【初中教育】2019最新部编人教版初中数学七年级上册:3-4 第1课时 产品配套问题和工程问题-精品word版同步
《3.4 第1课时 产品配套问题和工程问题》课件(两套)
1 x 8 1. 20 10
解得x=4,则8-x=4. 答:乙需加工4天后,甲加入合作加工才可 正好按期完成任务.
要点归纳
解决工程问题的基本思路:
1. 三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量=工作效率×工作时间.
2. 相等关系:工作总量=各部分工作量之和. (1) 按工作时间,工作总量=各时间段的工作量之和; (2) 按工作者,工作总量=各工作者的工作量之和.
第三章 一元一次方
3.4 实际问题与一元一次方程
第1课时 产品配套问题和工程问题
学习目标
1. 理解配套问题、工程问题的背景. 2. 分清有关数量关系,能正确找出作为列方程 依
据的主要等量关系. (难点) 3. 掌握用一元一次方程解决实际问题的基本过
程.(重点)
导入新课
情景引入
前面我们学习了一元一次方程的解法,本节 课,我们将讨论一元一次方程的应用. 生活中, 有很多需要进行配套的问题,如课桌和凳子、螺 钉和螺母、电扇叶片和电机等,大家能举出生活 中配套问题的例子吗?
变式训练 加工某种工件,甲单独作要20天完成,乙只要 10就能完成任务,现在要求二人在12天内完成 任务.问乙需工作几天后甲再继续加工才可正
好按期完成任务?
效率 时间
工作量
甲
1 20
12-x
1 (12 x) 20
乙
1
1x
10
x
10
解:设乙需工作x天后甲再继续加工才可 正好按期完成任务,则甲做了(12-x)天.
增加
2
40 人后再做 8h
完成的工作量为
8(x 2)
40 ,这两
40
个工作量之和等于 总工作量 .
【RJ】七年级上册:1-3-1 第2课时 有理数加法的运算律及运用-精品word版导学案-2019秋最新人教部编版初中数
5
61
(2) 6 +(-)+(-) 7 6
思考:回顾以上例题的解答,将怎样的加数结合在一起,可使运算简 便?
要点归纳: (1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加; (3)同分母的分数可以先相加;(4)符号相同的数可以先相加.
探究点 2:有理数加法运算律的应用 例 3 每袋小麦的标准重量为 90 千克,10 袋小麦称重记录如图所示, 与标准重量比较,10 袋小麦总计超过多少千克或不足多少千克?10 袋 小麦的总重量是多少?
字母表示: 加法的结合律:文字概括:
字母表示:
三、自学自测 计算:(1)16 +(-25)+ 24 +(-35);
(2)(—2.48)+(+4.3)+(—7.52)+(—4.3)
四、我的疑惑
3/7
_____________________________________________________________ _____________________________________________________________ ____________________________
2.有理数的加法法则:
⑴ 同号两数相加,_____________________________________ ;
⑵ 异号两数相加,绝对值相等时,___________ ;
绝对值不相等时,
______________________________________________.
⑶ 一个数同 0 相加,_________________ .
内每日股票的涨跌情况(单位:元):
部编RJ人教版 初一七年级数学 上册第一学期秋季(同步检测卷测试题)8分钟课时小练习
第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是()2.如图,点M 表示的数可能是()A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是()A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是.6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则()A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是.5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是()A.5个B.4个C.3个D.2个2.多项式3x 2-2x -1的各项分别是( ) A.3x 2,2x,1 B.3x 2,-2x,1 C.-3x 2,2x ,-1 D.3x 2,-2x ,-1 3.多项式1+2xy -3xy 2的次数是( ) A.1 B.2 C.3 D.44.多项式3x 3y +2x 2y -4xy 2+2y -1是 次 项式,它的最高次项的系数是 .5.写出一个关于x ,y 的三次二项式,你写的是 (写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a 千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时 整式的加减1.化简x +y -(x -y)的结果是( ) A.2x +2y B.2y C.2x D.02.已知A =5a -3b ,B =-6a +4b ,则A -B 为( ) A.-a +b B.11a +b C.11a -7b D.-a -7b3.已知多项式x 3-4x 2+1与关于x 的多项式2x 3+mx 2+2相加后不含x 的二次项,则m 的值是()4.若某个长方形的周长为4a ,一边长为(a -b),则另一边长为( ) A.(3a +b) B.(2a +2b) C.(a +b) D.(a +3b)5.化简:(1)(-x 2+5x +4)+(5x -4+2x 2);(2)-2(3y 2-5x 2)+(-4y 2+7xy).第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是()2.方程x +3=-1的解是( ) A.x =2 B.x =-4 C.x =4 D.x =-23.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是( ) A.-8 B.0 C.8 D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x 名学生,则由题意可列方程为 .5.商店出售一种文具,单价3.5元,若用100元买了x 件,找零30元,则依题意可列方程为 .6.七(2)班有50名学生,男生人数是女生人数的 倍.若设女生人数为x 名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a =b ,则下列变形一定正确的是()2.下列变形符合等式的基本性质的是( ) A.若2x -3=7,则2x =7-3 B.若3x -2=x +1,则3x -x =1-2 C.若-2x =5,则x =5+2 D.3.解方程- x =12时,应在方程两边( ) A.同时乘- B.同时乘4 C.同时除以 D.同时除以-4.由2x -16=5得2x =5+16,此变形是根据等式的性质在原方程的两边同时加上了 .5.利用等式的性质解下列方程: (1)x +1=6; (2)3-x =7;(3)-3x =21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章 几何图形初步4.1 几何图形4.1.1 立体图形与平面图形 第1课时 立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是()2.