初中数学规律题总结
初中数学找规律题
归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 123 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ?观察下面三个特殊的等式 ()2103213121⨯⨯-⨯⨯=⨯ ()3214323132⨯⨯-⨯⨯=⨯ ()4325433143⨯⨯-⨯⨯=⨯ 将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n⑶()()=++++⨯⨯+⨯⨯21432321n n n4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a ab a b 则符合前面式子的规律,,若…21010 沪科版七年级数学试卷一、填空题:1、如果飞机离地面6000米记为+6000米,现在它又下降了1600米,那么现在飞机的高度可记为__________米.2、当n=______时,3x 2y 5 与 -2x 2y 3n -4是同类项.3、比较大小:23-_____-78. 4﹑若关于x 的方程a-x=3的解是4,则a=5、你玩过“24点”游戏吗?就是让你将给定的四个数,用加、减、乘、除、乘方运算(每个数只能使用一次),使运算结果等于24. 现在给你四个数3、2、6、9,请你列算式:_______________________.6 已知︱a-2︱+(b+3)2=0,则ab 的值等于7、一粒废旧电池大约会污染60万升的水。
初中数学找规律习题大全
1找规律专项训练一:数式问题1.(湛江)已知 22 222,3 3 323,4 4 424,⋯⋯,若 8a82a( a 、 b 为正整数)则 a b33 88 1515bb.2.(贵阳)有一列数 a 1, a 2, a 3,a 4, a 5,⋯, a n ,其中 a 1= 5× 2+ 1, a 2=5× 3+ 2,a 3= 5× 4+ 3, a 4= 5× 5+ 4, a 5= 5× 6+ 5,⋯,当 a n = 2009 时, n 的值等于()A . 2010B .2009C .401D . 3343.(沈阳)有一组单项式:a2,- a 3 , a 4 ,- a 5,⋯.观察它们构成规律,用你发现的规律写出第 10 个单2 34项式为.4.(牡丹江)有一列数1 2 3 47 个数是.2 ,,, ,⋯,那么第510 175.(南充)一组按规律排列的多项式:a b , a 2b 3 , a 3 b 5 , a 4b 7 ,⋯⋯,其中第 10 个式子是 ()A . a 10b 19B . a 10b 19C . a 10b 17D . a 10b 216.(安徽)观察下列等式:1 1 12 22 3 331, 23, 34,⋯⋯2234( 1)猜想并写出第 n 个等式;( 2)证明你写出的等式的正确性.7.(绵阳)将正整数依次按下表规律排成四列,则根据表中的排列规律,数 2009 应排的位置是第行第列.第 1 列第 2 列 第 3 列 第 4 列第 1 行 12 3第 2 行65 4第 3 行 7 8 9 第 4 行 121110⋯⋯8.(台州)将正整数 1,2,3,⋯从小到大按下面规律排列.若第 4 行第 2 列的数为 32,则① n▲ ;②第 i 行第 j 列的数为▲ (用 i , j 表示).第 1列第 2 列第 3 列⋯第 n 列1123⋯n第 行2第 2 行n 1n 2n 3⋯2n第 3 行2n 12n 22n 3⋯3n⋯⋯⋯⋯⋯⋯二:定义运算问题1.(定西)在实数范围内定义运算“”,其法则为: a b a2b2,求方程( 43)x24 的解.2.有一列数,,,,,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a12,a1 a2a3a n 则 a2007为()A. 2007B. 2C.1D. 1 2三:剪纸问题1.(2004年河南)如图( 9),把一个正方形三次对折后沿虚线剪下则得到的图形是()2.(2004年浙江湖州)小强拿了一张正方形的纸如图(10)①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()3.