八年级下册数学作业本参考答案

合集下载

八年级下册数学作业本答案 (3)

八年级下册数学作业本答案 (3)

八年级下册数学作业本答案第一章:有理数1.1 有理数的概念与性质1.1.1 有理数的定义有理数是可以表示为两个整数的比值的数。

有理数包括整数、分数和小数。

1.1.2 有理数的性质•有理数的加法性质:任意两个有理数的和仍为有理数。

•有理数的乘法性质:任意两个有理数的积仍为有理数。

•有理数的负数性质:任意有理数a的相反数-b也是有理数。

1.2 有理数的比较与大小1.2.1 有理数的大小•如果a和b都是正数或都是负数,则|a| < |b|等价于a < b。

•如果a是正数而b是负数,则a < b。

•如果a是负数而b是正数,则a < b。

1.2.2 有理数的比较•将两个有理数转化为相同的分数形式,然后比较其分子的大小。

•如果两个有理数具有相同的分子,那么比较它们的分母,分母越大,数值越小。

第二章:线性方程组2.1 二元一次方程组2.1.1 二元一次方程的定义二元一次方程是一个包含两个未知数的方程,每个未知数的最高次数是1。

2.1.2 解二元一次方程组的方法•相消法:通过消去一个未知数,将二元一次方程组化为一个一元一次方程,然后解这个方程,再代回原方程组求解另一个未知数。

•代入法:将一个方程的一项表达为另一个方程的变量的函数,然后代入另一个方程,求解剩余的未知数。

2.2 其他类型的线性方程组2.2.1 同解方程组同解方程组是指具有相同解集的线性方程组。

2.2.2 求解同解方程组的步骤•将方程组中的一个方程乘以一个非零实数k,得到一个等价的方程组。

•消元得到一个方程。

•求解这个方程,得到一个解。

•将此解带入其他方程中,判断是否满足。

•如果满足,解集为所有满足的解,如果不满足,无解。

第三章:平面直角坐标系3.1 平面直角坐标系的引入3.1.1 平面直角坐标系的定义平面直角坐标系是由两条相互垂直的坐标轴组成的,分别称为x轴和y轴。

平面直角坐标系被用来表示二维空间中的点。

3.1.2 坐标的定义在平面直角坐标系中,每个点都可以表示为一个有序数对(x, y),其中x表示横坐标,y表示纵坐标。

人教版八年级下册数学作业本答案

人教版八年级下册数学作业本答案

暑假学与练·数学(八年级)参考答案(一)1.B10.1362.B3.D4.B5.C6.C7.408.平行9.a=c >b12.(1)略11.内错角相等,两直线平行;3;4;两直线平行,同位角相等13.略(2)平行,理由略∠D(3)略14.(1)∠B+∠D=∠E(2)∠E+∠G=∠B+∠F+(二)1.C2.B3.D4.D11.60°5.D12.6.C7.50°或65°14.略8.415.略9.平行10.9厘米或13厘米13.略16.(1)15°(2)20°(3)(4)有,理由略(三)1.20°2.厘米 3.84.4.85.366.37.D8.C14.同时到达,9.B10.B11.略12.FG垂直平分DE,理由略理由略15.(1)城市A受影响(2)8小时13.0.5米(四)1.C11.,16.厘米2.D3.B4.A13.略5.C6.A7.C8.B(2)6ab9.3010.612.略14.(1)直六棱柱15.36(五)1.D8.50.412.略2.D3.B4.D10.175.(1)抽样调查(2)普查6.8.07.179.31;3113.略11.冠军、亚军、季军分别为李扬、林飞、程丽(六)1.B8.略2.C9.略3.C4.50;105.0.1576米26.①②③7.略(七)1.B2.A3.C4.A5.C9.46.B7.D8.(1)<(2)>11.略12.略13.略(3)≥(4)<(5)<14.-2,-115.16.b<010.a<ab2<ab(八)1.D2.C3.C10.14.34,164.C11.x<a5.n≤76.2<k<87.x>38.9.0≤y≤513.1,212.(1)-3<x≤(2)x>3(3)无解15.(1)9≤m<12(2)9<m≤12(九)1.C7.2.B3.C4.18≤t≤229.225.4.0米/秒10.4人,13瓶6.5,7,98.大于20000元11.当旅游人数为10~15人时选择乙旅行社;当旅游人数为16人时两家旅行社都可选择;当旅游人数为17~25人时选择甲旅行社12.(1)35元,26元(2)有3种方案;购买文化衫23件,相册27本的方案用于购买教师纪念品的资金更充足13.略(十)1.C2.C3.C4.C5.D6.C7.为任何实数;为08.a<-111.5或-116.9.南偏西40°距离80米10.(6,6)(-6,6)(-6,-6)(6,-6),,,14.略12.(5,2)13.(x,6)(-3≤x≤2)等腰直角三角形,917.略18.略15.(-2,0)或(6,0)(十一)1.C9.-102.B3.C4.C5.D6.B12.略7.......。

八年级下册数学作业本答案北师大版

八年级下册数学作业本答案北师大版

八年级下册数学作业本答案北师大版前言《八年级下册数学作业本答案北师大版》是为了帮助八年级学生检查和纠正数学作业的错误而编写的。

本文档将为您提供这本作业本每个章节的答案,以便您在自我学习和复习时能够更好地掌握数学知识。

请注意,本文档中的答案仅供参考。

在使用本文档时,建议您首先自己独立完成作业,并在完成后再对照答案进行核对和纠正。

这样能够更好地巩固自己的知识和技能。

答案目录1.第一章:函数与方程2.第二章:二次根式3.第三章:解一元二次方程4.第四章:分式方程5.第五章:解两条直线的方程组6.第六章:统计与概率7.第七章:立体几何初步8.第八章:图形的相似和相等现在,让我们逐个章节地提供每个章节的答案。

第一章:函数与方程1.1 函数的概念与性质•作业1答案:…•作业2答案:…•…1.2 一次函数•作业1答案:…•作业2答案:…•…1.3 线性方程与一次函数•作业1答案:…•作业2答案:…第二章:二次根式2.1 探索二次根式•作业1答案:…•作业2答案:…•…2.2 加减二次根式•作业1答案:…•作业2答案:…•…2.3 乘除二次根式•作业1答案:…•作业2答案:…•…第三章:解一元二次方程3.1 解一元二次方程的主要方法•作业1答案:…•作业2答案:…•…3.2 一元二次方程的实际应用•作业1答案:…•作业2答案:…•…3.3 一元二次方程的建立与应用•作业1答案:…•作业2答案:…•…第四章:分式方程4.1 探索分式方程•作业1答案:…•作业2答案:…4.2 解分式方程•作业1答案:…•作业2答案:…•…4.3 分式方程的应用•作业1答案:…•作业2答案:…•…第五章:解两条直线的方程组5.1 解两条直线的方程组的方法•作业1答案:…•作业2答案:…•…5.2 两条直线的方程的应用•作业1答案:…•作业2答案:…•…5.3 三元一次方程组的解•作业1答案:…•作业2答案:…•…第六章:统计与概率6.1 统计调查与数据处理•作业1答案:…•作业2答案:…•…6.2 概率与事件•作业1答案:…•作业2答案:…•…6.3 排列与组合•作业1答案:…•作业2答案:…•…第七章:立体几何初步7.1 三维空间坐标系•作业1答案:…•作业2答案:…•…7.2 空间几何体•作业1答案:…•作业2答案:…•…7.3 空间几何体的表面积与体积•作业1答案:…•作业2答案:…•…第八章:图形的相似和相等8.1 图形的相似•作业1答案:…•作业2答案:…•…8.2 图形的相似判定•作业1答案:…•作业2答案:…•…8.3 图形的相似比例和性质•作业1答案:…•作业2答案:…•…结语希望以上《八年级下册数学作业本答案北师大版》的章节答案,能够帮助您更好地掌握八年级数学的知识,并帮助您自我纠正作业中的错误。