下列图形不是立体图形的是( ) A.球 B.圆柱 C.圆锥 D.圆3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个 4.将下列几何体分类:其中柱体有 ,锥体有 ,球体有 (填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形 个,圆 个.6.把下列图形与对应的名称用线连起来:圆柱 四棱锥 正方体 三角形 圆第2课时 从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是()2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是()3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是()4.下面图形中是正方体的展开图的是()5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是()A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( ) A.1个 B.2个 C.3个 D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( ) A.点动成线 B.线动成面 C.面动成体 D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识. (1)飞机穿过云朵后留下痕迹表明 ; (2)用棉线“切”豆腐表明 ;(3)旋转壹元硬币时看到“小球”表明 . 4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是()A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时 线段的长短比较与运算1.如图所示的两条线段的关系是( ) A.a =b B.a <b C.a >b D.无法确定第1题图 第2题图2.如图,已知点B 在线段AC 上,则下列等式一定成立的是( ) A.AB +BC >AC B.AB +BC =AC C.AB +BC <AC D.AB -BC =BC3.如图,已知D 是线段AB 的延长线上一点,C 为线段BD 的中点,则下列等式一定成立的是()A.AB +2BC =ADB.AB +BC =ADC.AD -AC =BDD.AD -BD =CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是 .5.如图,已知线段AB =20,C 是线段AB 上一点,D 为线段AC 的中点.若BC =AD +8,求AD 的长.4.3 角4.3.1 角1.图中∠AOC 的表示正确的还有( ) A.∠O B.∠1 C.∠AOB D.∠BOC第1题图 第2题图2.如图,直线AB ,CD 交于点O ,则以O 为顶点的角(只计算180°以内的)的个数是( ) A.1个 B.2个 C.3个 D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是 °.4.把下列角度大小用度分秒表示: (1)50.7°; (2)15.37°.5.把下列角度大小用度表示: (1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( ) A.∠AOC B.∠BOD C.∠AOD D.∠COB第1题图 第2题图2.如图,OC 为∠AOB 内的一条射线,且∠AOB =70°,∠BOC =30°,则∠AOC 的度数为 °.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC 为∠AOB 内的一条射线,OM ,ON 分别平分∠AOC ,∠COB.若∠AOM =30°,∠NOB =35°,求∠AOB 的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是()2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为()A.14B.10C.8D.73.如图,该几何体的展开图可能是()4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章 有理数 1.1 正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140.(2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213.。
2019-2020人教版新版初中历史七年级上册三国两晋南北朝时期政权分立与民族交融
2019-2020人教版(新版)初中历史七年级上册三国两晋南北朝时期:政权分立与民族交融单元检测题(解析版)《三国两晋南北朝时期:政权分立与民族交融》单元检测题一、选择题1.(孝文帝)“诏不得以北俗之语言于朝廷,若有违者,免所居官。
”对于诏令内容理解准确的是()A.在朝廷必须说汉语,违反者免其官职B.采用汉族的法律,惩治违法的官员C.朝廷令所有的鲜卑人都说汉语D.朝廷有权惩处违法官员2.有关内迁的各少数民族的说法,错误的有()A.东汉、魏晋时期,西南少数民族不断内迁,加速了民族融合B.匈奴、鲜卑、羯、氐、羌等少数民族,历史上称为“五胡”C.内迁的少数民族与汉族杂居,互相影响,促进了民族间的交流、融合D.西晋向内迁的少数民族征收重税,激化了民族矛盾3.独创楷书书法的书法家是A.钟繇 B.胡昭 C.王羲之 D.李斯4.“老骥伏枥,志在千里;烈士暮年,壮心不已。
”(《龟虽寿》)中的“壮心”指()A.打败袁绍 B.消灭东汉 C.南下统一全国 D.赢赤壁之战5.请你根据以下条件判断这位古代书法家是谁()①东晋人②吸取前人书法精华③他的代表作是《兰亭序》④后人尊称他为“书圣”A.顾恺之 B.祖冲之 C.裴楷 D.王羲之6.他是我国北朝时期的一个太守,一生却致力于农业研究,还亲自种植农作物,并总结前人经验编写了农学著作,这个人是()A.郦道元 B.贾思勰 C.华佗 D.张仲景7.“东望夏口,西望武昌……此非孟德之困于周郎者乎?”这是苏轼对下列哪次战役的感叹()A.巨鹿之战 B.长平之战 C.官渡之战 D.赤壁之战8.体现三国两晋南北朝时期最高艺术水平的是()A.雕塑艺术 B.书法艺术 C.石窟艺术 D.绘画艺术9.江南经济迅速发展的客观原因是()A.江南的社会环境相对稳定B.北方先进的生产工具和生产技术传入南方C.北方劳动人民大量南迁D.统治者注意调整统治政策10.关于孝文帝改革的影响,下列说法正确的是()A.为北魏统一黄河流域创造了条件B.促进了民族大融合,丰富和发展了中原文化C.为北魏统一全国打下了基础D.平息了北方少数民族之间的战争11.官渡之战和巨鹿之战有一个共同点,那就是()A.以少胜多 B.战术上采用偷袭C.以多胜少 D.战术上采用火攻12.“对于历史上任何一个闯入并扎根于农耕文化圈的游牧民族来说,接受同化是他们的终极命运”。
人教版七年级数学上册:4.1.2 点、线、面、体 课程教学设计
人教版七年级上册初中数学4.1.2 点、线、面、体教学设计教学目标:知识与技能:知道几何图形是由点、线、面、体构成,点、线、面、体也是基本的几何图形。
过程与方法:经历从几何体中寻找点、线、面、体的过程,认识到点动成线,线动成面,面动成体。
