比较贝氏体转变与珠光体转变和马氏体转变的异同

合集下载

金属学热处理下册问题详解

金属学热处理下册问题详解

第八章扩散8-1 何为扩散?固态扩散有哪些种类?答:扩散是物质中原子(或)分子的迁移现象,是位置传输的一种方式。

根据扩散过程是否发生浓度变化可分为:自扩散、互扩散根据扩散方向是否与浓度梯度的方向相同可分为:下坡扩散、上坡扩散根据扩散过程是否出现新相可分为:原子扩散、反应扩散8-2 何为上坡扩散和下坡扩散?举例说明。

答:下坡扩散:原子或分子沿浓度降低的方向进行扩散,使浓度趋于均匀化。

比如铸件的均匀化退火、工件的表面渗碳过程均属于下坡扩散。

上坡扩散:原子或分子沿浓度升高的方向进行扩散,即由低浓度向高浓度方向扩散,使浓度趋于两极分化。

例如奥氏体向珠光体转变过程中,碳原子从浓度较低的奥氏体中向浓度较高的渗碳体中扩散。

8-3 扩散系数的物理意义是什么?影响因素有哪些?答:扩散系数的物理意义:浓度梯度为1 时的扩散通量。

D 越大,扩散速度越快。

影响因素:1、温度:扩散系数与温度呈指数关系,随温度升高,扩散系数急剧增大。

2、键能和晶体结构:键能高,扩散激活能大,扩散系数减小;不同的晶体结构具有不同的扩散系数:例如从晶体结构来考虑,碳原子在铁素体中的扩散系数比在奥氏体中的大。

3、固溶体类型:不同类型的固溶体,扩散激活能不同,间隙原子的扩散激活能比置换原子的小,扩散系数大。

4、晶体缺陷:晶体缺陷处,自由能较高,扩散激活能变小,扩散易于进行。

5、化学成分:当合金元素提高合金熔点,扩散系数减小;若降低合金熔点,扩散系数增加8-4 固态合金中要发生扩散必须满足那些条件?为什么?答:1、扩散需有驱动力。

扩散过程都是在扩散驱动力的作用下进行的,如没有扩散驱动力,也就不能发生扩散。

2、扩散原子要固溶。

扩散原子在基体中必须由一定的固溶度,形成固溶体,才能进行固态扩散。

3、温度要足够高。

固态扩散是依靠原子热激活而进行的,温度越高,原子的热振动越激烈,原子被激活发生迁移的可能性就越大。

4、时间要足够长。

原子在晶体中每跃迁一次最多只能移动0.3-0.5nm 的距离,只有经过相当长的时间才能形成物质的宏观定向迁移。

马氏体奥氏体珠光体贝氏体的区别

马氏体奥氏体珠光体贝氏体的区别

马氏体奥氏体珠光体贝氏体马氏体(martensite)是黑色金属材料的一种组织名称。

马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。

其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。

马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体)奥氏体(austenite)A、γ是晶体结构:面心立方(fcc)。

是碳在γ-Fe中形成的间隙固溶体。

奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。

不具有铁磁性。

因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。

古代铁匠打铁时烧红的铁块即处于奥氏体状态。

另外,奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。

珠光体pearlite 珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。

得名自其珍珠般(pearl-like)的光泽。

其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。

用符号P表示,含碳量为ωc=%。

在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。

珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好。

铁素体(ferrite,缩写:FN,用F表示)即α-Fe和以它为基础的固溶体,具有体心立方点阵。

亚共析成分的奥氏体通过先共析析出形成铁素体。

在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;室温下的铁素体的机械性能和纯铁相近。

铁素体的强度、硬度不高,但具有良好的塑性与韧性。

第九章钢的热处理原理第十章钢的热处理工艺课后题答案

第九章钢的热处理原理第十章钢的热处理工艺课后题答案

第九章钢的热处理原理第十章钢的热处理工艺1,.金属固态相变有哪些主要特征?哪些因素构成相变阻力?答:金属固态相变主要特点:1、不同类型相界面,具有不同界面能和应变能2、新旧相之间存在一定位向关系与惯习面 3、相变阻力大4、易于形成过渡相5、母相晶体缺陷对相变起促进作用6、原子的扩散速度对固态相变起有显著影响…..阻力:界面能和弹性应变能2、何为奥氏体晶粒度?说明奥氏体晶粒大小对钢的性能的影响。

答:奥氏体晶粒度是指奥氏体晶粒的大小。

金属的晶粒越细小,晶界区所占的比例就越大,晶界数目越多(则晶粒缺陷越多,一般位错运动到晶界处即停),在金属塑变时对位错运动的阻力越大,金属发生塑变的抗力越大,金属的强度和硬度也就越高。

晶粒越细,同一体积内晶粒数越多,塑性变形时变形分散在许多晶粒内进行,变形也会均匀些,虽然多晶体变形具有不均匀性,晶体不同地方的变形程度不同,位错塞积程度不同,位错塞积越严重越容易导致材料的及早破坏,晶粒越细小的话,会使金属的变形更均匀,在材料破坏前可以进行更多的塑性变形,断裂前可以承受较大的变形,塑性韧性也越好。

所以细晶粒金属不仅强度高,硬度高,而且在塑性变形过程中塑性也较好。

3..珠光体形成时钢中碳的扩散情况及片,粒状珠光体的形成过程?4、试比较贝氏体转变、珠光体转变和马氏体转变的异同。

答:从以下几个方面论述:形成温度、相变过程及领先相、转变时的共格性、转变时的点阵切变、转变时的扩散性、转变时碳原子扩散的大约距离、合金元素的分布、等温转变的完全性、转变产物的组织、转变产物的硬度几方面论述。

试比较贝氏体转变与珠光体转变的异同点。

对比项目珠光体贝氏体形成温度高温区(A1以下)中温区(Bs以下)转变过程形核长大形核长大领先相渗碳体铁素体转变共格性、浮凸效应无有共格、表面浮凸转变点阵切变无有转变时扩散Fe、C均扩散Fe不扩散、C均扩散转变合金分布通过扩散重新分布不扩散等温转变完全性可以不一定转变组织α+Fe3C α+Fe3C (上贝氏体)α+ε—Fe3C(下贝氏体)转变产物硬度低中5..珠光体、贝氏体、马氏体的特征、性能特点是什么?片状P体,片层间距越小,强度越高,塑性、韧性也越好;粒状P体,Fe3C颗粒越细小,分布越均匀,合金的强度越高。

