数字滤波器的设计(MATLAB仿真)

合集下载

使用MATLAB进行数字滤波器设计的步骤与方法

使用MATLAB进行数字滤波器设计的步骤与方法

使用MATLAB进行数字滤波器设计的步骤与方法数字滤波器是用于信号处理的重要工具,它可以对信号进行去噪、频率调整等操作。

而MATLAB作为一种强大的数学计算软件,提供了丰富的数字信号处理工具箱,可以方便地进行数字滤波器的设计与仿真。

本文将介绍使用MATLAB进行数字滤波器设计的步骤与方法。

1. 了解数字滤波器的基本原理在进行数字滤波器设计之前,首先需要了解数字滤波器的基本原理。

数字滤波器根据其频率响应特性可以分为低通、高通、带通和带阻滤波器等。

此外,数字滤波器的设计还需要考虑滤波器的阶数、截止频率以及滤波器类型等因素。

在设计中,我们可以选择滤波器的类型和相应的参考模型,然后利用MATLAB工具箱提供的函数进行设计。

2. 导入MATLAB中的数字信号处理工具箱使用MATLAB进行数字滤波器设计需要先导入数字信号处理工具箱。

通过在MATLAB命令窗口输入`>> toolbox`即可打开工具箱窗口,并可以选择数字信号处理工具箱进行加载。

加载完成后,就可以调用其中的函数进行数字滤波器设计。

3. 设计数字滤波器在MATLAB中,常用的数字滤波器设计函数有`fir1`、`fir2`、`iirnotch`等。

这些函数可以根据系统特性需求设计相应的数字滤波器。

以FIR滤波器为例,可以使用`fir1`函数进行设计。

该函数需要输入滤波器的阶数和截止频率等参数,输出设计好的滤波器系数。

4. 评估滤波器性能设计好数字滤波器后,需要进行性能评估。

可以使用MATLAB提供的`fvtool`函数绘制滤波器的幅频响应、相频响应和群延迟等。

通过观察滤波器在频域的性能表现,可以判断设计的滤波器是否满足要求。

5. 对滤波器进行仿真在对滤波器性能进行评估之后,还可以使用MATLAB进行滤波器的仿真。

通过将需要滤波的信号输入设计好的滤波器中,观察输出信号的变化,可以验证滤波器的去噪效果和频率调整能力。

MATLAB提供了函数`filter`用于对信号进行滤波处理。

基于matlab的数字滤波器设计

基于matlab的数字滤波器设计

基于matlab的数字滤波器设计一.概述本文重点介绍MATLAB 中用于数字滤波器设计的函数组。

MATLAB具备设计高性能滤波器的众多工具(toolbox),包括数字滤波器设计工具箱(Digital Filter Design T oolbox)、滤波系统仿真工具箱(Filter Design and Analysis Toolbox )以及信号处理工具箱(Signal Processing Toolbox),可以设计数字滤波器的结构和参数,并实现Advanced Digital Filter Design。

二.数字滤波器介绍数字滤波器,也称计算滤波器,是指利用现代计算机中的数字回授技术来进行信号处理的方法,是对计算机处理信号的一种技术。

数字滤波器是模拟滤波器组成的数字信号处理系统,是将模拟的通全在一个硬件上实现的数字信号处理系统,它的功能比模拟滤波器更加强大。

目前它们已经应用于通信、声音、镜头、图像处理、仪器仪表、数据采集等领域。

三.MATLAB 中的滤波器设计(1)首先,MATLAB中提供了丰富的函数来实现滤波器设计工作。

其中最常用的函数有:a. firpm:有限冲激响应滤波器设计,支持线性和非线性过滤器设计。

b. butter:Butterworth低通和高通滤波器设计。

c. fir1:有限冲激响应低通和高通滤波器设计。

d. cheby1:Chebyshev第一类低通和高通滤波器设计。

(2) MATLAB还可以实现进阶的数字滤波器设计,用户可以用以下函数实现自动设计是否优化的滤波器:a. fda:设计优化低通滤波器b. fda2:设计优化定带滤波器c. fda3:设计优化双带和多带滤波器d. gfd:设计优化频谱均衡滤波器四.总结数字滤波器是一种应用广泛的信号处理技术,对于一些信号处理应用有着至关重要的作用。

MATLAB 可以简便的实现滤波器设计,并可以同时考虑多个优化目标,这些特性使其成为进行数字滤波器设计的理想工具。

(完整word版)巴特沃斯带阻数字滤波器设计matlab程序及仿真图 - 副本

(完整word版)巴特沃斯带阻数字滤波器设计matlab程序及仿真图 - 副本

fs=15000;T= 1/fs;rp=1;rs=40;wp1=0.11*pi;wp2=0.81*pi;ws1=0.31*pi;ws2=0.61*pi;%数字带阻滤波器技术指标wc1=(2/T)*tan(wp1/2);%频率预畸变wc2=(2/T)*tan(wp2/2);wr1=(2/T)*tan(ws1/2);wr2=(2/T)*tan(ws2/2);w0=sqrt(wc1*wc2);B=wc2-wc1;wp=1;%归一化通带截止频率ws=wp*(wr1*B) / (w0^2-wr1^2) ; %归一化阻带截止频率[N,wc]=buttord(wp,ws,rp,rs,'s')%求滤波器阶数和3dB截止频率[Z,P,K]=buttap(N)%设计模拟低通滤波器[Md,Nd]=zp2tf(Z,P,K)%将零极点形式转换为传输函数形式[M,N]=lp2bs(Md,Nd,w0,B)%对低通滤波器进行频率变换,转换为带阻滤波器[h,w]=freqs(M,N);%模拟带阻滤波器的幅频响应plot(w/(2*pi),abs(h));grid;xlabel('频率Hz');ylabel('幅度');title('模拟带阻滤波器');[b,a]=bilinear(M,N,15000)%对模拟滤波器双线性变换figure(1);freqz(b,a);[H,W]=freqz(b,a); %绘出频率响应;axis([0,1,-100,20]);figure(2);plot(W*fs/(2*pi),abs(H));grid on;xlabel('频率/Hz');ylabel('幅值');n=0:199;t=n/fs;x=sin(2*pi*400*t)+3*sin(2*pi*3000*t)+2*sin(2*pi*5000*t);figure(3);subplot(311);plot(t,x);axis([0,0.01,-5,5]);title('输入信号');grid on;y=filter(b,a,x);subplot(312);stem(y,'.');title('输出序列');grid on;ya=y*sinc(fs*(ones(length(n),1)*t-(n/fs)'*ones(1,length(t))));subplot(313);plot(t,ya);axis([0,0.01,-3,3]);title('输出波形');grid on;t=(0:100)/fs;figure(4)fs=1.5*10000;n=(0:100)/fs;f=sin(2*pi*400*t)+3*sin(2*pi*3000*t)+2*sin(2*pi*5000*t);y=fftfilt(b,x);[H1,f1]=freqz(f,[1]);[H2,f2]=freqz(y,[1]);f1=f1/pi*fs/2;f2=f2/pi*fs/2;subplot(2,1,1);plot(f1,abs(H1));title('输入信号的频谱');subplot(2,1,2);plot(f2,abs(H2));title('输出信号的频谱');基于Matlab 的带阻滤波器设计.10.20.30.40.50.60.70.80.91-800-600-400-2000N o r m a l i z e d Fre q u⨯π r a d /s a m p l e Ph a se(d e g r e e s )00.10.20.30.40.50.60.70.80.91-100-50N o r m a l i z e d Fr e q u⨯π r a d /s a m p l e M a g n i tu d e1000200030004000500060007000800000.20.40.60.811.21.4频率/Hz幅值00.0010.0020.0030.0040.0050.0060.0070.0080.0090.01-505输入信号020406080100120140160180200-22输出序列0.0010.0020.0030.0040.0050.0060.0070.0080.0090.01-202输出波形01000200030004000500060007000800050100150200输入信号的频谱010002000300040005000600070008000102030输出信号的频谱N =4wc =1.7947b =0.0186 -0.0410 0.1082 -0.1355 0.1810 -0.1355 0.1082 -0.0410 0.0186a =1.0000 -0.6707 -1.3750 0.5678 1.1964 -0.2996 -0.4631 0.0496 0.0762>。