情感态度与价值观:通过实例,进一步感受到点、线、面、体在实际生活中的具体运用,体会利用图形描述世界的必要性。
教学重点:认识点、线、面、体的几何特征,感受它们之间的关系。
教学难点:点动成线、线动成面、面动成体的几何体和生活实例。
教学方法:让学生积极主动的参与操作、观察、分析、猜测,养成积极主动的学习态度和自主学习的方式。
教学准备:多媒体课件,长方体、圆柱模型等。
课时安排:1课时成面的实例。
问题3:长方形、直角三角形纸片绕它的一边旋转一周,形成什么图形?(——面动成体),再举例宾馆的旋转门旋转所形成的几何体也是一种面动成体,最后要求学生举出生活中面动成体的实例。
2、归纳:点动成线、线动成面 、 面动成体。
板书:点动成线、线动成面 、 面动成体。
3、展示电视屏幕上的画面是由点组成的,文艺表演的背景图案也可以看作由点组成的,因此点是构成图形的基本元素。
学生举出生活中实例,感悟点动成线,线动成面,面动成体。
锻炼学生的观察、分析、猜测能力,养成积极主动的学习态度。
检 测 反 馈1.上面的平面图形绕轴旋转一周,可以得出下面的立体图形,把有对应关系的平面图形与立体图形连接起来.2. 现将一个长为4cm ,宽为2cm 的长方形,绕它的一边所在的直线旋转一周,得到的圆柱体的体积是多少?表面积为多少?42独立思考。
小组讨论,合作交流。
调动学生感官,发挥想象力,使学生加深对本节知识的掌握。
分类思想的渗透。
部编数学七年级上册【单元测试】第一章有理数(夯实基础过关卷)(解析版)含答案
【冲刺高分】2021—2022学年人教版七年级数学上册培优拔高必刷卷第一章有理数【单元测试】夯实基础过关卷(考试时间:90分钟试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共8个小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
a+表示,且1.(2020·无锡市第一中学七年级期中)点A在数轴上,点A所对应的数用21点A到原点的距离等于3,则a的值为()A.2-D.1 -或1B.2-或2C.2【答案】A【分析】根据绝对值的几何意义列绝对值方程解答即可.【详解】解:由题意得:|2a+1|=3当2a+1>0时,有2a+1=3,解得a=1当2a+1<0时,有2a+1=-3,解得a=-2所以a的值为1或-2.故答案为A.【点睛】本题考查了绝对值的几何意义,根据绝对值的几何意义列出绝对值方程并求解是解答本题的关键.2.(2020·酒泉市第二中学)下列各组数中,互为相反数的有()①-(-2)和-|-2|;②(-1)2和-12;③23和32;④(-2)3和-23A.④B.①②C.①②③D.①②④【分析】先利用去括号法则、绝对值运算、有理数的乘方运算进行计算,再根据相反数的定义即可得.【详解】解:①(2)2,22--=--=-,则这组数互为相反数,②22(1)1,11-=-=-,则这组数互为相反数,③3228,39==,则这组数不互为相反数,④33(2)8,28-=--=-,则这组数不互为相反数,综上,互为相反数的有①②,故选:B .【点睛】本题考查了去括号法则、绝对值运算、有理数的乘方运算、相反数的定义,熟练掌握各运算法则和定义是解题关键.3.(2020·浙江)在3,1,1,3--这四个数中,比2-小的数是( )A .3-B .1-C .1D .3【答案】A【分析】根据有理数的大小关系求解即可.【详解】解:在这四个数中32-<-故答案为:A .【点睛】本题考查了比较有理数大小的问题,掌握比较有理数大小的方法是解题的关键.4.(2020·多伦县第四中学七年级期中)当n 为正整数时,(﹣1)2n+1﹣(﹣1)2n 的值为( )A .0B .2C .﹣2D .2或﹣2【答案】C 【分析】1、 由n 为正整数, 得2n 是偶数, 2n+1是奇数;2、 根据 “指数是偶数时, 负数的幂是正数” 以及 “指数是奇数时, 负数的幂是负数"可得(-1)2n+1=-1,(-1)2n=1;3、 接下来根据有理数的加法法则进行计算即可.【详解】解:原式=(﹣1)2n+1﹣(﹣1)2n = -1-1= - 2,【点睛】本题主要考查负数的幂运算: 指数是偶数时, 负数的幂是正数,指数是奇数时, 负数的幂是负数.5.(2020·银川英才学校)如图,数轴的单位长度为1,若点A 和点C 所表示的两个数的绝对值相等,则点B 表示的数是( )A .-3B .-1C .1D .3【答案】B 【分析】找到AC 的中点即为原点,进而看B 点在原点的哪边,距离原点几个单位即可.【详解】解:设AC 的中点为O 点,表示的数是0,所以点C 表示的数是-3,所以点B 表示的数是-1.故选:B【点睛】本题考查数轴上点的确定;找到原点的位置是解决本题的关键;用到的知识点为:两个数的绝对值相等,那么这两个数到原点的距离相等.6.(2020·靖江市靖城中学)如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边【答案】C 【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A 、B 、C 到原点的距离的大小,从而得到原点的位置,即可得解.【详解】解:∵|a|>|c|>|b|,∴点A 到原点的距离最大,点C 其次,点B 最小,又∵AB=BC ,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.7.(2020·湖南天心·长郡中学七年级期中)如图,点A所表示的数的绝对值是( )A.3B.﹣3C.13D.13-【答案】A【分析】根据负数的绝对值是其相反数解答即可.【详解】|-3|=3,故选A.【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.8.(2020·重庆市荣昌区荣隆镇初级中学七年级期中)4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将439000用科学记数法表示为4.39×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题:本题共6个小题,每题3分,共18分。
新人教版初中数学七年级上册2.1第1课时用字母表示数过关习题和解析答案
第一章 整式的加减
2.1 整式
第1课时 用字母表示数
(一)、判断题
1.字母a 和数字1都不是单项式( )
2.x 3可以看作x 1与3的乘积,因式x
3是单项式( ) 3.单项式xyz 的次数是3( )
4.-3
23y x 这个单项式系数是2,次数是4( ) (二)、填空题
1.整式3x ,-5
3ab ,t +1,0.12h +b 中,单项式有_________, 2.如图1,长方形的宽为a ,长为b ,则周长为_________,面积为_________.
图1
3.非典时期,同学们积极做网页歌颂白衣战士,一班同学做了x 张,二班比一班的2倍少y 张,二班做了_________张,两个班共做了_________张.
(三)、选择题
1.下 ( )
A .x 的系数为0
B .x 的次数为0
C .
3x 的系数为1 D .3
x 的次数为1 2.下面说法中,正确的是( ) A .xy +1是单项式 B .xy
1是单项式 C .31 xy 是单项式 D .3xy 是单项式
3.单项式-ab2c3的系数和次数分别是( )
A.系数为-1,次数为3 B.系数为-1,次数为5
C.系数为-1,次数为6 D.以上说法都不对
(四)、解答题
如图2为园子一角,正方形边长为x,里面有两个半圆型花池,阴影部分是草坪,求草坪的面积是多少?