八年级下册作业本数学参考答案

八年级下册作业本数学参考答案

八年级下册作业本数学参考答案导读:本文八年级下册作业本数学参考答案,仅供参考,如果觉得很不错,欢迎点评和分享。

参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠5 2.2,1,3,BC 3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD 和∠DEC,同旁内角是∠AFD 和∠AED6.各4对.同位角有∠B 与∠GAD,∠B 与∠DCF,∠D 与∠HAB,∠D 与∠ECB;内错角有∠B 与∠BCE,∠B 与∠HAB,∠D 与∠GAD,∠D 与∠DCF;同旁内角有∠B 与∠DAB,∠B 与∠DCB,∠D 与∠DAB,∠D与∠DCB【1.2(1)】1.(1)AB,CD(2)∠3,同位角相等,两直线平行 2.略 3.AB ∥CD,理由略 4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF 分别是∠ADE 和∠ABC 的角平分线,得∠ADG=12∠ADE,∠ABF= 12 ∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE (同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB 与CD 不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB ∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180°7.略【1.3(1)】1.D 2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°.∵AB ∥CD,∴α=β6.(1)∠B=∠D(2)由2x+15=65-3x解得x=10,所以∠1=35°【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)×(2)× 3.(1)DAB(2)BCD4.∵∠1=∠2=100°,∴m∥n(内错角相等,两直线平行).∴∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略 6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D 又∠APC=180°-∠CAP-∠ACP,∴∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.【1.4】∴∠AEB′=∠AEB=12∠BEB′=65°1.2第2章特殊三角形2.AB 与CD 平行.量得线段BD 的长约为2cm,所以两电线杆间的距离约为120m 【2.1】3.15cm 4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵AE∥CF,∴∠AEB=∠CFD.∴△AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴AE=CF3.15cm,15cm,5cm 4.16或176.AB=BC.理由如下:作AM ⊥l5.如图,答案不,图中点C1,C2,C3均可2于M,BN ⊥l3于N,则△ABM ≌△BCN,得AB=BC6.(1)略(2)CF=15cm7.AP 平分∠BAC.理由如下:由AP 是中线,得BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.50 2.(1)∠4(2)∠3(3)∠1∴∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70°(2)100°,40° 2.3,90°,50° 3.略4.(1)90°(2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题)∠BDC=∠CEB=90°,BC=CB,∴△BDC≌△CEB(AAS).∴BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.(本题也可用面积法求解)∴∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D【2.3】8.不正确,画图略1.70°,等腰 2.3 3.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD 是等腰三角形.理由如下:由BD,CD 分别是∠ABC,∠ACB 的平50分线,得∠DBC=∠DCB.则DB=DC【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF 和△EFC 都是等腰三角形.理由如下:1.C 2.45°,45°,6 3.5∵△ADE 和△FDE 重合,∴∠ADE=∠FDE.4.∵∠B+∠C=90°,∴△ABC 是直角三角形∵DE∥BC,∴∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴∠B=∠DFB.∴DB=DF,即△DBF 是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC 是等腰三角形∴DE=DF.∠ECD=45°,∴∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100°(2)把60°分成20°和40°∴∠EDF=90°,即DE⊥DF 【2.4】【2.5(2)】1.(1)3(2)51.D 2.33° 3.∠A=65°,∠B=25°4.DE=DF=3m2.△ADE 是等边三角形.理由如下:∵△ABC 是等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE 6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5(2)12(3)槡5 2.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ 是等边三角形.则∠APQ=60°.而BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP,∴∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4. 槡2 2cm (或槡8cm) 5.169cm2 6.18米∴∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)·BD′=1(a+b)2,6.△DEF 是等边三角形.理由如下:由∠ABE+ ∠FCB= ∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°.∴∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°,∴△DEF 是等边三角形由1(a+b)2=ab+17.解答不,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能(2)能 2.是直角三角形,因为满足m2=p2+n2 3.符合4.∠BAC,∠ADB,∠ADC 都是直角(第7题)5.连结BD,则∠ADB=45°,BD= 槡32.∴BD2+CD2=BC2,∴∠BDC=90°.∴∠ADC=135°第3章直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形) 2.8,12,6,长方形1.BC=EF 或AC=DF 或∠A=∠D 或∠B=∠E 2.略3.直五棱柱,7,10,3 4.B3.全等,依据是“HL”5.(答案不)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE ≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形∴∠AEC=90°,即△AEC 是等腰直角三角形状、面积完全相同的长方形 5.∵∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm∴Rt△ABD≌Rt△BAC(HL).∴∠CAB=∠DBA,7. 正多面体顶点数(V) 面数(F) 棱数(E) V+F-E∴OA=OB正四面体6.DF4462⊥BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,正六面体∴∠B=∠D,从而∠D+∠C=∠B+∠C=90°86122正八面体68122复习题正十二面体2012302正二十面体 1.A1220302 2.D 3.22 4.13或槡119 5.B 6.等腰符合欧拉公式7.72°,72°,48.槡79.64°10.∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC.。

数学作业本(人教八下)答案

数学作业本(人教八下)答案

!"9$ :;7<=
! +! ! :;7<= ! +! !! ! :;7<=*>? ) !! ! # , 1 "%! $ " 1 +)%槡 $ #! $! &! "! " & 1 +! *! % 7* !! ! , " 1 % 1 %%! %/ 0&! ! % #! $! G "! !% ! !*! ) ,0 - $) , '0 -! HC ! ! ,/ 0! +!
#
/ !! $#! * & 1 , 1 #槡 ! $ $! %! &! "! + )'* 0'+/ 0 ) *'+0'! #/ 0! ! +! !! # :;7<=*@5 ) !! $%! ! & $ # $ % #! $! $ & , $ &&! + )* 0 8 +0 ') *"! $ C! C! *! +! % !! #$! "%! ) ,'0 - 8 ) + ,' #!
&! ! #/ 0 ! "/ 0"! #)! ! 槡 *! %槡 *! * # 1 ! +! % I !! #! $! %!
! " #
# % C! 2J? ! ABC ! &! "! *! & ! +! #! $ EF= ) !! ! ,槡 #/ 0%! " , 1 #! $! C! $槡 #"! %/ 0*! % & 1 ! &! +! % J?7KL? $! !! #!

