinning函数实现了⾮极⼤值抑制和阈值化的效果,这个函数的实现⽅式已经被MATLAB封装,⽆法查看。

⼀番波折之后,我模拟出⼀个效果基本⼀致的细化及阈值化算法(默认的阈值T为4乘以每个点梯度的模的平⽅的均值):设 M(i, j) 为某点的梯度的模的平⽅M(i, j) ⼤于阈值 T 且:若 M(i, j) > M(i - 1, j) 且 M(i, j) > M(i + 1, j)或者 M(i, j) > M(i, j - 1) 且 M(i, j) > M(i, j + 1)则将输出边缘图像的 (i, j) 位置设为 1简要地说,就是判断⼀个点的梯度是否是⽔平或者垂直⽅向的上的局部极⼤值,当然,梯度值⾸先得⼤于阈值。

Sobel、Prewitt、Roberts算子的边缘检测

Sobel、Prewitt、Roberts算子的边缘检测

实验3 边缘检测一、实验目的1、掌握差分算法(1阶和2阶)2、理解canny算子二、实验内容使用Matlab或者VC实现下面几个内容1、(一阶差分)实现分别采用Sobel、Prewitt、Roberts算子的边缘检测。

可以采用公式法,也可以采用模板法。

2、(二阶差分)实现分用zerocross(也称过零检测、Laplacian)边缘检测3、实现图像卷积的空域与频域算法4、利用Matlab实现canny算子三、实验程序1.(一阶差分)%% Sobel算子clear;sourcePic=imread('111.jpg');%读取原图像grayPic=mat2gray(sourcePic);%实现图像矩阵的归一化操作[m,n]=size(grayPic);newGrayPic=grayPic;%为保留图像的边缘一个像素sobelNum=0;%经sobel算子计算得到的每个像素的值sobelThreshold=0.8;%设定阈值for j=2:m-1 %进行边界提取for k=2:n-1sobelNum=abs(grayPic(j-1,k+1)+2*grayPic(j,k+1)+grayPic(j+1,k+1)- ..., grayPic(j-1,k-1)-2*grayPic(j,k-1)-grayPic(j+1,k-1))+abs( ...,grayPic(j-1,k-1)+2*grayPic(j-1,k)+grayPic(j-1,k+1)-grayPic(j+1,k-1) ...,-2*grayPic(j+1,k)-grayPic(j+1,k+1));if(sobelNum > sobelThreshold)newGrayPic(j,k)=255;elsenewGrayPic(j,k)=0;endendendfigure,imshow(newGrayPic);title('Sobel算子的处理结果')%% Prewitt算子clear;sourcePic=imread('111.jpg');%读取原图像grayPic=mat2gray(sourcePic);%实现图像矩阵的归一化操作[m,n]=size(grayPic);newGrayPic=grayPic;%为保留图像的边缘一个像素PrewittNum=0;%经Prewitt算子计算得到的每个像素的值PrewittThreshold=0.5;%设定阈值for j=2:m-1 %进行边界提取for k=2:n-1PrewittNum=abs(grayPic(j-1,k+1)-grayPic(j+1,k+1)+grayPic(j-1,k) ...,-grayPic(j+1,k)+grayPic(j-1,k-1)-grayPic(j+1,k-1))+abs ...,(grayPic(j-1,k+1)+grayPic(j,k+1)+grayPic(j+1,k+1)-grayPic(j-1,k-1) ...,-grayPic(j,k-1)-grayPic(j+1,k-1));if(PrewittNum > PrewittThreshold)newGrayPic(j,k)=255;elsenewGrayPic(j,k)=0;endendendfigure,imshow(newGrayPic);title('Prewitt算子的处理结果')%% Roberts算子clear;sourcePic=imread('111.jpg'); %读取原图像grayPic=mat2gray(sourcePic); %实现图像矩阵的归一化操作[m,n]=size(grayPic);newGrayPic=grayPic;%为保留图像的边缘一个像素robertsNum=0; %经roberts算子计算得到的每个像素的值robertThreshold=0.2; %设定阈值for j=1:m-1 %进行边界提取for k=1:n-1robertsNum = abs(grayPic(j,k)-grayPic(j+1,k+1)) + abs(grayPic(j+1,k)-grayPic(j,k+1));if(robertsNum > robertThreshold)newGrayPic(j,k)=255;elsenewGrayPic(j,k)=0;endendendfigure,imshow(newGrayPic);title('roberts算子的处理结果')2.(2阶算子)I=imread('111.jpg'); %读取图像I1=im2double(I); %将彩图序列变成双精度I2=rgb2gray(I1); %将彩色图变成灰色图[thr, sorh, keepapp]=ddencmp('den','wv',I2);I3=wdencmp('gbl',I2,'sym4',2,thr,sorh,keepapp); %小波除噪I4=medfilt2(I3,[9 9]); %中值滤波I5=imresize(I4,0.8,'bicubic'); %图像大小h=fspecial('gaussian',5); %高斯滤波BW=edge(I5,'zerocross',[ ],h); %zerocross 图像边缘提取figure;imshow(BW);title('Zerocross');3.图像卷积的空域与时域算法inimg = imread('cameraman.tif');subplot(131)imshow(inimg), title('Original image')[M,N] = size(inimg); % Original image size%====================================================================h = fspecial('gaussian',25,4); % Gaussian filter%====================================================================% 空域滤波gx = imfilter(inimg,h,'same','replicate'); % 空域图像滤波subplot(132)imshow(gx,[]);title('Spatial domain filtering')%====================================================================% 频域滤波%====================================================================h_hf = floor(size(h)/2); % 空域滤波器半高/宽imgp = padarray(inimg, [h_hf(1),h_hf(2)],'replicate'); % Padding boundary with copying pixelsPQ = 2*size(imgp);Fp = fft2(double(imgp), PQ(1), PQ(2)); % 延拓图像FFTP = PQ(1); Q = PQ(2);center_h = h_hf+1; % 空域小模板h中心位置hp = zeros(P,Q); % 预分配内存,产生P×Q零矩阵hp(1:size(h,1),1:size(h,2)) = h; % h置于hp左上角hp = circshift(hp,[-(center_h(1)-1),-(center_h(2)-1)]); % 循环移位,h中心置于hp左上角%====================================================================Hp = fft2(double(hp)); % hp滤波器做FFT%====================================================================Gp = Hp.*Fp; % 频域滤波gp = real(ifft2(Gp)); % 反变换,取实部gf = gp(h_hf(1)+1:M+ h_hf(1), h_hf(2)+1:N + h_hf(2)); % 截取有效数据subplot(133)imshow(uint8(gf),[]), title('Frequency domain filtering')% 注:以上处理中,频域图像Fp与滤波器Hp均未中心化,因此,返回空域时无需反中心化。

