景观格局分析过程
景观生态学原理——景观格局与分析
景观生态学原理|——景观格局与分析景观的三个特征:1、格局:生态系统的大小、形状、数量、类型及空间配置相关的能量、物质和物种的分布2、功能:景观单元之间的相互作用,生态系统组分间的能量流动、物质循环和物种流3、动态:斑块镶嵌结构与功能随时间的变化3.1 景观发育景观格局的形成,受到生物与非生物两个方面的影响3.2 景观要素景观要素包括景观斑块、廊道、基质,以及附加结构3.2.1 斑块(patch)空间的非连续性以及内部均质性1. 斑块起源主要因素:环境异质性(environmental heterogeneity)自然干扰(natural disturbance)人类活动(human activity)1、环境资源斑块由于环境异质性导致,稳定,与自然干扰无关,由于环境资源的空间异质性和镶嵌规律2、干扰斑块由于基质内的各种局部干扰引起,具有最高的周转率,持续时间最短3、残存斑块是动植物群落受干扰后基质内残留的部分4、引进斑块人们把生物引入某一地区后形成的斑块1)种植斑块2)聚居地2. 斑块面积1、对物质和能量的影响2、对物种的影响1)岛屿,面积效应——生境多样性(habitat diversity)——物种多样性2)陆地,基质异质性高3. 斑块形状斑块的形状和走向对穿越景观扩散的动植物至关重要1、圆形和扁长形斑块,内缘比(interior ratio)2、环状斑块3、半岛4. 斑块镶嵌相似的斑块容易造成扩散不同类型的斑块镶嵌,能够形成对抗干扰的屏障、5. 斑块化(缀块性,patchiness)与斑块动态1、斑块化机制斑块化:斑块的空间格局及其变异,大小、内容、密度、多样性、排列状况、结构、边界特征对比度(contrast):斑块之间以及斑块与基质之间的差异程度空间异质性(spatial heterogeneity):通过斑块化、对比度以及梯度变化所表现出来的空间变异性生物感知(organism-sensed):生物对于斑块化的反应最小斑块化尺度(smallest patchiness scale):粒度(grain)最大斑块化尺度(largest patchiness scale):幅度(extent)斑块化动态:斑块内部变化和斑块间相互作用导致的空间格局及其变异随时间的变化斑块化产生的原因:物理的和生物的,内部和外源的2、斑块化的特点1)可感知2)内部结构,时空等级性,大尺度斑块是小尺度斑块的镶嵌体3)相对均质性4)动态特征5)生物依赖性6)斑块的等级系统(patch hierarchy)7)等级间的相互作用8)斑块敏感性(patch sensitivity)9)斑块等级系统中的核心水平:最能集中体现研究对象或过程特征的等级水平,相应的时空尺度称为核心尺度(focal scale)10)斑块化原因和机制的尺度依赖性3、斑块化的生态与进化效应3.2.2 廊道(corridor)廊道是线性的景观单元,具有通道合阻隔的双重作用1. 廊道的起源干扰廊道、残存廊道、环境资源廊道、种植廊道、再生廊道2. 廊道的结构特征1)曲度:廊道的弯曲程度,影响物质、能量、物质的移动速度2)宽度3)连通性:廊道单位长度上间断点的数量表示4)内环境:较大的边缘生境和较小的内部生境3. 廊道分类1)线状廊道:全部由边缘物种占优势的狭长条带2)带状廊道:较丰富的内部种的内环境的较宽条带3)河流廊道:分布在河流两侧3.2.3 基质(matrix)1. 基质的判定1)相对面积2)连通性3)控制程度4)3个标准结合2. 孔隙度和边界形状孔隙度(porosity):单位面积的斑块数目3.2.4 附加结构(add-on)异常景观特征,在整个景观中只出现一次或几次的景观类型3.3 景观格局特征目的:从无序的斑块镶嵌中,发现潜在的有意义的规律性3.3.1 斑块-廊道-基质模式(patch-corridor-matrix model)3.3.2 景观对比度1. 低对比度结构自然形成的,热带雨林,相邻景观要素彼此相似2. 高对比度结构自然、人工3.3.3 景观粒径(landscape grain)粗粒(coarse grain)和细粒(fine grain)生物体粒径(home range):生物体对其敏感或利用的区域粒径大小取决于整个景观的尺度3.3.4 景观多样性(landscape diversity)由不同类型生态系统构成的景观在格局、功能和动态方面的多样性或变异性,反映景观的复杂性程度1)斑块多样性:数量、大小、形状的多样性2)类型多样性:景观类型的丰富度3)格局多样性:景观类型空间镶嵌的多样性3.3.5 景观异质性(landscape heterogeneity)多样性——斑块性质的多样化异质性——斑块空间镶嵌的复杂性,景观结构空间分布的非均匀性、非随机性1)空间异质性2)时间异质性3)功能异质性梯度分布镶嵌结构3.4 生态交错带与生态网络3.4.1 边缘效应与生态交错带景观单元之间的空间联系:生态交错带、网络结构1. 