八年级下册数学作业本答案

八年级下册数学作业本答案

八年级下册数学作业本答案第一章线性方程与不等式1.1 线性方程的解法题目1:解方程:3x - 7 = 14解答:将方程两边加上7,得到3x = 21,然后将21除以3,得到x = 7。

所以方程的解是x = 7。

题目2:解方程:2(x - 5) = 18解答:先将方程中的括号展开,得到2x - 10 = 18,然后将方程两边加上10,得到2x = 28。

最后将28除以2,得到x = 14。

所以方程的解是x = 14。

1.2 一元一次不等式题目1:求解不等式:3x + 5 > 8解答:先将不等式两边分别减去5,得到3x > 3。

然后将不等式两边除以3,得到x > 1。

所以不等式的解是x > 1。

题目2:求解不等式:2x - 3 ≤ 5解答:先将不等式两边分别加上3,得到2x ≤ 8。

然后将不等式两边除以2,得到x ≤ 4。

所以不等式的解是x ≤ 4。

第二章二元一次方程组2.1 二元一次方程组的解法题目1:求解方程组:x + y = 52x - y = 1解答:我们可以使用消元法来求解这个方程组,首先将方程2乘以2,得到4x - 2y = 2。

然后将方程1和新得到的方程相加,得到x = 3。

将x的值代入方程1,得到3 + y = 5,解得y = 2。

所以方程组的解是x = 3,y = 2。

题目2:求解方程组:2x + y = 43x - 2y = 1解答:我们可以使用消元法来求解这个方程组,首先将方程1乘以2,得到4x + 2y = 8。

然后将方程2和新得到的方程相加,得到7x = 9。

将x的值代入方程1,得到2(3) + y = 4,解得y = -2。

所以方程组的解是x = 3,y = -2。

第三章直角三角形与勾股定理3.1 直角三角形的性质与勾股定理题目1:已知一个直角三角形,直角边长分别为3cm和4cm,求斜边的长度。

解答:根据勾股定理,斜边的长度为√(3^2 + 4^2) = √(9 + 16) = √25 = 5。

北师大版八年级下册数学作业本(含答案)

北师大版八年级下册数学作业本(含答案)

& &
- $$"%" $&"%!
&
D I J F !#%&K $%&! !
&
, & "$#" O "&#"
&
'!./?@AB C D L M N $ % : ' O (G &
&
P A B C D Q N : !!! K !'! !
&
&
S * T
R $" "&"$$"# " $&"#"#""#
& &
$%(" DIJ!
'!! "& ` "$%& R$"%%& - # "G &
&
$%$"" !'%!&!
&
e f g "$%## "&$" h / $"$&" $#%$
& &
ij$%(""$#%$ .$%$(
&
"$"$& .$%$( "$%$#
&
!
&
"*%&!
&
&
S + T
&
&
S ! T
& &
""#- :?@ABC!

八年级下册数学作业本2答案

八年级下册数学作业本2答案

一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.在平面直角坐标系中,点()关于轴对称的点的坐标是()A.()B.()C.()D.()2.函数中,自变量的取值范围是()A.>B.C.≥D.3.要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的().A.方差B.中位数C.众数D.平均数4.下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;C.两条对角线互相垂直的矩形是正方形;D.两条对角线相等的菱形是正方形.5.已知反比例函数,在下列结论中,不正确的是().A.某某某象必经过点(1,2)B.随的增大而减少C.某某某象在第一、三象限D.若>1,则<26.如某某某,菱形ABCD中,∠A=60°,周长是16,则菱形的面积是()A.16B.16C.16D.87.如某某某,矩形的边,且在平面直角坐标系中轴的正半轴上,点在点的左侧,直线经过点(3,3)和点,且.将直线沿轴向下平移得到直线,若点落在矩形的内部,则的取值范围是()A.B.C.D.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.化简:.9.将0.000000123用科学记数法表示为.10.在□ABCD中,∠A:∠B=3:2,则∠D=度.11.一次函数的某某某象如某某某所示,当时,的取值范围是12.学校为了发展校园足球运动,组建了校足球队,队员年龄分布如右上某某某所示,则这些队员年龄的众数是13.化简:=14.若点M(m,1)在反比例函数的某某某象上,则m=15.直线与轴的交点坐标为.16.在平面直角坐标系中,正方形的顶点的坐标分别为(-1,1)(-1,-1)、(1,-1),则顶点的坐标为17.如某某某,在△ABC中,BC=10,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则(1)度;(2)AM的最小值是.三、解答题(9题,共89分)在答题卡上相应题目的答题区域内作答.18.(9分)计算:19.(9分)先化简,再求值:,其中20.(9分)如某某某,在矩形中,对角线与相交于点求的长.21.(9分)如某某某,一次函数的某某某象与反比例函数的'某某某象交于点A,C,交y轴于点B,交某轴于点D.(1)求反比例函数和一次函数的表达式;(2)连接OA,OC.求△AOC的面积.22.(9分)学校设立学生奖学金时规定:综合成绩最高者得一等奖,综合成绩包括体育成绩、德育成绩、学习成绩三项,这三项成绩分别按1∶3∶6的比例计入综合成绩.小明、小亮两位同学入围测评,他们的体育成绩、德育成绩、学习成绩如下表.请你通过计算他们的综合成绩,判断谁能拿到一等奖?体育成绩德育成绩学习成绩小明969490小亮90939223.(9分)学校初二年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度.24.(9分)如某某某,在矩形ABCD中,AB =4cm,BC =8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.(1)连接AF,CE,求证:四边形AFCE为菱形;(2)求AF的长.25.(13分)甲、乙两人从学校出发,沿相同的线路跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向体育馆,如某某某是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间某(秒)的函数某某某象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;(2)求乙跑步的速度及乙在途中等候甲的时间;(3)求乙出发多长时间第一次与甲相遇?26.(13分)如某某某,在平面直角坐标系中,直线:分别与轴、轴交于点,且与直线:交于点.(1)点的坐标是;点的坐标是;点的坐标是;(2)若是线段上的点,且的面积为12,求直线的函数表达式;(3)在(2)的条件下,设是射线上的点,在平面内是否存在点,使以为顶点的四边形是菱形?若存在,直接写出点的坐标;若不存在,请说明理由.答案:一、选择题(每小题3分,共21分)1.D;2.B;3.A;4.B;5.B;6.D;7.C;二、填空题(每小题4分,共40分)8.;9.;10.72;11.;12.14岁(没有单位不扣分);13.;14.;15.(0,2);16.(1,1);17.(1)90;(2)2.4三、解答题(共89分)18.(9分)解:=…………………………8分=6………………………………………9分19.(9分)解:=…………3分=…………………………5分=…………………………………6分当时,原式=…………………7分=2………………………9分20.(9分)解:在矩形中,………………2分……………………………3分∵∴是等边三角形………………5分∴………………………6分在Rt中………………9分21.(9分)解:(1)∵反比例函数的某某某象经过点A(-2,-5)∴m=(-2)某(-5)=10.∴反比例函数的表达式为.……………………………………………………2分∵点C(5,n)在反比例函数的某某某象上∴.∴C的坐标为(5,2).…………………………………………………………………3分∵一次函数的某某某象经过点A,C,将这两个点的坐标代入,得解得………………………………………………………5分∴所求一次函数的表达式为y=某-3.…………………………………………………6分(2)∵一次函数y=某-3的某某某像交y轴于点B∴B点坐标为(0,-3).………………………………………………………………7分∴OB=3.∵A点的横坐标为-2,C点的横坐标为5∴S△AOC=S△AOB+S△BOC=.………………9分22.(9分)解:小明的综合成绩=…………………………(4分)小亮的综合成绩=………………………(8分)∵92.1>91.8,∴小亮能拿到一等奖.…………………………………………(9分)23.(9分)解:设中巴车速度为千米/小时,则旅游车的速度为千米/小时.………1分依题意得………………………5分解得………………………7分经检验是原方程的解且符合题意………………………8分答:中巴车的速度为50千米/小时. ………………………9分24.(9分)(1)证明:∵四边形ABCD是矩形∴AD‖BC∴∠AEO=∠CFO∵AC的垂直平分线EF∴AO=OC,AC⊥EF,………………………………2分在△AEO和△CFO中∵∴△AEO≌△CFO(AAS),………………………………3分∴OE=OF∵OA=OC∴四边形AECF是平行四边形,………………………………4分∵AC⊥EF∴平行四边形AECF是菱形;……………………………………5分(2)解:设AF=acm∵四边形AECF是菱形∴AF=CF=acm,…………………………………………6分∵BC=8cm∴BF=(8-a)cm在Rt△ABF中,由勾股定理得:42+(8-a)2=a2,…………8分a=5,即AF=5cm。