MATLAB的数字滤波器设计与仿真

MATLAB的数字滤波器设计与仿真

MATLAB的数字滤波器设计与仿真摘要:根据一实例提出基于MATLAB的三种设计IIR数字带通滤波器的方法,给出了MATLAB完整程序与SPTOOL、FDATOOL工具界面设计的详细步骤,并用SIMULINK进行仿真。

最终分析了二种不同设计方法的区别与优势。

关键词:MATLAB;DF;IIR;SPTOOL;FDATOOL;SIMULINK1、引言在现代通信系统中,由于信号中经常混有各种复杂成分,所以很多信号分析都是基于滤波器而进行的,而数字滤波器是通过数字运算实现滤波,具有处理精度高、稳定、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊滤波功能。

数字滤波器根据其冲击响应函数的时域特性,可分为两种,即无限长冲击响应(IIR)数字滤波器和有限长冲激响应(FIR)数字滤波器。

实现IIR滤波器的阶次较低,所用的存储单元较少,效率高、精度高,而且能够保留一些模拟滤波器的优良特性,因此应用很广。

Matalab软件以矩阵运算为基础,把计算、可视化及程序有机融合到交互工作环境中,并且为数字滤波器的研究和应用提供了一个直观、高效、便捷的利器。

本文首先介绍了数字滤波器的概念,分类以及设计要求。

接着利用信号处理图像界面FADtool来设计滤波器以及Sptool界面设计方法,并用FDAtool模拟IIR数字滤波器处理信号。

2、数字滤波器数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。

数字滤波器也是具有一定传输选择特性的数字信号处理装置,其输入、输出均为数字信号,实质上是一个由有限精度算法实现的线性时不变离散系统。

它的基木工作原理是利用离散系统特性对系统输入信号进行加工和变换,改变输入序列的频谱或信号波形,让有用频率的信号分量通过,抑制无用的信号分量输出。

数字滤波器除了具有数字信号处理的固有优点外,还有滤波精度高、稳定性好、灵活性强等优点。

数字滤波器有多种分类, 根据数字滤波器冲激响应的时域特征, 可将数字滤波器分为两种,即无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器;根据数字滤波器的实现方法和形式可将数字滤波器分为递归型、非递归型、快速卷积型;根据数字滤波器的频率特性可以分为低通、高通、带通、带阻数字滤波器。

基于MATLAB的IIR数字滤波器设计与仿真

基于MATLAB的IIR数字滤波器设计与仿真

基于MATLAB的IIR数字滤波器设计与仿真一、概述在现代数字信号处理领域中,数字滤波器扮演着至关重要的角色。

其通过对输入信号的特定频率成分进行增强或抑制,实现对信号的有效处理。

无限脉冲响应(IIR)数字滤波器因其设计灵活、实现简单且性能优良等特点,得到了广泛的应用。

本文旨在基于MATLAB平台,对IIR数字滤波器的设计与仿真进行深入研究,以期为相关领域的研究与应用提供有益的参考。

IIR数字滤波器具有无限长的单位脉冲响应,这使得其在处理信号时能够展现出优秀的性能。

与有限脉冲响应(FIR)滤波器相比,IIR滤波器在实现相同性能时所需的阶数更低,从而减少了计算复杂度和存储空间。

在需要对信号进行高效处理的场合,IIR滤波器具有显著的优势。

MATLAB作为一款功能强大的数学软件,提供了丰富的函数和工具箱,使得数字滤波器的设计与仿真变得简单而高效。

通过MATLAB,我们可以方便地实现IIR滤波器的设计、分析和优化,从而满足不同应用场景的需求。

本文将首先介绍IIR数字滤波器的基本原理和特性,然后详细阐述基于MATLAB的IIR数字滤波器的设计方法和步骤。

接着,我们将通过仿真实验验证所设计滤波器的性能,并对其结果进行分析和讨论。

本文将总结IIR数字滤波器设计与仿真的关键技术和注意事项,为相关领域的研究人员和工程师提供有益的参考和启示。

1. IIR数字滤波器概述IIR(Infinite Impulse Response)数字滤波器是数字信号处理中常用的一类滤波器,它基于差分方程实现信号的滤波处理。

与FIR (Finite Impulse Response)滤波器不同,IIR滤波器具有无限长的单位脉冲响应,这意味着其输出不仅与当前和过去的输入信号有关,还与过去的输出信号有关。

这种特性使得IIR滤波器在实现相同的滤波效果时,通常具有更低的计算复杂度,从而提高了处理效率。

IIR滤波器的设计灵活多样,可以根据不同的需求实现低通、高通、带通和带阻等多种滤波功能。

数字滤波器的设计matlab

数字滤波器的设计matlab

数字滤波器的设计matlab
数字滤波器的设计可以使用MATLAB中的fdatool或者直接使用代码实现。

具体步骤如下:
1. 确定滤波器的类型(低通、高通、带通、带阻)以及参数(截止频率、通带、阻带宽度等)。

2. 使用MATLAB中的fdatool进行滤波器的设计,可以手动调节参数并进行实时分析和优化,或者选择预设的滤波器模板进行修改。

3. 点击Export将滤波器参数导出至matlab代码中。

4. 使用生成的代码进行滤波器的实现,例如:
```
fs = 1000; %采样率
fc = 100; %截止频率
[b, a] = butter(6, fc/(fs/2)); %设计6阶巴特沃斯低通滤波器input_signal = sin(2*pi*50*(0:1/fs:1)); %输入信号
output_signal = filter(b, a, input_signal); %滤波结果
```
其中,b和a分别为滤波器的分子和分母系数,可以根据不同的设计方法得到,input_signal为需要进行滤波的信号,output_signal为滤波后的结果。

