深基坑施工监测技术

合集下载

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。

本文将就深基坑施工监测方案进行探讨。

一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。

通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。

二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。

监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。

2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。

监测频次为每天、每班、每小时,并及时记录监测数据。

3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。

监测频次为每天、每周,并记录监测数据。

同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。

4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。

经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。

5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。

监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。

三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。

2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。

报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。

四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。

深基坑监测技术方案

深基坑监测技术方案

深基坑监测技术方案深基坑监测技术方案一、前言深基坑工程是城市地下建筑工程中常见、大型的工程之一,其施工对周边环境和地下构造有一定的影响,并且其施工难度大、风险性高。

因此,在深基坑工程的施工过程中,对基坑周围的地下环境和施工现场进行实时监测,是保障周边环境安全和工程顺利进行的必要手段。

本文将介绍深基坑监测技术方案,以期为深基坑施工提供技术保障。

二、监测内容深基坑的监测内容主要包括以下方面:1、基坑土体和周围构造物的变形和沉降情况2、基坑周围地下水位的变化3、基坑周围地面的变形和沉降情况4、基坑周围噪音、振动等环境因素的监测5、基坑周围温度、湿度等气象因素的监测6、基坑周围交通等外部因素对施工现场的影响三、监测技术深基坑的监测技术主要包括以下方面:1、测量监测技术通过在深基坑施工现场进行土体的变形测量、沉降监测、地面变形测量等,以及在基坑周围进行地下水位监测等,实时获取基坑周围土体和水位等因素的变化情况,以便对施工进行调整。

2、遥测监测技术通过在基坑、周边地下水位点、周边气象站等设备上安装遥测设备,将监测数据传输到指挥中心,实时进行监测和分析,及时发现和解决问题。

3、影像监测技术通过安装摄像头等设备在基坑周围进行监测,以实时获取现场的施工情况和周边环境的变化情况,并可在指挥中心进行实时监控,及时得知施工现场情况,做好施工管理和环境保护。

四、数据处理和分析深基坑的监测数据经过采集,需要进行科学的数据处理和分析,以取得有效的结果。

数据处理和分析主要包括以下环节:1、数据预处理对采集的监测数据进行预处理、滤波处理等操作,以提高监测精度。

2、数据分析对采集的监测数据进行分析,通过分析结果找出数据中存在的问题,并结合实际情况进行分析,以便制定针对性施工措施。

3、数据传输将监测数据传输至指挥中心或工程方相关人员,以便实时监测和及时处理问题。

五、施工管理为了保证深基坑的施工安全和质量,需要进行施工管理,包括:1、施工技术管理在深基坑的设计和施工中,需要严格按照相关标准和规范进行管理,尽可能降低施工风险,并在施工过程中采取有效措施保证施工质量。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、工程概述本次深基坑工程位于_____,周边环境较为复杂,临近既有建筑物、道路及地下管线等。

基坑开挖深度为_____米,面积约为_____平方米。

为确保施工过程中的安全及周边环境的稳定,需对深基坑进行全面、系统的监测。

二、监测目的1、及时掌握基坑围护结构及周边土体的变形情况,为施工提供可靠的数据支持。

2、预警施工过程中可能出现的异常情况,以便采取相应的措施,保障施工安全。

3、为优化设计和施工方案提供依据,降低工程风险。

三、监测依据1、(GB 50497-2019)2、本工程的相关设计文件及施工方案3、其他相关的规范、标准和技术要求四、监测内容1、围护结构水平位移监测在围护结构的关键部位设置监测点,采用全站仪或测斜仪进行监测,监测频率为每天_____次。

2、围护结构竖向位移监测利用水准仪对围护结构顶部的监测点进行测量,监测频率同水平位移监测。

3、支撑轴力监测在支撑结构上安装轴力计,实时监测支撑轴力的变化,监测频率为每_____小时一次。

4、地下水位监测通过在基坑周边设置水位观测井,使用水位计测量地下水位的变化,每天监测_____次。

5、周边建筑物沉降及倾斜监测在周边建筑物上设置沉降观测点和倾斜观测点,使用水准仪和全站仪进行监测,监测频率为每周_____次。

6、周边道路及地下管线沉降监测沿周边道路及地下管线布置监测点,采用水准仪进行监测,监测频率为每三天_____次。

五、监测点布置1、围护结构水平位移和竖向位移监测点沿基坑周边每隔_____米布置一个监测点,在阳角、阴角等关键部位适当加密。

2、支撑轴力监测点选择具有代表性的支撑构件,每个构件上布置_____个轴力计。

3、地下水位监测点在基坑周边每隔_____米布置一个水位观测井。

4、周边建筑物沉降及倾斜监测点在建筑物的四角、大转角处及沿外墙每隔_____米布置一个沉降观测点,倾斜观测点布置在建筑物的顶部和底部。

5、周边道路及地下管线沉降监测点沿道路及地下管线每隔_____米布置一个监测点。

深基坑工程安全监测技术及工程应用

深基坑工程安全监测技术及工程应用

深基坑工程安全监测技术及工程应用1. 引言1.1 概述深基坑工程安全监测技术及工程应用深基坑工程是城市建设中常见的工程项目之一,其建设需要进行严格的安全监测,以确保工程进展顺利并保障周边环境和人员的安全。

