专题三,牛顿运动定律

合集下载

专题三 第3讲 牛顿运动定律的应用

专题三 第3讲 牛顿运动定律的应用

C.物体处于超重或者失重状态时,其惯性比物体处于静
止状态时增加或减小了 D.物体处于超重或者失重状态时,其质量和受到的重力 都没有发生变化 解析:不管是超重还是失重,发生变化的是视重,而物体
的实际重力并没有变化;衡量物体惯性大小的因素为物体的质
量,超重和失重时物体的质量均无变化,所以惯性也未变化.
4.(2011 年广东五校联考)一个人站在医用体重计的测盘 上,在下蹲的全过程中,指针示数变化应是( D ) A.先减小,后还原 B.先增大,后还原
(1)明确研究对象:根据问题的需要和解题的方便,确定某 一物体或几个物体组成的系统研究对象. (2)分析物体的受力情况和运动情况,画好受力示意图,明 确物体的运动性质和运动过程. (3)利用牛顿第二定律(在受力情况已知时)或结合运动学公 式(在运动情况已知时)进行求解.
(4)必要时对结果进行讨论.
【跟踪训练】 1.一物体初速度 v0=5 m/s,沿着倾角 37°的斜面匀加速向 下运动,若物体和斜面间的动摩擦因数为 0.25,则物体 3 s 末的
思路点拨:弹簧的伸长量变大,说明弹簧的弹力变大,从 而判断出小铁球的合外力向上和加速度向上. 解析:电梯静止时,弹簧的拉力和小铁球所受重力相等. 现在,弹簧的伸长量变大,则弹簧的拉力变大,小铁球的合力
方向向上,加速度方向向上,小铁球处于超重状态.但电梯可
以是加速向上运动或减速向下运动. 答案:BD 备考策略:超重和失重现象是生产和生活中常见的现象, 近年高考比较注重对本部分的考查.解决此类问题的实质是牛
第 3 讲 牛顿运动定律的应用
考点 1 动力学的两类基本问题
1.第一类问题:已知物体的受力情况,求物体的运动情况,
如物体运动的速度、时间、位移等.

专题三牛顿运动定律知识点总结

专题三牛顿运动定律知识点总结

专题三牛顿运动定律知识点总结专题三牛顿三定律1.牛顿第一定律(即惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

(1)理解要点:运动是物体的一种属性,物体的运动不需要力来维持。

它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。

第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。

牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。

(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。

惯性是物体的固有属性,与物体的受力情况及运动状态无关。

质量是物体惯性大小的量度。

由牛顿第二定律定义的惯性质量mF/a和由万有引力定律定义的引力质量mFr2/GM严格相等。

惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质。

力是物体对物体的作用,惯性和力是两个不同的概念。

2.牛顿第二定律(1)定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比。

(2)公式:F合ma理解要点:因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失;方向性:a与F合都是矢量,方向严格相同;瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力。

3.牛顿第三定律两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式可写为FF。

(1)作用力和反作用力与二力平衡的区别内容作用力和反作用力二力平衡受力物体作用在两个相互作用的物体上作用在同一物体上依赖关系同时产生,同时消失,互依存,不可单独存在无依赖关系,撤除一个、另一个可依然存在,只是不冉平衡叠加性两力作用效果不口抵消,不口叠加,不可求合力两力运动效果可相互抵消,可叠加,可求合力,合力为零;形变效果/、能抵消力的性质一定是同性质的力可以是同性质的力也可以不是同性质的力4.牛顿定律在连接体中的应用在连接体问题中,如果不要求知道各个运动物体间的相互作用力,并且各个物体具有相同加速度,可以把它们看成一个整体。

高中物理专题测试卷 牛顿运动定律(含答案)

高中物理专题测试卷 牛顿运动定律(含答案)