边缘效应(edge effect)边缘地带由于环境条件不同,可以发现不同的物种组成和丰富度边缘物种:仅仅或主要利用景观边界的物种内部物种:远离景观边界的物种2. 生态交错带(ecotone)描述物种从一个群落到其界限的过渡分布区,由两个不同性质的斑块的交界及各自的边缘带组成生态过渡带(transition zone)景观边界(landscape boundary)1)特征:生态应力带(tension zone)、边缘效应、阻碍物种分布(半透膜)、2)描述:结构:大小、宽度、形状、生物结构、限制因素、内部异质性、密度、分形维数、垂直性、外形或长度、曲合度功能:稳定性、波动、能量、功能差异、通透性、对比度、通道、过滤、屏障、源、汇、栖息地3)尺度效应:某一尺度上可以明辨的交错带在另一尺度上可能模糊不清4)气候变化:更为敏感,迟滞(lag)5)生态交错带与生物多样性:农业生产把异质的自然景观变成大范围同质的人工景观,消灭了自然生态交错带,扩展了人为生态交错带3.4.2 生态网络与景观连通性生态网络(network)将不同的生态系统相互连接起来两类物种:生活在网络包围的景观要素内部的物种,廊道是一种障碍;生活在廊道内、沿着廊道迁移的物种1. 廊道网络由节点(node)和连接廊道构成,分布在基质上形式:分支网络(branching network):树状的等级结构环形网络(circuit network):封闭的环路结构1)廊道网络的结构特征网络交点、网状格局、网眼大小、网络结构的决定因素(历史和文化的)2)廊道网络描述连通性:在一个系统中所有交点被廊道连接起来的程度,指示网络的复杂度,用r指数方法来计算r指数:连接廊道数与最大可能连接廊道数之比r=L/Lmax=L/3(V-2),V为节点数环度:用α指数衡量,表示能流、物流、物种迁移路线的可选择程度。
景观格局分析方法共40页文档
一、景观格局(景观空间格局)的概念 景观要素在景观空间内的配置和组
合形式。
二、景观格局的基本类型
1)规则或均匀分布格局 2)聚集(团聚)型分布格局 3)线状格局 4)平行格局 5)特定的组合或空间联结格局
1)规则或均匀分布格局:指某一特定类型景
观要素间的距离相对一致的一种景观。
美国华盛顿 洲贝克山山 坡针叶林中 砍伐斑块的 规则分布格 局
斑块形状指数D:通过计算某一斑块形状与相 同面积的圆或正方形之间的偏离程度来测量其 形状复杂程度。
以圆为参照: DP/2 A
以正方形为参照: D0.25P/ A P为斑块周长;A为斑块面积。斑块的形状
越复杂或越扁长,D的值就越大。
B: 景观要素斑块分维数
分形维数(fractal dimension) 分形:不规则的非欧几里德几何形状可通称为分
形。组成部分以某种方式与整体相似的形体称分 形。 分形维数或分维数:不规则几何形状的非整数维 数。
对于单个斑块:
PkAD/2
D2ln(P)/ln(A) k
P是斑块的周长,A是斑块的面积,D是分维 数,k是常数。对于栅格景观而言,k=4。一 般地说,欧几里德几何形状的分维为1,具有 复杂边界斑块的分维则大于1,但小于2。
二 景观格局分析的基本步骤
以研究目的和方案为指导,收集和处理景 观数据
将真实的景观系统转换为数字化的景观,选 用适当的格局研究方法进行分析
✓栅格化数据
最后对分析结果加以解释和综✓合矢量化数据
收集景观数据
野外考察、测量(获得植被、森林、土壤等 相关资料)
遥感数据:航空遥感 卫星遥感
景观格局分析图示
2)聚集(团聚)型分布格局
景观生态学Chapter 6 景观格局分析
4)数据类型选择
*数据选择的主要方式: 1) 目标导向型方式:据研究目标涉及的时空尺度 要求进行数据选择; 2) 对象导向型方式:据研究对象的时间与空间分 布特征进行数据选择; 3) 方法导向型方式:据方法对数据特性的要求进 行数据选择。
4)数据类型选择
*数据类型选择的核心问题:尺度效应
1) 数据特性的直接应用:不同传感器数据的对比分析; 2) 结合其他方法进行实验:将尺度转换方法结合到遥 感数据应用中(分辨率转换); 3) 研究单元的确定:分辨率实验(窗口转换);
D:SPOT数据(5~15m分辨率)
E:QUICKBIRD(IKNOS)(2m分辨率)
2) 航空相片:一般为1~5m分辨率
4)数据类型选择
*遥感数据选择需要考虑的几个数据属性 1) 类型:遥感平台类型、数据表达类型 2) 范围:地表覆盖范围、目标客体涵盖范围 3) 分辨率水平:目标细节的表现水平 4) 时段:数据获取的时间、不同时段的分布情况
景观生态分类:实际就是从功能着眼,从结构着手,
对景观生态系统类型的划分。
一、景观生态分类
景观生态分类的原则: 综合性原则、主导因子原则、
实用性原则、等级性原则等
主要景观分类系统介绍:生态-土地分类、景观性质分
类、生态流的景观分类、人类影响强度的景观分类
案例研究:黄河三角洲湿地景观分类、毛乌素沙地景观
信息提取(解译)
景观分布图
景观格局分析
为何进行景观格局分析?
