新北师大版八年级数学下册1.1等腰三角形(第四课时)课件

合集下载

北师大版八年级数学(下)第一章 等腰三角形

北师大版八年级数学(下)第一章 等腰三角形

1.1等腰三角形一、知识点梳理1.等腰三角形的性质定理:①等腰三角形的两底角相等(等边对等角)②等腰三角形的两腰相等(定义)③等腰三角形等角的平分线、底边上的中线及地边上的高线互相重合(三线合一)2.等边三角形的性质定理:①等边三角形的三条边都相等②等边三角形的三个内角都相等,并且每个角都等于60°3.等腰三角形的判定定理:①有两条边相等的三角形是等腰三角形(定义)②有两个角相等的三角形是等腰三角形(等角对等边)4.等边三角形的判定定理:①三条边都相等的三角形是等边三角形(定义)②三个角都相等的三角形是等边三角形③有一个角等于60°的等腰三角形是等边三角形5.反证法:证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法成为反证法。

6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

7.直角三角形斜边的中线等于斜边的一半8.作图要求:掌握尺规作图用两条已知线段做等腰三角形二、经典题型总结题型一:利用等腰三角形的性质求角题型二:利用等腰三角形的性质求线段长度题型三:用反证法证明简单证明题题型四:利用等腰三角形的判定定理进行证明题型五:动点与等腰三角形题型题型六:与等腰三角形相关的综合提升题三、解题技巧点睛1.在做等腰三角形类问题时可以随时“标图”,把相等的角或者相等的边用相同的小符号标注,便于我们清晰的读图。

2.若题目中需要证明两条线段相等,通常会想到:①两条线段所在的两个三角形“全等”②两条线短可以平移为某个“等腰三角形”的两个腰3.在图形中如果涉及到求边长问题,我们通常首先想到:根据欲求边构建直角三角形运用“勾股定理”4.在求角度的题目中,若思路不清晰,则本着两个计算原则去列式:①三角形内角和等于180°②三角形的外角等于与它不相邻的两个内角的和5.特别注意几个特殊角:75°、105°、120°、135°、150°,若图形题中出现了这几个特殊角并且涉及到求线段,则很有可能需要我们做辅助线把75°角分成45°角和30°角;而把105°角分成60°角和45°角;把120°角分成90°角和30°角或两个60°角;把135°角分成90°角和45°角;把150°角分成90°角和60°角。

北师大版八年级下册数学 第一章 三角形的证明 等腰三角形(第4课时)

北师大版八年级下册数学 第一章 三角形的证明  等腰三角形(第4课时)
同理可得△AEF≌△CFD, ∴EF=FD,∴EF=ED=FD, ∴△DEF为等边三角形.
课堂小结
等腰三角形 的拓展
等边三角形 的判定
三条边都相等的三角形是等边三角形 三个角都相等的三角形是等边三角形 有一个角等于60°的等腰三角形是等边三角形
特殊的直角三 角形的性质
在直角三角形中, 如果有一个锐角等于30°,那 么它所对的直角边等于斜边的一半
探究新知
方法总结 选用等边三角形判定方法的技巧 (1)如果已知三边关系,则选用等边三角形定义来判定. (2)若已知三角关系,则选用三角相等的三角形是等边三 角形来判定. (3)若已知是等腰三角形,则选用有一个角是60°的等腰 三角形是等边三角形来判定.
巩固练习
变式训练
在△ABC中,∠A=60°,要使△ABC是等边三角形, 则需添加的一个条件是 AB=AC或∠B=∠C .
证明:∵△ABC为等边三角形, ∴∠BAC=∠ABC=60°,AB=AC=BC, ∴∠EAF=∠EBD=120°, ∵BE=CD,∴BE+AB=BC+CD,即AE=BD,
课堂检测
BE = AF, 在△AEF和△BDE中, ∠EBD =∠EAF, ∴△AEF≌△BDE(SASB),D∴=EFA=EE,D,
证明:∵AD∥BC,∠A=120°,∴∠A+∠ABC=180°. 即∠ABC=180°-∠A=180°-120°=60°, ∴∠ABD=∠DBC=30°. ∴△BDC是直角三角形(∠又BD∵C∠=9C0=°60).°, 又∵CD=4 cm,∴BC=2CD=2×4=8(cm).
课堂检测
拓广探索题
如图:△ABC是等边三角形,点D,E,F分别在BC,AB,CA边延 长线上,且BE=AF=CD. 求证:△DEF是等边三角形.

第1讲 等腰三角形八年级数学下册同步讲义(北师大版)

第1讲  等腰三角形八年级数学下册同步讲义(北师大版)

第1讲 等腰三角形 1. 掌握等腰三角形,等边三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形,等边三角形的判定定理.3. 熟练运用等腰三角形,等边三角形的判定定理与性质定理进行推理和计算. 知识点01 等腰三角形1.等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC 中,AB =AC ,则它叫等腰三角形,其中AB 、AC 为腰,BC 为底边,∠A 是顶角,∠B 、∠C 是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B ,∠B =∠C =1802A ︒-∠ . 2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).3.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.4.等腰三角形是轴对称图形 目标导航知识精讲等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.5.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.【知识拓展1】根据等边对等角求角度例1.(2021·贵州·思南县张家寨初级中学八年级阶段练习)如图,在等腰三角形ABC中,AB=AC,点D为AC上一点,且AD=BD=BC,则∠A等于多少?例2.(2021·黑龙江省八五一一农场中学八年级期末)如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中∠CAB 的度数例3.(2021·广东·广州市白云区广大附中实验中学九年级阶段练习)已知:如图所示,在Rt△ABC中,∠C =90°,D是BC上一点,且DA=DB,∠B=15°.求∠CAD的度数.例4.(2021·广西三江·八年级期中)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,求∠C的度数.【即学即练1】如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【即学即练2】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【知识拓展2】利用三线合一求解与证明例1.(2021·湖北武汉·八年级阶段练习)如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD =CE.⊥,垂足为D,E是BC延长线上的一点,例2.(2021·重庆·八年级期中)如图:已知等边ABC中,BD AC=,且CE CD(1)求证:BD DE=;(2)若M为BE中点,求证:DM平分BDE∠.例3.(2021·河南镇平·八年级阶段练习)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB 上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是_______(填序号).①SSS;②SAS;③AAS;④ASA;⑤HL(2)如图2,连接EF.①求证:△CEF ≌△DFE ;②求证:△PEF 是等腰三角形;③小军作图得到的射线OP 是∠AOB 的平分线吗?请判断并说明理由.例4.(2021·广东广州·八年级阶段练习)如图,在ABC 中,AB AC =,AD BC ⊥,垂足为D ,AB :AD :13BD =:12:5,ABC 的周长为36,求ABC 的面积.例5.(2022·黑龙江富裕·八年级期末)已知:在△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,点E 为CD 上一点,且DE =AD ,连接BE 并延长交AC 于点F ,连接DF .(1)求证:BE =AC ;(2)若AB =BC ,且BE =2cm ,则CF = cm .例6.(2021·江苏滨海·八年级期中)如图,厂房屋顶的人字架是等腰三角形,AB=AC,AD⊥BC,若跨度BC =16m,上弦长AB=10m,求中柱AD的长.【即学即练1】(2021·福建·福州三牧中学九年级阶段练习)如图,在△ABC中,∠A=40°,∠ABC=80°,BE 平分∠ABC交AC于点E,ED⊥AB于点D,求证:AD=BD.【即学即练2】(2021·黑龙江五常·八年级阶段练习)已知:以线段AB为边在线段的同侧作△ABC与△BAD,BC与AD交于点E,若AC=BD,BC=AD.(1)如图1,求证:CE=DE;AB的线段.(2)如图2,当∠C=90°,∠AEB=2∠AEC时,作EF⊥AB于F,请直接写出所有等于12【即学即练3】(2021·吉林·八年级期末)如图,在ABC 中,AB AC =,AD 为边BC 的中线,E 是边AB 上一点(点E 不与点A 、B 重合),过点E 作EF BC ⊥于点F ,交CA 的延长线于点G .(1)求证:AD //FG ;(2)求证:AG AE =;(3)若3AE BE =,且4AC =,直接写出CG 的长.【即学即练4】(2021·江苏·扬州市梅岭中学八年级阶段练习)在平面直角坐标系中,三角形△ABC 为等腰直角三角形,AC =BC ,BC 交x 轴于点D .(1)若A (﹣8,0),C (0,6),直接写出点B 的坐标 ;(2)如图2,三角形△OAB 与△ACD 均为等腰直角三角形,连OD ,求∠AOD 的度数;(3)如图3,若AD 平分∠BAC ,A (﹣8,0),D (m ,0),B 的纵坐标为n ,求2n +m 的值.【知识拓展3】等腰三角形中的分类讨论例1.在等腰三角形中,有一个角为40°,求其余各角.例2、已知等腰三角形的周长为13,一边长为3,求其余各边.【即学即练】如图,△ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,AB=5,AC=7,BC=8,△AEF 的周长为( )A .13B .12C .15D .20【知识拓展4】等腰三角形性质和判定综合应用例1、已知:如图,ABC △中,45ACB ∠=︒,AD⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E , BAD FCD ∠=∠.求证:(1)△ABD≌△CFD;(2)BE⊥AC.知识点02 等边三角形1.等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.2.等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.3.等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.【知识拓展4】等边三角形例1、如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.【即学即练】等边△ABC,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.如图,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.【知识拓展5】在直角三角形中,30°角所对的直角边等于斜边的一半。