matlab sobel函数 -回复

matlab sobel函数 -回复

matlab sobel函数-回复使用MATLAB中的Sobel函数进行边缘检测在图像处理中,边缘检测是一种常用的技术,用于检测图像中物体的边界。

边缘检测是图像处理中的一个关键步骤,通常在图像分析、计算机视觉和机器学习任务中被广泛应用。

MATLAB是一种功能强大的数值计算和数据可视化软件,它提供了许多用于图像处理的函数,其中包括用于边缘检测的Sobel函数。

Sobel算子是一种常用的边缘检测算法,可以通过计算图像中的强度梯度来检测边缘。

在这篇文章中,我们将一步一步地介绍如何使用MATLAB中的Sobel函数进行边缘检测。

第一步:读取图像首先,我们需要载入要进行边缘检测的图像。

在MATLAB中,可以使用imread函数读取图片。

例如,我们可以使用以下代码读取一个名为“image.jpg”的图像文件:matlabimage = imread('image.jpg');第二步:将图像转换为灰度图像Sobel算子只能应用于灰度图像,因此在应用Sobel算子之前,我们需要将图像转换为灰度图像。

幸运的是,MATLAB提供了灵活的函数来完成这个任务。

我们可以使用rgb2gray函数将彩色图像转换为灰度图像:matlabgrayImage = rgb2gray(image);第三步:应用Sobel算子现在,我们已经将图像转换为灰度图像,接下来我们可以使用MATLAB 中的Sobel函数对图像应用Sobel算子。

Sobel函数可以通过计算图像中每个像素的梯度来检测边缘。

Sobel函数的基本语法如下:matlabsobelImage = edge(grayImage, 'Sobel');在这个例子中,grayImage是我们要进行边缘检测的灰度图像,'Sobel'表示我们要使用Sobel算子进行边缘检测。