高中专题同步测试卷专题三牛顿运动定律一、单项选择题(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一个选项正确)1.放在光滑水平面上的物体受到三个平行于水平面的共点力作用而平衡,如图,已知F2和F3垂直,三个力中若去掉F1可产生2.5 m/s2的加速度,若去掉F2可产生1.5 m/s2的加速度.若去掉F3,则物体的加速度为()A.1.5 m/s2B.2 m/s2C.2.5 m/s2D.4 m/s22.如图所示为一游乐场的娱乐项目的简化示意图.质量为m的参赛者要爬上一段带有弧形轨道的顶端,轨道始终静止在地面上.在参赛者缓慢向上爬的过程中()A.参赛者受到的摩擦力逐渐减小B.参赛者对轨道的压力逐渐减小C.参赛者对轨道的作用力逐渐增大D.地面对轨道的摩擦力方向向左3.如图甲所示,静止在光滑水平面上O点的物体,从t=0开始物体受到如图乙所示的水平力F的作用,设向右为F的正方向,则物体()A.一直向左运动B.一直向右运动C.一直匀加速运动D.在O点附近左右运动4.如图所示,不计绳的质量以及绳与滑轮的摩擦,物体A的质量为M,水平面光滑,当在绳的B端挂一质量为m的物体时,物体A的加速度为a1,当在绳的B端施以F=mg的竖直向下的拉力作用时,A的加速度为a2,则a1与a2的大小关系是()A.a1=a2B.a1>a2C.a1<a2D.无法确定5.如图所示,两根直木棍AB和CD(可视为相同的圆柱体)相互平行,固定在同一水平面上,一个圆柱形工件P架在两木棍之间.工件在水平向右的推力F的作用下,恰好能向右匀速运动.若保持两木棍在同一水平面内,但将它们间的距离稍微增大一些后固定.仍将圆柱形工件P架在两木棍之间,用同样的水平推力F向右推该工件,则下列说法中正确的是()A.工件一定静止不动B.工件一定向右匀速运动C.工件一定向右减速运动D.工件一定向右加速运动6.如图所示,传送带的水平部分长为L ,传动速率为v ,在其左端无初速度释放一小木块,若木块与传送带间的动摩擦因数为μ,则木块从左端运动到右端的时间不可能是( ) A.L v +v 2μg B.L v C. 2L μg D.2L v7.如图所示,一轻弹簧两端分别连接物体a 、b .第一种情景:在水平力F 1的作用下a 、b 共同向右匀变速运动,此时弹簧的长度为l 1;第二种情景:在沿斜面向上的力F 2的作用下a 、b 共同向上匀变速运动,此时弹簧的长度为l 2.若物体a 、b 与接触面的动摩擦因数相同,则轻弹簧的原长为( )A.F 1l 1-F 2l 2F 1-F 2B.F 1l 2-F 2l 1F 2-F 1C.F 2l 1-F 1l 2F 2-F 1D.F 1l 1-F 2l 2F 2-F 1二、多项选择题(本题共5小题,每小题6分,共30分.在每小题给出的四个选项中,有多个选项符合题意)8.关于惯性在实际中的应用,下列说法中正确的是( )A .运动员在跳远时助跑,是为了增大起跳时的惯性B .运动员在掷标枪时助跑,是为了利用惯性C .手扶拖拉机的飞轮做得很重,是为了增大它转动的惯性D .战斗机在空战时,甩掉副油箱是为了减小惯性,提高飞行的灵活性9.我国在西昌卫星发射中心用“长征二号F ”运载火箭,成功发射神州十号飞船.关于这次飞船与火箭上天的情形叙述正确的是( )A .火箭尾部向外喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了向前的动力B .火箭尾部喷出的气体对空气产生一个作用力,空气反作用力使火箭获得飞行的动力C .火箭飞出大气层后,由于没有空气,火箭虽然向后喷气,但也无法获得前进的动力D .飞船进入预定轨道之后,与地球之间仍然存在一对作用力与反作用力10.下列叙述中正确的是( )A .在力学的国际单位制中,力的单位、质量的单位、位移的单位被选定为基本单位B .牛、千克米每二次方秒都属于力的单位C .在厘米、克、秒单位制中,重力加速度g 的值等于98 cm/s 2D .在力学计算中,所有涉及的物理量的单位都应取国际单位11.如图所示,滑块A 在倾角为30°的斜面上,沿斜面下滑的加速度a 为2.0 m/s 2.若在A上放一重量为10 N的物体B,A、B一起以加速度a1沿斜面下滑;若在A上加竖直向下大小为10 N的恒力F,A沿斜面下滑的加速度为a2.则()A.a1>2 m/s2B.a1=2 m/s2C.a2=2 m/s2D.a2>2 m/s212.如图所示,一名消防队员在模拟演习训练中,沿着长为12 m的竖立在地面上的钢管往下滑.已知这名消防队员的质量为60 kg,他从钢管顶端由静止开始先匀加速再匀减速下滑,滑到地面时速度恰好为零.如果他加速时的加速度大小是减速时的2倍,下滑的总时间为3 s,g取10 m/s2,那么该消防队员()A.下滑过程中的最大速度为4 m/sB.加速与减速过程的时间之比为1∶2C.加速与减速过程中所受钢管弹力大小之比为1∶7D.加速与减速过程的位移之比为1∶4三、实验题(按题目要求解答)13.(8分)某同学设计了如下实验方案用来“验证牛顿运动定律”:(1)如图甲所示,将木板有定滑轮的一端垫起,把滑块通过细绳与带夹子的重锤相连,然后跨过定滑轮,重锤下夹一纸带,穿过打点计时器.调整木板倾角,直到向下轻推滑块后,滑块沿木板匀速运动.(2)如图乙所示,保持长木板的倾角不变,将打点计时器安装在长木板上靠近定滑轮处,取下细绳和重锤,将滑块与纸带相连,使纸带穿过打点计时器,然后接通电源释放滑块,使滑块由静止开始加速运动.打点计时器使用的交流电的频率为50 Hz,打出的纸带如图丙所示,A、B、C、D、E是纸带上五个计数点.①图乙中滑块下滑的加速度为________.(结果保留两位有效数字)②若重锤质量为m,滑块质量为M,重力加速度为g,则滑块加速下滑时受到的合力为________.③某同学在保持滑块质量不变的情况下,通过多次改变滑块所受合力,由实验数据作出的a-F图象如图丁所示,则滑块的质量为________kg.(结果保留两位有效数字)四、计算题(本题共3小题,共34分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位) 14.(8分)据报导,埃及卢克索发生一起观光热气球爆炸坠落事故,造成几十人遇难.科研人员乘热气球进行科学考察.热气球、座舱、压舱物和科研人员的总质量为900 kg,在空中停留一段时间后,科研人员发现热气球因漏气而下降,及时堵住.堵住时热气球下降速度为1 m/s,且做匀加速运动,4 s内下降了12 m.若空气阻力和泄漏气体的质量均可忽略,重力加速度g取10 m/s2,求至少抛掉多重的压舱物才能阻止热气球加速下降.15.(12分)如图所示,特战队员从悬停在空中离地235 m高的直升机上沿绳下滑进行降落训练.某特战队员和他携带的武器质量共为80 kg,设特战队员用特制的手套轻握绳子时可获得200 N的摩擦阻力,紧握绳子时可获得1 000 N的摩擦阻力,下滑过程中特战队员必须握住绳子才能确保安全.g取10 m/s2.求:(1)特战队员轻握绳子降落时的加速度是多大?(2)如果要求特战队员着地时的速度不大于5 m/s,则特战队员在空中下滑过程中按怎样的方式运动所需时间最少,最少时间为多少?16.(14分)如图所示为游乐场中深受大家喜爱的“激流勇进”的娱乐项目,人坐在船中,随着提升机达到高处,再沿着水槽飞滑而下,劈波斩浪的刹那给人惊险刺激的感受.设乘客与船的总质量为100 kg,在倾斜水槽和水平水槽中滑行时所受的阻力均为重力的0.1倍,水槽的坡度为30°,若乘客与船从槽顶部由静止开始滑行18 m经过斜槽的底部O点进入水平水槽(设经过O点前后速度大小不变,取g=10 m/s2).求:(1)船沿倾斜水槽下滑的加速度的大小;(2)船滑到斜槽底部O点时的速度大小;(3)船进入水平水槽后15 s内滑行的距离.参考答案与解析1.[导学号27630162] 解析:选B.