深基坑工程安全监测技术是指利用各种技术手段和设备对深基坑工程中的地质、土体、水文等情况进行实时监测和分析,以及预测可能出现的风险和隐患,从而及时采取措施防范事故发生。

深基坑工程安全监测技术的应用范围广泛,涉及工程的施工阶段、运营阶段以及结构的整个寿命周期。

通过各种监测手段,可以实时监测基坑工程的变形、地下水位变化、地表沉降等状况,保障工程的稳定性和安全性。

监测技术也可以为工程设计、施工、运营提供数据支持和决策依据,提高工程的质量和效率。

深基坑工程安全监测技术在现代城市建设中起着至关重要的作用,是保障工程安全、推动城市发展的重要手段之一。

下文将具体探讨深基坑工程安全监测技术的历史、现状、关键技术、应用案例以及未来发展趋势,希望能为读者提供全面的了解和启发。

2. 正文2.1 深基坑工程安全监测技术的发展历史深基坑工程安全监测技术的发展历史可以追溯到20世纪初,当时随着建筑结构越来越高、越来越深,特别是城市中心区域土地资源日益紧张,深基坑工程开始变得日益常见。

由于深基坑工程施工过程中存在着复杂多变的地质环境,以及施工对周围环境和结构的影响,安全隐患也随之增加。

随着科学技术的发展,深基坑工程安全监测技术逐步得到了完善和发展。

在以往,深基坑工程的安全监测主要依靠人工观察和传统的监测手段,监测效果较为有限,监测数据的准确性和实时性也难以保障。

随着计算机技术和传感器技术的广泛应用,深基坑工程安全监测技术迎来了新的发展机遇。

现代深基坑工程安全监测技术不仅集成了GIS、GPS、遥感等先进技术,还采用了各种先进传感器和数据采集设备,能够对深基坑工程施工过程中的变位、沉降、地下水位变化等参数进行实时监测和分析。

利用大数据和人工智能技术,可以对监测数据进行智能分析和预警,提前发现潜在风险,确保深基坑工程的安全施工和运行。

深基坑监测方案

深基坑监测方案
六、监测周期及频率
1.基坑周边土体监测:
施工前进行初始监测,施工过程中根据工程进度和监测数据变化情况,调整监测频率。一般情况下,监测频率为每周1-2次。
2.支护结构监测:
施工过程中,监测频率与土体监测同步进行。关键施工阶段,如土方开挖、支撑施工、降水等,应加强监测。
3.周边环境监测:
施工前进行初始监测,施工过程中根据周边环境变化情况,调整监测频率。一般情况下,监测频率为每周1次。
二、监测目标
1.监测基坑周边土体的稳定性,包括水平位移、垂直位移及裂缝发展情况。
2.监测支护结构的健康状况,包括位移、倾斜及内力变化。
3.监测周边建(构)筑物及设施的安全状况,确保不受基坑施工影响。
三、监测原则
1.系统性:确保监测内容全面,覆盖基坑施工全周期。
2.预警性:建立预警机制,对异常情况及时预警,指导施工调整。
3.动态性:根据施工进度和监测数据,动态调整监测策略。
4.科学性:采用可靠的监测技术,确保监测数据的准确性。
四、监测内容
1.土体监测:
-水平位移:采用全站仪等设备进行监测。
-垂直位移:使用电子水准仪等设备进行监测。
-地表裂缝:通过巡视和裂缝观测仪进行监测。
2.支护结构监测:
-桩(墙)位移:使用测斜仪等设备监测。
深基坑监测方案
第1篇
深基坑监测方案
一、项目背景
随着城市化进程的加快,地下空间开发逐渐成为缓解城市土地资源紧张的重要手段。深基坑工程作为地下空间开发的关键环节,其安全性直接关系到工程质量和周边环境的安全。为确保深基坑施工过程中的稳定性和安全性,制定一套合法合规的深基坑监测方案至关重要。
二、监测目的
1.掌握深基坑施工过程中土体、支护结构及周围环境的变化规律,确保工程安全。