第四步:显示结果完成边缘检测后,我们可以使用MATLAB中的imshow函数显示结果图像。

matlab边缘检测代码

matlab边缘检测代码

MATLAB边缘检测代码边缘检测是图像处理中常用的技术,用于识别图像中物体的轮廓。

在MATLAB中,我们可以使用不同的方法进行边缘检测,例如Sobel算子、Canny算子等。

本文将介绍MATLAB中常用的边缘检测方法,并给出相应的代码示例。

1. Sobel算子Sobel算子是一种基于梯度的边缘检测算法,通过计算图像灰度值的一阶导数来识别边缘。

在MATLAB中,我们可以使用edge函数来实现Sobel算子。

img = imread('image.jpg'); % 读取图像gray_img = rgb2gray(img); % 将彩色图像转换为灰度图像edge_img = edge(gray_img, 'sobel'); % 使用Sobel算子进行边缘检测imshow(edge_img); % 显示结果上述代码首先读取一张彩色图像,并将其转换为灰度图像。

然后使用edge函数对灰度图像进行Sobel边缘检测,并将结果显示出来。

2. Canny算子Canny算子是一种基于多阶段处理的边缘检测算法,它能够有效地抑制噪声并提取出清晰、准确的边缘。

在MATLAB中,我们同样可以使用edge函数来实现Canny算子。

img = imread('image.jpg'); % 读取图像gray_img = rgb2gray(img); % 将彩色图像转换为灰度图像edge_img = edge(gray_img, 'canny'); % 使用Canny算子进行边缘检测imshow(edge_img); % 显示结果上述代码与Sobel算子的示例代码类似,只是将edge函数的第二个参数设置为'canny'来使用Canny算子进行边缘检测。

3. Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算法,它能够检测出图像中的灰度变化区域。

matlab形态学腐蚀膨胀sobel算子边缘检测

matlab形态学腐蚀膨胀sobel算子边缘检测

matlab形态学腐蚀膨胀sobel算子边缘检测Title: Image Processing with MATLAB: Morphological Erosion, Dilation, and Sobel Edge DetectionMATLAB, a powerful tool for numerical computation and visualization, is widely used in image processing tasks. Among the various operations, morphological erosion and dilation, as well as Sobel edge detection, play crucial roles in extracting meaningful information from images.MATLAB作为一种强大的数值计算和可视化工具,在图像处理任务中得到了广泛应用。

在众多操作中,形态学腐蚀、膨胀以及Sobel边缘检测在从图像中提取有意义信息方面发挥着至关重要的作用。

Morphological erosion is a process that removes pixels from the boundaries of objects in an image, effectively 'shrinking' them. This operation is useful in eliminating small, noisy elements while preserving larger structures.形态学腐蚀是一个过程,它从图像中对象的边界移除像素,从而有效地“缩小”它们。

这种操作在消除小的噪声元素同时保留较大结构方面非常有用。

On the other hand, morphological dilation enlarges objects by adding pixels to their boundaries. This helps to fill small gaps or holes within objects, enhancing their connectivity and visibility.另一方面,形态学膨胀通过向对象边界添加像素来扩大对象。

图像边缘检测各种算子MATLAB实现以及实际应用

图像边缘检测各种算子MATLAB实现以及实际应用

《图像处理中的数学方法》实验报告学生姓名:***教师姓名:曾理学院:数学与统计学院专业:信息与计算科学学号:********联系方式:139****1645梯度和拉普拉斯算子在图像边缘检测中的应用一、数学方法边缘检测最通用的方法是检测灰度值的不连续性,这种不连续性用一阶和二阶导数来检测。

1.(1)一阶导数:一阶导数即为梯度,对于平面上的图像来说,我们只需用到二维函数的梯度,即:∇f=[g xg y]=[ðf ðxðfðy],该向量的幅值:∇f=mag(∇f)=[g x2+g y2]1/2= [(ðf/ðx)2+(ðf/ðy)2]1/2,为简化计算,省略上式平方根,得到近似值∇f≈g x2+g y2;或通过取绝对值来近似,得到:∇f≈|g x|+|g y|。