设物体的质量为m ,由平衡条件可知,任何一个力的大小都等于其他两个力的合力大小,则可知F 1=m ×2.5 m/s 2,F 2=m ×1.5 m/s 2,所以F 3=F 21-F 22=m ×2 m/s 2,因此去掉F 3时物体的加速度a =F 3m=2 m/s 2. 2.[导学号27630163] 解析:选B.分析参赛者的受力如图所示,F N =mg cos α,F f =mg sin α,向上爬的过程中,α变大,故F N 减小,F f 变大,选项A 错误、B 正确;轨道对参赛者的作用力等于其受到的摩擦力与支持力的合力,大小等于其重力,方向向上,保持恒定,根据牛顿第三定律,参赛者对轨道的作用力不变,选项C 错误;分析参赛者与轨道组成的整体,根据平衡条件,受到重力和地面的支持力的作用,不受地面的摩擦力作用,选项D 错误.3.[导学号27630164] 解析:选B.物体第1 s 内向右做初速度为零的匀加速直线运动,第2 s 内向右做匀减速直线运动到静止,第3 s 内向右做初速度为零的匀加速直线运动,第4 s 内向右做匀减速直线运动……选项ACD 错误,选项B 正确.4.[导学号27630165] 解析:选C.当在绳的B 端挂一质量为m 的物体时,将它们看成系统,由牛顿第二定律:mg =(m +M )a 1,故a 1=mg (m +M ).而当在绳B 端施以F =mg 的竖直向下的拉力作用时mg =Ma 2,a 2=mg M,a 1<a 2,选项C 正确. 5.[导学号27630166] 解析:选A.工件在水平向右的推力F 的作用下,恰好能向右匀速运动,这样工件受到的滑动摩擦力水平向左与F 大小相等,当将它们间的距离稍微增大一些后固定,两木棍AB 和CD 对圆柱形工件弹力的夹角增大,重力不变,弹力增大,由F f =μF N 知,圆柱形工件受到的滑动摩擦力增大,工件一定静止不动,故选项A 正确.6.[导学号27630167] 解析:选B.因木块运动到右端的过程不同,对应的时间也不同,若一直匀加速至右端,则L =12μgt 2,可得t = 2L μg,C 可能;若一直加速到右端时的速度恰好与传送带速度v 相等,则L =0+v 2t ,可得t =2L v ,D 可能;若先匀加速到传送带速度v ,再匀速到右端,则v 22μg +v ⎝⎛⎭⎫t -v μg =L ,可得t =L v +v 2μg ,A 可能;木块不可能一直匀速至右端,B 不可能.7.[导学号27630168] 解析:选C.设物体a 、b 的质量分别为m 1、m 2,与接触面的动摩擦因数为μ,轻弹簧的原长为l 0.以整体为研究对象有F 1-μ(m 1+m 2)g =(m 1+m 2)a 1,以物体a 为研究对象有k (l 1-l 0)-μm 1g =m 1a 1,联立解得k (l 1-l 0)=m 1m 1+m 2F 1.同理可得k (l 2-l 0)=m 1m 1+m 2F 2.因而可得l 0=F 2l 1-F 1l 2F 2-F 1, 故选项C 正确.8.[导学号27630169] 解析:选BCD.惯性只与质量有关,只有改变了质量才能改变惯性,助跑是利用惯性,并不能改变惯性,所以选项A 错误,选项B 正确.惯性的大小由质量量度,质量越小,惯性越小,运动状态就越容易改变,越灵活,选项C 、D 正确.故选BCD.9.[导学号27630170] 解析:选AD.火箭升空时,其尾部向下喷气,火箭箭体与被喷出的气体是一对相互作用的物体,火箭向下喷气时,喷出的气体同时对火箭产生向上的反作用力,即火箭上升的动力,此动力并不是由周围的空气对火箭的反作用力提供的,因而与是否飞出大气层、是否存在空气无关,因而选项B 、C 错误,选项A 正确;飞船进入轨道之后,飞船与地球之间依然相互吸引,即飞船吸引地球,地球吸引飞船,这是一对作用力与反作用力,故选项D 正确.10.[导学号27630171] 解析:选BD.力学单位制中,质量、位移、时间的单位被选为基本单位,而不是力的单位,故A 错误;根据F =ma ,1 N =1 kg·m/s 2,故B 正确;在厘米、克、秒单位制中,g =9.8 m/s 2=980 cm/s 2,故C 错误;在力学计算中,没有特殊说明,所有物理量的单位都应取国际单位,故D 正确.故选BD.11.[导学号27630172] 解析:选BD.依题意有m A g sin θ-μm A g cos θ=m A a ,(m A +m B )g sin θ-μ(m A +m B )g cos θ=(m A +m B )a 1,(m A g +F )sin θ-μ(m A g +F )cos θ=m A a 2,从以上各式可解得:a 1=2 m/s 2,a 2>2 m/s 2,即B 、D 选项正确.12.[导学号27630173] 解析:选BC.画出其速度图象如图所示,由加速度关系v max t 0=2×v max 3 s -t 0得t 0=1 s ,速度图线与时间轴所围的面积表示位移:12 m =v max 2×3 s ,得v max =8 m/s ,可见加速与减速过程的时间之比为1∶2,加速与减速过程的位移之比为1∶2,由牛顿第二定律及加速度关系得:mg -μF N1m =8 m/s 1 s =8 m/s 2,μF N2-mg m =8 m/s 2 s=4 m/s 2,解得F N1∶F N2=1∶7,综上选BC. 13.[导学号27630174] 解析:(2)①由Δx =aT 2得a =3.9 m/s 2.②滑块通过细绳与带夹子的重锤相连,滑块匀速下滑,说明滑块重力沿斜面向下的分力和摩擦力之差等于重锤的重力,取下细绳和重锤,滑块加速下滑受到的合力为mg .③a -F 图象的斜率表示质量的倒数1m,可得到滑块的质量为2.0 kg. 答案:(2)①3.9 m/s 2 ②mg ③2.014.[导学号27630175] 解析:设漏气后热气球所受浮力为F ,热气球加速下降时的加速度大小为a .由s =v 0t +12at 2 (2分)得:a =2(s -v 0t )t 2=2×(12-1×4)42m/s 2=1 m/s 2 (2分) 由牛顿第二定律得:mg -F =ma(2分) 至少需要抛掉的压舱物的重力为G =mg -F =ma =900×1 N =900 N .(2分) 答案:900 N15.[导学号27630176] 解析:(1)特战队员轻握绳子降落时的加速度为a 1=mg -f 1m =800-20080m/s 2=7.5 m/s 2. (4分)(2)特战队员按照先加速到一定速度后立即减速,到达地面时速度正好为5 m/s 的方式运动所需时间最少.特战队员紧握绳子降落时的加速度大小为a 2=f 2-mg m =1 000-80080 m/s 2=2.5 m/s 2 (2分) 设特战队员加速下滑的时间为t 1,加速后的最大速度为v m ,减速下滑的时间为t 2,着地时的速度v =5 m/s.特战队员加速过程和减速过程的位移之和等于235 m ,即v 2m 2a 1+v 2m -v 22a 2=235 m (2分)解得v m =30 m/s(2分) 特战队员在空中下滑过程中的最少时间为t 总=t 1+t 2=v m a 1+v m -v a 2=14 s . (2分) 答案:(1)7.5 m/s 2 (2)见解析16.[导学号27630177] 解析:(1)对船进行受力分析,根据牛顿第二定律有 mg sin 30°-F f =ma(1分) F f =0.1mg(1分) 得a =4 m/s 2.(2分) (2)由匀加速直线运动规律有v 2=2ax(2分) 代入数据得v =12 m/s.(2分) (3)船进入水平水槽后,根据牛顿第二定律有-F f =ma ′(1分) 故:a ′=-0.1g =-1 m/s 2(1分) 由于t 止=-v a ′=12 s<15 s (1分)即船进入水平水槽后12 s 末时速度为0 (1分) 船在15 s 内滑行的距离x =v +02t 止=12+02×12 m =72 m . (2分)答案:(1)4 m/s 2 (2)12 m/s (3)72 m。