浅析深基坑施工监测技术

浅析深基坑施工监测技术

浅析深基坑施工监测技术概述深基坑是指在建筑施工过程中,为了承载大型建筑物或者地下设施而挖掘的深度较大的坑道。

由于深基坑在施工过程中存在较大的安全隐患和工程风险,因此施工监测技术的应用显得尤为重要。

本文将对深基坑施工监测技术进行浅析。

一、深基坑施工监测的必要性深基坑施工过程中,由于受到地下水位、土质变化、周边建筑、交通等因素的影响,常常会出现地表沉降、倾斜、开裂等情况。

如果无法及时发现这些变化并采取相应的措施,将会给施工过程中的人员、设备以及周边建筑物带来巨大的危险。

因此,深基坑施工监测技术的应用成为确保施工安全和保障工程质量的重要手段。

二、深基坑施工监测技术的分类1. 地表位移监测技术地表位移监测技术是指通过安装测点,使用全站仪、测距仪、位移计等设备对地表的位移进行实时监测。

通过监测地表位移的变化,可以及时发现并评估基坑边坡的稳定性,为施工人员提供安全的作业环境。

2. 地下水位监测技术深基坑施工过程中,地下水位的变化对基坑支护结构的稳定性有着重要的影响。

地下水位监测技术主要是通过在施工现场安装水位计、沉淀量计等设备,对地下水位的波动进行实时监测。

通过监测地下水位的变化,可以预测地下水位对基坑工程的影响,并采取相应的防护措施。

3. 周边建筑物监测技术深基坑施工过程中,周边建筑物往往承受着来自于基坑施工产生的土体位移、振动等影响。

周边建筑物监测技术主要是通过安装倾斜仪、应变计等设备,对周边建筑物的位移、倾斜等变化进行实时监测。

通过监测周边建筑物的变化,可以预测基坑施工对周边建筑物的影响,并采取相应的保护措施。

三、深基坑施工监测技术的优点1. 实时监测:深基坑施工监测技术可以实时监测地表位移、地下水位和周边建筑物的变化情况,及时掌握施工过程中的变化,以便及时采取措施进行调整和防护。

2. 精确度高:深基坑施工监测技术采用的测量设备精度高,可以对基坑施工过程中的微小变化进行准确的监测和评估。

3. 数据分析:深基坑施工监测技术可以实时采集和存储监测数据,并通过数据分析软件进行处理和分析,为施工过程中的决策提供科学依据。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。

本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。

二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。

2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。

3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。

三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。

2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。

3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。

四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。

3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。

五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。

2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。

3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。

六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。

9.7深基坑施工监测技术

9.7深基坑施工监测技术

9.7深基坑施工监测技术镇江万达广场十项新技术应用总结之11 深基坑施工监测技术二0一一年八月目录一、工程概况 (4)二、监测目的、依据、原则 (4)三、监测内容及代表照片 (5)四、监测实施 (5)五、测量精度 (6)六、仪器设备 (7)七、测量周期 (7)八、预警报告 (7)九、预防措施、应急措施以及质量安全措施 (8)十、经济和社会效益以及应用体会 (11)一、工程概况镇江万达广场位于镇江市润州区,地处庄泉路东侧,庄泉东路西侧,北府路北侧,黄山南路西。

镇江万达广场地块总面积约为8万平方米,总建筑面积约38.88万平方米,地上面积约30万平方米,地下面积约8.88万平方米,分为写字楼、公寓、商业及酒店等。

公寓由3栋酒店式公寓和商业用房组成,其中公寓31层,面积7.47万平方米,框剪结构;商业用房2—二、监测目的、依据、原则2.1监测目的在基坑开挖期间,随着取土的深入,围护结构由于受到土压力和周围道路动载力作用,会产生比较明显的变形。

如果超过一定的范围,会引起基坑的倒塌和对周围道路及管线的破坏。

因此应对基坑在开挖期间进行必要的监测,及时提供基坑及周围附属物的变形数据,指导施工的顺利进行,保证施工的安全。

2.2监测依据2.3监测原则基坑开挖是基坑卸荷过程。

由于卸荷而引起坑底土体产生以向上为主的位移,同时也引起围护墙在两侧压力差的作用下而产生的水平方向位移和因此产生的墙外侧土体的位移,基坑变形包括维护墙的变形坑底隆起及基坑周围地层位移等,加强基坑在开挖期间的监测工作可以保证基坑及周围附属设施的安全,并可合理地利用土体自身在基坑开挖过程中控制土体位移的潜力而达到保护环境的目的,根据本工程自身特点和现场施工的具体情况,监测方案按以下原则进行。