景观格局分析
可以数量化地分析景观要素的结构特征及其相
互间的空间分布关系;
在看似简单无序的斑块镶嵌景观上,发现潜在
的、有意义的规律性及其形成机制;
从而成为进一步研究景观功能和动态的基础。
扬州城市绿地景观格局分析
扬州城市绿地景观格局分析扬州是江苏省南部重要的历史文化城市之一,也被誉为“江南园林之乡”。
其城市绿地景观是城市建设的重要组成部分,具有丰富的地域特色和历史底蕴。
本文将从绿地类型、分布格局、数量及利用现状等方面进行分析。
一、绿地类型扬州市的绿地主要分为公园、绿化带和广场三类。
公园是城市中的绿地主力军,主要包括瘦西湖公园、五云山国家森林公园、邗江公园等,它们不仅是看风景和休闲娱乐的场所,也是城市人民开展各种文体活动的基地。
绿化带主要分布在城市的主要道路两侧,充当交通绿化和城市缓冲带的作用。
比较典型的有南湖绿化带、京杭大运河绿化带等。
这些绿化带给城市带来了自然气息,使得城市的生态环境更为完整。
广场是城市公共空间的重要组成部分,扬州市内的各大广场布局合理、设计巧妙,具有很强的人文气息。
比较有代表性的有五泄广场、文昌阁广场等。
除了这三类绿地,扬州市还有一些耸立于城市中心的单体公园和小型绿地,其数量虽然不多,但却给城市增添了不少绿意和活力。
二、绿地分布格局扬州市内的绿地分布比较均衡,南北呈长条状分布。
从城市规划的功能布局来看,绿地串联形成了城市的主要交通路网、景观线路和活动场所。
瘦西湖公园位于市区西北部,是扬州市最大的城市公园,也是扬州市最具特色的自然风景区之一。
公园中心是瘦西湖湖泊,周围山峦起伏,仙境般的自然风光令人流连忘返。
园内景点众多,包括天鹅湖、岛屿、山洞、庙宇、园林建筑等。
得天独厚的地理条件、优美的自然景观以及悠久的历史文化底蕴,使得瘦西湖公园成为扬州市的文化名片和旅游胜地。
南湖位于市区中心,是扬州市的又一名胜古迹,也是拍摄旅游明信片的热门之地。
南湖周边有南门、扬州博物馆、文昌阁广场、乾隆陵等著名景点,也是市民休闲娱乐的好去处。
还有京杭大运河绿化带、邗江公园、五云山国家森林公园等著名的城市绿地,它们不仅为城市提供了丰富的自然景观和人文底蕴,也承载着城市居民的生活情感和精神需求。
三、绿地数量据统计,扬州市内的绿地总面积达到4000余公顷,其中公园和广场的面积约占一半,绿化带的面积约占三成左右,而小型绿地和单体公园的面积占比较小。
景观安全格局分析
景观安全格局分析景观安全格局分析俞孔坚于1995年提出了景观⽣态规划的⽣态安全格局⽅法。
该⽅法把景观过程(包括城市的扩张,物种的空间运动,⽔和风的流动,灾害过程的扩散等)作为通过克服空间阻⼒来实现景观控制和覆盖的过程。
要有效地实现控制和覆盖,必须占领具有战略意义的关键性的空间位置和联系。
这种战略位置和联系所形成的格局就是景观⽣态安全格局,他们对维护和控制⽣态过程具有异常重要的意义。
要根据景观过程之动态和趋势,判别和设计⽣态安全格局。
不同安全⽔平上的安全格局为城乡建设决策者的景观改变提供了辩护战略。
因此,景观⽣态安全格局理论不但同时考虑到⽔平⽣态过程和垂直⽣态过程,⽽且满⾜了规划的可辩护要求。
景观安全格局理论尤其在把景观规划作为⼀个可操作、可辩护的⽽⾮⾃然决定论的过程,和在处理⽔平过程诸⽅⾯显⽰其意义。
在许多情况下,安全格局组分并不能直接凭经验识别到。
在这种情况下,对景观战略性组分的识别必须通过对⽣态过程动态和趋势的模拟来实现。
安全格局组分对控制⽣态过程的战略意义可以体现在以下3个⽅⾯:(1)主动优势(initiative):安全格局组分⼀旦被某种⽣态过程占领后就有先⼊为主的优势,有利于过程对全局或局部的景观控制。
(2)空间联系优势(co-ordination):安全格局组分⼀旦被某种⽣态过程占领后有利于在孤⽴的景观元素之间建⽴空间联系。
(3)⾼效优势(efficiency):某安全格局组分⼀旦被某⽣态过程占领后,就使⽣态过程控制在全局或局部景观时,在物质、能量上达到⾼效和经济。
从某种意义上讲,⾼效优势是SP的总体特征,它也包含在主动优势和空间联系优势之中。
以⽣物保护为例,⼀个典型的安全格局包含以下⼏个景观组分:①源(source):现存的乡⼟物种栖息地,他们是物种扩散和维持的元点。
②缓冲区(buffer zone):环绕源的周边地区,是物种扩散的低阻⼒区。
③源间联接(inter-source linkage):相邻两源之间最易联系的低阻⼒通道。
景观生态学4景观格局分析方法
景观生态学4景观格局分析方法
1.指数分析法
指数分析法是一种定量分析景观格局的常用方法,它通过计算各种指数,对景观的面积、形状、分布和连通性等进行描述。
常用的指数包括斑块面积指数、数量指数、边缘密度指数、形状复杂度指数等。
这些指数可以帮助研究者了解景观的整体特征,并对不同景观类型的生态功能进行比较。
2.分级分析法
分级分析法是一种将景观格局分为不同层次进行分析的方法,它能够揭示景观格局的空间结构和功能组织。
通过对景观类型、斑块大小和形状等进行划分,可以得到不同层次的景观格局数据。
研究者可以进一步探讨不同层次景观格局对生物多样性、生态过程和生态系统服务等的影响。
3.空间模型分析法
空间模型分析法是一种基于数学模型对景观格局进行建模和分析的方法。
常用的模型包括斑块扩散模型、斑块连接模型和斑块生长模型等。
这些模型可以模拟不同景观格局对种群扩散、基因流动和景观连通性等生态过程的影响,并预测未来景观格局的变化趋势。
4.地理信息系统(GIS)分析法