(2)二阶导数:二阶导数通常用拉普拉斯算子来计算,由二阶微分构成:∇2f(x,y)=ð2f(x,y)ðx2+ð2f(x,y)ðy22.边缘检测的基本思想:(1)寻找灰度的一阶导数的幅度大于某个指定阈值的位置;(2)寻找灰度的二阶导数有零交叉的位置。

3.几种方法简介(1)Sobel边缘检测器:以差分来代替一阶导数。

Sobel边缘检测器使用一个3×3邻域的行和列之间的离散差来计算梯度,其中,每行或每列的中心像素用2来加权,以提供平滑效果。

∇f=[g x2+g y2]1/2={[(z7+2z8+z9)−(z1+2z2+z3)]2+[(z3+2z6+z9)−(z1+2z4+z7)]2}1/2(2)Prewitt边缘检测器:使用下图所示模板来数字化地近似一阶导数。

与Sobel检测器相比,计算上简单一些,但产生的结果中噪声可能会稍微大一些。

g x=(z7+z8+z9)−(z1+z2+z3)g y=(z3+z6+z9)−(z1−z4−z7)(3)Roberts边缘检测器:使用下图所示模板来数字化地将一阶导数近似为相邻像素之间的差,它与前述检测器相比功能有限(非对称,且不能检测多种45°倍数的边缘)。

sobel算子检测边缘 matlab编程

sobel算子检测边缘 matlab编程

在MATLAB中,使用Sobel算子检测图像边缘的一个基本例子可以如下:matlab复制代码% 读取图像I = imread('your_image.jpg');% 转换为灰度图像I_gray = rgb2gray(I);% 使用Sobel算子进行边缘检测BW = edge(I_gray,'sobel');% 显示原图像和边缘检测后的图像figure,subplot(1,2,1), imshow(I), title('原图像')subplot(1,2,2), imshow(BW), title('Sobel边缘检测后的图像')在上述代码中,首先读取一个图像,然后将其转换为灰度图像。

然后,使用MATLAB 内置的edge函数,指定'sobel'作为方法参数,对灰度图像进行边缘检测。

最后,显示原始图像和经过Sobel边缘检测后的图像。

注意:你需要将'your_image.jpg'替换为你想要处理的图像的文件名。

如果该文件不在MATLAB的当前工作目录中,你需要提供完整的文件路径。

如果你想自己实现Sobel算子而不是使用内置的edge函数,你可以创建一个Sobel算子,然后将其应用于图像。

这是一个基本的例子:matlab复制代码% 读取图像I = imread('your_image.jpg');% 转换为灰度图像I_gray = rgb2gray(I);% 定义Sobel算子Gx = [-101; -202; -101]; % x方向Gy = [121; 000; -1-2-1]; % y方向% 计算图像大小[height, width] = size(I_gray);% 初始化输出图像Ix = zeros(height-2, width-2);Iy = zeros(height-2, width-2);I_edge = zeros(height-2, width-2);% 应用Sobel算子for i = 2:height-1for j = 2:width-1Ix(i-1,j-1) = sum(sum(double(I_gray(i-1:i+1,j-1:j+1)) .* Gx));Iy(i-1,j-1) = sum(sum(double(I_gray(i-1:i+1,j-1:j+1)) .* Gy));% 计算梯度幅度I_edge(i-1,j-1) = sqrt(Ix(i-1,j-1)^2 + Iy(i-1,j-1)^2);endend% 二值化图像BW = I_edge > threshold; % threshold是一个阈值,你需要自己设定% 显示原图像和边缘检测后的图像figure,subplot(1,2,1), imshow(I), title('原图像')subplot(1,2,2), imshow(BW), title('Sobel边缘检测后的图像')注意:在这个例子中,你需要自己设定一个阈值(threshold)来决定哪些像素被视为边缘。

2019年整理基于MATLAB边缘检测与提取的几种方法的比较精品资料

2019年整理基于MATLAB边缘检测与提取的几种方法的比较精品资料

基于MATLAB边缘检测与提取的几种方法的比较数字图像边缘检测(Digital Image Processing)又称为计算机图像边缘检测,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

由于图像边缘是图像最基本的特征之一,往往携带着一幅图像的大部分信息。

而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像边缘检测时所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。