(2004年浙江衢州)如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,⋯⋯,根据以上操作方法,请你填写下表:3操作次数 N 1 2 3 4 5 ⋯N ⋯正方形的个数47 10⋯⋯3. (莆田) 如图, 在 x 轴的正半轴上依次截取 OA 1 A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 5 ,过点 A 1、A 2、A 3、 A 4、A 5分别作 x 轴的垂线与反比例函数 y2 x 0 的图象相交于点P 1、 P 2、 P 3、 P 4、 P 5 ,得直角三角形xOP 1 A 1、 A 1P 2 A 2、 A 2 P 3 A 3、A 3P 4 A 4、 A 4 P 5 A 5,并设其面积分别为2yxS 、S 、S 、S 、S , .y12345则S 5的值为P 1P 2P 3P 4 P 5O12 A 345xA A A A (第 10 题图)4.(长春)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个 图案多一个正六边形和两个正三角形,则第 n 个图案中正三角形的个数为 (用含 n 的代数式表示) .(第 4题)5.(丹东)如图 6,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第 1004个图案需棋子枚.⋯⋯图案 1图案 2图案 3图 6的三角形都是全等的),请写出第 n 个图中最小的三角形的个数有6.(抚顺)观察下列图形(每幅图中最小....个.第1个图第2个图第3个图第4个图(第 16 题图)7.(哈尔滨)观察下列图形:它们是按一定规律排列的,依照此规律,第16 个图形共有个★.五:对称问题1.(伊春)在平面直角坐标系中,已知 3 个点的坐标分别为 A1 (1,1) 、 A2 (0 ,2) 、 A3 ( 1 ,1). 一只电子蛙位于坐标原点处,第 1 次电子蛙由原点跳到以1A1为对称中心的对称点 P1,第 2 次电子蛙由 P 点跳到以 A2为对称中心的对称点P2,第 3 次电子蛙由 P2点跳到以 A3为对称中心的对称点 P3,⋯,按此规律,电子蛙分别以 A1、 A2、 A3为对称中心继续跳下去.问当电子蛙跳了 2009 次后,电子蛙落点的坐标是P2009( _______,_______ ) .2. ( 2004 年宁波)仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。
初中数学规律题
6、把数字按如图所示排列起来,从上开始,依次为第一行、第 二行、第三行、……,中间用虚线围的一列,从上至下依次为1、 5、13、25、……,则第10个数为________。
第1行 1
第2行 -2 3
第3行 -4 5 -6
第4行 7 -8 9 -10
第5行 11 -12 13 -14 15
一 如增幅相等(等差数列):
例: 1、3、5、7……求第n位数 例: 2、4、6、8……求第n位数。 例:4、10、16、22、28……,求第n位数。
等差规律:差乘序+某数
4、 6、 8、 10、 12……
相邻之差是2 第一数4=差×序+某= 2×① +2 第二数6=差×序+某= 2×② +2 第三数8=差×序+某= 2×③ +2 第四数10=差×序+某= 2×④ +2
框里的最大的数和最小的数。
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
995 996 997 998 999 1000 1001
(2010年山东省青岛市)如图,是用棋子摆成的图 案,摆第1个图案需要7枚棋子,摆第2个图案需要 19枚棋子,摆第3个图案需要37枚棋子,按照这样 的方式摆下去,则摆第6个图案需要 枚棋子,
• 同除以4后可得新数列:1、4、9、16…, 很显然是位置数的平方。
• (六)同技巧(四)、(五)一样,有的 可对每位数同加、或减、或乘、或除同一 数(一般为1、2、3)。当然,同时加、或 减的可能性大一些,同时乘、或除的不太 常见。
初中数学数字找规律题技巧汇总
初中数学数字找规律题技巧汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a1+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)、比值相等(等比数列):例:2、4、8、16、…。
第n项为:a n=2n(三)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,……,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(四)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17、….分析:数列2、3、5、9,17…。
初中找规律题型总结
1、二级数列这里所谓的二级数列是指数列中前后两个数的和、差、积或商构成一个我们熟悉的某种数列形式。