图2。
初中数学七年级上册4.3-1用方程解决实际问题——配套问题最新精品导学案设计
学 习 内 容学习目标根据已知条件,找出题中的等量关系。
重点:通过对实际问题中数量关系(比例关系等)的分析,适当设未知数,列出简单的方程。
_难点:探索实际问题中的等量关系,并用方程描述。
____________________一、课前预习1 •请同学们回想一下解方程的一般步骤:— — — —x — 2 x +12. 解方程:- —=3 0.2 0.53. 某种三色冰淇淋45g,咖啡色、红色和白色配料比为 1: 2: 6,这种三色4. 几名同学在日历的纵列上圈出三个数,算出它们的和,其中正确的一个是A. 38 B . 18 C . 75 D.57 ( )5. 甲车队有汽车56辆,乙车队有汽车32辆,要使两车队汽车一样多,设由甲队调出x 辆汽车给乙队,则可得方程 ( )A 56+x=32-x;B 、56-x=32+x;C 、56-x=32;D 、32+x=566. 某种电脑的价格一月份下降了 10%二月份上升了 10%则二月份的价格与 § 4.3-1用方程解决实际问题 配套问题订正栏 冰淇淋中咖啡色、红色、白色配料分别是多少?原价相比()A、不增也不减;B 、增加1%; C 、减少9% ; D 、减少1%1、合作探究例1 一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3现在做一批这样的桌子,恰好用去木材3.8m3, 共做了多少张桌子?例2(1)在月历的同一行圈出相邻的 4 Array个数,并把所圈的4个数和告诉同桌,让他求出这四个数;(2)在月历上任意找一个数及它的上、下、左、右四个数,每人把这五个数的和告诉同桌,让他求出这五个数(3)月历的同一行上相邻4个数的和是38,求这四个数(4)在月历上找出1个数以及它的上下左右四个数,这五个数的和是50,求这五个数.(5)某月有五个星期二,若这五天的日期和为80,求这个月的一号是星期几?(6)某年某月的日历上,星期六的日期全部加起来是85,问这个月的第一天和最后一天各是星期几?例3某种三色冰淇淋45g,咖啡色、红色和白色配料比为 2 : 3 : 5,这种三色冰淇淋中咖啡色、红色、白色配料分别是多少?二.达标检测1. 初二同学有m人,初一同学比初二多25%则初一同学有_______________ 人.2. 小麦磨成面粉,重量要减轻16%如果要得到336千克面粉,需要___________ 克的小麦.3.20%的盐水5千克,要配制成含盐8%勺盐水,需加水_______________ 克.4. 学校买了大小椅子20张,共花去275元,已知大椅子每张15元,小椅子每张10元,若设大椅子买了x张,则小椅子买了___________ 张,相等关系是_____________________________________________ ,列出方程________________________ .5. 小明用50元钱购买了面值为1元和5角的邮票共40张,他买了多少张面值为1元的邮票?6. 某市出租车的收费标准是:起步价为8元,起步里程为3km(3km以内按起步价付费),3km后每千米收2元.某人乘出租车从甲地到乙地共付费16元, 求甲、乙两地的路程.7. 宝应自来水公司的收费标准是:5t内为1.5元/t(含5t),超过5t的部分为2元/t,小明家某月共付费16元,求小明家这月用多少吨水.(只列方程)8. 如图,A B两个圆形纸片部分重叠,所占面积为120cm2,若A的面积为90cm2,B的面积为70cm2,贝U重叠的部分(图中阴影部分)的面积是多少?9. 有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中种青菜和西红柿的面积之比是3:2,种西红柿和芹菜的面积之比为5:7,三种蔬菜各种多少公顷?。
初中数学人教版七年级上册——移项解一元一次方程
解下列方程: (1) 6 x-7=4 x-5;
1 3 (2) x-6= x . 2 4
上面解方程中“移项”起到了什么作用?
(五)课堂小结,布置作业
⑴本节课学习了哪些主要内容? ⑵移项的依据是什么?起到什么作用? 移项时应该注意什么问题?
⑶解一元一次方程的步骤是什么?
⑷用方程来解决实际问题的关键是什么?
义务教育教科书
数学
七年级
上册
3.2 解一元一次方程(一) ——合并同类项与移项(第3课时)
• 复习提问: • 什么是一元一次方程? • 等式的基本性质?
把一些图书分给某班学生阅读,如 果每人分3本,则剩余20本;如果每人分 4本,则还缺25本.这个班有多少学生?
每人分 得的本数 学生数 剩余或不 总本数 足的本数 剩余20本 缺25本 3x+20 4x-25
• 2)判断改错: • 下面的移项对不对?如果不对,错在哪里? 应当怎样改正? • (1)、从7+ x = 13.得到x=13 +7 • (2)、从5x=4x +8,得到5x-4x=8
• (3)、从3x +5= -2x -8,得到3x +2x=8-5
解方程
3 x+7=32-2 x.
3 x-3= x+1 2
3
4
x
x
像这样,把等式一边的某项变号后移 到另一边,叫做移项.
移项的注意事项: (1)从等号的一边移到另一边
(2)移项要变号
移项的依据是什么?
等式的性质1.