八年级下册数学课本答案人教版答案(28页)

八年级下册数学课本答案人教版答案(28页)

八年级下册数学课本答案人教版答案(28页)第110页:1. 解答:题目:解方程 $2x + 3 = 7$解答思路:将方程两边减去3,得到 $2x = 4$,然后除以2得到 $x = 2$。

题目:解不等式 $3x 5 > 10$解答思路:将不等式两边加上5,得到 $3x > 15$,然后除以3得到 $x > 5$。

题目:求三角形面积,已知底边为6cm,高为8cm。

解答思路:使用三角形面积公式 $A = \frac{1}{2} \times\text{底边} \times \text{高}$,代入数值计算得到 $A = 24\text{cm}^2$。

题目:解比例 $\frac{x}{5} = \frac{10}{2}$解答思路:将比例两边乘以5,得到 $x = 25$。

题目:求正方形的面积,已知边长为7cm。

解答思路:使用正方形面积公式 $A = \text{边长}^2$,代入数值计算得到 $A = 49 \text{cm}^2$。

题目:解方程 $4x 3 = 11$解答思路:将方程两边加上3,得到 $4x = 14$,然后除以4得到 $x = 3.5$。

题目:解不等式 $2x + 7 \leq 15$解答思路:将不等式两边减去7,得到 $2x \leq 8$,然后除以2得到 $x \leq 4$。

题目:求矩形面积,已知长为12cm,宽为6cm。

解答思路:使用矩形面积公式 $A = \text{长} \times\text{宽}$,代入数值计算得到 $A = 72 \text{cm}^2$。

题目:解比例 $\frac{x}{9} = \frac{3}{4}$解答思路:将比例两边乘以9,得到 $x = 27$。

题目:求梯形面积,已知上底为8cm,下底为12cm,高为5cm。

解答思路:使用梯形面积公式 $A = \frac{1}{2} \times(\text{上底} + \text{下底}) \times \text{高}$,代入数值计算得到 $A = 50 \text{cm}^2$。