数字滤波器的设计及其MATLAB实现

数字滤波器的设计及其MATLAB实现

设计低通数字滤波器,要求在通带内频率低于0.2pirad时,允许幅度误差在1dB以内,在频率0.3pi rad~pi rad之间的阻带衰减大于15dB,用脉冲响应不变法设计数字滤波器,T=1: 切比雪夫I型模拟滤波器的设计子程序:function [b,a]=afd_chb1(Omegap,Omegar,Ar)if Omegap<=0error('通带边缘必须大于0')endif(Dt<=0)|(Ar<0)error('通带波动或阻带衰减必须大于0');endep=sqrt(10^(Dt/10)-1);A=10^(Ar/20);OmegaC=Omegap;OmegaR=Omegar/Omegap;g=sqrt(A*A-1)/ep;N=ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));fprintf('\n***切比雪夫I型模拟低通滤波器阶数=%2.0f\n',N);[b,a]=u_chblap(N,Dt,OmegaC);设计非归一化切比雪夫I型模拟低通滤波器原型程序:function [b,a]=u_chblap(N,Dt,OmegaC)[z,p,k]=cheb1ap(N,Dt);a=real(poly(p));aNn=a(N+1);p=p*OmegaC;a=real(poly(p));aNu=a(N+1);k=k*aNu/aNn;b0=k;B=real(poly(z));b=k*B;直接形式转换成级联形式子程序:function [C,B,A]=sdir2cas(b,a)Na=length(a)-1;Nb=length(b)-1;b0=b(1);b=b/b0;a0=a(1);a=a/a0;C=b0/a0;p=cplxpair(roots(a));K=floor(Na/2);if K*2==NaA=zeros(K,3);for n=1:2:NaArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);elseif Na==1A=[0 real(poly(p))];elseA=zeros(K+1,3);for n=1:2:2*KArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);endA(K+1,:)=[0 real(poly(p(Na)))];endz=cplxpair(roots(b));K=floor(Nb/2);if Nb==0B=[0 0 poly(z)];elseif K*2==NbB=zeros(K,3);for n=1:2:NbBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endelseif Nb==1B=[0 real(poly(z))];elseB=zeros(K+1,3);for n=1:2:2*KBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endB(K+1,:)=[0 real(poly(z(Nb)))];End计算系统函数的幅度响应和相位响应子程序:function [db,mag,pha,w]=freqs_m(b,a,wmax)w1=0:500;w=w1*wmax/500;h=freqs(b,a,w);mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);脉冲响应不变法程序:function [b,a]=imp_invr(c,d,T)[R,p,k]=residue(c,d);p=exp(p*T);[b,a]=residuez(R,p,k);b=real(b).*T;数字滤波器响应子程序:function [db,mag,pha,grd,w]=freqz_m(b,a);[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);grd=grpdelay(b,a,w);直接转换成并联型子程序:function [C,B,A]=dir2par(b,a)M=length(b);N=length(a);[r1,p1,C]=residuez(b,a);p=cplxpair(p1,10000000*eps);x=cplxcomp(p1,p);r=r1(x);K=floor(N/2);B=zeros(K,2);A=zeros(K,3);if K*2==Nfor i=1:2:N-2br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br');A((fix(i+1)/2),:)real(ar');end[br,ar]=residuez(r(N-1),p(N-1),[]);B(K,:)=[real(br') 0];A(K,:)=[real(ar') 0];elsefor i=1:2:N-1br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br);A((fix(i+1)/2),:)real(ar);endEnd比较两个含同样标量元素但(可能)有不同下标的复数对及其相位留数向量子程序:function I=cplxcomp(p1,p2)I=[];for i=1:length(p2)for j=1:length(p1)if(abs(p1(j)-p2(i))<0.0001)I=[I,j];endendendI=I';双线性变换巴特沃斯低通滤波器设计:巴特沃思模拟滤波器的设计子程序:function [b,a]=afd_butt(wp,ws,Rp,rs)if wp<=0error('通带边缘必须大于0');endif ws<=wperror('阻带边缘必须大于通带边缘');endif(Rp<=0)|(Rs<0)error('通带波动或阻带衰减必须大于0');endN=ceil((log10((10^(Rp/10)-1)/(10^(Rs/10)-1)))/(2*log10(wp/ws))); fprintf('\n***Butterworth Filter Order=%2.0f\n',N);OmegaC=wp/((10^(Rp/10)-1)^(1/(2*N)));[b,a]=u_buttap(N,OmegaC)设计非归一化巴特沃思模拟低通滤波器原型子程序:function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));直接型到级联型形式的转换:function [b0,B,A]=dir2cas(b,a)b0=b(1);b=b/b0;a0=a(1);a=a/a0;b0=b0/a0;M=length(b);N=length(a);if N>Mb=[b,zeros(1,N-M)];a=[a,zeros(1,M-N)];elseNM=0;endk=floor(N/2);B=zeros(k,3);A=zeros(k,3);if k*2==Nb=[b,0];a=[a,0];endbroots=cplxpair(roots(b));aroots=cplxpair(roots(a));for i=1:2:2*kbr=broots(i:1:i+1,:);br=real(polt(br));B((fix(i+1)/2),:)=br;ar=aroots(i:1:i+1,:);ar=real(polt(ar));A((fix(i+1)/2),:)=ar;Endfunction [db,mag,pha,grd,w]=freqz_m(b,a)[h,w]=freqz(b,a,1000,'whole');h=(h(1:501))';w=(w(1:501))';mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);grd=grdelay(b,a,w);设计一个巴特沃思高通滤波器,要求通带截止频率为0.6pi,通带内衰减不大于1dB,阻带·起始频率为0.4pi,阻带内衰减不小于15dB,T=1:>> wp=0.6*pi;ws=0.4*pi;>> Rp=1;Rs=15;T=1;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs) 计算巴特沃思滤波器阶数和截止频率N =4wn =>> [b,a]=butter(N,wn,'high'); 频率变换法计算巴特沃思高通滤波器>> [C,B,A]=dir2cas(b,a)C =0.0751B =1.0000 -2.0000 1.00001.0000 -2.0000 1.0000A =1.0000 0.1562 0.44881.0000 0.1124 0.0425>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi,db);椭圆带通滤波器的设计--ellip函数的应用:>> ws=[0.3*pi 0.75*pi]; 数字阻带边缘频率>> wp=[0.4*pi 0.6*pi]; 数字通带边缘频率>> Rp=1;Rs=40;>> Ripple=10^(-Rp/20); 通带波动>> Attn=10^(-Rs/20); 阻带衰减>> [N,wn]=ellipord(wp/pi,ws/pi,Rp,Rs) 计算椭圆滤波器参数N =4wn =0.4000 0.6000>> [b,a]=ellip(N,Rp,Rs,wn); 数字椭圆滤波器的设计>> [b0,B,A]=dir2cas(b,a) 级联形式实现b0 =0.0197B =1.0000 1.5066 1.00001.0000 0.9268 1.00001.0000 -0.9268 1.00001.0000 -1.5066 1.0000A =1.0000 0.5963 0.93991.0000 0.2774 0.79291.0000 -0.2774 0.79291.0000 -0.5963 0.9399>> figure(1);>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,2,1);plot(w/pi,mag);>> grid on;>> subplot(2,2,3);plot(w/pi,db);grid on;>> subplot(2,2,2);plot(w/pi,pha/pi);grid on;>> subplot(2,2,4);plot(w/pi,grd);设计一个巴特沃思带阻滤波器,要求通带上下截止频率为0.8pi、0.2pi,通带内衰减不大于1dB,阻带上起始频率为0.7pi、0.4pi,阻带内衰减不小于30dB:>> wp=[0.2*pi 0.8*pi];>> ws=[0.4*pi 0.7*pi];>> Rp=1;Rs=30;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs);>> [b,a]=butter(N,wn,'stop');>> [C,B,A]=dir2cas(b,a)C =0.0394B =1.0000 0.3559 0.99941.0000 0.3547 1.00401.0000 0.3522 0.99541.0000 0.3499 1.00461.0000 0.3475 0.99601.0000 0.3463 1.0006A =1.0000 1.3568 0.79281.0000 1.0330 0.46331.0000 0.6180 0.17751.0000 -0.2493 0.11131.0000 -0.6617 0.37551.0000 -0.9782 0.7446>> [db,mag,pha,grd,w]=freqz_m(b,a); >> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi);数字低通---数字带阻:function [bz,az]=zmapping(bZ,aZ,Nz,Dz) bzord=(length(bZ)-1)*(length(Nz)-1); azord=(length(aZ)-1)*(length(Dz)-1);bz=zeros(1,bzord+1);for k=0:bzordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:bzord-k-1pld=conv(pld,Dz);endbz=bz+bZ(k+1)*conv(pln,pld); endfor k=0:azordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:azord-k-1pld=conv(pld,Dz);endaz=az+aZ(k+1)*conv(pln,pld); endall=az(1);az=az/az1;bz=bz/az1;线性相位FIR滤波器的幅度特性:function pzkplot(num,den)hold on;axis('square');x=-1:0.01:1;y=(1-x.^2).^0.5;y1=-(1-x.^2).^0.5;plot(x,y,'b',x,y1,'b');num1=length(num);den1=length(den);if(num1>1)z=roots(num);elsez=0;endif(den1>1)p=roots(den);elsep=0;endif(num>1&den1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max_z=max(r_max_z,i_max_z);r_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max_p=max(r_max_p,i_max_p);a_max=max(a_max_z,a_max_p);elseif (num1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max=max(r_max_z,i_max_z);elser_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max=max(r_max_p,i_max_p);endaxis([-a_max a_max -a_max a_max]);plot([-a_max a_max],[0 0],'b');plot([0 0],[-a_max a_max],'b');plot([-a_max a_max],[a_max a_max],'b');plot([a_max a_max],[-a_max a_max],'b');Lz=length(z);for i=1:Lz;plot(real(z(i)),imag(z(i)),'bo');endLp=length(p);for j=1:Lpplot(real(p(j)),imag(p(j)),'bx');endtitle('The zeros-pole plot');xlabel('虚部');ylabel('实部');function [Hr,w,a,L]=Hr_Type1(h)M=length(h);L=(M-1)/2;a=[h(L+1) 2*h(L:-1:1)];n=[0:1:L];w=[0:1:500]'*pi/500;Hr=cos(w*n)*a';设计I型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,a,L]=Hr_Type1(h);>> amax=max(a)+1;>> amin=min(a)-1;>> subplot(2,2,1);stem(n,h);>> axis([-1 2*L+1 amin amax]);text(2*L+1.5,amin,'n'); >> xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(0:L,a);>> axis([-1 2*L+1 amin amax]);>> xlabel('n');ylabel('a(n)');title('a(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);>> grid on;text(1.05,-20,'频率pi');>> xlabel('频率');ylabel('Hr');title('I 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);>> title('零极点分布');function [hr,w,b,L]=Hr_Type2(h)M=length(h);L=M/2;b=2*h(L:-1:1);n=[1:1:L];n=n-0.5;w=[0:1:500]'*pi/500;hr=cos(w*n)*b';II型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,b,L]=Hr_Type2(h);Warning: Integer operands are required for colon operator when used as index. > In Hr_Type2 at 2>> bmax=max(b)+1;bmin=min(b)-1;>> subplot(2,2,1);stem(n,h);axis([-1 2*L+1 bmin bmax]);text(2*L+1.5,bmin,'n');xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(1:L,b);axis([-1 2*L+1 bmin bmax]);xlabel('n');ylabel('b(n)');title('b(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);grid on;text(1.05,-20,'频率pi');xlabel('频率');ylabel('Hr');title('II 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);title('零极点分布');function [hr,w,c,L]=Hr_Type3(h)M=length(h);L=(M-1)/2;b=2*h(L+1:-1:1);n=[1:1:L];w=[0:1:500]'*pi/500;hr=cos(w*n)*c';用MA TLAB编程绘制各种窗函数的形状。