• 慧眼找错: • (1)、 6 + x = 8, • 移项,得 • x = 8+ 6
慧眼找错
• (2)、 3x = 8- 2x, • 移项,得 • 3x +2x = -8 • (3)、 5x – 2 = 3x + 7, • 移项,得 • 5x + 3x = 7 + 2
人教版初中数学七年级上册3.3 第1课时 利用去括号解一元一次方程
人教版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程1、叙述去括号法则,化简下列各式:(1)= ;)2(24-+x x (2)= ;)4(12+-x (3)= ;)1(73--x x (4)= ; x x 2)421(6+-(5)= 。
)1(3)4(2+---x x 2、解方程。
)3(23)1(73+-=--x x x3、解方程:(1))3()2(2+-=-x x(2) )1(72)4(2--=+-x xx(3))12(41)2(3--=+--x x x4、列方程求解:(1)当x 取何值时,代数式和的值相等?)2(3x -)3(2x +(2)、当y取何值时,代数式2(3y+4)的值比5(2y-7)的值大3?5、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。
已知水流的速度是3千米/时,求船在静水中的平均速度。
x解:设船在静水中的平均速度为千米/时,则顺流行驶的速度为千米/时,逆流行驶的速度为千米/时,根据相等,得方程去括号,得移项,得合并同类项,得系数化为1,得答:船在静水中的平均速度为千米/时。
6、解方程:A组(1)5(x+2)=2(5x-1)(2)4x+3=2(x-1)+1(3)(x+1)-2(x-1)=1-3x(4)2(x-1)-(x+2)=3(4-x)B组列方程求解:(1)当x取何值时,代数式4x-5与3x-6的值互为相反数?(2)一架飞机在两城之间飞行,风速为24千米/时。
顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.C组:已知 A= 3x+2 , B=4+2x①当x取何值时, A=B;②当x取何值时, A=B+1相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
最新部编版人教初中数学七年级上册《第四章 4.3 角(导学案)》精品获奖完美优秀实用导学单
该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)4.3 角4.3.1角1.理解角的两种定义,识别角的符号.2.知道角的几种表示方法,并能够正确表示.3.掌握角的度量单位及度、分、秒的进位制,能够熟练的进行转换.阅读教材P132,知道角的定义、角的表示方法.什么是周角、平角?知识探究1.角是由两条具有公共端点的射线组成的图形,角也可以看作一条射线绕端点旋转而形成的图形.2.如果一个角的终边旋转到与始边成一条直线时,所成的角叫做平角.继续旋转,当终边旋转到与始边重合时,所成的角叫做周角.3.角的表示方法:角用“∠”表示,读做“角”.(1)用三个大写字母表示;(2)用表示角的顶点的字母表示;(3)用一个数字或一个希腊字母(α、β、γ、θ)表示.自学反馈1.如图,下列表示角的方法错误的为(D)A.∠AOBB.∠BOCC.∠α2.你能用不同的方法表示图中的各个角吗?阅读教材P133,理解角的度量单位和换算.知识探究度、分、秒是角的基本度量单位.1°的角等分成60份就是1′的角;1′的角等分成60份就是1″的角.角度制:1°=60′,1′=(160 )°.1′=60″,1″=(160)′.1°=3__600″.度、分、秒是60进制的.自学反馈1.用度、分、秒表示:(1)0.75°=45′=2__700″;(2)(415)°=16′=960″;(3)16.24°=16°14′24″.2.用度表示:(1)1 800″=30′=0.5°;(2)50°40′30″=50.675°.活动1小组讨论例1如图,图中的∠1表示成∠A,图中的∠2表示成∠D,图中的∠3表示成∠C,这样的表示方法对不对,如果错了,应该怎样改正?。
最新部编版人教《初中数学七年级上册全册导学案》精品完美优秀实用完整打印版整册每课导学单
最新精品部编版人教初中七年级数学上册优秀导学案(全册完整版)前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)《1.1正数和负数》问题导读——评价单班级:姓名:组名:指导教师:审核人:七年级数学组时间:【学习目标】1.掌握正数和负数概念.2.会区分两种不同意义的量,会用符号表示正数和负数.【重点、难点】区分两种不同意义的量,用符号表示正数和负数.【关键问题】通过具有相反意义的量引入正负数.【学法指导】自主学习、合作探究.【知识链接】1.小学里学过哪些数?请举例: .2.在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?【预习评价】(认真阅读教材1—4页的内容并回答下列问题.)1.生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东走50米与向西走47米等都是生活中遇到的具有相反意义的量.请你举出具有相反意义量的例子:.2.一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50.而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47.活动:两个同学一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.3.大于0的数叫做,小于0的数叫做.正数是大于0的数,负数是的数,0既不是正数也不是负数.4. 练习:课本P3、 P4课后练习直接做在课本上.【我的问题】【多元评价】自我评价:学科长评价:教师评价:《1.1正数和负数》问题训练——评价单班级: 姓名: 组名: 指导教师: 审核人: 七年级数学组 时间:1.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.2.已知下列各数:51-,432-,3.14,+3065,0,-239.则正数有_____________________;负数有____________________.3.零下15℃,表示为_________,比O℃低4℃的温度是_________. 4.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.5.“甲比乙大-3岁”表示的意义是______________________. 6.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数7.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 ( )A .2个B .3个C .4个D .5个8.写出比O 小4的数,比4小2的数,比-4小2的数.9.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.回归复习评价 初学日期 3天复习日期 7天复习日期 15天复习日期 自我评价 同伴签字《1.2.1有理数》问题导读——评价单班级:姓名:组名:指导教师:审核人:七年级数学组时间:【学习目标】1.掌握有理数的概念,会对有理数按一定标准进行分类.2.了解分类的标准与集合的含义.【重点、难点】掌握有理数的概念,会对有理数按一定标准进行分类.【关键问题】会对有理数按一定标准进行分类.【学法指导】自主学习、合作探究【知识链接】正数与负数【预习评价】(认真阅读教材6页的内容并回答下列问题.)问题1:你能写出一些不同类的数吗?问题2:观察以上你写这些数,我们将这些数做一下分类.该分为几类,又该怎样分呢?先分组讨论交流,再写出来.分为类,分别是:引导归纳:统称为整数,统称为分数.统称为有理数.所有的正数组成集合,所有的负数组成集合.问题3:归纳总结有理数有哪两种分类方法?