1、设置的监测内容及监测点必须满足本工程设计要求及各有关规范要求,并能客观全面反映工程施工过程中周围环境及基坑维护体系的变化情况。

2、监测过程中采用的方法、设备、频率,均应符合设计要求和有关规范要求,能及时、准确地提供监测数据,满足现代化、信息化施工要求。

深基坑施工中的基坑监测技术

深基坑施工中的基坑监测技术

深基坑施工中的基坑监测技术摘要:随着城市化进程的加快,建设项目的规模越来越大,施工的形式也越来越多样,这就需要对施工项目的安全和质量进行保障。

在此背景下,深基坑工程质量保障问题日益受到重视。

介绍了深基坑中基坑监测技术在工程建设中的作用及适用的原理,并对六种常用的监测技术进行了探讨。

关键词:基坑;监测技术;深基坑引言:由于地下土体性质,荷载条件和施工环境等因素复杂,基坑开挖时存在很大不确定性,从而给施工带来了较大影响。

随着设计理念更新与施工技术发展,基坑监测已经成为考验新理念、新技术的一个重要途径。

一、常见的深基坑监测技术1水平位移的监测水平位移监测点通常设置在边坡顶部且可以沿基坑四周设置,宜设置在四周中心及阳角位置。

监测点之间横向间距应在20米以下。

同时为保证监测效果,每侧监测点应在三个以上。

对一些特定位置水平位移的监测可采取视准线法,小角度法和投点法几种方法。

但通常对多个监测点进行水平位移监测时,依据其分布特征,可采取前方交会法,后方交叉法和极坐标法进行监测。

水平位移监测基准点的建立,须有观测墩必须对准,并使用较准确的光学对准装置,使误差控制在0.5毫米之内。

在对深基坑水平位移进行监测时,应确保与相关测量规范中的监测准确度相符。

在满足成本预算的前提下,尽量增加准确率。

同时,要设定有关参数的报警值,如采用小角度法时,在进行监测前,必须检查装置的竖向倾角,若倾角大于3,则应进行角度修正;而采用视标线法进行检测时,应确保监测点的定位误差小于20 mm;采用正面交会法进行监测时,其交会角度要控制在60到120度之间,同时要保证三点交会。

2竖向位移的监测竖向位移的监测点设置同水平位移监测点的设置基本相同,而且用以测定水平位移的点也可以测定竖向上的位移。

详细的说,目前可以采用的监测垂直位移的方法有液体静力水准或者是几何水准法。

在基坑的基础上,应设置回弹监测点,采用几何水准法监测。

若周围环境不允许使用几何水准测量,或有必要进行自动监测,可采用液位静水准仪。

十项新技术应用总结之深基坑施工监测技术

十项新技术应用总结之深基坑施工监测技术

十项新技术应用总结之深基坑施工监测技术深基坑施工是指在城市建设过程中,为了满足地下空间需要而进行的大规模挖掘工程。

由于深基坑施工所涉及的工程量大、周期长、风险高等特点,对施工监测技术提出了更高的要求。

本文将对十项新技术应用于深基坑施工监测技术进行总结。

一、激光扫描技术激光扫描技术利用激光测距仪对基坑的各个部位进行扫描,通过获取的点云数据,可以实现对基坑的形态、变形等信息进行精确测量和分析。

二、雷达测量技术雷达测量技术是利用微波信号进行测量的一种技术,可以实现对基坑周边环境的监测,如地下水位、地下管线等,以及基坑内部的变形、位移等数据的获取。

三、遥感技术遥感技术通过卫星、飞机等平台获取的遥感图像,可以实现对基坑周边地质环境的监测,如地质构造、地表沉降等信息的获取。

四、全站仪技术全站仪技术可以实现对基坑各个关键点位的高精度测量,包括坐标、角度、高程等参数的获取,为基坑施工提供精确的数据支持。

五、无人机技术无人机技术可以实现对基坑周边环境的快速巡查和监测,包括地表沉降、裂缝等信息的获取,同时还可以进行航拍和测量工作。

六、传感器技术传感器技术可以实现对基坑内部的温度、湿度、应力等参数的实时监测,通过传感器网络可以实现对整个基坑的全面监测。

七、数据分析与挖掘技术通过对监测数据进行大数据分析和挖掘,可以实现对基坑施工过程中的异常情况进行预警和预测,提高施工安全性和效率。

八、人工智能技术人工智能技术可以对基坑施工过程中的监测数据进行智能分析和处理,实现对施工过程的自动化控制和优化。

九、虚拟现实技术虚拟现实技术可以通过虚拟建模的方式,实现对基坑施工过程的可视化和仿真,为施工人员提供更直观、实用的信息。

十、云计算技术云计算技术可以实现对基坑监测数据的存储、管理和分析,为施工监测提供可靠的数据支持和决策依据。

十项新技术的应用使得深基坑施工监测技术得到了极大的提升。

通过这些新技术的应用,可以实现对基坑施工全过程的全面监测和控制,提高施工的安全性、效率和质量,为城市建设提供强有力的支持。

深基坑施工监测技术

深基坑施工监测技术

一、深基坑施工监测技术(一)技术内容基坑工程监测是指通过对基坑控制参数进行一定期间内的量值及变化进行监测,并根据监测数据评估判断或预测基坑安全状态,为安全控制措施提供技术依据。