例1:2 6 12 20 30 ( 42 )(2002年考题)解析:后一个数与前个数的差分别为:4,6,8,10这显然是一个等差数列,因而要选的答案与30的差应该是12,所以答案应该是B。
例2:20 22 25 30 37 ( ) (2002年考题)解析:后一个数与前一个数的差分别为:2,3,5,7这是一个质数数列,因而要选的答案与37的差应该是11,所以答案应该是C。
例3:2 5 11 20 32 ( 47 ) (2002年考题)解析:后一个数与前一个数的差分别为:3,6,9,12这显然是一个等差数列,因而要选的答案与32的差应该是15,所以答案应该是C。
例4:4 5 7 1l 19 ( 35 ) (2002年考题)解析:后一个数与前一个数的差分别为:1,2,4,8这是一个等比数列,因而要选的答案与19的差应该是16,所以答案应该是C。
例5:3 4 7 16 ( 43 ) (2002年考题)解析:后一个数与前一个数的差分别为:1,3,9这显然也是一个等比数列,因而要选的答案与16的差应该是27,所以答案应该是D。
例6:32 27 23 20 18 ( 17 ) (2002年考题)解析:后一个数与前一个数的差分别为:-5,-4,-3,-2这显然是一个等差数列,因而要选的答案与18的差应该是-1,所以答案应该是D。
例7:1, 4, 8, 13, 16, 20, ( 25 ) (2003年考题)解析:后一个数与前一个数的差分别为:3,4,5,3,4这是一个循环数列,因而要选的答案与20的差应该是5,所以答案应该是B。
例8:1, 3, 7, 15, 31, ( 63 ) (2003年考题)解析:后一个数与前一个数的差分别为:2,4,8,16这显然是一个等比数列,因而要选的答案与31的差应该是32,所以答案应该是C。
初中数学题中的规律
一、基本方法——看增幅
(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:
[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位数是:2+ n2-1= n2+1
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或。
初中数学规律题方法总结
郭氏数学:初中数学规律题方法总结初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
初中数学找规律题型归纳
初中数学找规律题型归纳一、题型归纳找规律是初中数学中常见的一种题型,主要考察学生的观察、归纳和推理能力。
这种题型通常会给出一些数字、图形或其他信息,要求学生找出其中的规律,并据此解答相关问题。
找规律题型可以分为以下几种类型:1. 数字规律:给出一些数字,要求学生找出其中的规律,如数列中的递推关系、周期性等。
2. 图形规律:给出一些图形或图案,要求学生找出其中的规律,如对称性、旋转等。
3. 综合性规律:结合数字和图形等元素,考察学生的综合分析能力。
二、例题解析1. 数字规律例题:题目:数列1,4,9,16,…的下一个数是_______.解析:观察数列1,4,9,16,…可以发现,每一个数都是某个整数的平方。
具体来说,1是1的平方,4是2的平方,9是3的平方,16是4的平方。
因此,下一个数应该是5的平方,即25。
答案:25。
2. 图形规律例题:题目:观察下列图形,它们有共同点,请写出其中两条:_______.解析:观察给出的图形可以发现,它们都是轴对称图形。
具体来说,每一个图形都可以沿一条直线折叠,使得两侧的图形完全重合。
此外,每一个图形都有两个顶点关于这条直线对称。
因此,答案可以是“轴对称图形”和“两个顶点关于某一直线对称”。
答案:轴对称图形;两个顶点关于某一直线对称(答案不唯一)。
3. 综合性规律例题:题目:观察下列图形和数字:(1)找出其中的规律,并填写空白处的数字。
(2)按照这种规律,第8个图形中有多少个三角形?解析:观察给出的图形和数字可以发现,每一个图形中的三角形数量与图形的序号有关。
具体来说,第1个图形中有1个三角形,第2个图形中有3个三角形(1+2),第3个图形中有6个三角形(1+2+3),以此类推。
因此,空白处的数字应该是1+2+3+4=10。
对于第2个问题,由于第8个图形中的三角形数量是1+2+3+4+5+6+7+8=36个三角形。
答案:(1)10;(2)36。
初中数学规律题解题技巧大全
初中数学规律题解题技巧大全1.分类法:将问题中的要素进行分类,找出其中的共同点或规律。
例如,将一组数字按奇偶分类,可以发现奇数和偶数交替出现的规律。