在通常情况下,我们可以将信号中的奇异点和突变点认为是图像中的边缘点,其附近灰度的变化情况可从它相邻像素灰度分布的梯度来反映。

根据这一特点,提出了多种边缘检测算子:如Robert算子、Sobel 算子、Prewitt 算子、Laplacian 算子,Canny算子等。

这些方法多是以待处理像素为中心的邻域作为进行灰度分析的基础,实现对图像边缘的提取并已经取得了较好的处理效果。

经典的边界提取技术大都基于微分运算。

首先通过平滑来滤除图像中的噪声,然后进行一阶微分或二阶微分运算,求得梯度最大值或二阶导数的过零点,最后选取适当的阈值来提取边界。

本文主要介绍几种经典的边缘提取算法,选取两种用MATLAB语言编程实现,对提取结果进行比较和分析。

图像边缘检测的基本步骤:(1)滤波。

边缘检测主要基于导数计算,但受噪声影响。

但滤波器在降低噪声的同时也导致边缘强度的损失。

(2)增强。

增强算法将邻域中灰度有显著变化的点突出显示。

一般通过计算梯度幅值完成。

(3)检测。

但在有些图像中梯度幅值较大的并不是边缘点。

最简单的边缘检测是梯度幅值阈值判定。

(4)定位。

精确确定边缘的位置。

几种边缘算子的比较以柚子的图片为例1、Roberts算子是一种利用局部差分算子寻找边缘的算子,Roberts算子边缘定位准,但是对噪声敏感。

适用于边缘明显而且噪声较少的图像分割,在应用中经常用Roberts算子来提取道路。

SOBEL算子

SOBEL算子

SOBEL算子Sobel算子及改进算法一、Sobel边缘检测算子在讨论边缘算子之前,首先给出一些术语的定义:(1)边缘点:图像中具有坐标[i,j],且处在强度显著变化的位置上的点。

(2)边缘段:对应于边缘点坐标[i,j]及其方位,边缘的方位可能是梯度角。

(3)边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法。

(4)边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程。

二、Sobel算子的基本原理采用3×3邻域可以避免在像素之间内插点上计算梯度。

Sobel算子也是一种梯度幅值,即:其中的偏导数用下式计算:Sx=(a2+ca3+a4)一(a0+ca7+a6)Sy= (a0+ca l+a2)一(a6+ca5+a4)其中常数c=2。

和其他的梯度算子一样,Sx 和Sy可用卷积模板来实现(见图2)。

图2 卷积模板这一算子把重点放在接近于模板中心的像素点图2和图3表明了这一算子的作用。

Sobel算子是边缘检中最常用的算子之一。

图3用于说明Sobel算子的邻域像素点标记算法的基本原理:由于图像边缘附近的亮度变化比较大,所以可以把那些在邻域内灰度超过某个值的像素点当作边缘点。

算法的主要步骤:1)分别将2个方向模板沿着图像从一个像素移动到另一个像素,并将像素的中心与图像中的某个像素位置重合;2)将模板内的系数与其图像上相对应的像素值相乘;3)将所有相乘的值相加;4)将2个卷积的最大值。

赋给图像中对应模板中心位置的像素,作为该像素新的灰度值;5)选取合适的阈值TH,若新像素灰度值≥TH,则判读该像素点为图像边缘点。

三、Sobel算子图像边缘检测的MATLB程序实现及仿真>> f=imread('peppers.png');>> f=rgb2gray(f);>> f=im2double(f);%使用垂直Sobel算子,自动选择阈值>> [VSFAT Threshold]=edge(f,'sobel','vertical');%边缘检测>>figure,imshow(f),title('原始图像');%显示原始图像>> figure,imshow(VSFAT),title('垂直图像边缘检测');%显示边缘检测图像>> s45=[-2 -1 0;-1 0 1;0 1 2];%使用指定45度角Sobel算子滤波器,指定阈值>>FST45=imfilter(f,s45,'replicate');>>SFST45=SFST45>=Threshold;>> figure,imshow(SFST45),title('45度角图像边缘检测');%显示边缘检测图像>>原始图像垂直边缘检测图像45度角边缘检测图像本实验中使用Sobel算子在3个方向进行了图像边缘检测,从程序运行结果可以看出,45度角Sobel算子生成的边缘检测图像呈现出浮雕效果,水平和垂直Sobel算子检测出的边缘多于单个方向上检测出的边缘。