问题4:完成课后练习(做在课本上)【我的问题】【多元评价】自我评价:学科长评价:教师评价:《1.2.1有理数》问题训练——评价单班级: 姓名: 组名: 指导教师: 审核人: 七年级数学组 时间:1.下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数C .-2000既是负数,也是整数,但不是有理数D .O 是正数和负数的分界 2.在下表适当的空格里画上“√”号3.把下列各数填入它所属于的集合的圈内:15, -91, -5, 152, 813 , 0.1, -5.32, -80, 123, 2.333.正整数集合 负整数集合回归复习评价 初学日期 3天复习日期 7天复习日期 15天复习日期 自我评价 同伴签字有理数整数 分数 正整数 负分数 自然数 -9 -2.35 O +5正分数集合负分数集合班级: 姓名: 组名: 指导教师: 审核人: 七年级数学组 时间:【 学习目标】1.掌握数轴概念,理解数轴上的点和有理数的对应关系.2.会正确地画出数轴,并将有理数用数轴上的点来表示.【重点、难点】正确地画出数轴,并将有理数用数轴上的点来表示. 【关键问题】数轴三要素【学法指导】自主学习、合作探究.【预习评价】(认真阅读教材7—9页的内容并回答下列问题) 问题1:什么是数轴?问题2:画数轴需要注意哪些问题?试着画出一条数轴.问题3:你会用数轴上的点来表示数吗?画出数轴并表示下列有理数:4,1.5,-3,-72,0问题4:你能读出下列数轴上的点表示的数吗?5M 4M 3M 2M 1-1-45问题5:若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结:所有的__________都可以用数轴上的点表示,___________•都在原点的左边,______________都在原点的右边.问题6:完成课后练习,直接写在课本上. 【我的问题】:【多元评价】自我评价: 学科长评价: 教师评价:班级:姓名:组名:指导教师:审核人:七年级数学组时间:1.规定了、、叫数轴,所有的有理数都可以用上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P 点表示的数是.3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是() A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是()A.正数 B.负数 C.不是负数 D.不是正数5.下列语句:①数轴上的点只能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个6.数轴上表示5和-5的点离开原点的距离是,但它们分别在的两侧。
人教版初中数学七年级上册3.4 第3课时 球赛积分表问题1
人教版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!第3课时 球赛积分表问题1.学会解决信息图表问题的方法;(难点)2.经历探索球赛积分中数量关系的过程,进一步体会方程是解决实际问题的数学模型.(重点,难点)一、情境导入某次男篮联赛常规赛最终积分榜:队员 比赛场次 胜场 负场 积分前进 14 10 4 24东方 14 10 4 24光明14 9 5 23蓝天 14 9 5 23雄鹰 14 7 7 21远大 14 7 7 21卫星 14 4 10 18钢铁 14 0 14 14问题1:从这张表格中,你能得到什么信息?问题2:这张表格中的数据之间有什么样的数量关系?问题3:请你说出积分规则.(既胜一场得几分?负一场得几分?)你是怎样知道这个比赛的积分规则的?二、合作探究探究点一:比赛积分问题【类型一】 球类比赛中的积分问题下面是某次篮球联赛积分表,请同学们认真观察后回答问题.队名 比赛 场次) 胜场 负场 积分A 16 12 4 28B 16 12 4 28C 16 10 6 26D 16 10 6 26E 16 8 8 24F 16 8 8 24G 16 4 12 20H16 0 16 16(1)用式子表示总积分与胜、负场数之间的数量关系;(2)某队的胜场总积分能等于它的负场总积分吗?并说明理由.解析:(1)如果一个队胜x 场,根据比赛场次为16次,从而可得出负(16-x )场,再根据积分=胜场积分+负场的积分即可求解;(2)根据等量关系:某队的胜场总积分能等于它的负场总积分得出方程,解出x的值后结合实际进行判断即可.解:(1)由H 队得分可知,负一场积1分,再根据表中其他队比分可知胜一场积2分,如果一个队胜x 场,则负(16-x )场,胜场积分为2x 分,负场积分为(16-x )分,总积分为2x +(16-x )=(16+x )分.故总积分与胜、负场数之间的数量关系为:2x +(16-x )=16+x ; (2)设某队胜x 场时胜场总积分等于它的负场总积分.根据题意得2x =16-x ,3x =16,x =,不是正整数,则某队的胜场163总积分不能等于它的负场总积分. 方法总结:解答本题的关键是根据表格得出胜一场、负一场各自所得的积分. 【类型二】 学习竞赛中的积分问题 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分.某选手在这次竞赛中共得116分,那么他答对几道题? 解析:设选手答对了x 道题,则有(20-x )道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是116分,即可得到一个关于x 的方程,解方程即可.解:设答对了x 道题,则有(20-x )道题答错或不答,由题意得:8x -(20-x )×3=116,8x +3x =116+60,11x =176,x =16.答:他答对16道题.方法总结:解这类题关键是找准相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列方程求解.探究点二:其他图表类问题有一批货物需要从A地运往B地,货主准备租用甲、乙两种货车,已知过去两次租用这两种货车运货情况如下表.现租用3辆甲种货车和5辆乙种货车,一次刚好运完这批货物,如果按每吨付50元计算,问货主应付运费多少元?次 数第一次第二次甲种货车辆数1 5乙种货车辆数3 6合计运货吨数11.535 解析:设乙种货车每辆每次运x吨,则甲种货车每辆每次运(11.5-3x)吨,根据现租用3辆甲种货车和5辆乙种货车,一次刚好运完这批货物,如果按每吨付50元计算可列方程求解.解:设乙种货车每辆每次运x吨,则甲种货车每辆每次运(11.5-3x)吨,6x+5×(11.5-3x)=35,x=2.5,11.5-3x=4(吨),3×4+5×2.5=24.5(吨).50×24.5=1225(元).答:货主应付运费1225元.方法总结:解决本题的关键是读懂表格,找到相应的等量关系列出方程.三、板书设计1.球类比赛中的积分问题2.表格信息类问题本节课主要是借球赛积分表问题学习数学知识的应用.由于本节问题的背景和表达都比较贴近实际,因为其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考.要鼓励学生自主探究.相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
【最新人教版初中数学精选】引导学生读懂数学书“七年级数学上册 课件:001周恒 正数和负数(1).ppt
华体重减少1kg,小强体重无变化,写出他
们这个月的体重增长值;
(2)某年,下列国家的商品
进出口总额比上年的变化情况是:
美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%, 中国增长7.5%.
写出这些国家这一年商品进出口总额的增长
率.
广东省怀集县梁村镇中心初级中学
广东省怀集县梁村镇中心初级中学
周恒
三、研学教材
3-0.在.00数015,,+275,,-06,000中.5,6,-3,-25.8,
12 5
,
正数是__5_,_0_._5_6_,______,_+_2____________ ,
负数是____________________________.