2.逆向思维法:从目标结果出发,逆向思考问题,找出达到目标的步骤和规律。
例如,如果要求从5到1倒数,可以逆向思考,先从1开始计数,每次加1,直到53.引入临时变量法:在一些题目中,我们可以引入一个临时变量来辅助观察规律。
例如,当求一组数之间的差值时,引入一个临时变量来表示差值,观察其规律。
4.数列法:有些规律题可以通过找出数列的通项公式来解决。
根据已知条件列出数列前几项,观察数列之间是否有其中一种规律,并尝试找出通项公式。
5.图形法:有些规律题中会涉及到图形,可以通过画图观察图形之间的变化来找出规律。
例如,观察数字五角星的顶点数和边数之间的关系,可以发现边数是顶点数的两倍减一6.再加一法:一些规律题中涉及到数的增加或减少,可以通过对已知条件进行逐个增加或减少1来观察规律。
例如,观察一些数的平方数之间的差值,可以逐个加17.同构法:在一些规律题中,可以通过观察数字或图形的对称性来找出规律。
例如,观察数字0-9的对称性,可以发现数字6和9是相互对称的。
8.反证法:在一些情况下,我们可以采用反证法来解决规律题。
即假设问题的逆否命题成立,然后推导出矛盾的结论,从而得出原命题的正确性。
9.推广法:通过观察已知条件的相似性或不变性,将其推广到更一般的情况下。
例如,当求一个数字的平方时,可以观察平方的规律,并将其推广到其他数字。
10.数学工具法:在解决规律题时,可以运用数学工具来辅助观察和推理。
例如,使用图形计算器绘制图形,使用计算器进行计算等。
以上是一些常用的解题技巧,通过灵活运用这些技巧,可以帮助我们更好地解决初中数学规律题。
在解题过程中,还要注重观察细节、积累经验,并进行逻辑思维和推理能力的训练,提高解题的准确性和效率。
初中数学规律题汇总(全部有解析)
初中数学规律题汇总“有比较才有鉴别”。
通过比较.可以发现事物的相同点和不同点.更容易找到事物的变化规律。
找规律的题目.通常按照一定的顺序给出一系列量.要求我们根据这些已知的量找出一般规律。
揭示的规律.常常包含着事物的序列号。
所以.把变量和序列号放在一起加以比较.就比较容易发现其中的奥秘。
初中数学考试中.经常出现数列的找规律题.本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较.如增幅相等.则第n个数可以表示为:a1+(n-1)b.其中a为数列的第一位数.b为增幅.(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28…….求第n位数。
分析:第二位数起.每位数都比前一位数增加6.增幅都是6.所以.第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等.但是增幅以同等幅度增加(即增幅的增幅相等.也即增幅为等差数列)。
如增幅分别为3、5、7、9.说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦.但是此类题的通用解法.当然此题也可用其它技巧.或用分析观察的方法求出.方法就简单的多了。
(三)增幅不相等.但是增幅同比增加.即增幅为等比数列.如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等.且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法.只用分析观察的方法.但是.此类题包括第二类的题.如用分析观察法.也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目.通常按照一定的顺序给出一系列量.要求我们根据这些已知的量找出一般规律。
找出的规律.通常包序列号。
所以.把变量和序列号放在一起加以比较.就比较容易发现其中的奥秘。
完整)初中数学找规律专项练习题(有答案)
完整)初中数学找规律专项练习题(有答案)1、观察规律:1=1;1+3=4;1+3+5=9;1+3+5+7=16;…,则2+6+10+14+…+2014的值是多少?2、用四舍五入法对取近似数,并精确到千位,用科学计数法表示为多少?3、观察下面的一列数:-1,2,-3,4,-5,6…请找出其中排列的规律,并按此规律填空。
(1)第10个数是多少?第21个数是多少?(2)-40是第几个数?26是第几个数?4、一组按规律排列的数:1,3,6,10,15…请推断第9个数是多少?5、计算:(-100)+(-101)=多少?(-2)+(-2)=多少?6、若。
则等于多少?7、大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成多少个?8、猜数字游戏中,XXX写出如下一组数:1,3,5,7,9…n个数是…,XXX猜想出第六个数字是多少?根据此规律,第9、10个数字分别是多少?9、若。