地理信息系统(GIS)分析法是一种基于空间数据的综合分析方法,它将景观格局与其他环境变量进行集成分析。
研究者可以通过GIS软件对景观格局数据进行处理、可视化和空间分析,进一步揭示景观格局与环境
因素的相互关系。
例如,可以通过GIS分析揭示不同土地利用类型对景观格局的影响,并预测其对生态系统功能的影响。
总之,景观生态学的四种分析方法,指数分析法、分级分析法、空间模型分析法和地理信息系统分析法,共同揭示了景观格局对生态过程的影响,为生态保护和可持续发展提供科学依据。
湿地生态系统景观格局分析
湿地生态系统景观格局分析一、引言湿地是一种面积巨大、特殊生物群落的生态系统,是地球上一种重要的生态系统形式。
在过去的几十年中,湿地生态系统已经受到了广泛的关注。
湿地生态系统作为气候稳定、水循环和污染净化等方面的关键因素,其生态价值不断显现。
为了更好地保护和合理利用湿地资源,对湿地生态系统景观格局的分析具有重要意义。
二、湿地生态系统景观格局分析(一)景观格局概念景观可理解为由不同特征的景观元素构成的空间单元,由此形成的空间结构(Wu et al., 2019)。
景观格局是指在空间上、在时间上或在两者的交汇处表现为某种结构或模式的景观组成部分之间的相互关系的总和(Liu et al., 2017)。
(二)湿地生态系统景观分类1.湿地生态系统的内部空间关系湿地的空间关系可以分为四类:边缘带,典型带,中带和深水区。
2.湿地生态系统的外部空间关系在湿地周围的区域被称为湿地流域。
湿地的景观格局研究旨在探索湿地流域与湿地的关系。
(三)湿地生态系统景观格局与生态功能关系景观格局对于生态系统的功能和稳定性具有很大影响。
特别是对于湿地这种生态系统,将湿地分割为不同的景观单元,可以更好地评估其生态系统的状况和维持湿地生态系统的功能。
(四)湿地生态系统景观格局影响因素周围的人类活动、自然因素、水文因素和物理因素等因素对湿地生态系统的景观格局产生了深远的影响。
三、湿地景观格局分析方法(一)遥感图片分析遥感技术是研究湿地景观格局的有效工具。
遥感图像处理软件能够识别、分类和分割遥感图像,从而获得湿地生态系统景观格局。
(二)GIS分析GIS软件在湿地生态系统景观格局研究中的应用日益增多。
该软件可以处理和分析地理数据,并将其转化为相关的空间数据。
四、湿地生态系统景观格局的重要性湿地生态系统景观格局非常重要,这是由湿地的特殊环境条件所决定的。
湿地生态系统是生命的“摇篮”,在其中诞生了众多的生命形式。
尤其是在全球变暖的背景下,湿地对于气候调节和保护生态多样性具有重要作用。
景观生态学-4格局与过程
景观中的动物会通过采食、排泄等方式携带大量物质和能量, 其不同斑块间的运动和长距离迁徙造成物质和能量转移。 动物转运的养分会使得养分库的空间分布发生变化,加速养分 循环,从而影响景观的生产过程。 29
景观中的植物运动
媒介传播方式和传播距离
–风播植物 –水播植物 –动物传播植物 –人类传播:其一是有目的的移 植或播种;其二是人类无意识 的传播
30
3.3 干扰传播
31
A "Simple" Landscape Model, An interesting heuristic toy
Forest fire spread model (MetaFor) incorporates a physical template (temperature and moisture gradients); the biotic processes of establishment, growth (aging), and mortality; and a fire regime.
景观是一个生态空间
生物要素与环境要素相互作用与活动变化的舞台,表现出 一定的空间形态,空间分布现象和空间运动规律
生态过程是一个空间过程
非空间过程: 空间过程:
6
两大类景观指标
组成(非空间性):
– 斑块类型 – 数量/比例
景观构型(空间性)
– – – – 空间排列方式 斑块的形状 对比度 连接度
设置多条样线 变换尺度 信息指标计算
方法1-游程法
11
例子:法国海岸景观异质性的线性测度
12
某一景观要素在线段上出现的频率f,为线段数量除 以剖面线分割成的线段总数,计算公式为:
景观格局分析
案例分析
对于每一类人工的景观要素则需要考 察是否每类用地都处于土地利用适宜性分 析所反映的适宜用地范围内并且分布特征 是否与其所对应的活动特征相吻台.
3 多类别景观要素的耦合研究
这一研究是将所有类别景观要素的空间 结构进行叠加考察各类要素结构间彼此重 叠或相互之间可能产生影响的部分并进行 必要的结构调整.
4关键景观节点识别
结构调整一般是针对所有功能冲突部位
和不良影响范围来进行的,但调整的结果 并不一定能消除所有的冲突点,并且往往 在消除原有冲突点的同时又会产生一些新 的冲突点.因此对于结构调整无法避免的 冲突点应标注为关键景观节点 , 以便在接
下来的规划设计中进行重点设计,通过局 部景观的详细设计来减少或避免冲突.
(2)考察景观要素的类型. 对于每一景观要素组合应进一步区分具体的要素粪型以便
考察同类要素的空间形态分布及等特征的合理性.如对于自然 系统而言应根据植被生境状况等进行进一步的要素分类,而对 于人工系统而言,要素分类主要针对人类的各种社会活动来进 行.
ቤተ መጻሕፍቲ ባይዱ
2 单一类别景观要素的结构研究
对于每一类自然景观要素都可以按照 基本的景观优化格局来衡量其结构的台理 性,通过规划调整来实现每一类景观要素 基本具有生态台理的空间结构.