贝氏体转变和马氏体转变和珠光体转变的区别

贝氏体转变和马氏体转变和珠光体转变的区别

贝氏体转变和马氏体转变和珠光体转变的区别
贝氏体转变、马氏体转变和珠光体转变是金属材料中常见的组织变化,在工程制造和材料科学中都有重要的应用。

贝氏体转变指的是钢材在加热过程中的组织转变,由低温的铁素体转变为高温的贝氏体。

在从铁素体到贝氏体的转变过程中,钢材的微观组织形态发生了重大改变。

钢材的晶粒也随着组织的转变而发生了明显的变化。

钢材在加热过程中晶粒逐渐增大,直到达到最终贝氏体组织。

马氏体转变是一种金属材料的组织转变,由奥氏体向马氏体的转变。

这种组织转变是钢材经过淬火后的过程。

钢材处于高温状态时,铁素体通过加快冷却速度,形成奥氏体,进一步经过淬火、冷却速度更快,就可能形成马氏体。

马氏体对强度和硬度的提升有很大作用。

珠光体转变是一种金属材料的组织转变,由马氏体向珠光体的转变。

当金属材料处于温度较高的状态时,马氏体会缓慢地向珠光体转变。

珠光体的晶粒比马氏体的晶粒要细小得多,这就意味着珠光体的强度和韧性会高于马氏体。

三种转变的区别可以总结如下:
1. 贝氏体转变和马氏体转变是由不同的原因导致的。

贝氏体转变是由温度的变化引起的,而马氏体转变是由冷却速度的变化引起的。

2. 贝氏体和马氏体都是高强度金属材料,但它们的应用场合不同。

贝氏体主要应用于高温下的场合,马氏体主要应用于低温、高应力下的场合。

3. 珠光体转变需要温度较高,速度较缓慢,才能发生。

珠光体对材料的强度和韧性会有很大提升,但需要注意的是,珠光体转变并不能在所有材料中应用。

珠光体、贝氏体、马氏体转变对比

珠光体、贝氏体、马氏体转变对比

一、组织形态1、珠光体的组织形态共析碳钢加热到均匀的的奥氏体化状态后缓慢冷却,稍低于温度将形成珠光体组织,为铁素体和渗碳体的机械混合物,其典型形态呈片状或层状。

片状珠光体是由一层铁素体与一层渗碳体交替堆叠而成。

片状珠光体组织中,一对铁素体和渗碳体片的总厚度,称为“珠光体片层间距”。

工业上所谓的片状珠光体,是指在光学显微镜下能够明显看出铁素体与渗碳体呈层状分布的组织形态,其片层间距约在0.150.45之间。

透射电镜观察表明,在退火状态下,珠光体中的铁素体位错密度小,渗碳体中的位错密度更小,片状珠光体中铁素体与渗碳体两相交界处的为错密度高,在每一片铁素体中还有亚晶界,构成许多亚晶粒。

工业用钢中,也可以见到铁素体基体上分布着粒状渗碳体组织,称为“粒状珠光体”或“球状珠光体”,一般是经球化退火处理后获得的。

2、马氏体的组织形态a、板条状马氏体板条状马氏体是低、中碳钢,马氏体时效钢,不锈钢等铁系合金中形成的一种典型的马氏体组织。

因其显微组织是由许多成群的板条组成,故称为板条状马氏体。

又因为这种马氏体的亚结构主要为位错,通常也称它为位错型马氏体。

板条状马氏体的显微组织(如图所示),其中A为板条束,成不规则形状,尺寸约为20—35μm,是由若干单个马氏体板条所组成。

一个板条束又可分成几个平行的像图中B那样的区域,呈块状。

块界长尺寸方向与板条马氏体边界平行,块间成大角晶界。

每个块由若干板条组成,每一个板条为一个单晶体。

板条具有平直的界面,并接近于奥氏体的,为其惯习面,相同惯习面的变体平行排列构成板条束。

现已确定这些稠密的板条被连续的高度变形的残余奥氏体薄膜()所隔开。

相邻板条一般以小角晶界相间,也可成孪晶关系,成孪晶关系时条间无残余奥氏体。

透射电镜观察证明,板条马氏体有高密度位错。

有时也会有部分相变孪晶存在,但为局部的,数量不多。

板条状马氏体的显微组织构成随钢和合金的成分变化而改变。

在碳钢中,当碳含量小于0.3%时,原始奥氏体晶粒板条束及束中块均很清楚;碳含量在0.30.5%,板条束清楚,块不清楚;碳含量升高到0.60.8时,板条混杂生成的倾向性很强,无法辨识束和块。

潘金生《材料科学基础》(修订版)(名校考研真题 固态相变(Ⅰ)——扩散型相变)【圣才出品】

潘金生《材料科学基础》(修订版)(名校考研真题  固态相变(Ⅰ)——扩散型相变)【圣才出品】

第11章 固态相变(Ⅰ)——扩散型相变一、判断题有序-无序转变是指晶体与非晶体之间的转变。

()[南京工业大学2003研]【答案】×【解析】有序-无序转变狭义是指存在于某些晶体内部的两种结构状态。

无序是指在某一临界温度以上,晶体结构中的两种或多种不同质点(原子或离子以至空位)都随机地分布于一种或几种结构位置上相互间排布没有一定的规律性的结构状态;有序是指此改办温度以下,这些不同的质点可以各自有选择地分占这些结构位置中的不同位置,相互间作有规则的排列的结构状态,相应的晶体结构称为超结构或超点阵。

有序-无序转变从物质结构上可分为三种主要类型:①位置有序;②取向有序;③与电子自旋状态有关的有序。

二、名词解释1.铝合金的时效[西南交通大学2009研]答:铝合金的时效是指铝合金在经过高温固溶处理后,迅速冷却形成过饱和固溶体,并在随后的加热保温过程中析出亚稳相的过程。

2.一级相变[南京工业大学2008、西南交通大学2009、北京工业大学2009研]答:相变时两相的化学势相等,但化学势的一阶偏微商不相等,发生一级相变时有相变潜热和体积的变化。

3.调幅分解[北京工业大学2009研]答:调幅分解是指固溶体通过上坡扩散分解成结构均与母相相同、成分不同的两种固溶体的转变。

三、简答题1.已知727℃时,平衡态铁碳合金中铁素体的最大碳含量为W c =0.0218%,而奥氏体的碳含量为Wc =0.77%。

试问:(1)碳原子分别位于铁素体和奥氏体晶体中的什么位置?(2)解释为什么两者的碳含量差别如此之大。

[西安交通大学2006研]答:(1)碳原子位于铁素体晶体中的扁八面体间隙中心位置,位于奥氏体晶体中的正八面体间隙中心位置。

(2)因为铁素体晶体中的扁八面体间隙半径比奥氏体晶体中的正八面体间隙半径小得多。

2.根据如图11-1所示共析碳钢的过冷奥氏体转变C 曲线(TTT 曲线),请写出经过图中所示6种不同工艺处理后材料的组织名称以及硬度排列(从高到低)。

比较贝氏体转变与珠光体转变和马氏体转变的异同

比较贝氏体转变与珠光体转变和马氏体转变的异同

For personal use only in study and research; not for commercial use比较马氏体贝氏体珠光体转变的异同一.组织形态:1.珠光体:珠光体的组织形态特征:珠光体的典型组织特征是由一层铁素体和一层渗碳体交替平行堆叠而形成的双相组织。