最新数学练习册八年级下册参考答案【直接打印】优秀名师资料

最新数学练习册八年级下册参考答案【直接打印】优秀名师资料

数学练习册八年级下册参考答案【直接打印】数学练习册八年级下册参考答案6.1第1课时1.相等;相等.2.互补.3.120?;60?.4.C.5.B6.B7.130?,50?.8.提示:先证?BEC是等边三角形.9.略.10.提示:延长ED交AC于点M,延长FD交AB于点N,证明四边形DFHM与EDNG都是平行四边形.第2课时1.互相平分.2.4;?ABD与?CDB,?ABC与?CDA,?OAB与?OCD,?OAD与?OCB3.C4.C 5.(1)略;(2)14.6.略.7.9,5.8.如OE=OF,DE=DF,AE=CF,DE=BF. 6.2第1课时1.平行,相等;平行且相等的四边形.2.6;3.3.C4.D5.提示:可利用判定定理1或平行四边形定义证明.6.本题是第5题的拓展,可直接证明,亦可利用第5题的结论.7.提示:证明四边形BDEF是平行四边形.第2课时1.105?.2.平行四边形.3.B4.B5.提示:证明四边形MFNE的两组对边分别相等.6.略.7.四边形EGFH是平行四边形,提示:利用三角形全等证明OE=OF.6.3第1课时1.四个角都是直角;两条对角线相等.2.2.3.5 cm和10 cm.4.B5.A6.A7.提示:利用直角三角形性质定理2.8.提示:证明Rt?ABF?Rt?DCE.9.AD=CF.提示:证明?AED??FDC.第2课时1.32.对角线或两个邻角.3.D4.D5.矩形,证略.6.略.7.提示:四边形AEBD是矩形.8.提示:连PE.S?BDE=12ED?(PF+PG),又S?BDE=12ED?AB..第3课时1.菱形.2.菱.3.AD平分?BAC.4.A5.D6.略.7.60?.提示:连接BF,则?CDF=?CBF.8.菱形,证略.第4课时1.4.2.一组邻边相等;一个角是直角.3.D4.A5.正方形,证略.6.正方形,证略.7.提示:延长CB至P点,使PB,DN,连接AP,?ABP??ADN,AP=AN,?PAB=?NAD.?PAM=45?,?AMP??AMN,S?AMN=S?ABM+S?ADN.6.41.12,20,242.53.2a4.B5.B6.平行四边形,证明略.7.提示:过点E作EF?AB,交BC于点F,证明?ADE??EFC.8.AP=AQ.提示:取BC的中点F,连接MF,NF,证明MF=NF,从而?FMN=?FNM,?PQC=?QPB,再证?APQ=?AQP.第六章综合练习1.6;32.123.正方形4.17或14或185.C6.C7.B8.C9.48 cm210.略.11.60?;75?12.提示:先证四边形AECF是平行四边形.13.提示:取BF的中点G,连接DG,证明?EDG??EAF.14.提示:证明Rt?AFD?Rt?BEA.15.(1)菱形;(2)?A为45?,证明略.16.正确,证明略.17.提示:连接AC交EF于点O.?AOE??COF.AE=CF,四边形AFCE是平行四边形,由AC?EF,可知AFCE是菱形.18.取AE中点P,连OP.OP=12CE.OP?AD.?OFP=?ABD+?BAE=?BAE+45?,??EAC=?BAE,?OPF=?PAO+?AOP=?EAC+ 45?=?OFP,??OPF是等腰三角形,OF=OP=12CE.19.提示:(1)用t表示AQ,AP,列方程6-t=2t,得t=2;(2)求出S?QAC=36-6t,S?APC=6t,S四边形QAPC=(36-6t)+6t=36,故与t无关. 检测站1.平行四边形;菱形2.45?3.B4.B5.112.5?6.提示:连接CP,得 ACPQ,因而AQ=CP=AP.7.(1)略;(2)四边形ACFD为平行四边形,证略.8.(1)略;(2)当?BAC=90?时,四边形ADCE是正方形,证略.7.11.14,142.1,03.0.4,34.B5.D6.B7.(1)1.2;(2)97;(3)10-2.8.(1)-0.2;(2)2.5;(3)5. 9.0.5 m.10.111 111 1117.21.122.253.100或28.4.C5.A6.257.128.89.165.提示:利用?ADE面积.10.提示:AB=10.设DE=x,则x2+(10-6)2=(8-x)2,解得x=3,也可以利用S?ABC=S?ADC+S?ABD来求. 7.3第1课时1.无限不循环小数,无限不循环小数,循环小数2.略3.6,74.C5.D6.B7.3,不是有理数,1.738.2,8,189.可能是5,是有理数;也可能是7,是无理数10.易证明四边形EFGH是正方形,设正方形ABCD的边长为xcm,则x2=64,?x=8,于是AH=AE=4,?EF=42+42=32.由52,32?62,5.62,32,5.72,5.652,32,5.662,可以估计正方形EFGH的每条边长精确到0.01 cm的不足近似值为5.65 cm,过剩近似值为5.66 cm. 第2课时,无数个,1.5,1.7,2.1,无数个,3,2+0.1,5-0.13.C4.C5.(1)略;(2)先作出1.32.1,2表示2的点A,再作OA的垂直平分线,它与OA的交点表示22;(3)略.6.8个.提示:以A为顶点有3个等腰三角形,以B为顶点有5个等腰三角形.7.可构造一条边长为10的直角三角形,或利用方格纸、数轴、第8题中的方法等.8.(1)11;(2)n2;(3)14(1+2+…+10)=554 7.41.1202.直角三角形3.C4.B5.32+42=526.BC2=34=BD2+CD2,?BDC是直角三角形7.BD2+CD2=BC2,?BCD为直角三角形.在?ACD中,设AD=x,则x2+162=(12+x)2,x=143,周长=16038.a2+b2=c2,c=b+2.?(c+b)(c-b)=a2,c-b=2,?c+b=12a2,c=14a2+1,b=14a2-1.当a=20时,b=99,c=101. 7.51.平方根有两个,算术平方根只有一个;算术平方根是正的平方根2.?4,?2,?3,?33.D4.C5.C6.(1)0.6,?0.6;(2)911,?911;(3)103,?103;(4)5,?57.(1)?0.2;(2)-65;(3)58.(1)x=?19;(2)x=?6;(3)x=32或x=12.9.88个 7.61.立方根,x=3a,正,负,02.2,-3,-35,0.13.5 m4.D5.B6.(1)-12;(2)37.8, 328.(1)-512;(2)139.略10.382=4,3272=9.7.71.6.694 027 188,6.692.-1.77 939 465 2,-1.783.(1)85.15;(2)1.77;(3)0.28;(4)67.234.(1)12.62; (2)1.46;(3)-1.55;(4)-0.245.(1)6,315;(2)27,31336.4817.(1)其绝对值逐渐减小且越来越接近-1;(2)其绝对值逐渐增大且越来越接近-18.(1)450,447.2;(2)16,15.967.8第1课时1.5,-15,52.π3.D4.B5.略6.-3,-8,-5,-2,2,5,8,37.(1)17,17;(2)4,5;(3)略8.左边,因为32,2.第2课时1.(-2,-3);(2,3).2.223.y=2.4.B5.C6.(1)A(0,(-3,2);B″(3,2) -3);(2)B′7.C(3,0),D(32,32).8.O(0,0),B(322,322), C(0,32),D(-322,322).第3课时1.加、减、乘、除、乘方、开方.2.2-1和2-2.3.C4.D5.2+3,2?3,2+36.(1)0.82; (2)4.597.2608.v=78.9,70,超过规定的速度.9.(1)AC=AB=13;(2)522.第七章综合练习1.?32.4或343.(3+13)m4.35.76.答案开放,如-30,-π-2等.7.48.B9.D10.B11.B12.略.13.(1)8.2;(2)11.14.(1)26,5.23;(2)10,326.15.1316.设两直角边长为a,b,得(a2)2+b2=16,(b2)2+a2=9,两式相加,得54(a2+b2)=25,a2+b2=20,斜边长为20.17.2.0 s.18.提示:由AB=5,在方格纸上找出格点C,使C点到A,B的距离分别为10,5,由(5)2=(10)2,可知?ABC是直角三角形,面积为12(5)(5)=2.5.点C位置不唯(5)2+一.19.1220.13 m21.5.3 m22.原式=(10-a)(10+a)=10-a2=10-9=1.23.弟弟大一岁. 检测站1.-2+3,10-3.2.,3.D4.C5.26.0,?1,?2,?3,?4.7.(1),;(2),.8.4.3 cm.9.30 cm2.10.3,33,333,33…3(n个3).提示:根号下表为(10n-1)2/9.8.1第1课时1.,2.,3.,4.,5.C6.A7.(1)a,1a;(2)3a+5,20;(3)23a-11?2;(4)a(1-x%)?15(元)8.(1)a-2,a,a+1,a+3;(2)-22,-33,33,229.4v?31010.(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)11.设两个港口距离为s,江水水速为a,汽船在静水中速度为v,则t1=2sv,t2=sv+a+sv-a=2vsv2-a2,t1=2vsv2,2vsv2-a2=t2第2课时1.,2.,3.,4.,5.,6.D7.D8.A9.(1)x,10;(2)x,4;(3)x,57;(4)x,210.