北师大版数学八年级下册1.1.1《全等三角形和等腰三角形的性质》说课稿

北师大版数学八年级下册1.1.1《全等三角形和等腰三角形的性质》说课稿

北师大版数学八年级下册1.1.1《全等三角形和等腰三角形的性质》说课稿一. 教材分析北师大版数学八年级下册1.1.1《全等三角形和等腰三角形的性质》这一节主要介绍了全等三角形的性质和等腰三角形的性质。

全等三角形是指在平面上有两个三角形,它们的对应边和对应角都相等。

等腰三角形是指在平面上有两个边相等的三角形。

本节课的内容是学生在学习几何初步知识的基础上进行的,需要学生具备一定的观察和思考能力。

教材通过引入全等三角形的概念,引导学生探究全等三角形的性质,从而得出全等三角形的判定定理。

然后,教材引入等腰三角形的概念,引导学生探究等腰三角形的性质,从而得出等腰三角形的性质定理。

二. 学情分析学生在学习这一节内容时,已经具备了一定的几何知识基础,对三角形的基本概念和性质有所了解。

但是,学生可能对全等三角形和等腰三角形的性质的理解还不够深入,需要通过实例和练习来进一步巩固。

三. 说教学目标本节课的教学目标是让学生掌握全等三角形的性质和等腰三角形的性质,并能够运用这些性质解决实际问题。

具体来说,学生需要能够判断两个三角形是否全等,能够说明全等三角形的性质;学生需要能够判断一个三角形是否是等腰三角形,能够说明等腰三角形的性质。

四. 说教学重难点本节课的重难点是全等三角形的性质和等腰三角形的性质的推导和理解。

学生需要通过观察和思考,理解全等三角形的性质和等腰三角形的性质,并能够运用这些性质解决实际问题。

五. 说教学方法与手段本节课的教学方法主要是讲授法和探究法。

教师通过讲解全等三角形和等腰三角形的性质,引导学生思考和探究,帮助学生理解和掌握这些性质。

同时,教师还可以运用多媒体手段,如PPT等,展示全等三角形和等腰三角形的图形,帮助学生更好地观察和理解。

六. 说教学过程1.导入:教师通过引入全等三角形和等腰三角形的概念,激发学生的兴趣和好奇心。

2.讲解:教师讲解全等三角形的性质和等腰三角形的性质,引导学生思考和探究。

北师大版数学八年级下册1.等腰三角形的特殊性质及等边三角形的性质课件

北师大版数学八年级下册1.等腰三角形的特殊性质及等边三角形的性质课件

新课讲授
典例分析
例 如图,已知△ABC,△BDE都是等边三角形. 求证:AE=CD.
分析:要证AE=CD,可通过证AE,CD所在的两个三角 形全等来实现,即证△ABE≌△CBD,条件可从 等边三角形中去寻找.
新课讲授
证明:∵△ABC和△BDE都是等边三角形, ∴AB=BC,BE=BD,∠ABC=∠DBE=60°. AB=CB, 在△ABE与△CBD中, ABE=CBD, BE=BD, ∴△ABE≌△CBD(SAS). ∴AE=CD.
第一章 三角形的证明
1 等腰三角形
课时2 等腰三角形的特殊性质及等边三角形的性质
学习目标
等腰三角形中相等的线段 等边三角形的性质.(重点、难点)
新课导入
等腰三角形有哪些性质?
1.等腰三角形的性质:等边对等角. 2.等腰三角形性质的推论:三线合一,即等腰三角形
顶角的平分线、底边上的中线及底边上的高线互相 重合.
新课讲授
典例分析
例 求证:等腰三角形两腰上的中线相等.
分析:先根据命题分析出题设和结论,画出图形,写 出已知和求证,然后利用等腰三角形的性质和 三角形全等的知识证明.
新课讲授
解:如图,在△ABC中,AB=AC,CE和BD分别是AB 和AC上的中线, 求证:CE=BD.
证明:∵AB=AC,CE和BD分别是AB 和AC上的中线,
新课讲授
知识点2 等边三角形的性质
1.等边三角形的定义是什么? 2.想一想
等边三角形是特殊的等腰三角形,那么等边三角 形的内角有什么特征呢?
新课讲授
定理 等边三角形的三个内角都相等,并且每个角 都等于60°.
新课讲授
典例分析
例 已知:如图, 在△ABC中,AB= AC=BC. 求证:∠A= ∠ B = ∠ C = 60°. ∵AB = AC, ∴∠ B = ∠ C (等边对等角). 又∵AC = BC, ∴∠A= ∠ B (等边对等角). ∴∠A= ∠ B = ∠ C. 在△ABC中,∠A+∠ B+∠ C = 180°. ∴∠A= ∠ B = ∠ C = 60°.