监测内容一般包括支护结构的内力和位移、基坑底部及周边土体的位移、周边建筑物的位移、周边管线和设施的位移及地下水状况等。

监测系统一般包括传感器、数据采集传输系统、数据库、状态分析评估与预测软件等。

通过在工程支护(围护)结构上布设位移监测点,进行定期或实时监测,根据变形值判定是否需要采取相应措施,消除影响,避免进一步变形发生的危险。

监测方法可分为基准线法和坐标法。

在水平位移监测点旁布设围护结构的沉降监测点,布点要求间隔15~25m 布设一个监测点,利用高程监测的方法对围护结构顶部进行沉降监测。

基坑围护结构沿垂直方向水平位移的监测,用测斜仪由下至上测量预先埋设在墙体内测斜管的变形情况,以了解基坑开挖施工过程中基坑支护结构在各个深度上的水平位移情况,用以了解和推算围护体变形。

临近建筑物沉降监测,利用高程监测的方法来了解临近建筑物的沉降,从而了解其是否会引起不均匀沉降。

在施工现场沉降影响范围之外,布设 3 个基准点为该工程临近建筑物沉降监测的基准点。

临近建筑物沉降监测的监测方法、使用仪器、监测精度同建筑物主体沉降监测。

(二)技术指标(1)变形报警值。

水平位移报警值,按一级安全等级考虑,最大水平位移≤0.14%H;按二级安全等级考虑,最大水平位移≤0.3%H。

(2)地面沉降量报警值。

按一级安全等级考虑,最大沉降量≤0.1%H;按二级安全等级考虑,最大沉降量≤0.2%H。

(3)监测报警指标一般以总变化量和变化速率两个量控制,累计变化量的报警指标一般不宜超过设计限值。

若有监测项目的数据超过报警指标,应从累计变化量与日变量两方面考虑。

(三)适用范围用于深基坑钻、挖孔灌注桩、地连墙、重力坝等围(支)护结构的变形监测。

(四)工程案例深圳中航广场工程、上海万达商业中心等。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑工程是由于场地有限、建筑要求或地下空间的需要等条件引起的工程形式。

深基坑施工属于地下施工,在施工期间,受力环境、土体变形、地下水位的变化等因素均会对施工造成影响。

因此,在深基坑施工中,需要进行一定的监测和管控措施,以降低施工风险。

本文将就深基坑施工监测方案进行探讨。

一、监测对象深基坑施工中,需要进行多项监测。

其中,监测对象主要包括:周边建筑物、挡土墙、支撑结构、地下水位、土体变形等。

周边建筑物:深基坑施工过程中,支护结构的载荷可能会对周边建筑物的承载力产生影响,因此需要采用不同的监测方法进行测量,以保证周边建筑物的安全性。

例如采用水平变形测量技术,追踪建筑物的水平变形情况;采用应力应变测量技术,监测建筑物的应变情况等。

挡土墙:挡土墙是深基坑施工的关键部分,其破坏会对施工造成影响。

因此,需对挡土墙进行一定的监测措施,例如采用水平变形测量、挡土墙内部应力应变测量等技术,确保挡土墙的安全性。

支撑结构:深基坑施工中,支撑结构起着桥梁的作用,因此其安全性至关重要。

支撑结构的监测需要兼顾不同监测技术,例如采用应力应变测量、变形测量等技术综合考虑,以确保支撑结构的安全性。

地下水位:地下水位是深基坑施工中需要重点关注的监测对象,它的变化可能会对施工造成直接影响。

因此,需要对地下水位进行实时监测,并及时调整支撑结构的支撑力度,以保障施工安全。

地下水位的监测通常采用液位计、电测和潜孔测压等技术。

土体变形:土体变形是深基坑施工过程中无法避免的问题。

其合理监测和处理,能够及时报警,有效避免施工风险的发生。

土体变形的监测通常采用变形监测技术,如支撑结构内测点、土壤应变测点等。

二、监测方法深基坑施工监测方法主要分为静态监测和动态监测两类。

静态监测:静态监测是指在施工期间或施工前后采用有限数目的测量点,通过周期性监测来评估基坑工程在整个施工周期内的受力环境和形变情况。

静态监测主要包括水平变形监测、变形监测和应力应变监测等。

深基坑施工中的基坑监测技术

深基坑施工中的基坑监测技术

深基坑施工中的基坑监测技术摘要:在我国城市建设发展过程中,随着地价的逐渐增加。

由于地下土体性质、荷载条件、施工环境的复杂性,基坑开挖过程中的不确定性较大,因而对施工的影响也越来越大。

基于此,本文对新形势下基坑监测技术的重要意义以及深基坑施工中的基坑监测技术的措施进行了分析。

关键词:基坑监测;深基坑;施工;技术在社会经济与科技飞速进步的背景下,各类基础工程建设项目也在不断扩张。

由于受到原始地质环境和施工技术的影响,在施工过程中要加强关注对地基基坑的建设和监测,这样有利于维护工程建设质量与建设安全性。

基坑监测技术在目前的建筑工程项目中应用较多,不仅可以实现不同方向上的基坑变形监测,还可以对地质结构进行检测,并通过与其他技术的结合,发挥监测技术在建工项目中的重要价值。