根据片层间距的不同,可将珠光体分为三种:珠光体:S0=450-150nm,形成温度为A1-650℃,普通光学显微镜可以分辨。

索氏体:S0=150-80nm,形成温度为650-600℃,高倍光学显微镜可以分辨。

屈氏体:S0=80-30nm,形成温度为600-550℃,电子显微镜可以分辨。

铁素体基体上分布着粒状渗碳体的组织为粒状珠光体。

这种组织一般是通过球化退火或淬火后高温回火得到的。

在珠光体转变过程中,所形成的珠光体中的铁素体与母相奥氏体具有一定的晶体学位向关系。

珠光体中,铁素体与渗碳体之间存在一定的晶体学位向关系。

2.马氏体:马氏体的组织形态:○1.板条马氏体是低、中碳钢中形成的一种典型马氏体组织,其形貌特征可描述如下:在一个原奥氏体晶粒内部有几个(3-5个)马氏体板条束,板条束间取向随意;在一个板条束内有若干个相互平行的板条块,块间是大角晶界;在一个板条块内是若干个相互平行的马氏体板条,板条间是小角晶界。

马氏体板条内存在大量的位错,所以板条马氏体的亚结构是高密度的位错和位错缠结。

板条状马氏体也称为位错型马氏体。

○2.片状马氏体是中、高碳钢中形成的一种典型马氏体组织,其形貌特征可描述如下:在一个原奥氏体晶粒内部有许多相互有一定角度的马氏体片。

马氏体片的空间形态为双凸透镜状,横截面为针状或竹叶状。

在原奥氏体晶粒中首先形成的马氏体片贯穿整个晶粒,将奥氏体晶粒分割,以后陆续形成的马氏体片越来越小,所以马氏体片的尺寸取决于原始奥氏体晶粒的尺寸。

片状马氏体的形成温度较低,在马氏体片的周围往往存在着残余奥氏体。

片状马氏体的内部亚结构主要是孪晶。

金属学与热处理课后习题答案9

金属学与热处理课后习题答案9

第九章钢得热处理原理91 金属固态相变有哪些主要特征?哪些因素构成相变得阻力?答:固体相变主要特征:1、相变阻力大2、新相晶核与母相晶核存在一定得晶体学位向关系。

3、母相中得晶体学缺陷对相变其促进作用。

4、相变过程中易出现过渡相。

相变阻力构成:1、表面能得增加。

2、弹性应变能得增加,这就是由于新旧两相得比体积不同,相变时必然发生体积得变化,或者就是由于新旧两相相界面得不匹配而引起弹性畸变,都会导致弹性应变能得增加。

3、固态相变温度低,原子扩散更困难,例如固态合金中原子得扩散速度为107—108cm/d,而液态金属原子得扩散速度为107 cm/s。

92 何谓奥氏体晶粒度?说明奥氏体晶粒大小对钢得性能影响?答:奥氏体晶粒度:就是奥氏体晶粒大小得度量。

当以单位面积内晶粒得个数或每个晶粒得平均面积与平均直径来描述晶粒大小时,可以建立晶粒大小得概念。

通常采用金相显微镜100倍放大倍数下,在645mm2范围内观察到得晶粒个数来确定奥氏体晶粒度得级别。

对钢得性能得影响:奥氏体晶粒小:钢热处理后得组织细小,强度高、塑性好,冲击韧性高。

奥氏体晶粒大:钢热处理后得组织粗大,显著降低钢得冲击韧性,提高钢得韧脆转变温度,增加淬火变形与开裂得倾向。

当晶粒大小不均匀时,还显著降低钢得结构强度,引起应力集中,容易产生脆性断裂。

93 试述珠光体形成时钢中碳得扩散情况及片、粒状珠光体得形成过程?答:珠光体形成时碳得扩散:珠光体形成过程中在奥氏体内或晶界上由于渗碳体与铁素体形核,造成其与原奥氏体形成得相界面两侧形成碳得浓度差,从而造成碳在渗碳体与铁素体中进行扩散,简言之,在奥氏体中由于碳得扩散形成富碳区与贫碳区,从而促使渗碳体与铁素体不断地交替形核长大,直至消耗完全部奥氏体。

片状珠光体形成过程:片状珠光体就是渗碳体呈片状得珠光体。

首先在奥氏体晶界形成渗碳体晶核,核刚形成时与奥氏体保持共格关系,为减小形核得应变能而呈片状。

渗碳体长大得同时,使其两侧得奥氏体出现贫碳区,从而为铁素体在渗碳体两侧形核创造条件,在渗碳体两侧形成铁素体后,铁素体长大得同时造成其与奥氏体体界面处形成富碳区,这又促使形成新得渗碳体片。

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII“钢的热处理原理及工艺”作业题第一章固态相变概论1、扩散型相变和无扩散型相变各有哪些特点?2、说明晶界和晶体缺陷对固态相变成核的影响。

3、说明相界面和应变能在固态相变中的作用,并讨论它们对新相形状的影响。

4、固-固相变的等温转变动力学曲线是“C”形的原因是什么?第二章奥氏体形成1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存亚共析钢加热转变时是否也存在碳化物溶解阶段2、连续加热和等温加热时,奥氏体形成过程有何异同加热速度对奥氏体形成过程有何影响3、试说明碳钢和合金钢奥氏体形成的异同。

4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。

5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些?6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。

第三章珠光体转变1、珠光体形成的热力学特点有哪些相变主要阻力是什么试分析片间距S与2、过冷度△T的关系。

3、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何?4、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。

4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异?5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。

6、为达到下列目的,应分别采取何热处理方法(1)为改善低、中、高碳钢的切削加工性;(2)经冷轧的低碳钢板要求提高塑性便于继续变形;(3)锻造过热的60钢毛坯为细化其晶粒;(4)要消除T12钢中的网状渗碳体;第四章、马氏体转变1、马氏体相变有哪些主要特征?2、试述Ms点的物理意义及主要影响因素。