1.1等腰三角形(4)教学设计2023--2024学年北师大版八年级数学下册

1.1等腰三角形(4)教学设计2023--2024学年北师大版八年级数学下册
1. 形成空间观念,理解等腰三角形的性质,提高几何直观能力。
2. 培养逻辑推理能力,通过探索等腰三角形的判定及性质,学会运用数学语言进行推理。
3. 提升问题解决能力,运用等腰三角形知识解决实际问题,增强数学应用意识。
4. 发展数据分析观念,通过实例分析,学会从数据中发现规律,提高数学抽象能力。
三、学情分析
八年级学生在知识层面,已具备基本的几何图形识别和性质理解能力,掌握了三角形的基本概念和性质,但对于等腰三角形的深入学习尚属初步阶段。在能力方面,学生的逻辑思维和空间想象能力正处于发展阶段,具备一定的推理和论证能力,但独立解决问题和综合运用知识的能力还需加强。素质方面,学生普遍具有好奇心和求知欲,但学习习惯和方法有待改进,部分学生对数学学习存在畏惧心理。
其次,课堂提问环节,我发现部分学生对于等腰三角形底角和顶角关系的理解不够深入。这说明我在讲解这个知识点时,可能没有做到足够详细和生动。在以后的教学中,我要注意运用更多直观的教具和几何画板演示,帮助学生更好地理解这个关系。
此外,小组讨论环节,学生的参与度还有待提高。我觉得可以在这方面多下些功夫,比如设计更具启发性的问题,引导学生主动参与讨论,培养他们的合作精神和解决问题的能力。
5. 创新教学与核心素养能力拓展(5分钟)
(1)实际应用(2分钟)
让学生举例说明等腰三角形在实际生活中的应用,培养数学应用意识。
(2)拓展思考(3分钟)
提出更具挑战性的问题,如:“如何运用等腰三角形的性质解决非等腰三角形的问题?”引导学生进行深度思考和讨论,提高问题解决能力。
6. 总结与布置作业(5分钟)
在巩固练习环节,我发现部分学生解题速度较慢,可能是因为他们对等腰三角形的性质和判定方法还不够熟练。针对这个问题,我打算在课后加强个别辅导,帮助学生巩固知识点,提高解题速度。

北师大版八年级数学下册全册复习课件(共206张PPT)精选全文

北师大版八年级数学下册全册复习课件(共206张PPT)精选全文

第一章 | 复习
针对第8题训练
1.在直角三角形中,一条直角边长为a,另一条边长为2a,那么
它的三个内角之比为( D ) A.1∶2∶3 B.2∶2∶1 C.1∶1∶2 D.以上都不对
2.如图1-10,△ABC中,∠ACB=90°,BA的垂直平分线交
CB边于点D,若AB=10,AC=5,则图中等于60°的角的个数为
第一章 | 复习
6.直角三角形的性质及判定 性质(1):在直角三角形中,如果一个锐角等于30°,那么它 所对的直角边等于斜边的___一__半____; 性质(2):直角三角形的两个锐角互余. 判定:有两个角互余的三角形是直角三角形. 7.勾股定理及其逆定理 勾股定理:直角三角形两条直角边的平方和等于斜边的 __平__方___. 逆定理:如果三角形两边的平方和等于第三边的平方,那么 这个三角形是_直__角______三角形.
第二章 | 复习
考点攻略
►考点一 不等式的性质 例1 >

< <
[易错地带] 不等式两边都乘(或除以)同一个复数时,不等号的 方向要改变。
第二章 | 复习
►考点二 一元一次不等式(组)的解法 例2
第二章 | 复习 [技巧总结]
第二章 | 复习
难易度

1,2,3,4,5,6,7,8,11,12,13,14, 15,17,18,19,20

9,10,21,22

16,23,24
第一章 | 复习
知识与 技能
全等三角形
等腰三角形 及直角三角

直角三角形 和勾股定理
及逆定理
线段的垂直 平分线及角
平分线
逆命题
反证法
2,16,17,22,24 1,4,10,14,20,21,23,24

北师大版数学八年级下册1.1.3《等腰三角形的判定及反证法》说课稿

北师大版数学八年级下册1.1.3《等腰三角形的判定及反证法》说课稿

北师大版数学八年级下册1.1.3《等腰三角形的判定及反证法》说课稿一. 教材分析《等腰三角形的判定及反证法》这一节内容是北师大版数学八年级下册第1章第1节的一部分。

在此之前,学生已经学习了三角形的基本概念和性质,对三角形有了初步的认识。

本节课主要引导学生探究等腰三角形的性质,并运用反证法进行证明。

教材通过引入等腰三角形的定义和性质,让学生体会数学的推理过程,培养学生的逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。

但是,对于等腰三角形的性质和反证法的运用,还需要通过本节课的学习来进一步掌握。

学生在学习过程中,需要通过观察、操作、思考、推理等环节,逐步理解等腰三角形的性质,学会运用反证法进行证明。

三. 说教学目标1.知识与技能:学生能掌握等腰三角形的性质,学会运用反证法进行证明。

2.过程与方法:学生通过观察、操作、思考、推理等环节,培养逻辑思维能力。

3.情感态度与价值观:学生体验数学的推理过程,增强对数学的兴趣和信心。

四. 说教学重难点1.教学重点:等腰三角形的性质,反证法的运用。

2.教学难点:反证法的理解与运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等。

2.教学手段:多媒体课件、黑板、几何模型等。

六. 说教学过程1.导入新课:通过复习三角形的基本概念和性质,引出等腰三角形的定义。

2.探究等腰三角形的性质:学生分组讨论,每组尝试用反证法证明等腰三角形的性质。

3.汇报展示:各组汇报探究过程和结果,教师点评并总结。

4.练习巩固:学生独立完成教材中的练习题,教师讲解答案。

5.拓展延伸:引导学生思考等腰三角形的判定问题,学生自主探究并分享成果。

6.总结反思:学生总结本节课的收获,教师进行情感态度的评价。

七. 说板书设计板书设计如下:等腰三角形的性质1.定义:两腰相等的三角形叫等腰三角形。

a.两腰相等b.底角相等c.高线、中线、角平分线重合2.假设结论不成立3.从假设出发,推出矛盾4.矛盾说明假设不成立,结论成立八. 说教学评价1.学生能准确描述等腰三角形的性质,学会运用反证法进行证明。

北师大版数学八年级下册1.1《等边三角形的判定及含30°角的直角三角形的性质》(第4课时)说课稿

北师大版数学八年级下册1.1《等边三角形的判定及含30°角的直角三角形的性质》(第4课时)说课稿

北师大版数学八年级下册 1.1《等边三角形的判定及含30°角的直角三角形的性质》(第4课时)说课稿一. 教材分析《等边三角形的判定及含30°角的直角三角形的性质》是人教版初中数学八年级下册的教学内容,属于几何部分。

本节课主要介绍了等边三角形的判定方法和含30°角的直角三角形的性质。

通过本节课的学习,学生能够掌握等边三角形的判定方法,理解含30°角的直角三角形的性质,并能够运用这些知识解决实际问题。

二. 学情分析在八年级下学期,学生已经学习了三角形的基本概念和性质,对三角形有一定的认识。

但是,对于等边三角形的判定和含30°角的直角三角形的性质,学生可能还没有完全理解和掌握。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索和发现等边三角形的判定方法和含30°角的直角三角形的性质,提高学生的几何思维能力。

三. 说教学目标1.知识与技能目标:学生能够掌握等边三角形的判定方法,理解含30°角的直角三角形的性质,并能够运用这些知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的几何思维能力,提高学生的问题解决能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 说教学重难点1.教学重点:等边三角形的判定方法,含30°角的直角三角形的性质。

2.教学难点:等边三角形的判定方法的灵活运用,含30°角的直角三角形的性质的理解和应用。

五. 说教学方法与手段在本节课的教学过程中,我将采用以下教学方法和手段:1.情境创设:通过生活实例引入等边三角形的判定和含30°角的直角三角形的性质,激发学生的学习兴趣。