景观的概念
规划上景观的内容
相互关系
景观格局的分析方法
1 定性分析 2 定量分析
格局指数法 空间统计学法 3 方法比较和评价
景观格局优化
分析方法与步骤
1 景观要素识别与工作分类
• 现状景观要素的识别可综合用地现状图和 植被现状图中的类型分布,并通过必要的 现场勘察核实来进行.具体的工作分类通 过两个步骤来完成。
(1)考察景观生态流 通过分祈跟踪各种景观生态流,可以从众多的景观要素中
景观格局分析报告
景观格局分析报告一、前言:景观是由不同类型、形状、大小的斑块在空间上镶嵌形成的,它们以基质为背景,直接或间接地通过廊道连接。
景观格局是某个时空尺度上斑块的空间分布,是由各种物理、生物和社会因素相互作用的结果。
它的分析方法是用来研究景观组成结构和空间配置关系的方法,是景观生态学的基本研究内容,是研究景观功能和动态的基础。
目前,景观空间格局分析方法在土地利用、自然保护、区域规划、国土整治、公园、城市绿地等我们调查内容位于老校区三号区域,包括宿舍楼1-5舍和第三行政楼等主要建筑及其周围环境景观。
区域中有较多绿化斑块,但总体绿化性状况适中。
斑块划分的大类有:学生宿舍,办公楼,绿化设施,绿化小品。
该地块包括的斑块主要有:学生宿舍,办公楼,绿化设施,绿化小品,公共设施五种,其中绿化设施细分为:乔草绿地、乔草灌绿地、灌木绿地、灌草绿地以及独立树,未发现水体以及未利用地。
二、实验目的:通过景观格局的分析,掌握运用常用景观指数的计算方法,分析所测区域的景观状况,并且运用所学知识提出改进景观格局的建议三、实验方法、器具--方法:调查法、查询资料(图书馆)--器具:卷尺和皮尺、记录本、相机4.实验数据和结果分析:1、类型的划分:斑块类型老校区(3号)区域景观斑块类型1、景观面积比:反映景观组分所占比例及土地利用的平衡性。
公式: k=A斑块面积比 k A 为景观组分k 的面积, A 景观总面积说明:上表表示每个斑块在整个地块中所占的比例,以百分数来记。
由表可知宿舍所占的景观面积较大,是主要的景观斑块。
绿地和小品的比例都较小,所以各景观组分所占比例差异较大,土地利用的平衡性一般。
2、多样性指数:反映景观类型的多少和各景观类型做占比例的变化。
由实验一可知(计算过程见实验一报告):0.97445H =3、优势度指数:反映一种或几种景观要素支配景观格局的程度。
由实验一可知(计算过程见实验一报告)max 1ln()ln(7)0.974450.97146nk k i D H p p D ==+=-=å4、景观均匀度指数:是指反映景观中各斑块在面积上分布的不均匀程度。
生态环境中的景观格局分析
生态环境中的景观格局分析随着经济进步和人口增长,人类对自然环境的影响越来越深远。
近年来,全球发生的自然灾害频繁,反映出环境问题的严重性。
在人类的发展过程中,环境永远是一个最为重要的问题,生态环境保护已成为我们当前必须面对的严峻挑战。
而生态环境中的景观格局是影响生态系统运作的重要因素。
本文将从景观格局的定义、作用和特征等方面进行分析,并对生态环境中的景观格局进行探讨。
一、景观格局的定义景观格局是指在一定空间尺度和时间尺度内,自然和人为因素所共同构成的环境格局的总体表现。
它是由自然视觉影响和经济、社会、文化和心理等多个因素相互交织而形成的。
总体来说,景观格局是指一个区域内由空间形态、物质组成和功能性质等因素共同构成的总体视觉和生态特征,包括了该区域内的地貌、水文、生物、土壤等因素。
它反映了该区域内的自然和人类活动对环境的影响、演变和发展,是一个地区的生态形态的总和。
二、景观格局的作用1.反映生态系统功能景观格局是生态系统运作的重要因素之一,影响着生态系统的结构、功能和稳定性。
一个良好的景观格局能够反映出该区域的生态系统功能、物种多样性、景观生态安全等重要信息。
2.影响土地利用景观格局对土地利用的影响非常显著。
一个良好的景观格局将促进该区域内土地的进行高效合理利用,保护自然生态价值和生产环境。
3.提高生态环境质量景观格局对生态环境质量的影响是非常显著的。
一个良好的景观格局可以提高环境质量,提升该区域内的生态服务能力,例如水源保护、气候调节、土地保持和生物多样性维持等。
三、生态环境中的景观格局特征1.空间尺度多变景观格局的尺度是影响其特征的重要因素之一。
在不同的尺度下,景观格局具有不同的特征。
小尺度下,景观格局的变化具有相对较大的空间异质性;中尺度下,景观格局的特征主要是林地和人造景观;大尺度下,景观格局的特征由峡谷、平原和山地所共同构成。
2.地域差异显著在不同的地域条件下,景观格局具有不同的生态形态。
景观生态学4景观格局分析方法
第二节 景观格局分析的基本步骤
一 景观格局研究的目的
确定产生和控制空间格局的因子及其作用机制; 比较不同景观镶嵌体的特征和它们的变化; 探讨空间格局的尺度性质; 确定景观格局和功能过程的相互关系; 为景观的合理管理提供有价值的资料。
二 景观格局分析的基本步骤
以研究目的和方案为指导,收集和处理景 观数据
指不同的景观要素类型由于某种原因经 常相联结分布。空间联结可以是正相关,也 可以是负相关。
如:稻田总是与河流或渠道并存是正相关空间联结的实 例;平原的稻田区很少有大片林地出现是负相关的实例。
三、景观格局分析概念
用来研究景观结构组成特征和空间配 置关系的分析方法。
通过研究空间格局可以更好地理解生态学过程。
统计学方法的局限性和非确定性;采用这些方法的人的实际操作水平和对 结果的解译能力。
景观空间分析中的误差
这些不同阶段所产生的误差还可能相互作用,不断放大,即
所谓的误差繁衍(error propagation)现象。
多层空间数据分析的精确度
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
以正方形为参照: P为斑块周长;A为斑块面积。斑块的形状
越复杂或越扁长,D的值就越大。
B: 景观要素斑块分维数
分形维数(fractal dimension) 分形:不规则的非欧几里德几何形状可通称为分
景观生态学—格局、过程、尺度与等级
景观生态学—格局、过程、尺度与等级邬建国高等教育出版社2000年12月Landscape Ecology Pattern,Process,Scale and Hierarchy,Higher Education Press景观生态学中的基本概念起源与发展起源于中欧和东欧,可追溯到20世纪30年代。
德国区域地理学家Troll于1939年创造了“景观生态学”一词,并将其定义为研究某一景观中生物群落只见错综复杂的因果反馈关系的科学。
Naveh和Lieberman(1984)继承并发展了欧州景观生态学的概念,提出“景观生态学是基于系统论、控制论和生态系统学之上的跨学科的生态地理科学,是整体人类生态系统科学的一个分支。