MATLAB数字滤波器的设计

MATLAB数字滤波器的设计

MATLAB数字滤波器的设计一、数字滤波器设计数字滤波器就是由数字乘法器、加法器和延时单位组成的一种装置。

它的作用是对输入离散信号的数字代码进行运算处理,从而达到改变信号频谱的目的。

数字滤波器可以用计算机软件实现或者大规模集成数字硬件实时实现。

在数字滤波器处理模拟信号的时候,先要对输入的模拟信号进行限带、抽样和模数转换。

数字滤波器输入信号的抽样率要大于信号带宽的两倍,它的频率响应还要具有以抽样频率为间隔的周期重复特性,并且它还要以1/2抽样频率点呈镜像对称。

数字滤波器具有高精度、高可靠性、可控制改变特性、便于集成等优点。

现在数字滤波器的使用范围比较广,例如,在语言信号处理、图像信号处理、医学生物信号处理以及其他应用领域。

数字滤波器有低通、高通、带通、带阻和全通等类型。

函数butter可用于设计Butterworth滤波器,butter函数可以设计低通、高通、带通和带阻的数字和模拟滤波器,用butter函数设计的滤波器通带内的幅度响应最大限度的平滑,但损失了截止频率处的下降斜度。

函数chebyl可用于设计Chebyshev I型滤波器,chebyl函数可以设计低通、高通、带通和带阻的数字和模拟Chebyshev I型滤波器,用chebyl函数设计的Chebyshev I型滤波器的通带内为等波纹,它的阻带内为单调。

Chebyshev I型滤波器的下降斜度比Chebyshev II型的要大,但是Chebyshev II的代价是通带内波纹比较大。

除了典型设计以外,MATLAB信号处理工具箱提供了几个直接设计IIR数字滤波器的函数,直接调用就可以设计滤波器,这为设计通用滤波器提供了方便。

在MATLAB中设计IIR滤波器时要设计出巴特沃斯滤波器可以使用Butterworth函数,要设计契比雪夫I型滤波器时可以使用Cheby1函数,设计契比雪夫II型滤波器要使用Cheby2,而椭圆滤波器则需要ellipord函数。

设计数字低通滤波器(用matlab实现)

设计数字低通滤波器(用matlab实现)