2.自主探索:引导学生通过观察、操作、思考、交流等活动,自主探索等边三角形的判定方法和含30°角的直角三角形的性质。

北师大版八年级下册数学《等腰三角形》三角形的证明说课教学课件复习

北师大版八年级下册数学《等腰三角形》三角形的证明说课教学课件复习
即“等角对等边”.
实践探究,交流新知
小明认为,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不
相等.你认为小明这个结论成立吗?如果成立,你能证明它吗?
证明:如图,在△ABC中,已知∠B≠∠C,此时AB与AC要么
相等,要么不相等.假设AB=AC,那么根据“等边对等角”
定理可得∠C=∠B,但这与已知条件∠B≠∠C相矛盾,因
(3)若AD⊥BC,∠BAC=40°,则∠BAD=
20° .
(4)若BD=CD,则AD⊥BC,∠BAD= ∠CAD .
想一想:在等腰三角形中画出一些线段(比如角平分线、中线、高等),你能发
现其中一些相等的线段吗?能证明你的结论吗?
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
(2)归谬:从假设出发,通过推理得出矛盾;
(3)结论:说明假设不成立,从而得到原命题的结论正确.
开放训练,体现应用
例1 (教材第8页例2)已知:如图,AB=DC,BD=CA,BD与CA相交于
点E,求证:△AED是等腰三角形.
AB=DC,
证明:在△ABD和△DCA中,BD=CA,
AD=DA,
∴△ABD≌△DCA(SSS)
创设情境,导入新课
问题1:请同学们回顾一下,前面我们学习了等腰三角形的哪些性质?
(1)等腰三角形两底角相等,也就是“等边对等角”.
(2)“三线合一”.
(3)等腰三角形两腰上的高相等,两腰上的中线相等,两底角的平分线相等.
问题2:等腰三角形两底角相等,这个命题的条件和结论是什么?
实践探究,交流新知

北师大版初中八年级下册数学:三角形全等和等腰三角形的性质(1)

北师大版初中八年级下册数学:三角形全等和等腰三角形的性质(1)

C
∴ ∠B=∠C (等边对等角)
提出猜想、证明之:
猜想2 等腰三角形顶角的平分线、 底边上的中线、底边上的高互相重合。
A
口述证明过程:
12
(知一得二)
B
D
C
证明方法同证明猜想1,有多种。
性质定理2:等腰三角形的顶角平分线,底边上的中线,底边上
的高互相重合。(简称“三线合一”)
符号语言:
A
△ABC中,AB=AC
观察实验:
把剪出的等腰三角形△ABC沿折痕对折,观察重合的部分,有哪 些相等的量?
A
B
C
D
观察实验:
把剪出的等腰三角形△ABC沿折痕对折,观察重合的部分,有哪 些相等的量?
A
B
C
D
观察实验:
把剪出的等腰三角形△ABC沿折痕对折,观察重合的部分,有哪 些相等的量?
A
B
C
D
观察实验:
把剪出的等腰三角形△ABC沿折痕对折,观察重合的部分,有哪 些相等的量?
比一比:谁的本领大!
如图,在△ABC中,AB=AC,点D是BC边上的 中点,DE、DF分别垂直AB、AC于点E和F. 求证:DE=DF.
学有所思
知识收获…… 方法收获……
知识收获:
等腰三角形
轴对称图形 等边对等角
三线合一
应用
方法收获:
探索 发现
猜想 证明
应用
证明的依据
这节课的证明过程用到了很多公理、定理,特别是作为 证明基础的8个基本事实,希望大家要牢记!
A
B
C
D
观察实验:
把剪出的等腰三角形△ABC沿折痕对折,观察重合的部分,有哪 些相等的量?