与|b+5|的值互为相反数,则等于多少?10、在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:十进位制二进制 1 1 2 10 3 11 4 100 5 101 6 110 …… 请将二进位制xxxxxxxx(二)写成十进位制数为多少?11、为求。
值,可令S=。
则2S=。
因此所以。
仿照以上推理计算出的值是多少?二、选择题13、的值是多少?【】A.-2 B.-1 C.0 D.114、已知8.62=73.96,若x=0.7396,则x的值等于()A.86.2B.862C.±0.862D.±86215、计算:(-2)+(-2)的值是多少?A.2B.-1C.-2D.-416、计算等于多少?A. B. C. D.17、已知a、b互为相反数,c、d互为倒数,m的绝对值为1,p是数轴到原点距离为1的数,那么的值是多少?A.3 B.2 C.1 D.018、若。
初中数学规律题的解题方法和技巧
一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学规律题汇总
初中数学规律题汇总
以下是一些初中数学常见的规律题目汇总:
1. 题目:已知一条边长为a的正方形中,内接一个圆,求这个圆的直径和面积。
解答:
正方形的对角线就是圆的直径,所以圆的直径为a。
圆的面积公式为S=πr²,其中r为半径,所以圆的面积为
S=π(a/2)²=πa²/4。
2. 题目:已知一个等边三角形,求它的边长和高。
解答:
等边三角形的三条边长相等,所以它的边长为a。
等边三角形的高是从顶点到底边中点的垂线,因此高等于边长的一半,即高为h=a/2。
3. 题目:已知一个等腰三角形,已知底边长为a,求它的高和面积。
解答:
等腰三角形的两条底边相等,所以它的底边长为a。
等腰三角形的高是从顶点到底边上的垂线,所以高和底边中点以及顶点形成一个直角三角形,高等于勾股定理中的直角边之一,即高为h=sqrt(a²-(a/2)²)。
等腰三角形的面积公式为S=(底边长*a)/2,所以面积为
S=(a*a)/4。
4. 题目:已知一个矩形,已知其长为a,宽为b,求它的周长
和面积。
解答:
矩形的周长公式为P=2(a+b),所以周长为P=2a+2b。
矩形的面积公式为S=a*b,所以面积为S=ab。
5. 题目:已知一个梯形,已知上底为a,下底为b,高为h,求它的面积。
解答:
梯形的面积公式为S=(上底+下底)*高/2,所以面积为
S=(a+b)*h/2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学规律题解题基本方法(一)数列得找规律初中数学考试中,经常出现数列得找规律题,本文就此类题得解题方法进行探索:一、基本方法——瞧增幅(一)如增幅相等(此实为等差数列):对每个数与它得前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列得第一位数,b为增幅,(n-1)b为第一位数到第n位得总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都就是6,所以,第n位数就是:4+(n-1)×6=6n -2(二)如增幅不相等,但就是,增幅以同等幅度增加(即增幅得增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位得数也有一种通用求法。
基本思路就是:1、求出数列得第n-1位到第n位得增幅;2、求出第1位到第第n位得总增幅;3、数列得第1位数加上总增幅即就是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列得增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列得第n-1位到第n位得增幅就是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数就是:2+n2-1= n2+1此解法虽然较烦,但就是此类题得通用解法,当然此题也可用其它技巧,或用分析观察凑得方法求出,方法就简单得多了。
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅得增幅也不相等)。
此类题大概没有通用解法,只用分析观察得方法,但就是,此类题包括第二类得题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律得题目,通常按照一定得顺序给出一系列量,要求我们根据这些已知得量找出一般规律。