1 新形势下基坑监测技术的重要意义建筑基坑是建筑施工的基础,起着承载建筑的重要作用。

新形势下,建筑行业在发掘土地资源的过程中,不断加深基坑的深度,使得建筑基坑的建设施工难度加大,同时也对建筑周边的环境造成了一定的影响。

为了确保建筑本身的安全性、稳定性以及保护周边环境,基坑监测技术由此得到了进一步加强。

基坑监测技术的主要工作是检查和监控建筑基坑和周边环境,保证基坑的建设施工进度和在整个施工过程中的施工质量。

该技术对于基坑施工的监测从施工前就已开始,通过详细了解建筑工程所在位置范围的地质条件,基坑监测技术以真实的施工规划数据承担起了为基坑施工提供指导的任务。

相关数据中包括施工区域地质土体的分析数据和负荷数据等,这为基坑的施工排除了诸多不确定因素,使得后期施工的开展具有更明确的施工方向。

在施工的过程中,基坑监测技术通过对施工具体情况的实时监测,收集、分析基坑施工的各项数据,从而得到基坑强度的相关结果,为工程施工进行成本控制提供科学依据。

在施工的过程中,基坑监测技术还可为相关技术、施工人员提供基坑的具体情况,如地下管道和线路的分布等,为避免基坑施工破坏地下设施提供重要参考。

深基坑工程安全监测技术及工程应用

深基坑工程安全监测技术及工程应用

深基坑工程安全监测技术及工程应用深基坑工程是指地下某一深度范围内的土石方开挖工程,通常以钢筋混凝土结构加固。

深基坑工程常见于城市建设领域,例如地铁、大型商业综合体和高层建筑等项目中。

由于深基坑工程的施工环境复杂、施工期长且施工难度大,因此对其安全监测尤为重要。

随着科技的发展,深基坑工程安全监测技术不断更新,成为保障工程施工安全的重要手段。

本文将讨论深基坑工程安全监测技术及其工程应用。

一、深基坑工程的安全隐患深基坑工程由于开挖深度大、地下水位高、周边环境复杂,存在着许多安全隐患。

地下水的渗透和涌水是深基坑工程的主要难题之一。

在施工现场,地下水可能会渗入基坑,导致周边土壤松软甚至流失,给施工工人和设备带来巨大风险。

基坑支护结构受力不均匀、土体稳定性差等问题也是导致深基坑工程事故的原因之一。

基坑工程周边建筑物和地下管线的影响也是工程安全的重要考虑因素。

1. 地表位移监测技术地表位移监测技术是深基坑工程安全监测的重要手段之一。

通过在基坑周边布设一定数量的地表位移监测点,结合高精度的测量仪器,可以实时监测地表位移情况,及时发现和预警地表失稳的情况。

常见的监测仪器包括全站仪、GNSS定位系统和遥感雷达等。

这些监测技术可以对地表位移进行高精度多维变形监测,有效预防地表沉降和塌陷等问题。

地下水位监测技术是深基坑工程施工过程中必不可少的重要技术。

通过在基坑周边布设井管、水位计和自动数据采集系统,可以实现地下水位的实时监测和数据记录。

通过对地下水位监测数据的分析和比对,可以及时掌握地下水位的变化规律,预判地下水渗透和涌水的趋势,及时采取相应措施进行处理,有效降低地下水对基坑工程的影响。

3. 基坑支护结构监测技术基坑支护结构监测技术是深基坑工程安全监测中的重要组成部分。

通过在支护结构内部和外部布设应变传感器、位移监测仪器等设备,实现对支护结构的实时监测和数据记录。

基坑支护结构监测技术可以帮助工程人员及时发现和预警支护结构的受力变化、位移变形等问题,及时采取措施进行处理,确保基坑工程的安全。

深基坑施工监测技术的监测内容

深基坑施工监测技术的监测内容

深基坑施工监测技术的监测内容
《深基坑施工监测技术的监测内容》
嘿,大家知道吗,深基坑施工监测技术那可是相当重要呀!这就好比是给深基坑这个“大宝贝”请了个守护者。