北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义

北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义

第01讲_等腰三角形与直角三角形知识图谱等腰三角形知识精讲一、等腰三角形二、思路点拨等腰三角形边或者周长的计算注意三边关系的隐含条件等腰、角平分线、平行(1)△ABC是等腰三角形,(2)AD∥BC(3)∠1=∠2以上三个结论知二推一(需简单证明)三角形中角的2倍关系三点剖析重难点12B CDA12AB CEDααβββ2αααβ2βα2ββ等腰三角形有两条边相等的三角形叫做等腰三角形性质1.两个底角相等,两条腰相等.2.三线合一:(1)顶角角平分线、(2)底边上的中线、(3)底边上的高(可直接使用)判定如果一个三角形有两个角相等,那么这两个角所对的边也相等三线合一逆定理:一个三角形(1)对角角平分线、(2)该边上的中线、(3)该边上的高有两条互相重合,则是等腰三角形(需简单证明)1.等腰三角形的三线合一及其逆定理2.角平分线、平行线、等腰三角形知二推一 3.等腰三角形与全等三角形综合问题 考点1.等腰三角形的性质和判定2.等腰三角形的三线合一及其逆定理3.角平分线、平行线、等腰三角形知二推一 4.等腰三角形与全等三角形综合问题易错点1.等腰三角形边或者周长的计算问题容易忽略“三角形两边之和大于第三边,两边之差小于第三边”这个隐含的限制条件2.等腰三角形的三线合一及可以直接使用,但是三线合一的逆定理需要证明之后才能用3.角平分线、平行线、等腰三角形知二推一要非常熟练,在使用的时候是需要简单证明的,不可直接得出结论等边对等角例题1、 如图,ABC 中,,,18,12==∠=︒∠=︒AB AC AD DE BAD EDC ,则∠DAE 的度数为( )A.58︒B.52︒C.62︒D.60︒ 【答案】 C【解析】 暂无解析随练1、 如图,等腰三角形ABC 中,AB=AC ,BD 平分∠ABC ,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108° 【答案】 C【解析】 ∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°,∵BD 平分∠ABC ,∴∠ABD=36°, ∴∠1=∠A+∠ABD=72°随练2、 一个等腰三角形的两边长分别为4和9,则这个等腰三角形的周长是________. 【答案】 22【解析】 暂无解析等角对等边例题1、 如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D . 求证:AD=BC .【答案】 见解析【解析】 ∵AB=AC ,∠A=36°, ∴∠ABC=C=72°,∵BD 平分∠ABC 交AC 于点D , ∴∠ABD=∠DBC=36°,∠BDC=72°, ∴∠A=∠ABD ,∠BDC=∠C , ∴AD=BD=BC .例题2、 如图,在ABC ∆中,5BC cm =,BP 、CP 分别是ABC ∠和ACB ∠的角平分线,且PD AB ∥,PE AC ∥,则PED ∆的周长是_______cm【答案】 5【解析】 ∵BP 、CP 分别是ABC ∠和ACB ∠的角平分线, ABP PBD ∴∠=∠,ACP PCE ∠=∠.PD AB ∥,PE AC ∥,ABP BPD ∴∠=∠,ACP CPE ∠=∠, PBD BPD ∴∠=∠,PCE CPE ∠=∠,BD PD ∴=,CE PE =, ∴PDE ∆的周长5PD DE PE BD DE EC BC cm =++=++==.随练1、 如图,△ABC 中,AD 是∠BAC 的平分线,DE //AB 交AC 于点E ,若7DE =,5CE =,则AC =( )A.11B.12C.13D.14【答案】 B【解析】 该题考查的是等腰三角形的判定. ∵DE //AB ,∴BAD ADE ∠=∠,又∵BAD DAE ∠=∠ ∴DAE ADE ∠=∠ ∴7AE DE ==∴7512AC AE EC =+=+= ∴该题的答案是B .三线合一例题1、 如图,△ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,则ADE ∠的度数为( )A.10︒B.20︒C.40︒D.70︒【答案】 B【解析】 该题考查的是三角形的性质. ∵AB AC =, ∴B C ∠=∠, ∵100BAC ∠=︒, ∴40B C ∠=∠=︒,∵AD 是BC 边上的中线, ∴AD BC ⊥, ∴90ADB ∠=︒, ∵BD BE =,∴70BDE BED ∠=∠=︒, ∴20ADE ∠=︒, 故该题答案为B .例题2、 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于D ,∠BAC 的平分线AF 交CD 于E ,交BC 于F ,CM ⊥AF 于M ,求证:EM FM =.【答案】 见解析【解析】 ∵90ACB ∠=︒,CD ⊥AB , ∴90ADC ∠=︒,∴90AED DAE ∠+∠=︒,90CFE CAE ∠+∠=︒, 又∵∠BAC 的平分线AF 交CD 于E , ∴DAE CAE ∠=∠, ∴AED CFE ∠=∠, 又∵AED CEF ∠=∠, ∴CEF CFE ∠=∠, 又∵CM ⊥AF , ∴EM FM =.随练1、 如图,在△ABC 中,54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠,ME AD ⊥于G ,交AB 、AC 及BC 的延长线于E 、M 、F ,则BFE ∠=______________.ABC D E【答案】 9︒【解析】 该题考查的是等腰三角形三线合一. ∵54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠∴1805472272BAD CAD ︒-︒-︒∠=∠==︒又∵AD ⊥EF 即90AGM ∠=︒∴902763CMF AMG ∠=∠=︒-︒=︒ 又∵△CFM 的外角72ACB ∠=︒∴72639CFM ACB CMF ∠=∠-∠=︒-︒=︒角平分线,平行线,等腰三角形知二推一例题1、 如图,D 为ABC △内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若5AC =,3BC =,则BD 的长为( )A.2B.1C.52D.32【答案】 B【解析】 该题考查的是等腰三角形三线合一逆定理. 延长BD 与AC 交于点E ,∵A ABD ∠=∠, ∴BE AE =, ∵BD CD ⊥, ∴BE CD ⊥, ∵CD 平分ACB ∠, ∴BCD ECD ∠=∠, ∴EBC BEC ∠=∠,MAB CD(第6题)∴△BEC为等腰三角形,∴BC CE=,∵BE CD⊥,∴2BD BE=,∵5BC=,AC=,3∴3CE=,∴532=-=-=,AE AC EC∴2BE=,∴1BD=.所以答案选A例题2、(2013初二上期末怀柔区)如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若△AEF的周长为12,则AB+AC等于____.【答案】12【解析】该题考查的是平行线的性质.∵BO平分CBA∠,CO平分ACB∠,∴OBC OBA∠=∠,∠=∠,OCB OCA∵EF∥BC,∴OBA BOE∠=∠,OCA COF∠=∠,∴BE OE=,=,CF OF∴△AEF的周长AE OE OF AF AE BE CF AF AB AC=+++=+++=+,∵△AEF的周长为12,∴12+=.AB AC例题3、如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【答案】(1)见解析;(2)等腰直角三角形.【解析】(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=12∠EAC+12∠BAC=12×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.随练1、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【答案】(1)见解析(2)70°(3)△DEF不可能是等腰直角三角形,见解析【解析】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD CEB C BE CF=⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B ∴∠DEF=∠B∵AB=AC ,∠A=40°∴∠DEF=∠B=18040702︒︒︒-=(3)解:△DEF 不可能是等腰直角三角形. ∵AB=AC ,∴∠B=∠C ≠90° ∴∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形等腰三角形与全等三角形综合例题1、 如图,△ABC 中,AB =AC =2,∠B =∠C =40°.点D 在线段BC 上运动(点D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BAD =20°时,∠EDC =________°;(2)当DC 等于多少时,△ABD ≌△DCE ?试说明理由;(3)△ADE 能成为等腰三角形吗?若能,请直接写出此时∠BAD 的度数;若不能,请说明理由.【答案】 (1)20(2)当DC =2时,△ABD ≌△DCE ,证明见解析 (3)∠BAD =30°或∠BAD =60°【解析】 (1)∵∠BAD =20°,∠B =40°, ∴∠ADC =60°, ∵∠ADE =40°,∴∠EDC =60°-40°=20°(2)当DC =2时,△ABD ≌△DCE ; 理由:∵∠ADE =40°,∠B =40°,又∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠EDC . ∴∠BAD =∠EDC . 在△ABD 和△DCE 中, B C AB DCBAD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩. ∴△ABD ≌△DCE (ASA ); (3)当∠BAD =30°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =30°, ∴∠DAE =70°,∴∠AED =180°-40°-70°=70°,∴DA =DE ,这时△ADE 为等腰三角形;当∠BAD =60°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =60°,∠DAE =40°, ∴EA =ED ,这时△ADE 为等腰三角形.例题2、 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .(1)当直线l 经过点C 时(如图2),证明:BN CD =;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.【答案】 (1)见解析(2)2CD CE =(3)当点M 在线段BC 上时,CD BN CE =+;当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-【解析】 该题考查的是等腰三角形的三线合一,全等三角形的判定和性质. (1)证明:连接ND . ∵AO 平分∠BAC , ∴12∠=∠, ∵直线l ⊥AO 于H , ∴4590∠=∠=︒, ∴67∠=∠, ∴AN AC =, ∴NH CH =,∴AH 是线段NC 的中垂线, ∴DN DC =, ∴89∠=∠. ∴AND ACB ∠=∠,∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3B ∠=∠, ∴BN DN =. ∴BN DC =;(2)如图,当M 是BC 中点时,CE 和CD 之间的等量关系为2CD CE = 证明:过点C 作CN '⊥AO 交AB 于N '.由(1)可得BN CD '=,AN AC '=,AN AC '=. ∴43∠=∠,NN CE '=. 过点C 作CG ∥AB 交直线l 于G . ∴42∠=∠,1B ∠=∠. ∴23∠=∠.ABC M ElNHD O lNH A ABBC CD O O D 图1图2图3∴CG CE =. ∵M 是BC 中点, ∴BM CM =在△BNM 和△CGM 中, 1B BM CMNMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM ≌△CGM .(ASA ) ∴BN CE =.∴2CD BN NN BN CE ''==+=.(3)BN 、CE 、CD 之间的等量关系: 当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-; 当点M 在CB 的延长线上时,CD CE BN =-.随练1、 如图,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴于G ,连OB 、OC . (1)判断△AOG 的形状,并予以证明;(2)若点B 、C 关于y 轴对称,求证:AO ⊥BO .【答案】 (1)等腰三角形;证明见解析 (2)见解析【解析】 (1)△AOG 是等腰三角形; ∵AC ∥y 轴,∴∠CAO=∠AOG , ∵AO 平分∠BAC , ∴∠CAO=∠GAO , ∴∠GAO=∠AOG , ∴AG=GO ,∴△AOG 是等腰三角形;(2)连接BC 交y 轴于K ,过A 作AN ⊥y 轴于N ,∵AC ∥y 轴,点B 、C 关于y 轴对称, ∴AN=CK=BK ,在△ANG 和△BKG 中,AGN BGK ANG BKG AN BK ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANG ≌△BKG ,(AAS ) ∴AG=BG , ∵AG=OG ,(1)中已证, ∴AG=OG=BG ,∴∠BOG=∠OBG ,∠OAG=∠AOG ,∵∠OAG+∠AOG+∠BOG+∠OBG=180°, ∴∠AOG+∠BOG=90°, ∴AO ⊥BO .等边三角形知识精讲等边三角形 (1)三条边都相等的三角形 (2)是一种特殊的等腰三角形性质三个内角都等于60︒判定判定1:三个角都相等的三角形是等边三角形判定2:有一个角是60︒的等腰三角形是等边三角形直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半证明:延长BC 至'B 使'CB CB =∴AC 垂直平分'BB ,∴'AB AB =,60B ∠=︒,∴'ABB △是等边三角形,∴'2AB BB BC ==,∴12BC AB =二.