找出得规律,通常包序列号。
所以,把变量与序列号放在一起加以比较,就比较容易发现其中得奥秘。
例如,观察下列各式数:0,3,8,15,24,……。
试按此规律写出得第100个数就是。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。
我们把有关得量放在一起加以比较:给出得数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
容易发现,已知数得每一项,都等于它得序列号得平方减1。
因此,第n项就是n2-1,第100项就是1002-1。
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,瞧就是不就是与n2、n3,或2n、3n,或2n、3n有关。
例如:1,9,25,49,(),(),得第n为(2n-1)2(三)瞧例题:A: 2、9、28、65、、、、、增幅就是7、19、37、、、、,增幅得增幅就是12、18答案与3有关且、、、、、、、、、、、、即:n3+1B:2、4、8、16、、、、、、、增幅就是2、4、8、、、、、、、答案与2得乘方有关即:2n(四)有得可对每位数同时减去第一位数,成为第二位开始得新数列,然后用(一)、(二)、(三)技巧找出每位数与位置得关系。
再在找出得规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列得第n项为:n2-1,所以题中数列得第n项为:(n2-1)+2=n2+1(五)有得可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例 : 4,16,36,64,?,144,196,…?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然就是位置数得平方。
(六)同技巧(四)、(五)一样,有得可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。
当然,同时加、或减得可能性大一些,同时乘、或除得不太常见。
(七)观察一下,能否把一个数列得奇数位置与偶数位置分开成为两个数列,再分别找规律。
三、基本步骤先瞧增幅就是否相等,如相等,用基本方法(一)解题。
如不相等,综合运用技巧(一)、(二)、(三)找规律如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列得规律最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、【典型例题】例1 观察下列算式:……用您所发现得规律写出得末位数字就是__________。
观察下列式子:;;;……请您将猜想得到得式子用含正整数n得式子表示来__________。
五、图形找规律小时侯我们都玩过搭积木得游戏,今天我们不妨重拾童年趣事,利用手中得火柴棒搭建一些常见得图形,探索规律。
合作交流,探索规律:活动一:探索常见图形得规律,用火柴棒按下图得方式搭三角形⑴填写下表:⑵照这样得规律搭建下去,搭n个这样得三角形需要多少根火柴棒?★注意引导学生概括“探索规律”得一般步骤:①寻找数量关系;②用代数式表示规律③验证规律。
★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物得规律问题1、若有两张长方形得桌子,把它们拼成一张大得长方形桌子,有几种拼法?问题2、若按图2方式摆放桌子与椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:问题3、如果按图3得方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑵教室有40张这样得桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表得规律下面就是2000年八月份得日历:⑴日历中得绿色方框中得9个数之与与该方框正中间得数有什么关系?⑵这个关系对其它这样得方框成立吗?您能用代数式表示这个关系吗?⑶这个关系对任何一个月得日历都成立吗?为什么?⑷您还能发现这样得方框中9个数之间得其她关系吗?用代数式表示。
⑸您还能提出那些问题?4 图3—4①就是一个三角形,分别连接这个三角形三边得中点,得到图3—4②;再分别连结图3—4②中间得小三角形三边得中点,得到图3—4③,按此方法继续下去,请您根据每个图中三角形个数得规律,完成下列问题。