就说前阵子我去了一个工地,那里正在进行深基坑施工。

一到那呀,就看到各种仪器设备摆在周围,就像是一个个小卫兵。

先说这支护结构的监测吧,那是要确保这个“保护壳”一直稳稳当当的。

工人师傅们会仔细查看支护结构有没有变形啦、位移啦,就像关心一个宝贝有没有磕着碰着一样细致。

如果支护结构出了问题,那可就危险喽,就像一个人的骨头出了毛病似的。

还有地下水位的监测,这可是个关键呢!要是水位涨得太高,或者降得太低,那都会有麻烦事儿。

我看到师傅们拿着专门的仪器,时刻盯着水位的变化,那认真的样子,就像在守护一个珍贵的宝物。

他们就像天气预报员一样,精准地记录着水位的情况,生怕它有啥异常波动。

再讲讲土体的监测吧。

土体就像是深基坑的“床垫”,得时时关注它稳不稳定。

师傅们会去检测土体有没有松动、有没有位移,就像妈妈时刻关注
着宝宝的被窝有没有盖好一样。

一旦土体出了问题,那整个深基坑可都得受影响呀。

这些监测内容就像是深基坑的一道道防线,时时刻刻守护着它的安全。

只有把这些监测工作都做好了,才能让深基坑施工顺顺利利进行下去,就像我们要好好照顾自己的身体一样。

所以呀,可别小看了深基坑施工监测技术的这些监测内容,它们可是起着至关重要的作用呢!没有它们,那可真的不行呀,就像一个人没有了健康的身体一样可怕。

以后大家要是看到深基坑施工的地方,可一定要想到这些细心的监测工作哟!。

深基坑开挖监测方案

深基坑开挖监测方案

深基坑开挖监测方案深基坑的开挖是一个复杂而风险较高的施工过程,需要进行严格的监测,以确保开挖过程的安全和稳定。

下面是一个针对深基坑开挖的监测方案,旨在为开挖施工提供有力的支持和控制:一、监测参数和目标:1.地表沉降监测地表沉降是深基坑开挖的一种常见影响,因此需要进行实时监测,以掌握沉降速度和变化趋势。

监测目标是确保地表沉降量控制在可接受的范围内,避免对周边建筑和基础设施造成损害。

2.周边建筑物倾斜监测3.地下水位监测4.地面周边土体应力监测二、监测方法和技术:1.地表沉降监测可以采用全站仪、GNSS定位仪等设备对基坑周边地表进行定位测量,通过测量点与基准点的位置变化,计算出地表沉降量。

监测频率可根据施工进展和工况的变化进行调整,以保证监测的及时性和准确性。

2.周边建筑物倾斜监测可以采用倾斜仪、自动水平仪等设备对周边建筑物进行倾斜监测,通过监测倾斜角度和倾斜方向的变化,判断建筑物是否发生倾斜。

监测频率也可根据施工进展和工况的变化进行调整。

3.地下水位监测可以采用水位计、压力传感器等设备对基坑周边的井点和监测孔进行水位监测,及时获取地下水位的变化情况。

监测频率可根据施工进展和工况的变化进行调整。

4.地面周边土体应力监测可以采用应变计、标准屈光仪等设备对周边土体进行应力监测,通过监测应变值和变形分布,判断土体的力学性质和稳定状态。

监测频率可根据施工进展和工况的变化进行调整。

三、监测数据处理与分析:1.监测数据的实时处理和分析监测系统应能够实时采集、处理和分析监测数据,并及时生成监测报告和预警信息。

监测数据的处理和分析应该由专业的技术人员进行,以确保数据的准确性和可靠性。

2.监测数据的比对分析监测数据应与设计值、历史数据进行比对分析,判断开挖过程中是否存在异常情况,并及时采取相应措施进行调整。

比对分析结果可用于优化施工方案和风险预警。

3.监测数据的可视化展示监测数据应以图形、表格等形式进行可视化展示,使监测人员和管理人员能够直观地了解监测结果,并及时做出决策。

建筑基坑工程监测技术标准gb50497-2024

建筑基坑工程监测技术标准gb50497-2024

建筑基坑工程监测技术标准gb50497-2024建筑基坑工程是指在建筑物施工中,为了进行地下部分的施工或深基坑的开挖而对地面进行挖掘的工程。

基坑工程监测是指在基坑施工或周边工作过程中,对基坑和周边环境进行监测和预警,以保证工程安全进行的一种技术手段。

1.基本要求:这一部分包括了该标准适用范围、监测对象、监测内容和方法、监测周期等基本要求。

2.监测设备:该标准对基坑工程监测设备进行了详细的规定,包括主挂设备、附属设备和通讯设备等。

3.监测方案:该部分规定了基坑工程监测的方案编制要求,包括监测方案的编制原则、数据采集方案、数据处理方案等。

4.数据分析与处理:该标准规定了监测数据的处理方法,包括数据的收集、整理、分析和评价等。

5.监测报告:该部分要求编制监测报告的内容和格式,包括监测数据的分析结果、工程施工的评价和建议等。

6.监测结果与评价:该标准对监测结果进行分析与评价的方法进行了规定,包括对监测数据的判断和监测结果的评价等。

通过对建筑基坑工程进行监测,可以及时掌握基坑周围土体和地下水变化情况,避免因基坑变形引发的工程事故,提高工程施工的安全性和可靠性。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案1. 引言深基坑施工是在城市建设过程中常见的一项工程,其施工期间可能会对周围土层、建筑物以及地下管线等造成一定的影响。