高中会考物理专题三《牛顿定律》

高中会考物理专题三《牛顿定律》

高二物理会考《专题三、牛顿运动定律和力的平衡》一、会考考点1.牛顿第一定律(A)一切物体总保持___________或_______状态,直到_______________ ___ __ __ .牛顿第一运动定律表明,物体具有保持__________或____________的性质,我们把这个性质叫做惯性。

牛顿第一定律又叫做惯性定律。

2.量度物体惯性大小的物理量是它们的______。

质量越大,惯性越,质量不变,惯性。

3.牛顿第二定律(C)物体的加速度跟物体受到的作用力成_______,跟物体的质量成________。

表达式_____________________4.牛顿第三定律(A)两个物体之间的作用力和反作用力总是大小_______,方向_____,作用在________直线上。

作用力和反作用力性质一定______,作用在_______的物体上.而一对平衡力一定作用在同一个物体上,要求力的性质___________.要能区分相互平衡的两个力与一对作用力、反作用力。

一对力比较项目一对平衡力一对作用力与反作用力不同点两个力作用在同一物体上两个力分别作用在两个不同物体上可以求合力,且合力一定为零不可以求合力两个力共同作用的效果是使物体平衡两个力的效果分别表现在相互作用的两个物体上相同点大小相等、方向相反、作用在一条直线上5.力学单位制(A)在力学范围内,国际单位制规定______、_____、_____为三个基本物理量。

它们的单位____、_______、________为基本单位。

6.共点力作用下物体的平衡(A)当物体处于或状态时,物体受力平衡。

即物体所受的所有力的合力为。

二、课堂练习:《会考指南》P43--47:2、3、5、9、11、13、23、26、28P48--49:1、4、9高二物理会考《专题四、曲线运动》一、会考考点1、曲线运动(A)曲线运动方向:质点在某一点的速度,沿曲线在这一点的方向曲线运动条件:合外力F(a)与物体的速度v 。

专题三 第1讲 牛顿第一定律 牛顿第三定律

专题三  第1讲 牛顿第一定律 牛顿第三定律

Ι
3.牛顿运动定律在圆周运动中的应用是每年必考的内容,弹簧和实 验问题这几年有所侧重,连接体问题亦受高考命题专家的青睐. 4.牛顿运动定律在生活、生产实践中有很多具体的应用,命题中以 与现代高科技发展联系紧密的航天技术、人造地球卫星的发射与 运行等社会热点为背景的题目.
第 1 讲 牛顿第一定律 牛顿第三定律
专题三
牛顿运动定律
考纲考点 要求 1.牛顿运 动定律、 牛顿定律 的应用 2.超重和 失重 3.实验: 验证牛顿 运动定律 Ⅱ
热点考向 1.应用牛顿运动定律解题是历年高考的重点和热点,不仅在力学中 而且在电磁学、热学中都有涉及. 2.高考考查牛顿运动定律只有两种情况:已知受力求运动和已知运 动求受力,对于在运动中两物体追及问题和一个物体两次不同受 力情况、两次不同运动情况以及正交方向上一个物体受力变化的 题目仍应予以重视.
解析:物体受到的静摩擦力的反作用力是物体对斜面的静 摩擦力,A 错.物体对斜面的压力在数值上等于物体所受重力 沿垂直于斜面的分力,B 错.物体所受的重力的反作用力是物 体对地球的吸引力,C 错.
6.(单选)人走路时,人和地球间的作用力和反作用力的对 数有( C ) A.一对 C.三对 B.二对 D.四对
2.正确理解牛顿第三定律 (1)作用力与反作用力总是成对出现,同时产生,同时变化, 同时消失. (2)作用力和反作用力在两个不同的物体上,各产生其效果, 永远不会抵消. (3)作用力和反作用力是同一性质的力. 定律内容可归纳为:同时、同性、异物、等值、反向、共 线.
3.区分一对作用力和反作用力与一对平衡力
解析:伽利略的理想斜面实验的思维过程是个演绎推理的 过程,因为四条结论只有第一条是现实的,其余的都是现实中 不可能存在的,是科学的逻辑推理的方法,而不是实验归纳法, 故 D 错.