3、如何用金相法测定Ms点?4、试述板条马氏体和片状马氏体的形成条件和组织结构特点。

奥氏体习题

奥氏体习题

奥氏体习题(1) 奥氏体是碳溶解在__________中的间隙固溶体.(a)γ-Fe (b)α-Fe (c)Fe (d)立方晶系(2) 奥氏体形成的热力学条件为奥氏体的自由能______珠光体的自由能.(a)小于(b)等于(c)大于(d)小于等于(3) 奥氏体的形核位置为F/Fe3C界面, 珠光体团交界处及________交界处.(a)F/F (b)Fe3C/F (c)Fe3C/Fe3C (d)先共析F/珠光体团(4) 奥氏体核的长大是依靠____的扩散, 奥氏体(A)两侧界面向铁素体(F)及渗碳体(C)推移来进行的.(a)铁原子(b)碳原子(c)铁碳原子(d)溶质原子(5) 由铁碳相图可知, CA-F____CA-C, 碳原子向F一侧扩散, 有利于A的长大.(a) < (b) > (c) ≤ (d) =(6) 渗碳体转变结束后, 奥氏体中碳浓度不均匀, 要继续保温通过碳扩散可以使奥氏体____.(a) 长大 (b) 转变 (c) 均匀化 (d) 溶解(7) 碳钢奥氏体的形核与形核功____的扩散激活能有关.(a) 碳 (b) 铁 (c) 溶质原子 (d) 溶剂原子(8) 奥氏体的长大速度随温度升高而____.(a) 减小 (b) 不变 (c) 增大 (d) 无规律(9) 影响奥氏体转变速度的因素为____(a)温度 (b)原始组织转变 (c)奥氏体晶粒度 (d)温度及原始组织粒度.(10) 亚共析钢在AC3下加热后的转变产物为___.(a) F (b) A (c) F+A (d) P+F(11) 过共析钢在ACm下加热后的转变产物为____.(a) Fe3C (b) Fe3CII (c) Fe3CII+A (d) A(12) 亚共析钢的先共析铁素体是在____以上向奥氏体转变的.(a) AC1 (b) T0 (c) A1 (d) AC3(13) 连续加热的奥氏体转变温度与加热速度有关.加热速度逾大, 转变温度____, 转变温度范围越小, 奥氏体___.(a)愈低, 愈均匀 (b)愈高, 愈不均匀(c)愈低, 愈不均匀 (d) 愈高, 愈均匀(14) 加热转变终了时所得A晶粒度为_____.(a)实际晶粒度 (b)本质晶粒度 (c)加热晶粒度 (d).起始晶粒度(15) 在加热转变中, 保温时间一定时, 随保温温度升高, A晶粒不断长大, 称为____.(a)正常长大 (b)异常长大 (c)均匀长大 (d)不均匀长大(16) 在加热转变中, 保温时间一定时,必须当温度超过某定值后, 晶粒才随温度升高而急剧长大, 称为_____.(a)正常长大 (b)异常长大 (c)均匀长大 (d)不均匀长大(17) 温度一定时, 随时间延长, 晶粒不断长大, 称为____.(a)正常长大 (b)异常长大 (c)均匀长大 (d)不均匀长大(18) 温度一定时, 随时间延长, 晶粒不再长大, 称为____.(a)正常长大 (b)异常长大 (c)均匀长大 (d)不均匀长大(19) A晶粒的长大是通过晶界的迁移而实行的, 晶界迁移的驱动力来自_____.(a)A与P的自由能差 (b)A的吉布斯自由能的降低(c)界面自由能的降低 (d)相变自由能差(20) 奥氏体晶粒半径逾小, 长大驱动力___(a)愈大 (b)不变 (c)逾小 (d)无规律(21) 奥氏体晶粒异常长大的原因是____(a)温度高 (b)第二相粒子的溶解 (c)驱动力增大 (d)温度低(22) 提高起始晶粒度的___与促使晶界平直化均能降低驱动力, 减弱A长大.(a)均匀性 (b)温度 (c)粒度 (d)碳含量珠光体转变习题(1) 片状珠光体的片层位向大致相同的区域称为______。

金属学第七章第九章答案

金属学第七章第九章答案

9-4 试比较贝氏体转变与珠光体转变和马氏体转变的异同。

答:贝氏体转变:是在珠光体转变温度以下马氏体转变温度以上过冷奥氏体所发生的中温转变。

与珠光体转变的异同点:相同点:相变都有碳的扩散现象;相变产物都是铁素体+碳化物的机械混合物不同点:贝氏体相变奥氏体晶格向铁素体晶格改组是通过切变完成的,珠光体相变是通过扩散完成的。

与马氏体转变的异同点(可扩展):相同点:晶格改组都是通过切变完成的;新相和母相之间存在一定的晶体学位相关系。

不同点:贝氏体是两相组织,马氏体是单相组织;贝氏体相变有扩散现象,可以发生碳化物沉淀,而马氏体相变无碳的扩散现象。

9-5 简述钢中板条马氏体和片状马氏体的形貌特征和亚结构,并说明它们在性能上的差异。

答:板条马氏体的形貌特征:其显微组织是由成群的板条组成。

一个奥氏体晶粒可以形成几个位向不同的板条群,板条群由板条束组成,而一个板条束内包含很多近乎平行排列的细长的马氏体板条。

每一个板条马氏体为一个单晶体,其立体形态为扁条状。

在这些密集的板条之间通常由含碳量较高的残余奥氏体分割开。

板条马氏体的亚结构:高密度的位错,这些位错分布不均匀,形成胞状亚结构,称为位错胞。

片状马氏体的形貌特征:片状马氏体的空间形态呈凸透镜状,由于试样磨面与其相截,因此在光学显微镜下呈针状或竹叶状,而且马氏体片互相不平行,大小不一,越是后形成的马氏体片尺寸越小。

片状马氏体周围通常存在残留奥氏体。

片状马氏体的亚结构:主要为孪晶,分布在马氏体片的中部,在马氏体片边缘区的亚结构为高密度的位错。

板条马氏体与片状马氏体性能上的差异: 马氏体的强度取决于马氏体板条或马氏体片的尺寸,尺寸越小,强度越高,这是由于相界面阻碍位错运动造成的。

马氏体的硬度主要取决于其含碳量。

马氏体的塑性和韧性主要取决于马氏体的亚结构。

差异性:片状马氏体强度高、塑性韧性差,其性能特点是硬而脆。

板条马氏体同时具有较高的强度和良好的塑韧性,并且具有韧脆转变温度低、缺口敏感性和过载敏感性小等优点。

钢的热处理 习题解答

钢的热处理 习题解答

第二章钢的加热转变2.奥氏体晶核优先在什么地方形成?为什么?答:奥氏体晶核优先在α/Fe3C界面上形成原因:①能量起伏条件易满足(相界面能的增加减少,也是应变能的增加减少)②结构起伏条件易满足③成分起伏条件易满足6.钢的等温及连续加热TTA图是怎样测定的,图中的各条曲线代表什么?答:等温TTA图将小试样迅速加热到Ac1以上的不同温度,并在各温度下保持不同时间后迅速淬冷,然后通过金相法测定奥氏体的转变量与时间的关系,将不同温度下奥氏体等温形成的进程综合表示在一个图中,即为钢的等温TTA图。

四条曲线由左向右依次表示:奥氏体转化开始线,奥氏体转变完成线,碳化物完全溶解线,奥氏体中碳浓度梯度消失线。

连续加热TTA图将小试样采用不同加热速度加热到不同温度后迅速淬冷,然后观察其显微组织,配合膨胀试验结果确定奥氏体形成的进程并综合表示在一个图中,即为钢的连续加热TTA图。

Acc 加热时Fe3CⅡ→A 终了温度Ac3 加热时α→A 终了温度Ac1 加热时P→A 开始温度13.怎样表示温度、时间、加热速度对奥氏体晶粒大小的影响?答:奥氏体晶粒度级别随加热温度和保温时间变化的情况可以表示在等温TTA图中加热速度对奥氏体晶粒度的影响可以表示在连续加热时的TTA图中随加热温度和保温时间的增加晶粒度越大加热速度越快I↑由于时间短,A晶粒来不及长大可获得细小的起始晶粒度补充2.阐述加热转变A的形成机理,并能画出A等温形成动力学图(共析钢)答:形成条件ΔG=Ga-Gp<0形成过程形核:对于球化体,A优先在与晶界相连的α/Fe3C界面形核对于片状P, A优先在P团的界面上形核长大:1 )Fe原子自扩散完成晶格改组2 )C原子扩散促使A晶格向α、Fe3C相两侧推移并长大Fe3C残留与溶解:A/F界面的迁移速度> A/Fe3C界面的迁移速度,当P中F完全消失,Fe3C残留Fe3C→AA均匀化:刚形成A中,C浓度不均匀。

固态相变 复习习题

固态相变 复习习题

性 能
相变驱动力:两相自由能差,母相中缺陷提供的能量
及 特
3、金属固态相变主要有哪些变化?