DSP 设计滤波器报告姓名:张胜男 班级:07级电信(1)班 学号:078319120一·低通滤波器的设计(一)实验目的:掌握IIR 数字低通滤波器的设计方法。

(二)实验原理:1、滤波器的分类滤波器分两大类:经典滤波器和现代滤波器。

经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。

这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。

现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。

经典滤波器分为低通、高通、带通、带阻滤波器。

每一种又有模拟滤波器(AF )和数字滤波器(DF )。

对数字滤波器,又有IIR 滤波器和FIR 滤波器。

IIR DF 的转移函数是:∑∑=-=-+==Nk k k M r r rz a z b z X z Y z H 101)()()(FIR DF 的转移函数是:∑-=-=10)()(N n nz n h z HFIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。

2、滤波器的技术要求低通滤波器:p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率 p α:通带允许的最大衰减s α:阻带允许的最小衰减 (p α,s α的单位dB ) p Ω:通带上限角频率 s Ω:阻带下限角频率 (s p p T ω=Ω,s s s T ω=Ω)即 C p p F ωπ2=Ω C s s F ωπ2=Ω3、IIR 数字滤波器的设计步骤:1)按一定规则将给出的数字滤波器的技术指标转换为模拟低通滤波器的技术指标。

2)根据转换后的技术指标设计模拟低通滤波器)(s G ;3)再按一定的规则将)(s G 转换成)(z H 。

4)若是高通、带通或带阻数字滤波器则将它们的技术指标先转化为低通模拟滤波器的技术指标,然后按上述步骤2)设计出低通)(s G ,再将)(s G 转换为所需的)(z H 。

matlab实验报告 IIR数字滤波器设计

matlab实验报告 IIR数字滤波器设计

实验报告姓名:李鹏博 实验名称: IIR 数字滤波器设计 学号:2011300704 课程名称: 数字信号处理 班级:03041102 实验室名称: 航海西楼303 组号: 1 实验日期: 2014.06.20一、实验目的、要求掌握IIR 数字滤波器设计的冲激响应不变法和双线性变换法。

掌握IIR 数字滤波器的计算机编程实现方法,即软件实现。

二、实验原理为了从模拟滤波器设计IIR 数字滤波器,必须先设计一个满足技术指标的模拟滤波器,然后将其数字化,即从s 平面映射到z 平面,得到所需的数字滤波器。

虽然IIR 数字滤波器的设计本质上并不取决于连续时间滤波器的设计,但是因为在许多应用中,数字滤波器就是用来模仿模拟滤波器功能的,所以由模拟滤波器转化为数字滤波器是很自然的。

因此,由模拟滤波器设计数字滤波器的方法准确、简便,是目前最普遍采用的方法。

三、实验环境PC 机,Windows XP ,office 2003,Matlab 软件。

四、实验过程、数据记录、分析及结论实验过程1.编程设计滤波器,用冲激响应不变法设计IIR 数字滤波器。

2.编程设计滤波器,用双线性变换法设计IIR 数字滤波器。

3.求脉冲响应、频率响应以及零极点。

4.编程滤波,求滤波器输出,完成对不同频率的多个正弦信号的滤波。

实验步骤根据所给定的技术指标进行指标转换。

112c c f πΩ=,222c c f πΩ=,112s s f πΩ=,222s s f πΩ=,21p c c B Ω==Ω-Ω,221222s s s s s B Ω-ΩΩΩ=Ω,3,18p s αα=-=-。

根据指标设计Butterworth 模拟低通滤波器。

调用函数[n,wn]=buttord(wp,ws,rp,rs,’s ’)确定阶次。

调用函数[zl,pl,kl]=buttap(n),求低通原型的模型。

调用函数[bl,al]=zp2tf(zl,pl,kl)实现模型转换。

基于MATLAB的数字滤波器的设计

基于MATLAB的数字滤波器的设计

基于MATLAB 的数字滤波器的设计1 引言数字滤波器是指完成信号滤波处理功能的,用有限精度算法实现的离散线性非时变系统,其输入是一组(由模拟信号取样和量化的)数字量,其输出是经过变换或说处理的另一组数字量。

数字滤波器具有稳定性高、精度高、灵活性大等突出优点。

这里所说的数字滤波器是指理想带通,低通等的频率选择数字滤波器。

数字滤波器设计的一个重要步骤是确定一个可实现的传输函数H(z),这个确定传输函数H(z)的过程称为数字滤波器设计。

数字滤波器的一般设计过程为:(1)按照实际需要,确定滤波器的性能要求(通常在频域内给定数字滤波的性能要求)。

(2)寻找一满足预定性能要求的离散时间线性系统。

(3)用有限精度的运算实现所设计的系统。

(4)通过模拟,验证所设计的系统是否符合给定性能要求。

2 数字滤波器的设计滤波器分为两种,分别为模拟滤波器和数字滤波器。

数字滤波器可以理解为是一个计算程序或算法,将代表输入信号的数字时间序列转化为代表输出信号的数字时间序列,并在转化的过程中,使信号按预定的形式变化。

数字滤波器有多种分类,从数字滤波器功能上分可分为低通、高通、带阻、带通滤波器,根据数字滤波器冲激响应的时域特征,可将数字滤波器分为两种,即无限长冲激响应滤波器(IIR )和有限长冲激响应滤波器(FIR )。

数字滤波器指标:一般来说,滤波器的幅频特性是分段常数的,以低通为例,在通带内逼近于1,阻带内逼近与0,实际设计的滤波器并非是锐截止的通带和阻带两个范围,两者之间总有一个过渡带。

在设计滤波器时事先给定幅频特性允许误差,在通带范围内幅度响应以误差逼近于1,在阻带内幅1σ度响应以误差逼近于0。

2σ (1)πσσ≤≤≤≤≤≤-w w e H w w e H r jwc jw ,2|)(|,1|)(|11式中wc 和wr 分别为通带边界频率和阻带边界频率,wr-wc 为过渡带。

在具体的技术指标中往往用通带波动来表示,用最小阻带衰减At 来表示,其具体的对应公式这里就不详述了。

Matlab滤波器设计--IIR滤波器的设计与仿真

Matlab滤波器设计--IIR滤波器的设计与仿真

matlab滤波器设计-IIR滤波器的设计与仿真1 引言在现代通信系统中,由于信号中经常混有各种复杂成分,所以很多信号的处理和分析都是基于滤波器而进行的。

但是,传统的数字滤波器的设计使用繁琐的公式计算,改变参数后需要重新计算,从而在设计滤波器尤其是高阶滤波器时工作量很大。

利用MATLAB信号处理箱(Signal Processing Toolbox)可以快速有效地实现数字滤波器的设计与仿真。

2 数字滤波器及传统设计方法数字滤波器可以理解为是一个计算程序或算法,将代表输入信号的数字时间序列转化为代表输出信号的数字时间序列,并在转化过程中,使信号按预定的形式变化。

数字滤波器有多种分类,根据数字滤波器冲激响应的时域特征,可将数字滤波器分为两种,即无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器。