”在北美,直到20世纪80年代初才开始逐渐兴起。
如今,等级理论、分形理论、渗透理论、尺度观点以及一系列空间格局分析方法和动态模拟途径在景观生态系中的广泛应用,为该科学增添了新内容和新特点。
研究范畴研究对象和内容(1)景观结构:景观组成单元的类型、多样性及其空间关系。
(2)景观功能:景观结构与生态学过程的相互作用,或景观结构单元之间的相互作用。
主要体现在能量、物质和生物有机体在景观镶嵌体中的运动过程。
(3)景观动态:景观在结构和功能方面随时间的变化。
也就是景观结构单元的组成成分、多样性、形状和空间格局的变化,以及由此导致的能量、物质和生物在分布与运动方面的差异。
研究的重点:(1)空间异质性或格局的形成和动态及其与生态学过程的相互作用;(2)格局—过程—尺度之间的相互关系;(3)景观的等级结构和功能特征以及尺度演绎问题;(4)人类活动与景观结构、功能的相互关系;(5)景观异质性(或多样性)的维持和管理。
格局、过程、尺度格局(Pattern)是指空间格局,广义地讲,它包括景观组成单元的类型、数目以及空间分布与配置。
过程强调事件或现象的发生、发展的动态特征。
尺度(Scale),广义地讲,是指在研究某一物体或现象是所采用的空间或时间单位,同时又可指某一现象或过程在空间和时间上所涉及到的范围和发生的频率。
生态学中的景观格局分析方法
生态学中的景观格局分析方法【前言】生态学是一门较新的学科,其发展与现代化的城市化、经济化、社会化以及全球性环境问题的出现密切相关。
生态系统的研究是生态学的核心,而生态系统的组成和特征以及生态系统演变规律的研究都离不开景观格局分析方法。
本文将从粗览景观格局分析方法、景观格局分析方法的应用、对景观格局分析方法的评价三个角度来探究景观格局分析在生态学研究中的重要性。
【正文】一、粗览景观格局分析方法景观格局分析是地理信息系统(GIS)和遥感技术的重要应用,既是景观生态学的理论基础,也是模拟景观格局变化、预测景观格局演变趋势以及提高景观多样性和生态系统稳定性的重要手段。
景观格局分析方法包括基于空间分析的景观指数和基于时空变化的景观动态分析方法两大类。
基于空间分析的景观指数包括景观多样性指数、面积分维度指数、出现间隔距指数、周围引力指数等等,其中景观多样性指数是最为重要的一个指标。
景观动态分析方法包括直接测量分析、数量化细胞自动机、基于统计模型的分析、生态空间分配评估等等。
二、景观格局分析方法的应用景观格局分析方法在环境评价、生态修复、森林防火、自然保护区规划、城市规划等领域有着广泛的应用。
以下几个案例就说明了这一点。
1、环境评价:景观格局分析方法可以用于环境评价中的生态系统评估,特别是几条河流流经地区的生态承载力等。
2、生态修复:景观格局分析方法可以挖掘生态修复中疏林养护等等问题的深度,以便探究如何开展生态修复。
3、森林防火:景观格局分析方法可以通过森林火险监测和预防,提高环境安全性。
4、自然保护区规划:景观格局分析方法可以有效的保护自然保护区中重要的生物多样性和生态系统服务,提供决策支持。
5、城市规划:景观格局分析方法可以帮助城市规划师确定城市质量,从而提高城市的绿色化和生态效益。
三、对景观格局分析方法的评价目前,景观格局分析方法已经被广泛应用到生态学研究中,但在使用中也存在一些问题。
1、关键数据缺失问题:景观格局分析需要大量的生态数据支持和GIS培训,其中涉及到用到大量的模型参数、经验参数等,所以数据缺失或不准确会直接影响到分析结果。
景观生态学—格局过程尺度与等级
景观生态学—格局过程尺度与等级
景观生态学关注的主要内容包括景观的格局、过程、尺度和等级。
景
观格局是指在一定空间(尺度)范围内,各种景观元素(如森林、草地、
湖泊等)在空间分布上的组织结构。
它反映了不同景观要素之间的相互配
置关系,以及它们在空间上的相对丰富程度。
景观格局的特征对物种分布、种群数量和生态过程都有重要影响。
景观过程是指景观元素之间的相互作用和相互动力,以及这些作用和
动力对生态系统的影响。
景观过程包括物质循环、能量流动、种群迁移等
一系列生态过程,通过研究景观过程可以深入了解景观生态系统的结构和
功能。
景观尺度是指研究对象在空间上的观测尺度,它可以是点、面或者是
整个景观。
不同的研究尺度可以揭示出不同的景观特征和生态过程,有助
于理解景观的多样性和复杂性。
景观等级则是指在不同空间尺度下,景观的组织结构和生态过程的变
化规律。
景观生态学研究不同等级的景观格局和过程,从小尺度的景观单
元到大尺度的景观矩阵,以及它们之间的相互关系。
通过研究景观的等级,可以揭示出不同尺度下的景观生态系统的特点和机制。
总之,景观生态学是一个综合性的学科,它通过研究景观的格局、过程、尺度和等级,揭示了人类活动对生态系统的影响,为保护和管理自然
资源提供了理论和方法。
随着人类活动的不断扩张和环境问题的日益严重,景观生态学的研究日益受到重视,为实现可持续发展提供了重要的科学依据。
生态学中的景观格局分析
生态学中的景观格局分析景观格局是指在特定时间和特定空间范围内,自然与人类活动的相互作用所形成的特定生态空间的全貌或基本特征。
生态学中的景观格局分析是一种研究生态系统及其组成部分的空间结构与空间格局的科学方法。
景观格局分析包括了人类活动的种种干扰,是对生态系统整合和修复的必要步骤。
本文将会从景观生态学、景观格局及其分析等角度深入探讨。
一、景观生态学景观生态学是指研究特定时空范围内自然和人文因素相互作用产生的复杂生态系统的科学。
景观生态学研究的对象是人类活动和自然环境的相互作用所形成的生态系统,即有机结构的生态系统。
而景观生态学的研究方法则是从宏观的角度对生态系统整体和局部进行描述、分析,得出生态系统的环境参数、空间结构和演替过程等方面的总体规律。
景观生态学的本质是研究景观格局及其对生态系统的影响,只有掌握了景观格局对生态系统产生的影响,才能开展生态系统的全面调查与评价,对景观格局的合理规划、建设和管理提供科学依据。
二、景观格局景观格局是由不同大小和空间分布的生境、栖息地和生物群落组成的三维空间结构,是自然和人类因素在空间上的分布和互动形成的样式。
它反映了不同物种的栖息和生活状况及其相互关系,是生态系统演化和生物多样性分布的关键因素。
景观格局可从以下四个角度进行分析:1.景观破碎度:景观破碎是指生态系统中的自然或人为因素破坏生境、栖息地和物种的空间关系和生态联系等因素所导致的生境的破碎程度。
较高的景观破碎度可以导致物种流失、生态系统表现出的复杂性减弱、生态系统的稳定性下降等生态问题。
2.景观连通度:景观连通是指生态系统中各个生境、栖息地和物种之间的连通性及其在空间上的分布形式。