, -3,-25.8,-0.0001,-600
二、新课引入 1、小学里,我们学过的数有___整__数_____、 ___分__数___、_____小_数_____. 2、北京冬季里某一天的气温为-3℃~3℃. “-3”的含义是_这_一__天__的__最__低_气__温__为__-_3_℃___.
广东省怀集县梁村镇中心初级中学
周恒
认真阅读课本第1至3页的内容, 完成下面练习并体验知识点的 形成过程.
三、研学教材 知识点一 正数和负数的概念 1、像3,1.8%,3.5这样大于0的数叫做
___正__数___.正数前面也可以加上“__+__”
(正)号.
2、像-3,-2.7%,-4.5,-1.2这样在正数 前加上符号“-”(负)的数叫做负数 ________.
广东省怀集县梁村镇中心初级中学
周恒
三、三研、学研教学材教材
人教版七年级数学上册 4.1.1 :立体图形与平面图形
提升训练 9.观察,填写下面的空. (1)三棱锥有___4_____个面,____6____条棱,___4_____个顶点; (2)四棱锥有___5_____个面,____8____条棱,___5_____个顶点; (3)猜想n棱锥有_(_n_+_1__) _个面,__2_n____条棱,__(n_+__1_)__个顶点.
( 圆柱 ) ( 圆锥 )
( 四棱锥 )
( 六棱柱 )
( 三棱柱 )
( 四棱柱 )
(球)
( 圆台 )
练一练 4.如图,回答问题.
立体图形有
平面图形有
练一练
5.观察如图,第n个图形中三角形的个数是____
6.观察表格中的图, 填空.
7.右图几何体的面数是_____
提升训练
8.观察,填写下面的空. (1)三棱柱有___5_____个面,____9____条棱,____6____个顶点; (2)六棱柱有___8_____个面,____1_8___条棱,____1_2___个顶点; (3)猜想n棱柱有_(_n_+__2_)_个面,__3_n____条棱,____2_n___个顶点.
4.1.1 立体图形与平面图形
北京奥林匹克公园占地约1135 hm2.总建筑面积 约200万m2,内有可容纳9万观众的国家体育场(鸟巢)、 国家游泳中心(水立方)、国家体育馆等14个比赛场馆.
园 天然林水气·立王设计一个产品包装盒? 怎样绘制一张校园布局平面图? 不同的图形各有什么特点和性 质? 所有这些,都需要我们知道更 多的图形知识.
物体的形状、大小和位置关系是几何要研究的内容.
温故知新 对于生活中的各种各样的物体,数学中关注的是: 1.物体的形状(如方的,圆的等) 2.物体的大小(如长度,面积,体积等) 3.物体的位置(如相交,垂直,平行等)
(精编)人教版初中数学各章节知识点总结
人教版初中数学各章节知识点总结七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容第一章、有理数.知识概念1.有理数:q(1)凡能写成(p,q为整数且 p 0)形式的数,都是有理数 .正整数、 0、负整数统称整数;正分数、负分数统p称分数;整数和分数统称有理数 .注意: 0即不是正数,也不是负数; -a不一定是负数, +a也不一定是正数;不是有理数;正整数正分数正整数正有理数整数零(2)有理数的分类 : ①有理数零②有理数负整数负整数负分数正分数分数负分数负有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线3.相反数:.(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0;(2)相反数的和为 04.绝对值:a+b=0 a、b互为相反数 .(1)正数的绝对值是其本身, 0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a 0(a 0)(a 0)或 aa (a 0)a (a 0)(2)绝对值可表示为: a ;绝对值的问题经常分类讨论;a (a 0)5.有理数比大小:(1)正数的绝对值越大,这个数越大;( 2)正数永远比 0大,负数永远比 0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;数大;(6)大数 -小数> 0,小数 -大数< 0.(5)数轴上的两个数,右边的数总比左边的1;若 ab=1 a a、6.互为倒数:乘积为 1 的两个数互为倒数;注意: 0没有倒数;若 a≠0,那么a的倒数是b互为倒数;若 ab=-1 a、 b互为负倒数 .7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0相加,仍得这个数 . 8.有理数加法 的运算律:(1)加法 的交换律: a+b=b+a ;( 2)加法 的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数 的相反数;即 a-b=a+(-b ).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积 的符号由负因式 的个数决定 .11有理数乘法 的运算律:(1)乘法 的交换律: ab=ba ;(2)乘法 的结合律:(ab )c=a (bc ); (3)乘法 的分配律: a (b+c )=ab+ac .a12.有理数除法法则:除以一个数等于乘以这个数 的倒数;注意:零不能做除数, 即无意义 . 013.有理数乘方 的法则: (1)正数 的任何次幂都是正数;(2)负数 的奇次幂是负数;负数 的偶次幂是正数;注意:当n 为正奇数时 : (-a) n n 或(a -b) n n=-(b-a) ,当 n=-a为正偶数时 : (-a) =a n 或 (a-b) =(b-a) n .n n 14.乘方 的定义:(1)求相同因式积 的运算,叫做乘方;(2)乘方中,相同 的因式叫做底数,相同因式 的个数叫做指数,乘方 的结果叫做幂;15.科学记数法:把一个大于 10 的数记成 a ×10n 的形式,其中 a 是整数数位只有一位 的数,这种记数法叫 科学记数法 .16.近似数 的精确位:一个近似数,四舍五入到那一位,就说这个近似数 的精确到那一位 17.有效数字:从左边第一个不为零 的数字起,到精确 的位数止,所有数字,都叫这个近似数 的有效数字18.混合运算法则:先乘方,后乘除,最后加减...本章内容要求学生正确认识有理数 的概念,在实际生活和学习数轴 的基础上,理解正负数、相反数、绝对值 的意义所在。
七年级数学上册第三章一元一次方程3.3解一元一次方程(二)—去括号与去分母课件(新版)新人教版
七年级 上册
第三章 一元一次方程
知识点一 解一元一次方程——去括号
定义 去括号 按照去括号法则,把方程中的括号去掉,这个 过程叫做去括号 去括号 法则 将括号外的因数连同它前面的符号看成一个整体,按照分配律与括号内各项相乘.括号外 的因数是正数,去括号后各项符号与原括号内相应的各项符号相同;括号外的因数是负数, 依据 乘法对加法的分配律
1 =-4- 1 =- 15 . a- a 4 4
点拨 本题第2个方程中含有一个字母常数,除用上述方法解题,也可把 字母常数看作已知数,在求得两方程的相同解后可得到关于这个字母常 数的方程,即可求得该字母常数的值.