IIR数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配,所以IIR滤波器的设计可以采取在模拟滤波器设计的基础上进一步变换的方法。

其设计方法主要有经典设计法、直接设计法和最大平滑滤波器设计法。

FIR数字滤波器的单位脉冲响应是有限长序列。

它的设计问题实质上是确定能满足所要求的转移序列或脉冲响应的常数问题,设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。

在对滤波器实际设计时,整个过程的运算量是很大的。

设计阶数较高的IIR滤波器时,计算量更大,设计过程中改变参数或滤波器类型时都要重新计算。

设计完成后对已设计的滤波器的频率响应要进行校核。

要得到幅频、相频响应特性,运算量也是很大的。

平时所要设计的数字滤波器,阶数和类型并不一定是完全给定的,很多时候要根据设计要求和滤波效果不断地调整,以达到设计的最优化。

在这种情况下,滤波器设计就要进行大量复杂的运算,单纯的靠公式计算和编制简单的程序很难在短时间内完成。

利用MATLAB强大的计算功能进行计算机辅助设计,可以快速有效地设计数字滤波器,大大地简化了计算量。

基于matlab的数字滤波器设计与仿真

基于matlab的数字滤波器设计与仿真

滤波器仿真实验报告题目:基于Matlab的数字滤波器设计与仿真姓名:学号:指导教师:基于Matlab 的数字滤波器设计与仿真数字信号处理在通信、语音、图像,自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。

在数字信号处理中,滤波器占有非常重要的地位。

数字滤波器在语音和图像处理、HDTV 、模式识别、频谱分析等方面得到广泛应用。

所谓滤波器,是指对输入信号进行滤波的软件或硬件。

所谓数字滤波器,是指输入、输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的硬件或软件。

由于数字滤波信号形式与实现滤波方法与模拟滤波方法不同,数字滤波器具有比模拟滤波器精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配以及可以避免模拟滤波器所无法克服的电压漂移和噪声问题。

数字滤波器的设计,其实质是数学逼近理论的应用,通过计算使物理可实现的实际滤波器频率特性逼近理想的或给定的频率特性,以达到去除干扰提取有用信号的目的。

1 实验与仿真原理1.1 数字滤波器的工作原理在数字滤波中,我们主要讨论离散时间序列。

如图1所示。

设输入序列为()n x ,离散或数字滤波器对单位抽样序列()n δ的响应为()n h 。

因()n δ在时域离散信号和系统中所起的作用相当于单位冲激函数在时域连续信号和系统中所起的作用。

图1 数字滤波器原理数字滤波器的序列()n y将是这两个序列的离散卷积,即()()()∑∞∞=-=kk n x k h n y同样,两个序列卷积的z 变换等于个自z 变换的乘积,即()()()z X z H z Y =用T j e z ω=代入上式,其中T 为抽样周期,则得到()()()T j T j T j e X e H e Y ωωω=式中()Tj e Xω和()T j e Y ω分别为数字滤波器输入序列和输出序列的频谱,而()Tj e H ω为单位抽样序列响应()n h 的频谱。

(完整版)基于Matlab的FIR滤波器的设计与仿真

(完整版)基于Matlab的FIR滤波器的设计与仿真

西南科技大学通信原理设计报告课程名称:通信原理课程设计设计名称:数字FIR滤波器设计与仿真分析姓名:XXXXXX学号: XXXXXXXX班级: XXXXXXXXXXX指导教师:XXXXXX起止日期:2014/6/26—2014/7/5西南科技大学信息工程学院制方向设计任务书学生班级:XXXXXXX 学生姓名:XXXXXX 学号:XXXXXXXXX 设计名称:数字FIR滤波器设计与仿真分析起止日期:2014/6/22-2014/7/5 指导教师:XXXXXXXX方向设计学生日志数字FIR滤波器设计与仿真分析一、摘要传统的数字滤波器设计计算繁琐,尤其是设计高阶滤波器时工作量大,利用Matlab可以快速有效地实现数字滤波器的设计与仿真。

本文介绍了有限长单位冲激响应FIR数字滤波器的传统设计思想和步骤,同时也介绍了利用MATLAB对FIR数字滤波器进行设计的方法、设计的操作步骤以及对设计的滤波器的仿真。

二、设计目的和意义1.通过此次专业方向设计,了解有限长单位冲激响应FIR数字滤波器的传统设计方法;2.了解Matlab信号处理箱并掌握FDATool专用滤波器设计分析工具;3.学习如何使用Matlab,学会用Matlab解决实际问题。

三、设计原理数字滤波器,是具有一定传输选择特性的数字信号处理装置,其输入和输出均为数字信号,实质上是一个由有限精度算法实现的线性时不变离散系统。

可以把它理解为是一个计算程序或算法,它把代表输入信号的数字时间序列转化为代表输出信号的数字时间序列,并在转化过程中,使信号按照预定的形式变化。

数字滤波器有多种分类,从数字滤波器功能上分可分为低通、高通、带阻、带通滤波器,根据数字滤波器冲激响应的时域特征,可将数字滤波器分为两种,即无限长冲激响应滤波器(IIR)和有限长冲激响应滤波器(FIR)。

1.有限长冲激响应滤波器FIR滤波器及其传统设计方法FIR滤波器的单位冲击响应是有限长的,h(n)在范围内有值,其系统函数为,它是的(N-1)阶多项式,H(z)在有限z平面()有N-1个零点;在z平面原点z=0处有N-1阶极点。

基于MATLAB环境的数字滤波器的设计与仿真

基于MATLAB环境的数字滤波器的设计与仿真

基于MATLAB环境的数字滤波器的设计与仿真摘要:数字滤波器是数字信号处理中最重要的工具之一。

在许多科学技术领域中广泛采用数字滤波器进行信号处理。

数字滤波器分为两类,即有限脉冲响应滤波器(FIR)和无限脉冲响应滤波器(IIR)。

数字滤波器是由数字乘法器、加法器和延时单元组成的一种装置。

其功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。

由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。

本文针对在实际设计中要大量应用数字滤波器这一现实,对数字滤波器的基本理论、性能特点、设计方法进行了全面的分析,特别是对有限冲击响应数字滤波器(FIR)的设计进行了深入的探讨。