较高的景观连通度可以有效促进物种的迁移和交流,增强物种的遗传多样性和适应性,有利于保护生态系统的稳定性。
3.景观结构:景观结构可以分为垂直和水平两个层次。
垂直上的景观结构反映了不同高度层次的不同空间结构和生物量,水平上的景观结构反映了不同物种栖息和生活的空间分布及其相互关系。
景观格局分析
景观格局分析
景观格局分析是指对一个地区的景观元素进行整体和系统化的分析,以了解其空间组织结构、功能结构和景观特征,并从中提取出地区的发展潜力。
景观格局分析通常涉及以下几个方面:
1. 空间组织结构:通过分析地区内不同景观元素的空间分布和相互关系,了解地区的整体结构。
例如,可以考察不同景观要素的连续性、分布的均匀性和集聚程度等。
2. 功能结构:景观格局分析还包括对景观要素的功能结构进行研究。
通过分析不同景观元素的功能分布和空间关系,可以了解地区的功能组织方式和功能分布特点。
例如,可以分析土地利用类型的分布和相互关系,了解地区的用地结构和发展方向。
3. 景观特征:景观格局分析还需要对景观要素的特征进行分析。
这包括景观单元的形态特征、物质组成和生态过程等方面的研究。
例如,可以分析景观元素的形状、大小、高度等形态特征,了解地区的景观格局和景观变化情况。
景观格局分析主要用于城乡规划、景观生态学和自然资源管理等领域。
通过对景观格局的深入分析,可以为地区的发展提供科学依据和决策支持。
景观格局分析方法
2)聚集(团聚)型分布格局
同一类型的景观要素斑块相对聚集 在一起,同类景观要素相对集中,在景观 中形成若干较大面积的分布区,再散布在 整个景观中。
如:在丘陵农业景观中,农田多聚集在村 庄附近或道路的一端。
3)线状格局
指同一类景观要素的斑块呈线性分布 。
在进行景观格局分析时,实际景观首先要经过取样、数字化 过程转化为栅格型或矢量型数字地图
第三节 景观指数
一、景观指数
能够高度浓缩景观格局信息,反映 其结构组成和空间配置某些方面特征的简 单定量指标。
二、景观要素斑块特征分析
1 景观要素斑块规模
A: 斑块面积 B: 内部生境面积
举例说明美国凤凰城地区从1912年至1995年土地利用变
化的情形
第四节 空间统计学方法
空间自相关分析
景观格局的最大特征就是空间自相关性——被 称为是地理学第一定律,指在空间上越靠近的 事物或现象就越相似,即景观特征或变量在邻 近范围内的变化往往表现出对空间位置的依赖 关系。
A:景观要素斑块形状指数 B:景观要素斑块分维数
A: 斑块面积
类斑块平均面积:景观中某类景观要素斑块面积 的算术平均值。
式中: Ni——第i类景观要素的斑块总数; Aij——第i类景观要素第i个斑块的面积。
最大和最小斑块面积:指景观中某类景观要素最 大和最小斑块的面积。
类斑面积标准差(Si)和变动系数(Ci):是指景观 中某类景观要素斑块面积的统计标准差和变动系
二 景观格局分析的基本步骤
以研究目的和方案为指导,收集和处理景 观数据
将真实的景观系统转换为数字化的景观,选 用适当的格局研究方法进行分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现在景观格局研究普遍采用Fragstats3.3软件计算格局指数,我在写文章的过程中也使用了这一软件,期间也遇到不少问题,幸得高人指点和自己不断摸索(当时网上鲜有使用方法),终于把数据算出来了,现在把使用过程中遇到的一些问题与方法写出来,希望对后来者有些帮助,在写这个的过程中,参考了一些朋友的意见。
1 Fragstats33软件的下载在goole搜索页面直接输入“Fragstats3.3”出来的第二个网址:点击“Fragstats3.3downloads”或者打开连接:/landeco/research/fragstats/downloads/fragstats_do wnloads.html直接下载2 Fragstats 33软件的安装如果你装了arcgis软件,那么Fragstats3.3可以直接使用。
下载下来的文件解压缩后,双击便可以使用,注意,要保证你的ArcGIS是运行的状态。
3环境变量的设置打开软件后,看你的是“ARCGRID disabled”还是“ARCGRID enabled”,如果是后则,可以直接使用,如果是前者,学要设置环境变量。
步骤:我的电脑->属性->高级->环境变量,在系统变量那里,新建,变量名为path,变量值为X:ESRIAV_GIS30ARCVIEWBIN32,X为Arcview安装所在的盘符。
或者是C:Program FilesArcGISBin,C为Arcview(应为ArcGIS????)安装所在的盘符,一般默认安装在C盘上。
这样你的软件就能用了。
(1) Arc Grid created with Arc/Info. Note, to use Arc Grids you musthave ArcView Spatial Analyst or ArcGIS installed on your computer and FRAGSTATS must have access to a certain .dll file found either in the ArcView Bin32 directory (for ArcView Spatial Analyst users) or the ArcGIS Bin directory (for ArcGIS users). Specifically, a path to the corresponding dll library file should be specified in the environmental settings under NT or Windows 2000 operating systems, or a path statement included in the autoexec.bat file, e.g., under Windows 98, as follows:Windows NT: You can add the necessary Path variable or edit the existing one via the Control panel - System Properties - Environment tab. Add a new variable or edit the existing Path variable in the system variables, not the user variables (this will require administrative privileges). Add the full path to the appropriate .dll file. If you are using ArcView Spatial Analyst, the required file is the avgridio.dll file and it is typically installed in the following path:\esri\av_gis30\arcview\bin32. If you are using ArcGIS, the required file is the aigridio.dll file and it is typically installed in the following path:\esri\arcinfo\arcexe81\bin. Note, your software version number and path may be different so be sure to locate the .dll file on your computer and enter the correct path. If you are using both Spatial Analyst and ArcGIS, then you can enter either or both paths to the Path system variable.Windows 2000/XP: You can add the necessary Path variable or edit the existing one via the Control panel - System Properties - Advanced tab - Environment Variables button. Add a new variable or edit the existing Path variable in the system variables, not the user variables (this will require administrative privileges). Then, following the instructions above for Windows NT. Windows 95/98: You must add the necessary Path statement to the autoexec.bat file. First, search your computer for the autoexec.bat file and open it using any text editor. Then, either add a Path statement or edit the existing one. Add the full path to the appropriate .dll file. If you are using ArcView Spatial Analyst, the required file is the avgridio.dll file and it is typically installed in the following path: \esri\av_gis30\arcview\bin32. If you are using ArcGIS, the required file is the aigridio.dll file and it is typically installed in the following path: \esri\arcinfo\arcexe81\bin. Thus, the path statement should look something like: PATH c:\esri\av_gis30\arcview\bin32. Note, your software version number and path may be different so be sure to locate the .dll file on your computer and enter the correct path. If you are using both Spatial Analyst and ArcGIS, then you can enter either or both paths to the Path system variable. If you are adding the path to an existing path, simple use a semicolon to separate the unique paths in the Path statement. After saving the file you will need to reboot your machine for the change to take effect.我的是xp,装的是arcgis,所以需要aigridio.dll 这个文件,gis我装在d盘,所以是在“D:\arcgis\arcexe9x\bin\”这个目录下找到了aigridio.dll 这个文件步骤:我的电脑->属性->高级->环境变量,在系统变量那里,新建,变量名为path,变量值为D:\arcgis\arcexe9x\bin\ok,到这里arcgrid已经是enabled了。
4 数据准备因为这个软件支持的是grid格式的数据,所以需要将手上的coverage、shape文件转换为grid格式的文件,用来运算。
转换可以在Arcview里面进行,或者Arcmap都可以。
以Arcmap为例:A、调出Arcmap->tools->Extensions->在Spatial Analyst上面打钩。
B、转换为grid:feature to raster如果想要grid按照你所设定的形状进行计算,可以进行裁剪。
且可以保证背景的完整性。
以Arcview为例:如果用Arcview处理地图数据,可以在加载空间分析模块的基础上,Theme->Convert to Grid来生成。
加载空间分析模块的方法:File->Extensions,选择Spatial Analyst,ok。
5 属性文件的制定新建txt文件,格式如下:ClassID , ClassName , Status , isBackground1 , shrubs , true , false2 , conifers , true , false3 , deciduous , true , false4 , other , false , true注意:每个之间用空格键和逗号隔开。