高考物理易错题专题三物理牛顿运动定律(含解析)及解析

高考物理易错题专题三物理牛顿运动定律(含解析)及解析

高考物理易错题专题三物理牛顿运动定律(含解析)及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

高三物理二轮专题复习 专题三 牛顿运动定律

高三物理二轮专题复习 专题三 牛顿运动定律

专题三 牛顿运动定律一、运动状态的分析:1、 一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图所示,在A点,物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回。

下列说法中正确的是( )A .物体从A 下降到B 的过程中,速率不断变小 B .物体从B 上升到A 的过程中,速率不断变大C .物体从A 下降到B ,以及从B 上升到A 的过程中,速率都是先增大,后减小D .物体在B 点时,所受合力为零2、在光滑水平面上有一质量为m 的物块受到水平恒力F 的作用而运动,在其正前方固定一个足够长的劲度系数为k 的轻质弹簧,如图所示.当物块与弹簧接触且向右运动的过程中,下列说法正确的是( )A .物块在接触弹簧的过程中一直做减速运动BC D3状态。

若力A .在第B .在第C .在第D .在第4、板上,A.B.C.D.5、如图(a )、(质量分别为M 、m ,大小为F ,同样大小的水平推力F 作用于Q A 、N 1 =N 2 6把A 从B A. μm 1g 7、在水平面上向右匀加速运动,设A 、B 间的摩擦力为1f ,B 与桌面间的摩擦力为2f ,若增大C 桶内沙的质量,而A 、B 仍一起向右运动,则摩擦力1f 、2f 的变化情况是 ( )A .1f 不变,2f 变大B .1f 变大,2f 不变C .1f 和2f 都变大D .1f 和2f 都不变三 、瞬时问题 8、如图2-25天花板上用细绳吊起两个用轻弹簧相连的两个质量相同的小球。

两小球均保持静止。

当突然剪断细绳时,上面小球A 与下面小球B 的加速度为 [ ]A .a 1=g a 2=gB .a 1=g a 2=gC .a 1=2g a 2=0D .a 1=0 a 2=g 9、如图所示,质量为m 的小球用一水平轻弹簧系住,并用倾角为60°的光滑木板ABPQF(a)托住,小球恰好处于静止状态,当木板AB 突然向下撤离的瞬间,小球的加速度为( )A .0B .大小为g ,方向竖直向下C .大小g3,方向垂直木板向下 D .大小为2g ,方向垂直木板向下四、应用牛顿运动定律分析图像问题10、物体A 、B 、C 均放置在同一水平面上,它们的质量分别为A m 、B m 、Cm ,与水平面的动摩擦因数分别为A μ、B μ、C μ ,当用水平力F 拉物体A 、B 、C 时得到的a 与力F 关系图线如图4所对应的直线甲、乙、丙所示,甲、乙直线平行,则以下说法正确的是 ( )①μ A <μB m A =m B ②μ B >μC m B >m C ③μ B =μC m B >m C④μA<μC m A <m CA.①② B .②④ C .③④D .①④11、某人在地面上用弹簧秤称得体重为490N 。