文章运用了MA TLAB仿真手段对数字滤波器的设计理论和设计方法方法进行了研究。

论文主要包括数字滤波器以及MATLAB在信号处理方面的概述,FIR数字滤波器设计方法的介绍,MATLAB语言仿真,以及最终结论。

本论文所采用的研究方法是仿真比较,介绍了常用滤波器的设计方法,通过MATLAB软件对各种方法分别实现仿真,然后对仿真结果进行比较。

通过对数字滤波器的理论研究为今后的实践奠定理论基础。

关键词:数字滤波器;FIR滤波器;MATLAB;仿真Design and Simulation of Digital FilterBased On MATLABAbstract: Digital filter is one of the most important parts of digital signal processing. In many fields of science and technology, it is widely used for digital signal processing. Digital filter includes finite impulse response filter(FIR) and infinite impulse response filter(IIR).Digital wave filter is a kind of installation that forms by digital multiplier, adder and the unit of delay time. Its function is to carry out operational handling for inputting the digital code of dispersed signal in order to reach the purpose that changes signal frequency spectra. Because of the development of the computer technical circuit of large scale integration digital wave filter can already realize with computer software, can also realize with the digital hardware real time of large scale integration. Digital wave filter is a dispersed time system. As digital filters, in particular FIR filters, are widely used in modern designs, this dissertation comprehensively anglicized fir’s basic theory, characters and design methodologies.In this paper, MATLAB simulation is employed to study the design theory and methods of digital filter. The summary of digital filter and MATLAB language are introduced. Method of FIR filter design, results of MATLAB simulation are described in detail as well. The common design methods of digital filter are simulated with MATLAB to find the result that I need before. It is hope that it can provide a reference for future appliance.Key Words: digital filter;FIR filter;MATLAB;simulation第一章绪论1.1 数字滤波器的现状及发展数字滤波器按单位脉冲响应的性质可分为无限长单位脉冲响应滤波器IIR和有限长单位脉冲响应滤波器FIR两种。

基于MATLAB的数字插值滤波器设计

基于MATLAB的数字插值滤波器设计

EDA 课程设计报告滤波器设计参数:根据要求,要设计一个输入8位,输出8位的17阶线性相位FIR 滤波器,所以采用图2(a)的方式,其中输入信号范围为:[±99,0,0,0, ±70,0,0,0, ±99,0,0,0, ±70,…],此滤波器 Fs 为44kHz,Fc 为10.4kHz 。

(一)FIR 数字滤波器理论简述有限冲激响应(FIR )数字滤波器和无限冲激响应(IIR )数字滤波器广泛应用于数字信号处理系统中。

IIR 数字滤波器方便简单,但它相位的非线性,要求采用全通网络进行相位校正,且稳定性难以保障。

FIR 滤波器具有很好的线性相位特性,使得它越来越受到广泛的重视。

有限冲击响应(FIR )滤波器的特点:1 既具有严格的线性相位,又具有任意的幅度;2 FIR 滤波器的单位抽样响应是有限长的,因而滤波器性能稳定;3只要经过一定的延时,任何非因果有限长序列都能变成因果的有限长序列,因而能用因果系统来实现;4 FIR 滤波器由于单位冲击响应是有限长的,因而可用快速傅里叶变换(FFT)算法来实现过滤信号,可大大提高运算效率。

5 FIR 也有利于对数字信号的处理,便于编程,用于计算的时延也小,这对实时的信号处理很重要。

6 FIR 滤波器比较大的缺点就是阶次相对于IIR 滤波器来说要大很多。

FIR 数字滤波器是一个线性时不变系统(LTI ),N 阶因果有限冲激响应滤波器可以用传输函数H (z )来描述,()()Nk k H z h k z -==∑(0.1)在时域中,上述有限冲激响应滤波器的输入输出关系如下:[][][][][]Nk y n x n h n x k h n k ==*=-∑(0.2)其中,x [n ]和y [n ]分别是输入和输出序列。

N 阶有限冲激响应滤波器要用N +1个系数描述,通常要用N+1个乘法器和N 个两输入加法器来实现。

乘法器的系数正好是传递函数的系数,因此这种结构称为直接型结构,可通过式(1.2)来实现,如图1。

基于matlab的数字滤波器的设计及仿真

基于matlab的数字滤波器的设计及仿真
第22第页2/2共页3/3共页33页
程序编写
clearclose allwls=0.2*pi;wlp=0.35*pi;whp=0.65*pi;B=wlp-wls;N=ceil(12/0.15);wc=[wlp/pi-6/N,whp/pi+6/N];hn=fir1(N-1,wc,blackman(N));n=0:79;subplot(2,1,1);stem(n,hn,".")[h,w]=freqz(hn,1,256);subplot(2,1,2);plot(w/pi,20*log10(abs(h)));grid;
滤波器的仿真
第16第页1/2共页3/3共页33页
三个信号叠加:
第17第页1/2共页3/3共页33页
滤波后的结果:
可见FDAtool设计的滤波器滤波的效果很好!
二、MATLAB环境下FIR数字滤波器的设计
窗函数法等波纹逼近法频率采样法
第18第页1/2共页3/3共页33页
窗函数法
用窗函数法设计FIR滤波器时,先根据wc和N求出相应的理想滤波器单位脉冲响应hd(n);选择合适的窗函数w(n)来截取hd(n)的适当长度(即阶数),以保证实现要求的阻带衰减;最后得到FIR滤波器单位脉冲响应:h(n)= hd(n)*w(n).
第23第页2/2共页3/3共页33页
第24第页2/2共页3/3共页33页
四、两个有趣的实验
1、利用MATLAB进行声音滤波:利用MATLAB读取wav格式的声音文件,对信号进行离散傅里叶变换,得到其频谱图,给信号加杂音,然后设计一个数字滤波器将杂音滤除,得到原音,最后比较滤波器的滤波效果。
第25第页2/2共页3/3共页33页
第31第页2/2共页3/3共页33页

数字滤波器的MATLAB设计与仿真及在DSP上的实现

数字滤波器的MATLAB设计与仿真及在DSP上的实现

数字滤波器的MATLAB设计与仿真及在DSP上的实现数字滤波器的MATLAB设计与仿真及在DSP上的实现概述:数字滤波器是数字信号处理(DSP)中的重要组成部分,常用于信号去噪、频率选择、滤波等应用。