思路点拨90°60°60°30°A BCDB'CBA三点剖析一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形基础上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.等边三角形的性质例题1、(2013初二上期末怀柔区)如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为____.【答案】3 2【解析】该题考查的是∵△ABC为等边三角形,D为AC边上的中点,BD为ABC∠的平分线,∴60ABC∠=︒,30DBE∠=︒,又DE DB=,∴30E DBE∠=∠=︒,∴30CDE ACB E∠=∠-∠=︒,即CDE E∠=∠,∴CD CE=;∵等边△ABC的周长为9,∴3AC=,∴1322 CD CE AC===,即32 CE=.例题2、如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为___________.【答案】60°.【解析】∵△ABC是等边三角形,∴∠A=∠B=60°.∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=180°﹣∠A﹣∠AED﹣∠AFD=360°﹣60°﹣150°﹣90°=60°.例题3、在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BCB.∥ADE=∥BDCC.∥BDE是等边三角形D.∥ADE的周长是9【答案】B【解析】本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.首先由旋转的性质可知∥AED=∥ABC=60°,所以看得AE∥BC,先由∥ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∥EBD=60°,BE=BD即可判断出∥BDE是等边三角形,故DE=BD=4,故∥AED的周长=AE+AD+DE=AC+BD=9,问题得解.∥∥ABC是等边三角形,∥∥ABC=∥C=60°,∥将∥BCD绕点B逆时针旋转60°,得到∥BAE,∥∥EAB=∥C=∥ABC=60°,∥AE∥BC,故选项A正确;∥∥ABC是等边三角形,∥AC=AB=BC=5,∥∥BAE∥BCD逆时针旋旋转60°得出,∥AE=CD,BD=BE,∥EBD=60°,∥AE+AD=AD+CD=AC=5,∥∥EBD=60°,BE=BD,∥∥BDE是等边三角形,故选项C正确;∥DE=BD=4,∥∥AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∥ADE=∥BDC,∥结论错误的是B,故选:B.随练1、如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=12(360°﹣∠BAD)=12(360°﹣60°)=150°.随练2、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;随练3、 如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE=1,∠E=30°,则BC=___________.【答案】 2.【解析】 ∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°,BA=BC , ∵BD 平分∠ABC ,∴∠DBC=∠E=30°,BD ⊥AC , ∴∠BDC=90°, ∴BC=2DC ,∵∠ACB=∠E+∠CDE , ∴∠CDE=∠E=30°, ∴CD=CE=1, ∴BC=2CD=2.等边的判定例题1、 △ABC 中,①若AB =BC =CA ,则△ABC 是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 D【解析】 ①三边相等的三角形是等边三角形,正确;②属于轴对称图形,且有一个角为60°的三角形是等边三角形,正确; ③有三条对称轴的三角形是等边三角形,正确; ④有两个角是60°的三角形是等边三角形,正确; 则正确的有4个.例题2、 如图所示,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,则BC '的长为________.【答案】 4【解析】 本题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=.故本题的答案是4.例题3、 已知:如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .(1)求证:AN BM =;(2)求证:CEF ∆为等边三角形.【答案】 见解析【解析】 (1)ACM ∆,CBN ∆是等边三角形, AC MC ∴=,BC NC =,60ACM NCB ∠=∠=︒,ACM MCN NCB MCN ∴∠+∠=∠+∠,即ACN MCB ∠=∠.在ACN ∆和MCB ∆中,AC MC =,ACN MCB ∠=∠,NC BC =, ACN MCB ∴∆≅∆,AN BM ∴=.(2)ACN MCB ∆≅∆,CAN CMB ∴∠=∠,又18060MCF ACM NCB ∠=︒-∠-∠=︒,MCF ACE ∴∠=∠,在CAE ∆和CMF ∆中,CAE CMF ∠=∠,CA CM =,ACE MCF ∠=∠, CAE CMF ∴∆≅∆,CE CF ∴=,CEF ∴∆为等腰三角形, 又60ECF ∠=︒,CEF ∴∆为等边三角形.随练1、 已知:如图,△AOB 的顶点O 在直线l 上,且AO AB =.(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下,AC 与BD 的位置关系是_________; (3)在(1)、(2)的条件下,联结AD ,如果2ABD ADB ∠=∠,求∠AOC 的度数.【答案】 (1)如图1(2)平行(3)60AOC ∠=︒ 【解析】 该题考查的是轴对称与全等三角形. (1)如图1; (2)平行.AC DB∵AC与BD是对应点的连线,l为对称轴,∴AC l⊥,⊥,BD l∴AC∥BD.(3)如图2,∵由(1)可知,△AOB与△COD关于直线l对称,∴△AOB≌△COD.∴AO AB CO CD===,∵2∠=∠=∠,ABD CDB ADB而ADB DAC∠=∠,∴CDA CAD∠=∠,∴CD CA=,∴CA CO OA==,∴△COA为等边三角形,∴60∠=︒.AOC直角三角形中30°角所对的直角边等于斜边的一边例题1、如图,已知ABC⊥,则下列关系式正确的为()∠=︒,AB AD∆中,AB AC=,30CA.BD CDBD CD= D.4=BD CDBD CD= B.2= C.3【答案】B【解析】该题考查的是特殊的直角三角形.C CAD∠=∠=︒,30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD故选B.例题2、如图,30∥交OA于C.若10PC=,则OC=__________,⊥于D,PC OBAOB∠=︒,OP平分AOB∠,PD OBPD=__________.【答案】10;5【解析】该题考查的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP ∠=∠, ∵PC OB ∥,∴CPO BOP ∠=∠, ∴CPO AOP ∠=∠, ∴PC OC =, ∵10PC =,∴10OC PC ==,过P 作PE OA ⊥于点E ,∵PD OB ⊥,OP 平分AOB ∠, ∴PD PE =,∵PC OB ∥,30AOB ∠=︒ ∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC ==∴5PE PD ==随练1、 如图,ABC △中,90A ∠=︒,30C ∠=︒,BD 是ABC ∠的平分线,12AC =,则BCD △中BC 边上的高是____【答案】 6【解析】 该题考察的是三角形的高. 过A 做BC 的高AE , 在Rt △AEC 中,30C ∠=︒,由在直角三角形中30︒所对直角边等于斜角边的一半得:11=12622AE AC =⨯=.等边三角形与全等三角形综合例题1、 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)求证:△ADE 是等边三角形;ODB P CA E BA DCBA DCE(2)若D 为直线BC 上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【答案】 见解析【解析】 (1)证明:∵a ∥AB ,且△ABC 为等边三角形, ∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =, ∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒, ∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒, ∴△ADE 是等边三角形;(2)在AC 上取点F ,使CF CD =,连结DF , ∵60ACB ∠=︒,∴△DCF 是等边三角形, ∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒, ∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠, ∴△ADF ≌△EDC (AAS ),∴AD ED =, 又∵60ADE ∠=︒,∴△ADE 是等边三角形.例题2、 在等腰直角三角形ABC 中,∠C=90°,AC=BC=10cm ,等腰直角三角形DEF 的顶点D 为AB 的中点.(1)如图(1)所示,DE ⊥AC 于M ,BC ⊥DF 于N ,则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF 绕着点D 旋转一定的角度,且AC 与DE 相交于M ,BC 与DF 相交于N ,如图(2),则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?【答案】 (1)DM=DN ;25cm 2(2)DM=DN ;25cm 2【解析】 (1)连接DC ,∵AC=BC ,D 为AB 的中点,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠A=∠B=45°, ∴∠A=∠DCN ,AD=DC , ∵DM ⊥AC ,DN ⊥BC , ∴∠DMA=∠DNC ,∴△ADM ≌△CDN (AAS ), ∴DM=DN ,则S 重叠=S △DNC +S △DMC =S △DMA +S △DMC =S △ADC =12S △ABC =12×12×10×10=25(cm 2); (2)连接CD ,则CD ⊥AB ,∠A=∠DCB=45°,AD=CD ,∵∠ADM+∠MDC=∠MDC+∠CDF=90°, ∴∠ADM=∠CDN ,∴△AMD ≌△CND (ASA ), ∴DM=DN , 同(1)可得S 重叠=12S △ABC =12×12×10×10=25(cm 2).随练1、 如图,已知∥ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:∥ABE∥∥CAD ;(2)求∥BFD 的度数.【答案】 (1)见解析(2)60° 【解析】(1)证明:∥∥ABC 为等边三角形, ∥∥BAE=∥C=60°,AB=CA , 在∥ABE 和∥CAD 中, AB CA BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩, ∥∥ABE∥∥CAD (SAS ).(2)∥∥BFD=∥ABE+∥BAD , 又∥∥ABE∥∥CAD , ∥∥ABE=∥CAD .∥∥BFD=∥CAD+∥BAD=∥BAC=60°.随练2、 如图,在ABC ∆中,AB AC =,D 是三角形外一点,且60ABD ∠=︒,BD DC AB +=.求证:60ACD ∠=︒.【答案】 见解析 【解析】 延长BD 至E ,使CD DE =,连接AE ,AD ,BD CD AB +=,BE BD DE =+,BE AB ∴=,60ABD ∠=︒,ABE ∴∆是等边三角形,AE AB AC ∴==,60E ∠=︒,在ACD ∆和AED ∆中,AC AE CD DE AD AD =⎧⎪=⎨⎪=⎩,()ACD AED SSS ∴∆≅∆,60ACD E ∴∠=∠=︒.随练3、 已知:90A ∠=︒,AB AC =,BD 平分ABC ∠,CE ⊥BD ,垂足为E .求证:2BD CE =.【答案】 见解析【解析】 本题考查全等三角形的判定与性质. 证明:延长CE 、BA 交于点F . ∵CE ⊥BD 于E ,90BAC ∠=︒, ∴ABD ACF ∠=∠.又∵AB AC =,90BAD CAF ∠=∠=︒, ∴△ABD ≌△ACF (AAS ), ∴BD CF =.∵BD 平分ABC ∠, ∴CBE FBE ∠=∠. 有BE BE =, ∴CE EF =,∴12CE BD =,∴2BD CE =.勾股定理的证明知识精讲一.勾股定理定理如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.举例如图,在Rt ABC△中,A B C∠∠∠、、的对边分别用字母a、b、c来表示,则有:222a b c+=其中,当34a b==,时,则有斜边222223425c a b=+=+=变形22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明证明方法一:(赵爽弦图)22 2222222214()214()222ABCDS c ab b a c ab b ac ab b a abc b a==⨯+-∴=⨯+-=++-=+正方形证明方法二:(等面积法)()2222222214222ABCDS a b ab ca b ab ab ca b c=+=⨯+∴++=+∴+=正方形cbaCBA cabAFDCBEHG证明方法三:(总统证法)()()222222211222222ABCD a b a b S ab c a ab b ab c a b c ++==⨯+∴++=+∴+=梯形三.易错点:1. 运用勾股定理求直角三角形边长时,注意分清直角边和斜边,采用正确的计算公式。