为了确保施工安全和保护周围环境,施工监测变得尤为重要。

本文将介绍深基坑施工监测的方案,包括监测目标、监测内容、监测方法以及监测频率等方面的内容。

2. 监测目标深基坑施工监测的主要目标是在施工期间及时掌握施工工程所产生的变形、沉降、位移等情况,以及对周围环境的影响,从而保证工程的施工安全和周围环境的保护。

3. 监测内容深基坑施工监测的内容包括但不限于以下几个方面:3.1 地表沉降地表沉降是深基坑施工中常见的问题,通常通过在施工周围设置水平测网进行监测。

监测点应均匀分布在周围区域,并根据施工进度及时调整监测点的位置。

3.2 结构变形深基坑施工对周围建筑物的结构产生一定的影响,因此需要对建筑物的变形情况进行监测。

监测点通常设置在建筑物的重要结构部位,如墙体、柱子等。

结构变形监测可以通过安装应变计、测斜仪、位移传感器等设备进行。

3.3 周围地下管线监测深基坑施工需要对周围的地下管线进行监测,特别是对于各种管线的位移情况需要及时掌握。

监测方法可以使用测斜仪、位移传感器等设备进行。

4. 监测方法深基坑施工监测可以结合传统的现场监测方法和现代的无线监测技术进行。

具体的监测方法包括但不限于以下几种:4.1 传统监测方法传统的监测方法通常包括现场测量和监测设备的安装。

现场测量通常使用水平仪、经纬仪、测距仪等设备进行,可以得到地表沉降、建筑物变形等数据。

监测设备的安装包括应变计、测斜仪、位移传感器等,需要专业的技术人员进行。

4.2 无线监测技术现代的无线监测技术可以大大提高监测的效率和准确性。

通过使用无线传感器网络,可以实现远程监测和数据传输,减少了人力和物力的投入。

无线监测技术可以实时监测变形情况,并通过数据分析提供预警和决策支持。

5. 监测频率深基坑施工监测的频率应根据工程的特点和监测目标来确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深基坑施工监测技术
9.6.1 技术内容
基坑工程监测是指通过对基坑控制参数进行一定期间内的量值及变化进行监测,并根据监测数据评估判断或预测基坑安全状态,为安全控制措施提供技术依据。

监测内容一般包括支护结构的内力和位移、基坑底部及周边土体的位移、周边建筑物的位移、周边管线和设施的位移及地下水状况等。

监测系统一般包括传感器、数据采集传输系统、数据库、状态分析评估与预测软件等。

通过在工程支护(围护)结构上布设位移监测点,进行定期或实时监测,根据变形值判定是否需要采取相应措施,消除影响,避免进一步变形发生的危险。

监测方法可分为基准线法和坐标法。

在水平位移监测点旁布设围护结构的沉降监测点,布点要求间隔15~25m布设一个监测点,利用高程监测的方法对围护结构顶部进行沉降监测。

基坑围护结构沿垂直方向水平位移的监测,用测斜仪由下至上测量预先埋设在墙体内测斜管的变形情况,以了解基坑开挖施工过程中基坑支护结构在各个深度上的水平位移情况,用以了解和推算围护体变形。

临近建筑物沉降监测,利用高程监测的方法来了解临近
建筑物的沉降,从而了解其是否会引起不均匀沉降。

在施工现场沉降影响范围之外,布设3个基准点为该工程临近建筑物沉降监测的基准点。

临近建筑物沉降监测的监测方法、使用仪器、监测精度同建筑物主体沉降监测。

9.6.2 技术指标
(1)变形报警值。

水平位移报警值,按一级安全等级考虑,最大水平位移≤0.14%H;按二级安全等级考虑,最大水平位移≤0.3%H。

(2)地面沉降量报警值。

按一级安全等级考虑,最大沉降量≤0.1%H;按二级安全等级考虑,最大沉降量≤0.2%H。

(3)监测报警指标一般以总变化量和变化速率两个量控制,累计变化量的报警指标一般不宜超过设计限值。

若有监测项目的数据超过报警指标,应从累计变化量与日变量两方面考虑。

9.6.3 适用范围
用于深基坑钻、挖孔灌注桩、地连墙、重力坝等围(支)护结构的变形监测。

9.6.4 工程案例
深圳中航广场工程、上海万达商业中心等。

相关文档
最新文档