八方向sobel算子边缘检测matlab

八方向sobel算子边缘检测matlab

八方向sobel算子边缘检测matlab八方向 Sobel 算子是一种常用的边缘检测算法,它通过对图像进行梯度计算,提取出边缘信息。

在 Matlab 中,可以使用 Sobel 算子进行边缘检测,具体步骤如下:1. 加载图像:使用 Matlab 内置的图像读取函数,例如`imread`来加载图像。

2. 梯度计算:使用 Matlab 中的`梯度`函数,对图像进行梯度计算。

具体来说,可以使用 Sobel 算子对应的内核进行梯度计算,例如`sobel()`函数可以计算水平方向的梯度,`shearx()`函数可以计算垂直方向的梯度。

3. 边缘检测:使用 Matlab 中的边缘检测函数,例如`borderspace`函数进行边缘检测。

具体来说,可以使用 Sobel 算子对应的内核进行边缘检测,例如`sobel()`函数可以检测水平方向的边缘,`shearx()`函数可以检测垂直方向的边缘。

下面是一个简单的 Matlab 代码示例,演示了如何使用八方向Sobel 算子进行边缘检测:```matlab% 加载图像img = imread("image.png");% 计算梯度grad = sobel(img);% 边缘检测bw = borderspace(grad, 5);% 显示结果figure, imshow(img);figure, imshow(bw);```在以上代码中,首先使用`imread`函数加载图像,然后使用`sobel()`函数计算梯度,最后使用`borderspace`函数进行边缘检测,并将结果显示在屏幕上。

需要注意的是,在使用八方向 Sobel 算子进行边缘检测时,需要对图像进行梯度计算,从而得到图像的梯度信息。

同时,为了进行边缘检测,需要对梯度信息进行膨胀操作,从而扩大差异,找到边缘。

基于Sobel算子的图像边缘检测研究

基于Sobel算子的图像边缘检测研究

基于Sobel算子的图像边缘检测研究一、本文概述图像边缘检测是计算机视觉和图像处理领域中的关键任务之一,其目标在于识别并提取图像中物体的轮廓和边界,以便进行进一步的分析和理解。

在众多边缘检测算法中,Sobel算子因其简单、高效和鲁棒性强的特点而备受关注。

本文旨在深入研究基于Sobel算子的图像边缘检测算法,分析其原理、特点、应用以及存在的挑战,并提出相应的改进策略。

本文将介绍Sobel算子的基本原理和计算过程,包括卷积核的构建、图像梯度的计算以及边缘的判定等。

然后,通过对比实验,分析Sobel算子在不同类型图像(如灰度图像、彩色图像、噪声图像等)上的边缘检测效果,评估其性能优劣。

接着,本文将探讨Sobel算子在实际应用中的优缺点,分析其在不同场景下的适用性和限制。

在此基础上,本文还将介绍一些改进Sobel算子的方法,如结合其他边缘检测算法、引入多尺度分析、利用机器学习技术等,以提高边缘检测的准确性和鲁棒性。

本文将对基于Sobel算子的图像边缘检测算法进行总结和展望,指出未来的研究方向和应用前景。

通过本文的研究,希望能够为图像边缘检测领域的发展提供有益的参考和启示。

二、Sobel算子理论基础Sobel算子是一种常用的边缘检测算子,它基于图像亮度的一阶或二阶导数变化来检测边缘。

Sobel算子通过计算图像中每个像素点周围区域的亮度梯度,来确定该像素点是否位于边缘上。

这种方法对于检测图像中的水平和垂直边缘特别有效。

Sobel算子是一种离散微分算子,它结合了高斯平滑和微分求导。

它包含两组3x3的卷积核,分别用于检测水平和垂直方向上的边缘。

当将这两组卷积核与图像进行卷积运算时,可以得到两个输出图像,分别表示水平和垂直方向上的亮度梯度。

在Sobel边缘检测算法中,首先使用高斯滤波器对原始图像进行平滑处理,以减少噪声对边缘检测结果的影响。

然后,使用Sobel算子对平滑后的图像进行卷积运算,得到水平和垂直方向上的亮度梯度。

基于matlab的图像边缘检测原理及应用

基于matlab的图像边缘检测原理及应用

目录一.前言----------------------------------------- 二.边缘检测的与提取-----------------------1.边缘检测的定义---------------------------2.图像边缘检测算法的研究内容---------3.边缘检测算子------------------------------3.1.Sobel算子-----------------------------3.2.Canny算子----------------------------4.基于Matlab的实验结果与分析--------- 三.图像边缘检测的应用---------------------一.前言在实际图像边缘检测问题中,图像的边缘作为图像的一种基本特征,经常被应用到较高层次的图像应用中去。