(1),;(2),;(3),;(4),,,11.a+23,2a+13,a,在a,1两边同加2a,得3a,2a+1,在a,1两边同加a+1,得2a+1,a+2,都除以3即得.12.如改为:“若a,b,0,则a2,b2”或改为“若a,b,且a+b,0,则a2,b2”则成为真命题.8.2第1课时1.x,-32.x?23.0,1,2,3,4,54.7,8,9,105.C6.C7.略8.-4,-3,-2,-19.略10.满足x,3的每个x的值都能使x-2,0成立,但不能说x,3是x-2,0的解集,这是因为满足x,3的x的值不是x-2,0的所有解11.x2,0 第2课时1.x,522.y?123.x,-454.k,135.x?-46.D7.B8.(1)x?-1;(2)x,53;(3)x,-2;(4)y?29.最后一步由-x,-13得x,13是错误的10.a=811.m,128.31.x?892.23.100 m/min4.C5.B6.307.348.a,29.72,81,908.4第1课时1.6,x,102.x,13.如x+1?3,2x+5,14.m?25.D6.C7.B8.(1)x,34;(2)-134?x,59.-1,0,1,2 10.-3,m?-2.11.x,32a+72b,x,-53a+2b,由32a+72b=22, -53a+2b=5,得a=3,b=5第2课时1.-1,0,1.2.-1,a,5.提示:解方程组,得x=4a+4, y=-a+5.所以4a+4,0,-a+5,0.解得a,-1且a,5.3.B.4.C.5.-4?x,8.6.-3?m?1,提示:解方程组,得x=1+m2, y=1-m4,由1+m2?1,1-m4?1,推出.7.(1)-1,a,5;提示:解方程组得x=4a+4,,0,y,0,解不等式组得出答案.8.-45,x,1.提示:原不等式相当于解以下两个y=-a+5.由x不等式组:?x-1,0,x+45,0;?x-1,0,x+45,0..不等式组?无解,所以不等式组?的解集即为原不等式的解集:-45,x,1. 第八章综合练习1.,2.-123.a,-14.65.120元~130元6.A7.D,提示:由a-b,c,a+b都加(a+b)可得8.C9.B10.(1)x,-10;(2)x?2;(3)1?x,3211.a=412.3,4,513.当x,2,x=2,x,2时,第1个代数式的值分别大于、等于、小于第2个代数式的值.14.4人15.a,0或a,8.提示:满足条件的a的取值范围应是a+1,1或a,8.16.a=0,1,2.检测站1.x,-6.2.a+b,0.3.1.4.x,8.5.B.6.D.7.A.8.(1)x,2;(2)-2?x,3;(3)x?-6.9.2,m,-4.10.x,40时,去甲店;x=40时,两家均可;x,40时,去乙店.9.1第1课时1.?-322.10;923.B4.C5.(1)35;(2)12; (3)12;(4)6.6.a2+17.x?3且x?4.8.(1)(a+10)(a-10);(2)(2a+3)(2a-3). 第2课时1.0.30.3a3b22.?13.B4.B5.D6.(1)128; (2)43;(3)18;(4)75.7.628.(1)π-3;(2)a+1;(3)12;(4)702.9.设宽为x,x=4.对角线长410.10.小莹解答正确.小亮答案错在(1-a)2=1-a,当a=5时,1-a,0,所以当a=5时,(1-a)2=a-1.第3课时1.15,30,42.2.x,33.C4.D5.A6.(1)25;(2)33;(3)216;(4)xx2.7.(1)2491;(2)2-a.8.(1)第11个为64729,第12个为827;(2)第2n-1个是(23)n,第2n个也是(23)n.9.21.2,32,-33.2.A3.C4.(1)14059;334;(3)-43;(4)28105.5.22. (2)563-6.162或172.7.439.3第1课时1.(1)-833;(2)48;(3)62(4)2.2.B3.B4.(1)302;(2)1;(3)2;(4)32.5.(1)46;(2)23.6.(1)36;(2)510;(3)2n2n(n为正整数). 第2课时1.(1)1;(2)6+106.2.D3.A4.(1)6(6-2-3+1);(2)1+5;(3)352;(4)1;(5)36+43.5.(1)7;(2)125.7.2 015第九章综合练习1.(1)76;(2)-33;(3)2+3;(4)-5.2.B3.D4.C5.(1)-246;(2)152.6.略.7.(1)2;(2)-64+362.8.122.9.22.10.(1)-1;(2)都不满足;(3)?12.11.(1)略;(2)a=m2+2n2,b=2mn;(3)略.检测站1. 2.?3.?4. 5. 6.D7.A8.-1+3+62.9.-42.10.(1)45-542;(2)42(3-6).11.设另一直角边长为a,则(6)2+a2=(32)2,a=23.设斜边上的高为h,则12?32h=12?23?6,h=2.12.x=16. 10.1第1课时1.(1)2;(2)0,1,1,2;(3)1.2.A3.(1)大气压与海拔高度的函数关系,海拔高度;(2)80 Kpa;(3)海平面的大气压,海拔12 km时的大气压;(4)海拔高度逐渐上升时,大气压逐渐下降.4.(1)24 min,90 km/h;(2)2~6,30 km/h,16~21,90 km/h;(3)汽车停止;(4)略.5.(1)10元;(2)1.5元/kg;(3)35.第2课时1.300,17.2.B3.A4.略.5~7.略.8.(1)略;(2)超过8 kg不超过9 kg. 10.2第1课时1.52.?3,=-33.C4.C5.y=3x6.(1)y=-x+40;(2)10件.7.(1)0.92;(2)4 852元/人.第2课时1.(4,0)(0,8).2.一、二、四.3.D4.B5.略.6.a=-52.7.(1)y=t+0.5;(2)1;(3)(t+0.5)万公顷.10.31.三2.增大3.二、三、四,减少.4.C5.D6.(1)y=x+2;(2)(-2,0);(3)1.7.(1)3;(2)a,3;(3)a,3.8.y=79x-83或y=-79x-13. 10.41.y=25x+152.10x-15y=93.A4.C5.x=-1,y=-1..6.x+2y=3,2x-y=1.7.6.提示:由直线y=2x+a与y=-x+b都经过点A(-2,0),得a=4,b=-2.又得B(0,4),C(0,-2).BC=6,AO=2,S?ABC=12BC?AO=6.8.y=4x-3.提示:l经过(2,5)(1,1)两点.10.51.x,12,x,12,x=12.2.x,123.x,24.x,0,x,2,0?x?2.5.B.6.D.7.A.8.B.9.y=-12x+3.当x,6时,y,0;当x=6时,y=0;当x,6时,y,0.10.x,111.y1=-2x+1.当x,35时,y1,y2;当x=53时,y1=y2;当x,53时,y1,y2.12.(1)k=1,b=2;(2)略;(3)x,13.13.m,7k,1;(2)4对:l1:x-2y=9, 14.(1)-4,l2:x+3y=-11;l1:x-2y=8,l2:x+3y=-7;l1:x-2y=7,l2:x+3y=-3l1:x-2y=6,l2:x+3y=1.10.61.大于80 L2.x,1(kg)3.B4.D5.(1)y甲,5x+200(x?10),y乙=4.5x+225.(2)由(1),x=50时,y甲=y乙;10?x,50时,y甲,y乙;x,50时,y甲,y乙.6.(1)设A种商品销售x件,则B种商品销售(100-x)件.10x+15(100-x)=1350,x=30,100-x=70.(2)设该商店购进A种商品a件,则B种商品购进(200-a)件,由200-a?3a,得a?50.利润w=10a+15(200-a)=-5a+3 000.由于-5,0,当a=50时,w达到最大,最大值为-5?50+3 000=2 750元.即当购进A,B两种商品分别为50件和150件时,获利最大,最大利润为2 750元.7.3?b?68.(1)共3种方案:A:30,B:20;A:31,B:19;A:32,B:18;(2)y=700x+1x)=60 000-500x;(3)采用第1种方案获利最多,为45 000元. 200(50-第十章综合练习1.-12.,-13,,,13,=-13.3.2,73.4.B5.A6.C7.C8.(1)(3,0),(0,4);(2)是.9.略.10.(1)l1:y=2x-1,l2:y=6x+7;(2)l1与x轴交点坐标为(12,0),l2与x轴交点坐标为(-76,0),l1,l2与x轴围成的三角形底边长为53,l1,l2交于(-2,-5),底边上的高为5.S=12?53?5=256;(3)当x,-2时,l1的函数值大于l2的函数值.11.(1)y甲=300x,y乙=350(x-3);(2)乙旅行社;(3)当人数少于21人时,选乙旅行社合算,人数多于21人时,选甲旅行社合算.12.2+23.提示:点P在线段OA的垂直平分线PM上,M为PM与x轴的交点.OM=2,OP=4,PM=OP2-OM2=23.P(2,23),点P在直线y=-x+m上,所以m=2+23.13.(1)y=150-x;(2)由题意得y?2x.所以150-x?2x.解得x?50.又因为x?0,150-x?0,因此0?x?50.所以p=1 500x+2 000(150-x)=-500x+300 000,从而x=300 000-p500,于是0?300 000-p500?50,解得275 000?p?300 000.检测站1.y=-2x+7.2.,.