牛顿运动定律高考真题专题汇编带答案解析

牛顿运动定律高考真题专题汇编带答案解析

专题三牛顿运动定律考点1 牛顿运动定律的理解与应用[2019浙江4月选考,12,3分]如图所示,A、B、C为三个实心小球,A为铁球,B、C为木球.A、B两球分别连接在两根弹簧上,C球连接在细线一端,弹簧和细线的下端固定在装水的杯子底部,该水杯置于用绳子悬挂的静止吊篮内.若将挂吊篮的绳子剪断,则剪断的瞬间相对于杯底(不计空气阻力,ρ木<ρ水<ρ铁) ()A.A球将向上运动,B、C球将向下运动B.A、B球将向上运动,C球不动C.A球将向下运动,B球将向上运动,C球不动D.A球将向上运动,B球将向下运动,C球不动拓展变式1.[全国卷高考题改编,多选]伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.关于惯性有下列说法,其中正确的是()A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.物体保持静止或匀速直线运动状态的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动2.[2020江苏,5,3分]中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量.某运送抗疫物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F.若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.FB.C.D.3.[2020浙江1月选考,2,3分]如图所示,一对父子掰手腕,父亲让儿子获胜.若父亲对儿子的力记为F1,儿子对父亲的力记为F2,则( )A.F2>F1B.F1和F2大小相等C.F1先于F2产生D.F1后于F2产生4.[2015海南,8,5分,多选]如图所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g.在剪断瞬间()A.a1=3gB.a1=0C.Δl1=2Δl2D.Δl1=Δl25.[2020山东,1,3分]一质量为m的乘客乘坐竖直电梯下楼,其位移s与时间t的关系图像如图所示.乘客所受支持力的大小用F N表示,速度大小用v表示.重力加速度大小为g.以下判断正确的是()A.0~t1时间内,v增大,F N>mgB.t1~t2时间内,v减小,F N<mgC.t2~t3时间内,v增大,F N<mgD.t2~t3时间内,v减小,F N>mg6.[2021辽宁六校第一次联考,多选]如图甲所示,一轻质弹簧的下端固定在水平面上,上端叠放两个质量均为m的物体A、B(B与弹簧连接,A、B均可视为质点),弹簧的劲度系数为k,初始时物体处于静止状态.现用竖直向上的拉力F 作用在A上,使A开始向上做加速度大小为a的匀加速运动,测得A、B的v-t图像如图乙所示,已知重力加速度大小为g,则()A.施加力F前,弹簧的形变量为B.施加力F的瞬间,A、B间的弹力大小为m(g+a)C.A、B在t1时刻分离,此时弹簧弹力等于B的重力D.上升过程中,B速度最大时,A、B间的距离为a-7.[2021安徽黄山高三模拟,多选]如图甲所示,物块A、B静止叠放在水平地面上,B受到大小从零开始逐渐增大的水平拉力F的作用.A、B间的摩擦力f1、B与地面间的摩擦力f2随水平拉力F变化的情况如图乙所示.已知物块A的质量m=3 kg,取g=10 m/s2,最大静摩擦力等于滑动摩擦力,则()A.两物块间的动摩擦因数为0.2B.当0<F<4 N时,A、B保持静止C.当4 N<F<12 N时,A、B发生相对滑动D.当F>12 N时,A的加速度随F的增大而增大考点2 动力学两类基本问题[2019江苏,15,16分]如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下.接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)A被敲击后获得的初速度大小v A;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a'B;(3)B被敲击后获得的初速度大小v B.拓展变式1.[2020江西丰城模拟]如图所示,质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后速度减为零.求物体与斜面间的动摩擦因数μ和物体沿斜面向上运动的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)2.[2015新课标全国Ⅰ,20,6分,多选]如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示.若重力加速度及图中的v0、v1、t1均为已知量,则可求出()图(a) 图(b)A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度3.[2016上海,25,4分]地面上物体在变力F作用下由静止开始竖直向上运动,力F随高度x的变化关系如图所示,物体能上升的最大高度为h,h<H.当物体加速度最大时其高度为,加速度的最大值为.4.[2020安徽安庆检测]如图所示,质量为10 kg的环在F=140 N的恒定拉力作用下,沿粗糙直杆由静止从杆的底端开始运动,环与杆之间的动摩擦因数μ=0.5,杆与水平地面的夹角θ=37°,拉力F与杆的夹角θ=37°,力F作用一段时间后撤去,环在杆上继续上滑了0.5 s后,速度减为零,g取 10 m/s2,sin 37°=0.6,cos 37°=0.8,杆足够长.求:(1)拉力F作用的时间;(2)环运动到杆底端时的速度大小.5.[2021山西太原模拟]如图所示,在竖直平面内有半径为R和2R的两个圆,两圆的最高点相切,切点为A.B和C分别是小圆和大圆上的两个点,其中AB长为R,AC长为2R.现沿AB和AC建立两条光滑轨道,自A处由静止释放小球,已知小球沿AB轨道运动到B点所用时间为t1,沿AC轨道运动到C点所用时间为t2,则t1与t2之比为()A.1∶3B.1∶2C.1∶D.1∶6.[2020山东,8,3分]如图所示,一轻质光滑定滑轮固定在倾斜木板上,质量分别为m和2m的物块A、B,通过不可伸长的轻绳跨过滑轮连接,A、B间的接触面和轻绳均与木板平行.A与B间、B与木板间的动摩擦因数均为μ,设最大静摩擦力等于滑动摩擦力.当木板与水平面的夹角为45°时,物块A、B刚好要滑动,则μ的值为()A.B.C.D.7.[2017全国Ⅲ,25,20分]如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离8.[2020四川南充模拟]如图传送装置,水平传送带ab在电机的带动下以恒定速率v=4 m/s运动,在传送带的右端点a无初速度轻放一个质量m=1 kg的物块A(视为质点),当物块A到达传送带左端点b点时,即刻再在a点无初速度轻放另一质量为2m的物块B(视为质点).