最新北师大版八年级数学下册第一章三角形的证明回顾与思考PPT课件

最新北师大版八年级数学下册第一章三角形的证明回顾与思考PPT课件
八年级数学·下
新课标 [北师]
第一章 三角形的证明
考点解析
典型例题
考点解析
三角形的证明是中考的必考点,考查方式以填
空题、选择题和中档解答题为主.主要考查等腰三 角形、直角三角形中角度、边长的计算或证明角、 线段相等或推导角之间的关系及线段之间的关系, 利用线段的垂直平分线、角的平分线的性质作图也 是常见的题型.本章考点可概括为:三个概念,六 个性质,四个判定,四个技巧,一个应用.
∵∠DAC=10°,∴∠BAD=60°.
∵∠D=∠B,∠FMD=∠AMB, ∴∠DFB=∠BAD=60°.
性质2
等腰三角形的性质
7.在△ABC中,AB=AC,D为直线BC上一点,E 为直线AC上一点,AD=AE,设∠BAD=α, ∠CDE=β.
(1)如图,若点D在线段BC上,点E在线段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α= 20° ,β=________. 10° ________ ②求α,β之间的关系式. (2)是否存在不同于以上②中的α,β之间的关系式? 若存在,求出这个关系式(求出一个即可);若不 存在,请说明理由.
考点
概念1
1
三个概念
反证法
1.用反证法证明命题“在直角三角形中,至少 有一个锐角不大于45°”时,应先假设( D ) A.有一个锐角小于45°
B.每一个锐角都小于45°
C.有一个锐角大于45° D.每一个锐角都大于45°
2.求证:在一个三角形中,如果两个角不相等,
那么它们所对的边也不相等.
证明:假设两个不相等的角所对的边相等,则根 据等腰三角形的性质定理“等边对等角”, 知它们所对的角也相等,这与题设两个角
解:(1)由于③的题设是a+b>0,而⑤的结论是 ab>0,故⑤不是由③交换命题的题设和结 论得到的,所以③和⑤不是互逆命题. (2)③的逆命题是如果a>0,b>0,那么a+b>0.

北师大版八年级数学下1.1 等腰三角形的性质课件

北师大版八年级数学下1.1 等腰三角形的性质课件

3.下列各图中,已知AB=AC,写出x的值. x=___7_0____ x=___3_0____ x=___3_5____
4.(例2)如图,点D,E在△ABC的边BC上,AB=AC,
BD=CE.求证:AD=AE. 证明:∵AB=AC, ∴∠B=∠C(等边对等角).
AB AC(已知) 在△ABD与△ACE中,B C(已证)
第3关 12.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线
上一点,点E在BC上,且BE=BF.
(1)求证:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度数. (1)证明:∵∠ABC=90°,F为AB延长线上一点
∴∠CBF=∠ABE=90°在△ABE与△CBF中 AB CB ABE CBF BE BF
11.如图,在△ABC中,AB=AC,点D是BC边上的中点, DE⊥AB,DF⊥AC,垂足分别为E、F. 求证:DE=DF. 证明:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC= 90°∵AB=AC,∴∠B=∠C∵D是BC边上的中点,∴BD =CD在△BDE与△CDF中
DEB DFC B C ∴△BDE≌△CDF(AASB)D, C∴DDE=DF
2
2
中,
AE AF
∴△AEC≌△AFC(SAS)∴1EC=2FC,∴这两根彩线
的长相等;
AC AC
AB=DE,AC=DF,BE=CF.求证:∠A=∠D.
证明:∵BE=CF,∴BE+EC=CF+EC,
即BC=EF.
AB DE(已知)
在△ABC与△DEF中,
BC AC
EF DF(已知)
∴△ABC≌△DEF(SSS).∴∠A=∠D.
2.如图,AB平分∠CAD,∠1=∠2. 求证:△ABC≌△ABD. 证明:∵AB平分∠CAD,∴∠CAB= ∠DAB∵∠1=∠2∴∠CBA=∠DBA(等 角的补角相等)在△ABC与△ABD中,