它在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用,也是它们的基础。

图像边缘是图像最基本的特征之一,往往携带着一幅图像的大部分信息。

而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像边缘检测时所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。

而边缘检测算法则是图像边缘检测问题中经典技术难题之一,它的解决对于我们进行高层次的特征描述、识别和理解等有着重大的影响;又由于边缘检测在许多方面都有着非常重要的使用价值,所以人们一直在致力于研究和解决如何构造出具有良好性质及好的效果的边缘检测算子的问题。

该课程设计具体考察了两种最常用的边缘检测算子并运用MATLAB进行图像处理比较。

二.边缘检测于算子1.边缘检测的定义图像边缘是图像最基本的特征,边缘在图像分析中起着重要的用。

所谓边缘(edge)是指图像局部特征的不连续性。

灰度或结构信息的突变称为边缘,例如:灰度级的突变、颜色的突变、纹理结的突变。

sobel边缘检测算法matlab代码

sobel边缘检测算法matlab代码

sobel边缘检测算法matlab代码以下是 Sobel 边缘检测算法的 MATLAB 代码实现:```matlab% Sobel 边缘检测算法 MATLAB 代码% 代码版权归作者所有,仅供学习使用,不得用于商业用途 % 设置参数n = 3; % 边缘检测次数m = 5; % 图像大小d = 1; % Sobel 算子步长sigma = 2; % 平滑处理参数threshold = 20; % 阈值% 读入图像img = imread("test.png");% 设置边缘方向dir1 = [-1 -1];dir2 = [1 1];% 计算 Sobel 算子sobel = zeros(n, n);for i = 1:nfor j = 1:ndx = dir1(i);dy = dir2(j);sobel(i, j) = abs(img(i+1, j+1) - img(i-1, j-1) +img(i+1, j) - img(i-1, j) -img(i+1, j+1) - img(i-1, j-1));endend% 平滑处理img_smooth = img;img_smooth = img_smooth / sigma;% 计算边缘border = 10;img_border = img_smooth(1:border:end, 1:border:end); img_border = img_border - img_smooth;img_border = img_border * (1 - sigma^2);img_border = img_border + img_smooth;edges = zeros(border, border);for i = 1:borderfor j = 1:borderif img_border(i, j) > thresholdedges(i, j) = 255;endendend% 显示结果imshow(edges);title("Sobel 边缘检测");```以上代码实现了 Sobel 边缘检测算法,其 MATLAB 输出结果为检测到的边缘图像。

matlab sobel函数

matlab sobel函数

一、介绍MATLAB Sobel函数MATLAB中的Sobel函数是图像处理工具箱中常用的函数之一,它主要用于边缘检测。

Sobel算子是一种常用的边缘检测算子,可以帮助我们找到图像中的边缘,对图像进行分割和识别等操作起到了至关重要的作用。

在MATLAB中,我们可以通过调用Sobel函数来实现对图像的边缘检测,以及其他相关的图像处理操作。

二、Sobel算子的原理Sobel算子是一种离散型的微分算子,用于检测图像中的边缘。

它通过对图像中每个像素点的灰度值进行加权求和,来获取该像素点的梯度值,并在图像中标记出边缘。

Sobel算子通常使用3x3的模板来进行计算,分为水平和垂直两个方向,分别对图像进行卷积操作。

水平方向的Sobel算子可以帮助我们检测图像中的垂直边缘,而垂直方向的Sobel算子可以帮助我们检测图像中的水平边缘。

三、MATLAB中Sobel函数的基本用法在MATLAB中,我们可以通过调用Sobel函数来实现对图像的边缘检测。

Sobel函数的基本语法如下:```BW = edge(I,'sobel');```其中,I代表输入的灰度图像,'sobel'表示使用Sobel算子进行边缘检测。