两物块到达b点时都恰好与传送带等速,b端点的左方为一个水平放置的长直轨道cd,轨道上静止停放着质量为m的木板C,从b点滑出的物块恰能水平滑上(无能量损失)木板上表面,木板足够长.已知:物块与传送带间的动摩擦因数μ1=0.8,与木板间的动摩擦因数μ2=0.2;木板与轨道间的动摩擦因数μ3=0.1;设最大静摩擦力等于滑动摩擦力,取g=10 m/s2.试求:(1)物块A、B滑上木板C上的时间差Δt;(2)木板C运动的总时间.9.如图所示,传送带的倾角θ=37°,从A到B的长度为L AB=16 m,传送带以v0=10 m/s的速度逆时针转动.在传送带A 端无初速度释放一个质量为m=0.5 kg 的物体,它与传送带之间的动摩擦因数μ=0.5,则物体从A运动到B所需的时间是多少?(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)10.[新情境——动车爬坡][2020四川宜宾模拟,多选]动车是怎样爬坡的?西成高铁从清凉山隧道开始一路上坡,采用25‰的大坡度穿越秦岭,长达45公里,坡道直接落差1 100米,为国内之最.几节自带动力的车厢加几节不带动力的车厢编成一组就是动车组.带动力的车厢叫动车,不带动力的车厢叫拖车.动车爬坡可以简化为如图所示模型,在沿斜面向上的恒力F作用下,A、B两物块一起沿倾角为θ的斜面向上做匀加速直线运动,两物块间用与斜面平行的轻弹簧相连,已知两物块与斜面间的动摩擦因数相同,则下列操作能保证A、B两物块间的距离不变的是()A.只增加斜面的粗糙程度B.只增加物块B的质量C.只增大沿斜面向上的力FD.只增大斜面的倾角θ考点3 实验:探究加速度与力、质量的关系[2017浙江下半年选考,17,5分]在做“探究加速度与力、质量的关系”实验中(1)右图仪器需要用到的是.(2)下列说法正确的是.A.先释放纸带再接通电源B.拉小车的细线应尽可能与长木板平行C.纸带与小车相连端的点迹较疏D.轻推小车,拖着纸带的小车能够匀速下滑说明摩擦力已被平衡(3)如图所示是实验时打出的一条纸带,A、B、C、D、…为每隔4个点取的计数点,据此纸带可知小车在打点计时器打D点时速度大小为m/s(小数点后保留2位).拓展变式1.[开放题][2020山东济南检测]如图所示的实验装置可以验证牛顿第二定律,小车上固定一个盒子,盒子内盛有砂子.砂桶的总质量(包括桶以及桶内砂子质量)记为m,小车的总质量(包括车、盒子及盒内砂子质量)记为M.2.[同2020北京第15题相似]在探究加速度与力的关系的实验中,小明同学设计了如图甲所示(俯视图)的实验方案:将两个小车放在水平木板上,前端分别系一条细线跨过定滑轮与砝码盘相连,后端各系一细线.(1)平衡摩擦力后,在保证两小车质量相同、盘中砝码质量不同的情况下,用一黑板擦把两条细线同时按在桌子上,抬起黑板擦时两小车同时开始运动,按下黑板擦时两小车同时停下来.小车前进的位移分别为x1、x2,由x=at2,知=,测出砝码和砝码盘的总质量m1、m2,若满足,即可得出小车的质量一定时,其加速度与拉力成正比的结论.若小车的总质量符合远大于砝码和砝码盘的总质量的需求,但该实验中测量的误差仍然较大,其主要原因是.(2)小军同学换用图乙所示的方案进行实验:在小车的前方安装一个拉力传感器,在小车后面固定纸带并穿过打点计时器.由于安装了拉力传感器,下列操作要求中不需要的是.(填选项前的字母)A.测出砝码和砝码盘的总质量B.将木板垫起适当角度以平衡摩擦力C.跨过滑轮连接小车的细线与长木板平行D.砝码和砝码盘的总质量远小于小车和传感器的总质量(3)测出小车质量M并保持不变,改变砝码的质量分别测得小车加速度a与拉力传感器示数F,利用测得的数据在坐标纸中画出如图丙中的a-F图线A;若小军又以为斜率在图像上画出如图丙中的图线B,利用图像中给出的信息,可求出拉力传感器的质量为.3.如图所示,某同学利用图示装置做“探究加速度与物体所受合力的关系”的实验.在气垫导轨上安装了两个光电门1、2,滑块上固定一遮光条,滑块通过绕过两个滑轮的细绳与弹簧测力计相连,实验时改变钩码的质量,读出弹簧测力计的不同示数F,不计细绳与滑轮之间的摩擦力和滑轮的质量.(1)根据实验装置图,本实验(填“需要”或“不需要”)将带滑轮的气垫导轨右端垫高,以平衡摩擦力;实验中(填“一定要”或“不必要”)保证钩码的质量远小于滑块和遮光条的总质量;实验中(填“一定要”或“不必要”)用天平测出所挂钩码的质量;滑块(含遮光条)的加速度(填“大于”“等于”或“小于”)钩码的加速度.(2)某同学做实验时,未挂细绳和钩码接通气源,然后推一下滑块(含遮光条)使其从气垫导轨右端向左运动,发现遮光条通过光电门2所用的时间大于通过光电门1所用的时间,该同学疏忽大意,未调节气垫导轨使其恢复水平,就继续进行其他实验步骤(其他实验步骤没有失误),则该同学作出的滑块(含遮光条)的加速度a与弹簧测力计示数F的图像可能是(填图像下方的字母).(3)若该同学作出的a-F图像中图线的斜率为k,则滑块(含遮光条)的质量为.4.图(a)[2018全国Ⅱ,23,9分]某同学用图(a)所示的装置测量木块与木板之间的动摩擦因数.跨过光滑定滑轮的细线两端分别与木块和弹簧秤相连,滑轮和木块间的细线保持水平,在木块上方放置砝码.缓慢向左拉动水平放置的木板,当木块和砝码相对桌面静止且木板仍在继续滑动时,弹簧秤的示数即木块受到的滑动摩擦力的大小.某次实验所得数据在表中给出,其中f4的值可从图(b)中弹簧秤的示数读出.砝码的质量0.05 0.10 0.15 0.20 0.25m/kg滑动摩擦力2.15 2.36 2.55 f42.93f/N图(b)图(c)回答下列问题:(1)f4= N;(2)在图(c)的坐标纸上补齐未画出的数据点并绘出f-m图线;(3)f与m、木块质量M、木板与木块之间的动摩擦因数μ及重力加速度大小g之间的关系式为f= ,f-m图线(直线)的斜率的表达式为k= ;(4)取g=9.80 m/s2,由绘出的f-m图线求得μ= .(保留2位有效数字)5.[2018江苏,11,10分]某同学利用如图所示的实验装置来测量重力加速度g.细绳跨过固定在铁架台上的轻质滑轮,两端各悬挂一只质量为M的重锤.实验操作如下:①用米尺量出重锤1底端距地面的高度H;②在重锤1上加上质量为m的小钩码;③左手将重锤2压在地面上,保持系统静止.释放重锤2,同时右手开启秒表,在重锤1落地时停止计时,记录下落时间;④重复测量3次下落时间,取其平均值作为测量值t.请回答下列问题:(1)步骤④可以减小对下落时间t测量的(选填“偶然”或“系统”)误差.(2)实验要求小钩码的质量m要比重锤的质量M小很多,主要是为了.A.使H测得更准确B.使重锤1下落的时间长一些C.使系统的总质量近似等于2MD.使细绳的拉力与小钩码的重力近似相等(3)滑轮的摩擦阻力会引起实验误差.现提供一些橡皮泥用于减小该误差,可以怎么做?(4)使用橡皮泥改进实验后,重新进行实验测量,并测出所用橡皮泥的质量为m0.用实验中的测量量和已知量表示g,得g= .答案专题三牛顿运动定律考点1 牛顿运动定律的理解与应用D剪断绳子之前,A球受力分析如图1所示,B球受力分析如图2所示,C球受力分析如图3所示.