(1)将下表填写完整 (2)在第n个图形中有____________________个三角形(用含n 得式子表示)。
例6.如图,把一个面积为1得正方形分等分成两个面积为得矩形,接着把面积为得矩形等分成两个面积为得正方形,再把面积为得矩形等分成两个面积为得矩形,如此进行下去,试利用图形提示得规律计算:例7.把棱长为得正方体摆成如图得形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第(2)第个图案中有白色地面砖 块。
ﻩ……2.(包括两个顶点)上都有个棋子,每 来表示。
ﻩ…… 3.观察与分析下面各列数得排列规律,然后填空。
①5,9,13,17, , 。
②4,5,7,11,19, , 。
③10,20,21,42,43, , ,174,175。
④4,9,19,34,54, , ,144。
⑤45,1,43,3,41,5, , ,37,9。
⑥6,1,8,3,10,5,12,7, , 。
⑦0,1,1,2,3,5, , 。
⑧180,155,131,108, , 。
⑨5,15,45,135, , 。
⑩60,63,68,75, , 。
4.您能很快算出吗?为了解决这个问题,我们考察个位上得数为5得自然数得平方,任意一个个位数为5得自然数可写成10•+5,即求得值(为自然数),您试分析这些简单情况,从中控索其规律,并归纳,推测出结论(在下面空格内填上您得控索结果)。
通过计算,控索规律: 可写成第三个 第一个 第二个可写成可写成…………可写成可写成从第(1)得结果,归纳、推测得:根据上面得归纳、推测,请算出:5.观察下列几个算式,找出规律:1+2+1=41+2+3+2+1=91+2+3+4+3+2+1=161+2+3+4+5+4+3+2+1=25……利用上面规律,请您迅速算出:①1+2+3+…+99+100+99+…+3+2+1=②据①您会算出1+2+3+…+100就是多少吗?③据上您能推导出1+2+3+…+得计算公式吗?12.给出下列算式:,,,,…,观察上面得一系列等式,您能发现什么规律?用代数式表示这个规律就是。
6.研究下列算式,您会发现有什么规律?;;;……请将您找出得规律用公式表示出来:。
7.如图得三角形数组就是我国古代数学家杨辉发现得,称为杨辉三角形,根据图中得数构成得规律填写:所表示得数: 。
所表示得数: 。
8.因为,,那么。
9.将1,,,,,,…按一定规律排成下表:试找出在第行第个数10.如下图:(1) ﻩ(2)11.把1,这9个数得与就是162。
当正方形左上角得数就是100时,这9个数得与就是多少?当正方形中9个数得与就是1557时,最大得数就是多少?12.将1至1001个数如下图得格式排列。
用一个长方形框入12个数,要使这12个数得与等于(1)1986;(2)2529;(3)1989就是否办得到?如果办不到,简单说明理由:如果办得到,写出长方形框里得最大得数与最小得数。
13.(2010年山东省青岛市)如图,就是用棋子摆成得图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样得方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子. 【关键词】规律14、(2010盐城)填在下面各正方形中得四个数之间都有相同得规律,根据此规律,m 得值就是A.38 B.52 C.66 D.74关键词:数字排列规律15.(2010年门头沟区)如图,,过上到点得距离分别为 得点作得垂线与相交,得到并标出一组黑色梯形,它们得面积分别为.则第一个黑色梯形得面积 ;观察图中得规律, 第n(n 为正整数)个黑色梯形得面积 . 【关键词】规律题、梯形面积16、(2010年山东省济南市)如图所示,两个全等菱形得边长为1厘米,一只蚂蚁由点开始按得顺序沿菱形得边循环运动,行走2010厘米后停下,则这只蚂蚁停在 点. 【关键词】点得移动 17、(2010年毕节地区)搭建如图①得单顶帐篷需要17根钢管,这样得帐篷按图②,图③得方式串起来搭建,则串7顶这样得帐篷需要 根钢管.【关键词】找规律18、(2010年宁波市)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V )、面数(F)、棱数(E)之间存在得一个有趣得关系式,被称为欧拉公式。
请您观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中得空格: 多面体 顶点数(V) 面数(F) 棱数(E) 四面体 4 7长方体 8 6 12 正八面体 8 12 正十二面体20 12 30您发现顶点数(V)、面数(F )、棱数(E)之间存在得关系式就是_______________。