提示:y随x增大而增大,可知k,0,图象与y轴交点在原点上方,故b,0.所以kb,0.3.A.4.C.5.画图略,x=23y=73..6.(1,3)7.1,k?2.提示:因为图象不过第一象限,所以2(1-k),0,12k-1?0.11.1第1课时1.平移方向平移距离全等.2.平行(或在同一条直线上)且相等3.9+2或3+24.4;30?,?5.C6.略7.略8.(1)92 cm2;(2)y=12(4-x)2第2课时1.AB=DE,AC=DF,BC=EF,BE=CF;?DEF2.16 cm.3.A4.C5.平移距离为56.四边形ABCA′与ACC′A′为平行四边形,理由略7.?BEF与?CGH都是等边三角形,则 BF=EF,GC=GH,?六边形EFGHIJ的周长=2(EF+FG+GH)=2(BF+FG+GC)=2BC=2.第3课时1.(3,-1);(3,-5);(1,-3);(5,-3)2.(a+3,b+2);(a-2,b-3)3.D4.A′(2,1),B′(1,-1,),C′(3,0),图略5.(1)平移距离为13;(2)B′(2,-1),C′(1,2);(3)P′(a+3,b+2)6.(1)D(-4,3);(2)A′(-4+2,1-2),B′(-1+2,1-2),C′(-1+2,3-2),D′(-4+2,3-2);(3)8-52.提示:重叠部分是一个矩形,它的长等于点B与D′的横坐标的差3-2,宽等于点D′与B的纵坐标的差2-2.11.2第1课时1.旋转中心,旋转方向,旋转角,全等2.相等;相等3.D4.B5.略6.327.(1)6-23(cm);提示:C′C=BD-BC′-CD=(6+63)-23-63=6-23;(2)30? 第2课时1.PB;60?2.?FDE或?EDC或?AFE;点D或点D或点F;逆时针或逆时针或顺时针;60 ?或120 ?或120 ?3.A4.D5.略6.(1)3;(2)BE?DF.提示:延长BE,交DF于点G,?DGE=?DAB=90?.7.四边形AHCG的面积不变为16,证明略.提示:证明?AHB??AGD. 第3课时1.2.提示:连A′B,OA=OA′,?A′OA=60?,?AOB=30?,?AOB??A′OB.A′B=AB=2.2.(1)10,135?.(2)平行.提示:A′C′?CB.A′C′=AC=BC.3.D.提示:连接OA,OB,旋转角为?AOB.4.2-33.提示:连AE.?B′AD=60?,?DAE=30?.DE=AD?13=33.CE=CD-DE=1-33.四边形ADEB′的面积=2?S?ADE=2?12?1?33=33.所求的蝶形面积=2-33.5.等边三角形.提示:?APD=60?,?PAD为等边三角形.?PDC=?PAE=30?,?DAE=?DAP-?PAE=30?,?PAE=30?,?BAE=60?,又CD=AB=EA,?ABE为等边三角形.6.PA=PB+DQ.提示:将Rt?ADQ绕点A顺时针方向旋转90?到Rt?ABE,Rt?ADQ?Rt?ABE,?AQD=?E,DQ=BE.由旋转角=90?,?BAE+?BAP+?PAQ=90?.又因?PAQ=?DAQ,?BAE+?BAD+?DAQ=90?.在Rt?ADQ 中,?AQD+?DAQ=90?,故?AQD=?BAE+?BAP=?EAP.又因?ABP=?ABE=90?,所以P,B,E在同一条直线上.?AEP为等腰三角形,PA=PE=PB+BE=PB+DQ. 11.3第1课时1.180?2.略3.454.B5.略6.BC?DE.理由略.7.延长AD至G,使DG=AD,连接BG.因为点D是AG,BC的中点,所以?ADC与?GDB关于点D成中心对称.?ADC??GDB.AC=BG,?G=?CAD.又因为AE=EF,?CAD=?AFE,而?AFE,?BFD,?G=?BFG,BG=BF.推出BF=AC. 第2课时1.中心对称图形2.对称中心;被对称中心平分3.A4.C5.(1)略;(2)无数条,过对称中心;(3)菱形、正方形、平行四边形;(4)中心对称性质.6.(1)连接AD,交BE于O.将?ABC绕O旋转180?;(2)是.O是对称中心.7.(1)(2)(3)点H是矩形ABEF与矩形KEBC的对称中心,也是矩形ACDG与矩形KFGD的对称中心.第十一章综合练习1.41 ?;平行;相等2.ED;103.48 cm24.?B;?DAE;点A;?BAD;35.60 ?6.120?7.B8.C9.B10.略11.(1)向左平移3个单位长度,向上平移2个单位长度.平移距离13单位长度;(2)A′(-2,4),B′(-5,1)12.(1)60?;(2)3.13.6+23.提示:?B′AC=60?-15?=45?,?AB′D是等腰直角三角形.由AD=22,得AB′=2,AB=AB′=2,BC=23,?ABC的周长=2+4+23=6+23.14.略15.不变,1.16.(1)?AGD=?D+?ACD=30?+120?=150?.(2)旋转角?AFE=?DEF=60?时DE?AB.17.(1)提示:?ABQ??ACP,因而?ABQ可以看作是由?ACP绕点A旋转得到的;(2)BQ=CP仍成立;(3)BQ=CP仍成立.18.(1)不能;(2)以正方形对角线交点为旋转中心逆时针旋转90?. 检测站1.水平;82.35?;6;123.D4.略5.(1)略;(2)如以点C为旋转中心顺时针旋转90?,或以点C为旋转中心逆时针旋转90?,等.6.(1)四边形ABC′D′是平行四边形,提示:证明AB瘙綊C′D′;(2)当移动距离为3时,四边形ABC′D′是菱形,提示:设BB′=x,由BC′=C′D′得BB′2+B′C′2=C′D′2,得x2+1=22.当移动距离为133时,四边形ABC′D′是矩形.提示:由BC′?C′D′得BC′2+C′D′2=BD′2,得x2+1+22=(x+3)2. 总复习题1.平行四边形.2.12 cm,20 cm.3.平行四边形.4.2-15.A,50?,等腰三角形.6.c,bc,ac,ab.1)163;(2)2;7.C.8.D.9.D.10.D.11.提示:通过三角形全等关系推出,GE=FH,GF=EH.12.((3)2+3;(4)192.13.(23,23),(2,-2).14.37.5 cm2.15.提示:梯形BCC′D′面积有两种算法:一是12(BC+C′D′)?BD′=12(BD′)2=12(a+b)2;一是S?ACC′+S?ABC+S?AC′D′=12c2+12ab+12ab.由此推出a2+b2=c2.16.(1)80 km/h和60 km/h;(2)240+34?240=420 (km);(3)160 km.17.(1)购进甲种商品40件,乙种商品60件;(2)购进甲种商品20件,乙种商品80件,总利润最大,最大利润900元.18.(1)x=6;(2)-2?x,6;(3)-3k+b,-7k+b.19.(1)A(-2,-1-3);(2)A1(0,1+3),B1(1,1),C(-1,1);(3)A9(16,1+3),B9(17,1),C9(15,1).20.32.提示:x2+1+(x-3)2+4=(x-0)2+12+(x-3)2+22,在直角坐标系中,上或右端可视为x轴同侧两点A(0,1)和B(3,2)分别与x轴上的点P(x,0)的距离PA,PB的和.作点A关于x轴的对称点A′(0,-1),则线段A′B的长为PA+PB的最小值.由勾股定理,A′B=32+32=32.21.45?.提示:把Rt?CDQ绕点C旋转到Rt?CBE,其中E在直线AB上.证明?CQP??CEP. 22.提示:设批发市场两次卖出的白糖价格分别为x,y(单位:元/kg),A,B分别是甲、乙两超市购进白糖的平均价格,则根据题意: A=(2?1 000)?(1 000x+1 000y)=2xyx+y,B=(1 000x+1 000y)?(2?1 000)=x+y2.B-A=x+y2-2xyx+y=(x+y)2-2xy2(x+y)=x2+y22(x+y),0.所以,乙超市购进白糖的平均价格高些,甲超市的进货方式比较合算.23.提示:A,B两公司有化肥数量恰好等于张村、李庄所需化肥数量.设A公司化肥运往张村x吨,则运往李庄(200-x)吨,B公司化肥运往张村(220-x)吨,运往李庄,280-(200-x),吨=(80+x)吨,需要总运费设为y元.据题意,得y=20x+25(200-x)+15(220-x)+22(80+x)=2x+10 060,0?x?200.当x=0时,y最小=10 060.所以运费最少为10 060元,只要从A公司运往李庄200吨,从B公司运往张村220吨,运往李庄80吨,即达到运费最少.总检测站1.3 cm2.2.?B=90?或AB?CD等.3.5,25.4.D.5.A.6.C.7.AC=EH+FG.提示:过点H 作HK?AB,交AC于K,得 AEHK,KC=FG,AK=EH.8.4.9.90?,等腰直角三角形.10.(1)AC=13,BC=5,AB=4,AC2+BC2?AC2,?ABC不是直角三角形.CD=13,AD=26,AC2+CD2=AD2,?ACD是直角三角形;(2)D,C,B不在一条直线上,因?ACD+?ACB?180?;(3)45?.11.(1)设l1:y1=k1x+2,由图象知17=500k1+2,解得k1=0.03.所以y1=0.03x+2(0?x?2 000).类似地可求出y2=0.012x+20(0?x?2 000).(3)看法不对.两灯同时点亮时,当0?x?1 000时,白炽灯省钱;当x=1 000时,两灯费用相同;当1000,x?2 000时,节能灯省钱.12.结论(1)不成立.结论(2)(3)成立.提示:证明?ABG??CBE.1..??,,??′ ???αβ??????S?ACC′。