结构、成分、有序度。
4、固态相变的过程中形核和长大的方式是什么?
形核:非均匀形核为主,缺陷处形核(界面形核,空位形核,位错形核) 长大:成分变化,依靠扩散进行;结构变化,依靠界面过程
其中半共格界面采用均匀切变或台阶方式,非共格界面依靠界面上 原子的短程扩散。
习题六 回火转变
1、简述碳钢在回火时的组织转变过程及相应性能变化,并简述合金元素对 于回火转变的影响 。
回火时的组织转变:
温度(℃) 阶段名称
组织变化
20~100 碳原子偏聚

100~250 马氏体分解
回火马氏体
200~300 残余奥氏体分解 回火马氏体
250~400 碳化物转变
回火屈氏体
400~700 α相回复再结晶, 回火索氏体 碳化物聚集长大
(各片间有交角),电镜下排列成行的细片状或粒状碳化物分布于 铁素体片中;亚结构为高密度位错;K-S关系;强度和韧性较高。
3. 根据相变热力学来分析BS点和MS点的温度差异。
△G=-(△GV+△GD )+△GS +△GE +△GP
B转变有C的扩散,使相同温度下的两相自由能差增大,即△GV↗; B与A比容差小,使△GE ↘;形成温度高,长大速度慢, A强度低, 使切变阻力减小。 因此,B转变不需要M转变那样大的过冷度,BS点 高于MS点。
4、简述获得粒状珠光体的两种方法。
片状P 加热
略高于A1
A+未溶Fe3C
保温
缓冷
粒状P
A+粒状Fe3C
片状P
长时间保温 粒状P

铁素体奥氏体贝氏体马氏体珠光体异同

铁素体奥氏体贝氏体马氏体珠光体异同

铁素体奥氏体贝氏体马氏体珠光体是金属材料中常见的组织结构形态,在金属材料的热处理过程中会产生不同的组织结构形态,而这些组织结构对金属材料的性能有着重要的影响。

以下将对这些金属材料的组织结构形态进行介绍并对其特点进行比较。

1. 铁素体铁素体是一种由铁和少量的碳组成的金属结构,在室温下呈现面心立方的晶体结构。

铁素体在金属材料中是一种比较稳定的结构形态,具有良好的延展性和韧性,但其硬度和强度相对较低。

2. 奥氏体奥氏体是一种由铁和碳组成的金属结构,在高温下呈现面心立方的晶体结构。

奥氏体在金属材料中具有较高的硬度和强度,但其延展性和韧性相对较低。

3. 贝氏体贝氏体是一种由铁和碳组成的金属结构,在热处理过程中由奥氏体经过一定温度和时间的转变形成的一种组织结构。

贝氏体具有较高的硬度和强度,但其延展性和韧性相对较低。

4. 马氏体马氏体是一种由铁和少量的碳组成的金属结构,在金属材料中具有很高的硬度和强度,但其延展性和韧性相对较低。

马氏体在金属材料中是一种比较不稳定的结构形态,在变形和断裂中容易形成。

5. 珠光体珠光体是一种由铁和碳组成的金属结构,在金属材料中具有良好的韧性和延展性,但其硬度和强度相对较低。

珠光体在金属材料中是一种比较稳定的结构形态,常用于要求良好冲击韧性的零件中。

以上是对铁素体、奥氏体、贝氏体、马氏体和珠光体的简要介绍,下面分别对它们进行比较:1. 硬度和强度奥氏体、贝氏体和马氏体在金属材料中具有较高的硬度和强度,适用于一些对硬度和强度要求较高的零件中。

而铁素体和珠光体在金属材料中的硬度和强度相对较低,适用于一些对韧性和延展性要求较高的零件中。

2. 韧性和延展性铁素体和珠光体在金属材料中具有良好的韧性和延展性,适用于一些对韧性和延展性要求较高的零件中。

而奥氏体、贝氏体和马氏体在金属材料中的韧性和延展性相对较低,容易在变形和断裂过程中产生裂纹。

3. 稳定性铁素体和珠光体在金属材料中是比较稳定的结构形态,容易保持在一定的温度和压力条件下不发生明显的相变。

马氏体 奥氏体 珠光体 贝氏体 的区别

马氏体 奥氏体 珠光体 贝氏体 的区别

马氏体奥氏体珠光体贝氏体马氏体(martensite)是黑色金属材料的一种组织名称。

马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。

其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。

马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体)奥氏体(austenite)A、γ是晶体结构:面心立方(fcc)。

是碳在γ-Fe中形成的间隙固溶体。

奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。

不具有铁磁性。

因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。

古代铁匠打铁时烧红的铁块即处于奥氏体状态。

另外,奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。

珠光体 pearlite 珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。

得名自其珍珠般(pearl-like)的光泽。

其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。

用符号P表示,含碳量为ωc=0.77%。

在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。

珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好。

铁素体(ferrite,缩写:FN,用F表示)即α-Fe和以它为基础的固溶体,具有体心立方点阵。

亚共析成分的奥氏体通过先共析析出形成铁素体。

在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;室温下的铁素体的机械性能和纯铁相近。

铁素体的强度、硬度不高,但具有良好的塑性与韧性。

珠光体、贝氏体、马氏体转变对比

珠光体、贝氏体、马氏体转变对比

一、组织形态1、珠光体的组织形态共析碳钢加热到均匀的的奥氏体化状态后缓慢冷却,稍低于温度将形成珠光体组织,为铁素体和渗碳体的机械混合物,其典型形态呈片状或层状。

片状珠光体是由一层铁素体与一层渗碳体交替堆叠而成。

片状珠光体组织中,一对铁素体和渗碳体片的总厚度,称为“珠光体片层间距”。

工业上所谓的片状珠光体,是指在光学显微镜下能够明显看出铁素体与渗碳体呈层状分布的组织形态,其片层间距约在0.150.45之间。

透射电镜观察表明,在退火状态下,珠光体中的铁素体位错密度小,渗碳体中的位错密度更小,片状珠光体中铁素体与渗碳体两相交界处的为错密度高,在每一片铁素体中还有亚晶界,构成许多亚晶粒。