新北师大八年级数学下册全册ppt课件

新北师大八年级数学下册全册ppt课件
∴ △BDC≌△CEB(ASA).
E
D
B 12 C
∴ BD=CE(全等三角形的对应边相等).首发 打造中学高效课堂首选课件
例2 证明: 等腰三角形两腰上的中线相等. A
已知:如图,在△ABC中,AB=AC,BM,CN 是△ABC两腰上的中线.
NM
求证: BM=CN.
证明:∵AB=AC(已知),∴∠ABC=∠ACB. B
结论:在等腰三角形中,注意对角的分类讨论.
① 顶角+2×底角=180° ② 顶角=180°-2×底角 ③ 底角=(180°-顶角)÷2
④0°<顶角<180° ⑤0°<底角<90°首发 打造中学高效课堂首选课件
课堂小结
定理 两角分别相等且其中一组等角的对边相等的两 个三角形全等(AAS).
全等三角形的对应边相等,对应角相等.首发 打造中学高效课堂首选课件
问题3 在八上的“平行线的证明”这一章中,我们学 了哪8条基本事实?
1.两点确定一条直线; 2.两点之间线段最短; 3.同一平面内,过一点有且只有一条直线与已知直线
垂直; 4.同位角相等,两直线平行; 5.过直线外一点有且只有一条直线与这条直线平行; 6.两边及其夹角分别相等的两个三角形全等; 7.两角及其夹边分别相等的两个三角形全等; 8.三边分别相等的两个三角形全等.首发 打造中学高效课堂首选课件
A
A
B
D GE
B C
DF E
C
图①
图②
证明:(1)如图①,过A作AG⊥BC于G.
∵AB=AC,AD=AE,
∴BG=CG,DG=EG,
∴BG-DG=CG-EG,∴BD=CE;
(2)∵BD=CE,F为DE的中点,∴BD+DF=CE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明:有一个角等于600的等腰三角形是等
边三角形.
已知:如图,在 ABC中,AB AC,A 60 .
o
你 行 吗 ?
求证:ABC是等边三角形 .
情况二
2014年3月14日星期五 22:59:40
证明: A 60o B C 120o (三角形内角和为 180o ) AB AC C B 60o (等边对等角 ) A B (等量代换) BC AC(等角对等边) AB BC AC(等量代换) ABC是等边三角形(等边三角形的定义 ).
C B 60o (等边对等角 ) A 60o (三角形内角和为 180o ) A B(等量代换) BC AC(等角对等边) AB BC AC(等量代换) ABC是等边三角形 (等边三角形的定义 ).
你 行 吗 ?
2014年3月14日星期五 22:59:40
你 行 吗 ?
2014年3月14日星期五 22:59:40
定理
在直角三角形中, 300角
所对的直角边等于斜边的一半.
如图,在RtABC中, A 30o 1 BC AB.(在直角三角形中, 2 30o 角所对的直角边等于斜 边的 一半)
2014年3月14日星期五 22:59:40
你 行 吗 ?
2014年3月14日星期五 22:59:40
证明: A B BC AC(等角对等边) A C BC AB(等角对等边) BC AB AC(等量代换) ABC是等边三角形 (等边三角形的定义 ).
你 行 吗 ?
2014年3月14日星期五 22:59:40
2014年3月14日星期五 22:59:40
证明:如图,以 C为圆心,BC长为半径画狐, 交AB于D,连接CD. CB CD,B 60o BCD是等边三角形(有一个角等于60o 的等腰三角形是等边三 角形) BCD 60o (等边三角形的每个内角 都等于60o ) ACD 30o (互余的定义) ACD A(等量代换) AD CD (等角对等边) 1 BC CD BD AD AB 2
证明:如图,延长 BC到D,使CD BC,连接AD. 在ABC和ADC中 BC DC ACB ACD AC AC
你 行 ABC ADC(SAS) 吗 BC DC,AB AD(全等三角形的对应边相等) 又 B 60 ? ABD是等边三角形(有一个角
定理 三个角都相等的三角形是等
边三角形.

如图,在ABC中 A B C ABC是等边三角形 .(三个角 都相等的三角形是等边 三角形)
2014年3月14日星期五 22:59:40

想一想
探 索 新 知
(1)一个等腰三角形满足什么条件时是
等边三角形?
(2)你认为有一个角等于600的等腰三角 形是等边三角形吗?你能证明你的结论吗?
你 行 吗 ?
2014年3月14日星期五 22:59:40
定理 有一个角等于600的等腰三角
形是等边三角形.
如图,在ABC中,AB AC. A 60o ABC是等边三角形 .(有一个角 等于60 的等腰三角形是等边三 角形)
o


2014年3月14日星期五 22:59:40
用两个含有300角的三角尺,你能拼成
一个怎样的三角形?
探 索 新 知
2014年3月14日星期五 22:59:40
探 索 新 知
能拼出一个等边三角形吗?说说你的理由.
2014年3月ቤተ መጻሕፍቲ ባይዱ4日星期五 22:59:40
由此你能想到,在直角三角
探 索 新 知
形中, 300角所对的直角边与斜
边有怎样的大小关系?
2014年3月14日星期五 22:59:40
证明:有一个角等于600的等腰三角形是等
边三角形.
已知:如图,在 ABC中,AB AC,B 60 .
o
你 行 吗 ?
求证:ABC是等边三角形 .
情况一
2014年3月14日星期五 22:59:40
证明: AB AC,B 60
o
o
等于60o的等腰三角形是等边三 角形) 1 1 BC BD AB 2 2
2014年3月14日星期五 22:59:40
证明:如图,延长 BC到D,使BD AB,连接AD. ACB 90 ,BAC 30
o o
你 行 吗 ?
B 60o ABD是等边三角形(有一个角等于 60o 的等腰三角形是等边三 角形) AC BC 1 1 BC BD AB(三线合一) 2 2
2014年3月14日星期五
2014年3月14日星期五 22:59:40
想一想
探 索 新 知
(1)一个三角形满足什么条件时是等边
三角形?
(2)你认为三个角都相等的三角形是等 边三角形吗?你能证明你的结论吗?
2014年3月14日星期五 22:59:40
证明:三个角都相等的三角形是等边 三角形.
已知:如图,在 ABC中,A B C. 求证:ABC是等边三角形 .
定理
简称:
等腰三角形的 等边对等角
两底角
.
相等.
复 习 导 入
定理
定理
有两个角 相等的三角形是等腰三
角形. 简称: 等角对等边 .
等边三角形的三个内角 都相等 ,
并且每个角都等于 60o .
2014年3月14日星期五 22:59:40
第 一 章 三 角 形 授课教师:苏 勇 的 证 授课对象:八年级( 7 )班全体学生 明
在直角三角形中, 300角所对的直角
边等于斜边的一半.
能证明你的结论吗?
2014年3月14日星期五 22:59:40
证明:在直角三角形中, 300角所对 的直角边等于斜边的一半.
已知:如图,在 ABC中,C 90o,A 30o. 1 求证:BC AB. 2
你 行 吗 ?
2014年3月14日星期五 22:59:40
相关文档
最新文档