八年级下册数学作业本答案

八年级下册数学作业本答案

八年级下册数学作业本答案第一章线性方程与不等式1.1 线性方程1.x+3=8的解为x=5.2.2x+5=15的解为x=5.3.−3x+7=4的解为x=1.4.4x−9=−5的解为x=1.5.−2(x+3)=10的解为x=−8.1.2 一元一次方程1.解方程3(x−3)−2(x+2)=1,得到x=6. 1.3 一元一次不等式1.解不等式3x−5<6,得到 $x < \\frac{11}{3}$.2.解不等式 $4(x + 2) \\geq 12$,得到 $x \\geq 1$.3.解不等式 $-2x + 4 \\leq 10$,得到 $x \\geq -3$.第二章三角形2.1 三角形的性质1.判断以下陈述是否正确:–三个角的和等于180度√–两边之和大于第三边 ×–两角的和小于180度√2.若一边是另一边的两倍,两边夹角为60度,求另一边和两个锐角的度数。

–另一边为2.5,两个锐角的度数分别为60度和120度。

2.2 三角形的面积1.求下列三角形的面积:–边长分别为3、4、5的直角三角形的面积为6。

第三章分式3.1 分式的定义与性质1.化简分式 $\\frac{6x^2}{8x}$,得到$\\frac{3x}{4}$.2.求值 $\\frac{1}{2} + \\frac{2}{3}$,得到$\\frac{7}{6}$.3.2 分式的四则运算1.计算 $\\frac{3}{4} + \\frac{1}{2}$,得到$\\frac{5}{4}$.2.计算 $\\frac{5}{6} - \\frac{2}{3}$,得到$\\frac{1}{6}$.第四章平面直角坐标系4.1 直角坐标系1.在直角坐标系中,点A(2, 3)和点B(4, -1)的距离为4.2.在直角坐标系中,点C(-3, -4)和原点的距离为5.4.2 坐标运算1.求线段的中点:线段AB的坐标为A(1, 2)和B(4, 6),中点坐标为M(2.5, 4).第五章长方体与表面积5.1 长方体的定义和性质1.长方体的底面积为20平方单位,高为4个单位,求长方体的体积,得到80立方单位.5.2 长方体的表面积1.长方体的长、宽、高分别为3、4和5,求长方体的表面积,得到94平方单位.第六章成比例与扩比6.1 成比例的定义和性质1.如果$\\frac{a}{b} = \\frac{m}{n}$,x=5,x=2,x=10,求a的值为1.6.2 扩比的性质1.找出下列数的扩比: $\\frac{3}{4}$,$\\frac{3}{8}$,$\\frac{3}{6}$.第七章圆的面积与周长7.1 圆的定义与性质1.圆的周长和直径的关系是周长等于直径的乘以pi.7.2 圆的面积1.求半径为6的圆的面积,得到 $36\\pi$.以上是八年级下册数学作业本的答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档