工业用钢中,也可以见到铁素体基体上分布着粒状渗碳体组织,称为“粒状珠光体”或“球状珠光体”,一般是经球化退火处理后获得的。

2、马氏体的组织形态a、板条状马氏体板条状马氏体是低、中碳钢,马氏体时效钢,不锈钢等铁系合金中形成的一种典型的马氏体组织。

因其显微组织是由许多成群的板条组成,故称为板条状马氏体。

又因为这种马氏体的亚结构主要为位错,通常也称它为位错型马氏体。

板条状马氏体的显微组织(如图所示),其中A为板条束,成不规则形状,尺寸约为20—35μm,是由若干单个马氏体板条所组成。

一个板条束又可分成几个平行的像图中B那样的区域,呈块状。

块界长尺寸方向与板条马氏体边界平行,块间成大角晶界。

每个块由若干板条组成,每一个板条为一个单晶体。

板条具有平直的界面,并接近于奥氏体的,为其惯习面,相同惯习面的变体平行排列构成板条束。

现已确定这些稠密的板条被连续的高度变形的残余奥氏体薄膜()所隔开。

相邻板条一般以小角晶界相间,也可成孪晶关系,成孪晶关系时条间无残余奥氏体。

透射电镜观察证明,板条马氏体内有高密度位错。

有时也会有部分相变孪晶存在,但为局部的,数量不多。

板条状马氏体的显微组织构成随钢和合金的成分变化而改变。

在碳钢中,当碳含量小于0.3%时,原始奥氏体晶粒内板条束及束中块均很清楚;碳含量在0.30.5%,板条束清楚,块不清楚;碳含量升高到0.60.8时,板条混杂生成的倾向性很强,无法辨识束和块。

奥氏体习题

奥氏体习题

奥氏体习题(1) 奥氏体是碳溶解在__________中的间隙固溶体.(a)γ-Fe (b)α-Fe (c)Fe (d)立方晶系(2) 奥氏体形成的热力学条件为奥氏体的自由能______珠光体的自由能.(a)小于(b)等于(c)大于(d)小于等于(3) 奥氏体的形核位置为F/Fe3C界面, 珠光体团交界处及________交界处.(a)F/F (b)Fe3C/F (c)Fe3C/Fe3C (d)先共析F/珠光体团(4) 奥氏体核的长大是依靠____的扩散, 奥氏体(A)两侧界面向铁素体(F)及渗碳体(C)推移来进行的.(a)铁原子(b)碳原子(c)铁碳原子(d)溶质原子(5) 由铁碳相图可知, CA-F____CA-C, 碳原子向F一侧扩散, 有利于A的长大.(a) < (b) > (c) ≤ (d) =(6) 渗碳体转变结束后, 奥氏体中碳浓度不均匀, 要继续保温通过碳扩散可以使奥氏体____.(a) 长大 (b) 转变 (c) 均匀化 (d) 溶解(7) 碳钢奥氏体的形核与形核功____的扩散激活能有关.(a) 碳 (b) 铁 (c) 溶质原子 (d) 溶剂原子(8) 奥氏体的长大速度随温度升高而____.(a) 减小 (b) 不变 (c) 增大 (d) 无规律(9) 影响奥氏体转变速度的因素为____(a)温度 (b)原始组织转变 (c)奥氏体晶粒度 (d)温度及原始组织粒度.(10) 亚共析钢在AC3下加热后的转变产物为___.(a) F (b) A (c) F+A (d) P+F(11) 过共析钢在ACm下加热后的转变产物为____.(a) Fe3C (b) Fe3CII (c) Fe3CII+A (d) A(12) 亚共析钢的先共析铁素体是在____以上向奥氏体转变的.(a) AC1 (b) T0 (c) A1 (d) AC3(13) 连续加热的奥氏体转变温度与加热速度有关.加热速度逾大, 转变温度____, 转变温度范围越小, 奥氏体___.(a)愈低, 愈均匀 (b)愈高, 愈不均匀(c)愈低, 愈不均匀 (d) 愈高, 愈均匀(14) 加热转变终了时所得A晶粒度为_____.(a)实际晶粒度 (b)本质晶粒度 (c)加热晶粒度 (d).起始晶粒度(15) 在加热转变中, 保温时间一定时, 随保温温度升高, A晶粒不断长大, 称为____.(a)正常长大 (b)异常长大 (c)均匀长大 (d)不均匀长大(16) 在加热转变中, 保温时间一定时,必须当温度超过某定值后, 晶粒才随温度升高而急剧长大, 称为_____.(a)正常长大 (b)异常长大 (c)均匀长大 (d)不均匀长大(17) 温度一定时, 随时间延长, 晶粒不断长大, 称为____.(a)正常长大 (b)异常长大 (c)均匀长大 (d)不均匀长大(18) 温度一定时, 随时间延长, 晶粒不再长大, 称为____.(a)正常长大 (b)异常长大 (c)均匀长大 (d)不均匀长大(19) A晶粒的长大是通过晶界的迁移而实行的, 晶界迁移的驱动力来自_____.(a)A与P的自由能差 (b)A的吉布斯自由能的降低(c)界面自由能的降低 (d)相变自由能差(20) 奥氏体晶粒半径逾小, 长大驱动力___(a)愈大 (b)不变 (c)逾小 (d)无规律(21) 奥氏体晶粒异常长大的原因是____(a)温度高 (b)第二相粒子的溶解 (c)驱动力增大 (d)温度低(22) 提高起始晶粒度的___与促使晶界平直化均能降低驱动力, 减弱A长大.(a)均匀性 (b)温度 (c)粒度 (d)碳含量珠光体转变习题(1) 片状珠光体的片层位向大致相同的区域称为______。

热处理复习题

热处理复习题

热处理复习题第一章1.奥氏体的晶体结构是什么?碳在γ铁中的固溶体,具有面心立方晶格。

2.共析钢由珠光体向奥氏体转变的四个阶段是什么?奥氏体形核、奥氏体的长大、残余渗碳体的溶解、奥氏体成分的均匀化3.什么叫奥氏体的起始晶粒度、实际晶粒度、本质晶粒度?其影响因素是什么?起始晶粒度:奥氏体转变刚刚完成,其晶粒边界刚刚相接触时的奥氏体晶粒大小;实际晶粒度:在热处理时某一具体加热条件下最终所得到的奥氏体晶粒大小;本质晶粒度:表示各种钢的奥氏体晶粒的长大趋势。

影响因素:起始晶粒度:①加热温度越高,起始晶粒尺寸越小;②原始组织越弥散,起始晶粒尺寸越小。

本质晶粒度:①钢的化学成分,含有强碳化合物元素,本质晶粒尺寸越小;②钢的冶炼条件(脱氧条件)。

实质晶粒度:热处理加热条件,加热温度越高,保温时间越长,实际晶粒尺寸越大。

4.奥氏体晶粒大小对性能有何影响?奥氏体晶粒尺寸越小,冷却后室温组织的晶粒尺寸越小,强度、硬度、塑性越好。

5.什么叫本质细晶粒钢、本质粗晶粒钢、晶粒粗话温度?本质细晶粒钢:凡是奥氏体晶粒不容易长大的钢叫做本质细晶粒钢;本质粗晶粒钢:凡是奥氏体晶粒容易长大的钢叫做本质粗晶粒钢;晶粒粗化温度:对于本质细晶粒钢,当在某一临界温度以下加热时,奥氏体晶粒长大很缓慢一直保持细小晶粒,但超过这一临界温度后,晶粒急剧长大突然粗化,这一温度称为晶粒粗化温度。