调用Sobel函数后,将得到一个二值化的图像BW,其中边缘像素被标记为1,非边缘像素被标记为0。

除了基本的边缘检测之外,Sobel函数还可以通过指定阈值来进行边缘强度的筛选,以及指定方向来进行特定方向的边缘检测。

例如:```BW = edge(I,'sobel',threshold,direction);```其中,threshold表示设定的阈值,direction表示指定的方向。

通过这种方式,我们可以根据具体需求来定制化Sobel函数的边缘检测操作。

四、Sobel算子在图像处理中的应用Sobel算子作为一种经典的边缘检测算子,在图像处理领域有着广泛的应用。

其主要应用包括但不限于以下几个方面:1. 物体识别使用Sobel算子进行边缘检测可以帮助我们找到图像中的物体轮廓,从而实现对物体的自动识别和定位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于MATLAB边缘检测sobel算子
一、sobel介绍
索贝尔算子是图像处理中的算子之一,主要用作边缘检测。

在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。

在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量。

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。

如果以代表原始图像,及分别代表经横向及纵向边缘检测的图像,其公式如下:
图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。

然后可用以下公式计算梯度方向。

在以上例子中,如果以上的角度等于零,即代表图像该处拥有纵向边缘,左方较右方暗。

二、程序
例1
clear all;
close all;
f=imread('dsy.jpg');
u=rgb2gray(f);
F=double(f);
U=double(u);
[H,W]=size(u);
uSobel=u;
% ms=0;
% ns=0;
for i=2:H-1
for j=2:W-1
Gx=(U(i+1,j-1)+2*U(i+1,j)+F(i+1,j+1))-(U(i-1,j-1)+2*U(i-1,j)+F(i-1,j+1));
Gy=(U(i-1,j+1)+2*U(i,j+1)+F(i+1,j+1))-(U(i-1,j-1)+2*U(i,j-1)+F(i+1,j-1));
uSobel(i,j)=sqrt(Gx^2+Gy^2);
% ms=ms+uSobel(i,j);
% ns=ns+(uSobel(i,j)-ms)^2;
end
end
% ms=ms/(H*W);
% ns=ns/(H*W);
subplot(1,2,1);imshow(f);title('原图');
subplot(1,2,2);imshow(im2uint8(uSobel));title('Sobel处理后');
% S=[ms ns];
程序运行结果:
例2
hg=zeros(3,3); %设定高斯平滑滤波模板的大小为3*3
delta=0.5;
for x=1:1:3
for y=1:1:3
u=x-2;
v=y-2;
hg(x,y)=exp(-(u^2+v^2)/(2*pi*delta^2));
end
end
h=hg/sum(hg(:));
g = imread('jjj.jpg ');
f=rgb2gray(im2double(g));
subplot(2,2,1),imshow(f)
title('原始图像');
[m,n]=size(f);
ftemp=zeros(m,n);
rowhigh=m-1;
colhigh=n-1;
%%%高斯滤波%%%
for x=2:1:rowhigh-1
for y=2:1:colhigh-1
mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];
A=h.*mod;
ftemp(x,y)=sum(A(:));
end
end
f=ftemp
subplot(2,2,2),imshow(f)
title('高斯滤波器后的图像');
%%%%3*3的soble算子%%%%%%%%
sx=[-1 -2 -1;0 0 0;1 2 1];
sy=[-1 0 1;-2 0 2;-1 0 1];
for x=2:1:rowhigh-1
for y=2:1:colhigh-1
mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];
fsx=sx.*mod;
fsy=sy.*mod;
ftemp(x,y)=max((abs(sum(fsx(:)))),(abs(sum(fsy(:)))));
end
end
fs=im2uint8(ftemp);
subplot(2,2,3),imshow(fs)
title('用soble检测的原始图像');
%%%域值分割%%%
TH2=30; %设定阈值
for x=2:1:rowhigh-1
for y=2:1:colhigh-1
if (fs(x,y)>=TH2)&((fs(x,y-1) <= fs(x,y)) & (fs(x,y) > fs(x,y+1)) )
fs(x,y)=200;
elseif(fs(x,y)>=TH2)&( (fs(x-1,y) <=fs(x,y)) & (fs(x,y) >fs(x+1,y))) fs(x,y)=200;
else fs(x,y)=50;
end
end
end
subplot(2,2,4),imshow(fs)
title('用soble检测并细化后的图像')。

相关文档
最新文档