题型三 选择适当的方法解一元一次方程 例3 用适当的方法解下列方程:
x 0.17 0.2 x =1; 0.7 0.03 1 1 2( x 1) x ( x 1) (2)x- = . 2 3 2
1 2 5 8
合并同类项,得-7x=-77.系数化为1,得x=11.
5 5 8 4 5 5 3 移项,得y+y+ y=1+ - . 8 4 2 21 3 2 合并同类项,得 y= .系数化为1,得y= . 8 4 7
(2)去括号,得y+ =1-y- y+ .
3 2
温馨提示 运用分配律去括号时,不要漏乘括号内任何一项.
1 a 1 a x4 3 x2 2
解析 解方程 -8=- ,
x4 3
x2 2
去分母,得2(x-4)-48=-3(x+2),
去括号,得2x-8-48=-3x-6, 移项、合并同类项,得5x=50, 系数化为1,得x=10. 把x=10代入方程4x-(3a+1)=6x+2a-1, 得4×10-(3a+1)=6×10+2a-1, 解得a=-4. 当a=-4时,
初中数学七年级上册3.3 一元一次方程的解法(1) 课件
一元一次方程的解法(1)
考考你
1、下列哪些方程是一元一次方程? (2)
(1)2x 3 (2)4x 3 5 (3)3a 2b 5 (4)2 3
x
2、_______是方程2x-3=7的解.
(C )
A.x=3
B.x=0 C.x=5
D=2
考考你 3、请你根据等式的基本性质填空:
典例精析
解方程:
(2)5x 6 3x
为了防止我们解的方程 出现错误,通常我们在 解完方程之后会进行检 验。
小试牛刀
解方程,并检验:
1、
2、
3、
天天在解一道一元一次方程题目的时候发现了一个 奇怪的现象,以下是他解方程的过程:
3x-5=5x-5 方程两边同时+5,得:3x=5x 方程两边同时÷x,得:3=5
天天百思不得其解,3怎么会等于5呢? 你知道其中的奥秘吗?
谈谈你这堂课的收获与不解。
学法大视野P57~58.
谢谢聆听
Thanks for your listening.
种子最后是果实;努力最后是成功;放弃最后是失败。 现实的压力压的我们喘不过气也压的我们走向成功。 我不去想是否能够成功,既然选了远方,便只顾风雨兼程。 合理安排时间,就等于节约时间。——培根 贪婪是最真实的贫穷,满足是最真实的财富。 益者三友:友直友谅友多闻。——《论语·季氏》 勿以恶小而为之,勿以善小而不为。 每天告诉自己一次,“我真的很不错”。 所谓成功,就是在平凡中做出不平凡的坚持。 憎恨别人对自己是一种很大的损失。 我们并不需要用太华丽的语言来包裹自己,因为我们要做最真实的自己。 经过大海的一番磨砺,卵石才变得更加美丽光滑。
(1)若a=b,则-2a+4=_-_2__b+4; n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 一元一次方程
3.4 实际问题与一元一次方程
第1课时 产品配套问题和工程问题
用一元一次方程解决配套问题
1.某土建工程共需动用15台挖运机械,每台机械每小时能挖土3 m3或者运土2 m3,为了使挖土和运土工作同时结束,安排了x 台机械运土,这里x 应满足的方程是( )
A.2x=3(15-x)
B.3x=2(15-x)
C.15-2x=3x
D.3x-2x=15
2.甲队有27人,乙队有19人共同完成一项工作.由于工作时间需提前,现从其他队抽调20人支援,使甲队人数是乙队人数的2倍,应调往甲队_____人,乙队_____人.
3.加工某种产品需要两个工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1 200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?
4.红光服装厂要生产某种型号学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能使上衣和裤子恰好配套?共能生产多少套?
5.某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)
用一元一次方程解决工程问题
1.加工1 500个零件,甲单独做需要12小时,乙单独做需要15小时,若两人合做x 小时可以完工,依题意可列方程为( )
2.某工程由甲、乙两队单独施工分别需要3小时和5小时,若两队合做这项工程的80%,需______小时.
3.一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做x 天完成,那么所列方程为_______.
4.甲车由A 城到B 城需4小时,乙车由B 城到A 城需6小时,若两车同时出发,相向而行,多少小时在中途相遇?
5.一项工作,由1人做要40小时完成,现计划由2人先做4小时,剩下的工作要8小时完成,问还需增加几人?(假定每个人的工作效率都相同)
11 1 500 1 500A.()x 1 500 B.()x 1 50012151215+=+=1 1 500 1 500 1 500C.()x 1 500 D.()x 112151215+=+=
参考答案
用一元一次方程解决配套问题
1、【解析】选A.安排x 台机械运土,则安排(15-x)台机械挖土,故共挖土3(15-x) m3, 运土2x m3,故所列方程为2x=3(15-x).
2、【解析】设调往甲队x 人,则调往乙队(20-x)人.
根据题意,得:27+x=2(19+20-x),
解得x=17,所以20-x=20-17=3.
答案:17 3
3、【解析】设应安排x 人在第一道工序,
则安排(7-x)人在第二道工序.
根据题意,得:900x=1 200(7-x),
解得:x=4,所以7-x=3.
答:应安排4人在第一道工序,安排3人在第二道工序.
4、【解析】设用x 米布料生产上衣,根据题意得
解得x=360.
600-x=600-360=240,
答:用360米布料生产上衣,用240米布料生产裤子,共能生产240套.
5、【解析】设用x 立方米的木材做桌面,则用(10-x)立方米的木材做桌腿. 根据题意,得4×50x=300(10-x), 解得,x=6,所以10-x=4
, 可做方桌为50×6=300(张).
答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300张方桌.
用一元一次方程解决工程问题
1、 x 600x 23,33-⨯=⨯。