6.奥氏体晶粒长大的驱动力和阻力是什么?驱动力:界面能下降引起的碳的扩散;阻力:晶界上未溶的第二相粒子。

7.本质细晶粒钢是否一定能获得细小的实际奥氏体晶粒?不一定,本质细晶粒钢在晶粒粗化温度以下加热时,才能获得细小的奥氏体晶粒,超过晶粒粗化温度以后也可能得到十分粗大的奥氏体晶粒,加热最终所获得的奥氏体晶粒尺寸除了取决于本质晶粒度以外,还和加热条件有关,加热温度越高,保温时间越长,奥氏体晶粒尺寸越大。

第二章1.说明共析钢过冷奥氏体等温冷却转变曲线的特点?①曲线由两个C形曲线(转变开始线、转变终了线)、A1线和Ms线四线围成5各区,A1线上是奥氏体稳定区;A1线下转变开始线、Ms线过冷奥氏体区;两C形线间过冷奥氏体转变区,上部是珠光体转变区,下部是贝氏体转变区;终了线以下是转变产物;②过冷奥氏体在各个温度的等温转变并不是瞬间就开始的,而是有一个孕育期,孕育期的长短随过冷度的变化,随过冷度的增加孕育期变长,在大约550℃孕育期达到极小值,此后孕育期又随过冷度的增加而变长,转变终了时间随过冷度的变化也和孕育期相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比较马氏体贝氏体珠光体转变的异同一.组织形态:1.珠光体:珠光体的组织形态特征:珠光体的典型组织特征是由一层铁素体和一层渗碳体交替平行堆叠而形成的双相组织。

根据片层间距的不同,可将珠光体分为三种:珠光体:S0=450-150nm,形成温度为A1-650℃,普通光学显微镜可以分辨。

索氏体:S0=150-80nm,形成温度为650-600℃,高倍光学显微镜可以分辨。

屈氏体:S0=80-30nm,形成温度为600-550℃,电子显微镜可以分辨。

铁素体基体上分布着粒状渗碳体的组织为粒状珠光体。

这种组织一般是通过球化退火或淬火后高温回火得到的。

在珠光体转变过程中,所形成的珠光体中的铁素体与母相奥氏体具有一定的晶体学位向关系。

珠光体中,铁素体与渗碳体之间存在一定的晶体学位向关系。

2.马氏体:马氏体的组织形态:○1.板条马氏体是低、中碳钢中形成的一种典型马氏体组织,其形貌特征可描述如下:在一个原奥氏体晶粒内部有几个(3-5个)马氏体板条束,板条束间取向随意;在一个板条束内有若干个相互平行的板条块,块间是大角晶界;在一个板条块内是若干个相互平行的马氏体板条,板条间是小角晶界。

马氏体板条内存在大量的位错,所以板条马氏体的亚结构是高密度的位错和位错缠结。

板条状马氏体也称为位错型马氏体。

○2.片状马氏体是中、高碳钢中形成的一种典型马氏体组织,其形貌特征可描述如下:在一个原奥氏体晶粒内部有许多相互有一定角度的马氏体片。

马氏体片的空间形态为双凸透镜状,横截面为针状或竹叶状。

在原奥氏体晶粒中首先形成的马氏体片贯穿整个晶粒,将奥氏体晶粒分割,以后陆续形成的马氏体片越来越小,所以马氏体片的尺寸取决于原始奥氏体晶粒的尺寸。

片状马氏体的形成温度较低,在马氏体片的周围往往存在着残余奥氏体。

片状马氏体的内部亚结构主要是孪晶。

当碳含量较高时,在马氏体片中可以看到中脊,中脊面是密度很高的微孪晶区。

马氏体片形成时的相互撞击,马氏体片中存在大量的纤维裂纹。

3.贝氏体:贝氏体的组织形态:○1.上贝氏体上贝氏体形成于贝氏体转变区较高温度范围,中、高碳钢大约在350-550℃形成。

为成束分布、平行排列的条状铁素体和夹于其间的断续条状渗碳体的混合物。

多在奥氏体晶界形核,自晶界的一侧或两侧向晶内长大,具有羽毛状特征。

上贝氏体中铁素体的亚结构是位错,其密度比板条马氏体低2-3个数量级,随形成温度降低,位错密度增大。

随碳含量增加,上贝氏体中铁素体条增多、变薄,渗碳体数量增多、变细。

随转变温度降低,上贝氏体中铁素体条变薄,渗碳体细化。

上贝氏体中铁素体条间还可能存在未转变的残余奥氏体。

○2.下贝氏体下贝氏体形成于贝氏体转变区较低温度范围,中、高碳钢大约在350℃-Ms之间温度形成。

下贝氏体是由过饱和片状铁素体和其内部沉淀的渗碳体组成的机械混合物。

铁素体片空间呈双凸透镜状,截面为针状或竹叶状,片间呈一定角度,可在奥氏体晶界形核,也可在奥氏体晶内形核。

下贝氏体的铁素体中碳化物细小、弥散、呈粒状或条状,沿着与铁素体长轴成一定角度平行排列。

○3.粒状贝氏体粒状贝氏体是低碳或中碳合金钢在上贝氏体转变区上限温度范围内形成的一种贝氏体组织。

粒状贝氏体组织特征是:在粗大的块状或针状铁素体内或晶界上分布着一些孤立小岛,小岛形态呈粒状或长条状。

这些小岛在贝氏体刚刚形成时是富碳奥氏体,冷却时可分解为珠光体、马氏体或保留为富碳奥氏体。

粒状贝氏体中铁素体的亚结构为位错。

○4.无碳化物贝氏体无碳化物贝氏体一般产生于低碳钢或硅、铝含量较高的钢中。

无碳化物贝氏体是由大致平行的条状铁素体和条间富碳奥氏体或其转变产物组成的。

形成时也会出现表面浮凸,铁素体中亚结构时位错。

○5.柱状贝氏体柱状贝氏体一般产生于高碳钢中,形成温度为下贝氏体形成温度。

柱状贝氏体中铁素体呈放射状,碳化物分布在铁素体内部。

○6.反常贝氏体反常贝氏体也称反向贝氏体或倒易贝氏体,产生在共析钢中,形成温度略高于350℃。

二.转变特点:1.珠光体:○1.片状珠光体形成过程当共析钢由奥氏体转变为珠光体时,是由均匀的奥氏体转变为碳含量很高的渗碳体和含碳量很低的铁素体的机械混合物。

因此,珠光体的形成过程,包含着两个同时进行的过程:一个是通过碳的扩散生成高碳的渗碳体和低碳的铁素体;另一个是晶体的点阵重构。

由面心立方体的奥氏体转变为体心立方题点阵的铁素体和复杂单斜点阵的渗碳体。

共析钢成分过冷奥氏体发生珠光体转变时,多半在奥氏体晶界上成核,晶界交叉点更有利于珠光体的成核,也可在晶体缺陷比较密集的区域成核。

如果以渗碳体作为领先相,当奥氏体冷却至以下时,首先在奥氏体晶界上产生一小片渗碳体晶核,核刚形成时,可能与奥氏体保持共格关系,而成片状。

渗碳体晶核成片状,一方面为渗碳体成长提供C原子的面积大,另一方面形成渗碳体所需要的C原子扩散距离缩短。

在原始奥氏体中,各种不同取向的珠光体不断长大,而在奥氏体晶界上和珠光体-奥氏体相界上,又不断产生新晶核,并不断长大,直到长大着的各个珠光体晶粒相碰,奥氏体全部转变为珠光体时,珠光体形成即告结束。