本文将介绍数字滤波器的设计、仿真以及在DSP上的实现。

我们将使用MATLAB软件进行数字滤波器设计和仿真,并利用DSP芯片进行实现。

第一部分:数字滤波器的设计与仿真1. 信号基础知识在设计数字滤波器之前,我们需要了解信号的基础知识,如信号的采样率、带宽、频率等。

这些基础知识将有助于我们选择合适的滤波器类型和参数。

2. 滤波器类型数字滤波器可以分为两大类别:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。

IIR滤波器具有无限的冲激响应,因此可以实现更为复杂的频率响应特性;而FIR滤波器降低了系统的非线性,同时具有线性相位特性,适用于需要精确延迟的应用。

3. 滤波器设计方法常用的数字滤波器设计方法包括窗函数法、最小二乘法和频率抽取法等。

根据具体的应用需求,我们可以选择合适的设计方法,并通过MATLAB进行滤波器的设计和参数调整。

4. 滤波器性能评估在设计完成后,我们需要评估数字滤波器的性能。

常见的评价指标包括滤波器的频率响应、幅频特性、相频特性、群延迟等。

通过MATLAB的仿真,我们可以直观地观察并分析滤波器的性能。

第二部分:数字滤波器在DSP上的实现1. DSP概述数字信号处理器(DSP)是一种专门设计用于处理数字信号的微处理器。

与通用微处理器相比,DSP具有更高的运算速度和更低的功耗,适用于实时信号处理应用。

2. DSP开发环境搭建为了实现数字滤波器的DSP上的实现,我们首先需要搭建DSP开发环境。

选择合适的DSP芯片,安装开发工具,编写代码并进行调试。

在本文中,我们以TMS320F28335为例,使用CCS开发工具进行开发。

3. 数字滤波器的DSP实现根据数字滤波器的设计结果,我们可以将其转化为DSP上的实现代码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012-5-9
13
图形:
0 Magnitude (dB) -20
-40
-60
0
100
200
300
400 500 600 Frequency (Hz)
700
800
900
1000
0 Phase (degrees) -20 -40 -60 -80 -100 0 100 200 300 400 500 600 Frequency (Hz) 700 800 900 1000
2012-5-9
24
得出结果: b= 0.2774 -0.0460 -0.0761 0.1008 -0.0571 0.1488 0.1262 -0.3949 -0.0783 0.0512 0.0270
a= 1.0000 -0.0185 0.2372 -0.0633 0.4144 0.1727 0.0393 0.0629 0.3588 0.0496 0.1016
2012-5-9
8
得出结果: N= 2 wn = 0.6630 b= 0.1578 -0.3155 a= 1.0000 0.6062 0.2373 0.1578
2012-5-9
9
图形:
0 Magnitude (dB) -50
-100
0
50
100
150
200 250 300 Frequency (Hz)
2012-5-9
18
设计一个带通Chebyshev II型数字滤波 器,满足:通带边界频率为100-200赫兹; 过渡带宽为30赫兹,通带波纹小于3dB, 阻带衰减大于30dB;采样频率为1000赫 兹。
2012-5-9
19
程序: fs=1000; wp=[100 200]*2/fs;ws=[30 300]*2/fs; rp=3;rs=30;Nn=128; [N,wn]=cheb2ord(wp,ws,rp,rs) [b,a]=cheby2(N,rp,wn) freqz(b,a,Nn,fs)
( n −1) + ... + b( n −1) s... + bn B ( s ) b1s = ( m −1) A( s ) a1s + ... + a( m −1) s... + am
Lp2lp:频率转换函数 Impinvar:脉冲响应不变法函数
Butter:完全设计函数
2012-5-9 6
双线性变换法
2012-5-9
3
得出结果:
ws =0.9425 bz = 1.0e-017 * 0.0272 -0.1383 0.2840 -0.2943 0.1440 0.0107 az = 1.0000 -5.9997 14.9986 -19.9973 14.9973 -5.9986 0.9997
2012-5-9
3500
4000
4500
5000
2012-5-9
5
Buttord:阶数估计函数 Buttap:低通模拟原型滤波器函数 Zp2tf:零极点变换传递函数形式
( s − z1 )( s − z2 )...( s − zm ) Z ( s) H ( s) = =k P( s) ( s − p1 )( s − p2 )...( s − pn )
0 -50
-100 -150 -200
0
50
100
150
200 250 300 Frequency (Hz)
350
400
450
500
0 Phase (degrees) -200 -400 -600 -800
0
50
100
150
200 250 300 Frequency (Hz)
350
400
450
500
2012-5-9
21
图形:
Magnitude (dB)
0
-100
-200
-300
0
50
100
150
200 250 300 Frequency (Hz)
350
400
450
500
200 Phase (degrees) 100 0 -100 -200
0
50
100
150
200 250 300 Frequency (Hz)
2012-5-9
11
MATLAB程序: fs=2000; wp=1*2/fs;ws=400*2/fs; rp=3;rs=15;Nn=128; [N,wn]=buttord(wp,ws,rp,rs) [b,a]=butter(N,wn) freqz(b,a,Nn,fs)
2012-5-9
12
得出结果: N= 1 wn = 0.0831 b= 0.1161 a= 1.0000 -0.7679 0.1161
2012-5-9
28
m is a vector containing the desired magnitude response at the points specified in f. f and m must be the same length. plot(f,m) displays the filter shape. The output filter coefficients are ordered in descending powers of z. B ( z ) b(1) + b(2) z −1... + b(n + 1) z − n = A( z ) a (1) + a(2) z −1... + a(n + 1) z − n When specifying the frequency response, avoid excessively sharp transitions from passband to stopband. You may need to experiment with the slope of the transition region to get the best filter design
数字滤波器的设计(MATLAB仿真) 数字滤波器的设计(MATLAB仿真) (MATLAB仿真
李晓帆 2012-04-17
一、IIR滤波器的经典设计
1、用巴特沃斯滤波器原型设计一个低通滤 波器,满足:
ω p = 0.2π , R p = 1dB, ωs = 0.3π , As = 15dB
采样频率为10000赫兹。 采用脉冲响应不变法。
2012-5-9
20
得出结果: N= 3 wn = 0.0600 b= 0.6552 -0.7429 -0.4286 a= 1.0000 -1.5792 0.2614 -0.2431 0.7349 0.2573 -0.4243 0.0000 0.4286 0.7429 -0.6552 0.6000
2012-5-9
16
得出结果: N= 3 wn = 0.2000 b= 0.0066
0.4000
0 -0.0198
0
0.0198
0 -0.0066
a= 1.0000 -3.3130 0.6884
2012-5-9
6.1125 -6.9677
5.3979 -2.5753
17
图形:
Magnitude (dB)
2012-5-9
25
图形:
1.4 1.2
direct IIR design-yulewalk ? ? ? ? ? ? ? ?
1
magnitude
0.8
0.6
0.4
0.2
0
0
0.1
0.2
0.3
0.4 0.5 0.6 frequency(pi)
0.7
0.80.9Fra bibliotek12012-5-9
26
函数yulewalk直接设计IIR滤波器,函数调用格式为: [b,a]=yulewalk(n,f,m) n :滤波器的阶数; f :滤波器点向量,标准化频率取值范围为0-1,第一 个频率点为0,最后一个频率点为1,向量的频率点必 须是递增的; m :和频率向量对应的理想幅值响应向量。 b,a分别是所设计滤波器的分子和分母系数向量;
设计一个巴特沃斯高通数字滤波器,满足:通带边界 频率为400赫兹;阻带边界频率为200赫兹,通带波纹 小于3dB,阻带衰减大于15dB;采样频率为1000赫兹。
2012-5-9
7
MATLAB程序: fs=1000; wp=400*2/fs;ws=200*2/fs; rp=3;rs=15;Nn=128; [N,wn]=buttord(wp,ws,rp,rs) [b,a]=butter(N,wn,'high') freqz(b,a,Nn,fs)
350
400
450
500
2012-5-9
22
工程IIR滤波器的直接设计
用直接法设计一个多频带数字滤波器,幅 频响应值为: f=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1] m=[0 0 1 1 0 0 1 1 0 0 0].
2012-5-9
23
程序: oder=10; f=0:0.1:1;m=[0 0 1 1 0 0 1 1 1 0 0]; [b,a]=yulewalk(oder,f,m) [h,w]=freqz(b,a,128) axes('position',[0.2 0.2 0.4 0.4]); plot(f,m,'b-',w/pi,abs(h),'m--'); xlabel('frequency(pi)'); ylabel('magnitude'); title('direct IIR design-yulewalk'); legend('理想图形','实际图形',1); grid
相关文档
最新文档