○2.粒状珠光体的形成过程粒状珠光体是通过渗碳体球化获得的。

在略高于的温度下保温将使溶解的渗碳体球化,这是因为第二项颗粒的溶解度与其曲率半径有关,与渗碳体尖角处相接触的奥氏体中的碳含量较高,而与渗碳体平面处相接触的奥氏体的含碳量较低,因此奥氏体中的C原子将从渗碳体的尖角处向平面处扩散。

扩散的结果,破坏了相平衡。

为了恢复平衡,尖角处将溶解而使曲率半径增大,平面处将长大而使曲率半径减小,一直逐渐成为颗粒状。

从而得到在铁素体基体上分布着颗粒状渗碳体组织。

然后自加热温度缓冷至以下时,奥氏体转变为珠光体。

转变时,领先相渗碳体不仅可以在奥氏体晶界上成核,而且也可以从已存在的颗粒状渗碳体上长出,最后得到渗碳体呈颗粒状分布的粒状珠光体。

这种处理称为“球化退火”。

2.马氏体:马氏体相变的主要特点:○1.切变共格和表面浮凸现象:奥氏体向马氏体晶体结构的转变是靠切变进行的,由于切变使相界面始终保持共格关系,因此称为切变共格。

由于切变导致在抛光试样表面在马氏体相变之后产生凸起,即表面浮凸现象。

○2.马氏体转变的无扩散性:原子不发生扩散,但发生集体运动,原子间相对运动距离不超过一个原子间距,原子相邻关系不变。

转变过程不发生成分变化,但却发生了晶体结构的变化。

转变温度很低,但转变速度极快。

○3.具有一定的位向关系和惯习面:位向关系:K-S关系:{111}γ//{011}α’,<101>γ//<111>α’,可有24种取向西山关系:{111}γ//{011}α’,<211>γ//<110>α’,可有12种取向惯习面:随碳含量提高和转变温度降低: (111) γ, (225) γ, (259) γ○4.马氏体转变是在一个温度范围内完成的:马氏体转变是奥氏体冷却的某一温度时才开始的,这一温度称为马氏体转变开始温度,简称Ms点。

马氏体转变开始后,必须在不断降低温度的条件下才能使转变继续进行,如冷却中断,则转变立即停止。

当冷却到某一温度时,马氏体转变基本完成,转变不再进行,这一温度称为马氏体转变结束温度,简称Mf点。

从以上分析可以看出,马氏体转变需要在一个温度范围内连续冷却才能完成。

如果Mf 点低于室温,则冷却到室温时,将仍保留一定数量的未转变奥氏体,称之为残余奥氏体。

○5.马氏体转变的可逆性:在某些合金中,奥氏体冷却转变为马氏体后,重新加热时,已经形成的马氏体又可以通过逆向马氏体转变机构转变为奥氏体。

这就是马氏体转变的可逆性。

将马氏体直接向奥氏体转变的称为逆转变。

逆转变开始温度为As点,终了温度为Af点。

Fe-C合金很难发生马氏体逆转变,因为马氏体加热尚未达到As点时,马氏体就发生了分解,析出碳化物,因此得不到马氏体逆转变。

3.贝氏体:贝氏体转变的基本特征:○1.贝氏体转变需要一定的孕育期,可以等温形成,也可以连续冷却转变。

○2.贝氏体转变是形核长大过程;铁素体按共格切变方式长大,产生表面浮凸;碳原子可以扩散,铁素体长大速度受碳扩散控制,速度较慢。

○3.贝氏体转变有上限温度(B s)和下限温度(B f)。

○4.较高温度形成的贝氏体中碳化物分布在铁素体条之间,较低温度形成的贝氏体中碳化物主要分布在铁素体条内部;随形成温度下降,贝氏体中铁素体的碳含量升高。

○5.上贝氏体转变速度取决于碳在奥氏体中的扩散速度;下贝氏体转变速度取决于碳在铁素体中的扩散速度。

○6.上贝氏体中铁素体的惯习面是(111)γ;下贝氏体铁素体的惯习面是(225)γ;贝氏体中铁素体与奥氏体之间存在K-S位向关系。

三.转变热力学:1.珠光体:珠光体转变的动力是体系自由能的下降,其大小取决于转变温度。

过冷度越大,转变驱动力越大。

珠光体转变温度较高,铁和原子扩散能力较强,都能扩散较大的距离,珠光体又是在位错等微观缺陷较多的晶界形成,相变需要的自由能较小,所以,在较小的过冷度时就可以发生珠光体转变。

2.马氏体:相变驱动力:过冷奥氏体转变为马氏体有两个必要条件:一是必须快冷,避免珠光体转变发生;二是必须深冷,到马氏体开始转变温度以下,马氏体转变才能发生。

马氏体转变的驱动力是在转变温度下奥氏体与马氏体的自由能差,而转变阻力是界面能和界面弹性应变能。

马氏体相变新相与母相完全共格,同时体积效应很大,因此界面弹性应变能很大。

为了克服这一相变阻力,驱动力必须足够大。

因此马氏体相变必须有很大的过冷度。

3.贝氏体:贝氏体转变是一个有碳原子扩散的共格切变过程,兼具珠光体和马氏体转变特征。

和其它相变一样,贝氏体转变的热力学条件也是驱动力和阻力分析。

贝氏体转变的驱动力是体系的自由能差,阻力包括界面能和界面弹性应变能。

贝氏体转变需要共格切变,因此弹性应变能阻力非常大,按照马氏体转变热力学分析,只有在Ms点以下相变驱动力才能克服阻力发生相变。

一方面,在贝氏体相变时,碳在奥氏体中发生预先扩散,重新分布。

由于碳的扩散,降低了形成贝氏体中铁素体的碳含量,使铁素体的自由能降低,增大了新旧两相的自由能差,提高了相变驱动力。

另一方面,碳原子从奥氏体中析出,使奥氏体中出现贫碳区,降低了切变阻力,使切变可以在较高温度发生。

贝氏体转变也有温度区间,上限温度为B s,下限温度为B f,两个温度都随碳含量的提高而降低。

四.转变动力学:1.珠光体:○1.珠光体转变有孕育期。

随转变温度降低,孕育期减小,某一温度孕育期最短,温度再降低,孕育期又增加。

随转变时间增加,转变速度提高,当转变量超过50%时,转变速度又逐渐降低,直至转变完成。

○2.温度一定时,转变速度随时间的延长有一极大值○3.随转变温度的降低,珠光体转变的孕育期有一极小值,在此温度下转变最快○4.珠光体转变中合金元素的影响很显著a.对A1点和共析碳浓度的影响除镍和锰以外的合金元素可以提高A1温度。

相关文档
最新文档