剪断绳子瞬间,水杯和水都处于完全失重状态,水的浮力消失,杯子的瞬时加速度为重力加速度.又由于弹簧的形状来不及发生改变,弹簧的弹力大小不变,相对地面而言,A球的加速度a A=<g,方向竖直向下,其相对杯子的加速度方向竖直向上.相对地面而言,B球的加速度a B=>g,方向竖直向下,其相对杯子的加速度方向竖直向下.绳子剪断瞬间,C球所受的浮力和拉力均消失,其瞬时加速度为重力加速度,故相对杯子静止,综上所述,D正确.x图1 图2 图31.ACD物体保持静止或匀速直线运动状态的性质叫惯性,所以A、C正确.如果没有力,物体将保持静止或匀速直线运动状态,所以B错误.运动物体如果不受力,将保持匀速直线运动状态,所以D正确.2.C设列车做匀加速直线运动的加速度为a,可将后面的38节车厢作为一个整体进行分析,设每节车厢的质量均为m,每节车厢所受的摩擦力和空气阻力的合力大小均为f,则有F-38f=38ma,再将最后面的2节车厢作为一个整体进行分析,设倒数第3节车厢对倒数第2节车厢的牵引力为F',则有F'-2f=2ma,联立解得F'=F,C项正确,A、B、D项均错误.3.B F1和F2是作用力和反作用力,遵循牛顿第三定律,这对力同时产生、同时消失、大小相等、方向相反,B正确,A、C、D均错误.4.AC设物块的质量为m,剪断细线的瞬间,细线上的拉力消失,弹簧还没有来得及改变,所以剪断细线的瞬间a受到重力和弹簧S1的拉力F1;剪断细线前对bc和弹簧S2组成的整体分析可知F1=2mg,故a受到的合力F合=mg+F1=mg+2mg=3mg,故加速度a1==3g,A正确,B错误.设弹簧S2的拉力为F2,则F2=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确,D错误.5.D根据位移—时间图像的斜率表示速度可知,0~t1时间内,图像斜率增大,速度v增大,加速度方向向下,由牛顿运动定律可知乘客处于失重状态,所受的支持力F N<mg,选项A错误;t1~t2时间内,图像斜率不变,速度v不变,加速度为零,乘客所受的支持力F N=mg,选项B错误;t2~t3时间内,图像斜率减小,速度v减小,加速度方向向上,由牛顿运动定律可知乘客处于超重状态,所受的支持力F N>mg,选项C错误,D正确.6.AD A与B分离的瞬间,A与B的加速度相同,速度也相同,A与B间的弹力恰好为零.分离后A与B的加速度不同,速度不同.t=0时刻,即施加力F的瞬间,弹簧弹力没有突变,弹簧弹力与施加力F前的相同,但A与B间的弹力发生突变.t1时刻,A与B恰好分离,此时A与B的速度相等、加速度相等,A与B间的弹力为零.t2时刻,B的v-t图线的切线与t轴平行,切线斜率为零,即加速度为零.施加力F前,A、B整体受力平衡,则弹簧弹力大小F0=kx0=2mg,解得弹簧的形变量x0=,选项A正确.施加力F的瞬间,对B,根据牛顿第二定律有F0-mg-F AB=ma,解得A、B间的弹力大小F AB=m(g-a),选项B错误.A、B在t1时刻之后分离,此时A、B具有共同的速度与加速度,且F AB=0,对B有F1-mg=ma,解得此时弹簧弹力大小F1=m(g+a),选项C错误.t2时刻B的加速度为零,速度最大,则kx'=mg,解得此时弹簧的形变量x'=,B上升的高度h'=x0-x'=,A上升的高度h=a,此时A、B间的距离Δh=a-,选项D正确.7.AB根据题图乙可知,发生相对滑动时,A、B间的滑动摩擦力为6 N,所以A、B之间的动摩擦因数μ==0.2,选项A正确;当0<F<4 N时,根据题图乙可知,f2还未达到B与地面间的最大静摩擦力,此时A、B保持静止,选项B正确;当4 N<F<12 N时,根据题图乙可知,此时A、B间的摩擦力还未达到最大静摩擦力,所以A、B没有发生相对滑动,选项C错误;当F>12 N时,根据题图乙可知,此时A、B发生相对滑动,对A有a==2 m/s2,加速度不变,选项D错误.考点2 动力学两类基本问题(1)(2)3μg μg (3)2解析:(1)由牛顿运动定律知,A的加速度大小a A=μg由运动学公式有2a A L=解得v A=.(2)设A、B的质量均为m对齐前,B所受合外力大小F=3μmg由牛顿运动定律有F=ma B,得a B=3μg对齐后,A、B所受合外力大小F'=2μmg由牛顿运动定律有F'=2ma'B,得a'B=μg.(3)经过时间t,A、B达到共同速度v,位移分别为x A、x B,A的加速度大小等于a A则v=a A t,v=v B-a B tx A=a A t2,x B=v B t-a B t2且x B-x A=L解得v B=2.1.0.2516.25 m解析:物体受力分析如图所示,设未撤去F前,物体加速运动的加速度为a1,末速度为v,将重力mg和F沿斜面方向和垂直于斜面方向正交分解,由牛顿运动定律得F N=F sin θ+mg cos θF cos θ-f-mg sin θ=ma1又f=μF N加速过程由运动学规律可知v=a1t1撤去F后,物体减速运动的加速度大小为a2,则a2=g sin θ+μg cos θ由匀变速运动规律有v=a2t2由运动学规律知x=a1+a2联立各式解得μ=0.25,x=16.25 m.2.ACD由题图(b)可求出0~t1和t1~2t1时间内物块的加速度分别为a1=、a2=.设斜面的倾角为θ,由牛顿第二定律知,物块上滑时有-(mg sin θ+μmg cos θ)=ma1,下滑时有μmg cos θ-mg sin θ=ma2,联立可求得物块与斜面间的动摩擦因数μ及斜面的倾角θ,A、C正确;从以上两个方程可知,物块质量被约去,即不可求,B错误;物块沿斜面向上滑行的最大高度H=sin θ,可求出,D正确.3.0或h解析:由题图可知,力F随着高度x的增加而均匀减小,即F随高度x的变化关系为F=F0-kx,其中k=,则当物体到达h高度处时,向上的拉力F1=F0-h;由牛顿第二定律知,开始时加速度方向竖直向上,随x的增加加速度逐渐减小,然后反方向增大.物体从地面上升到h高度处的过程中,根据动能定理可得W F+W G=0,即h-mgh=0,求得F0=,则物体在刚开始运动时的加速度大小满足F0-mg=ma1,求得a1=;当物体运动到h高度处时,加速度大小满足mg-F1=ma2,而F1=-,求得a2=,因此加速度最大时其高度是0或h.4.(1)1 s (2) m/s解析:(1)撤去拉力F后,由牛顿第二定律有mg sin θ+μmg cos θ=ma2又0=v1-a2t2联立解得v1=5 m/s撤去拉力F前(注意杆对环的弹力的方向),有F cos θ-mg sin θ-μ(F sin θ-mg cos θ)=ma1而v1=a1t1联立解得t1=1 s.(2)环上滑至速度为零后反向做匀加速直线运动,由牛顿第二定律得mg sin θ-μmg cos θ=ma3,又s=(t1+t2),而v2=2a3s联立解得v= m/s.5.D如题图所示,设圆中任意一条弦为OM,圆的半径为R',则弦OM长s=2R'cos θ,小球下滑的加速度a=g cos θ,根据s=at2得t=2,与角θ无关,因此沿不同弦下滑的时间相等.故小球沿AB下滑所用的时间等于小球在高度为2R 的位置做自由落体运动所用的时间,即2R=g,小球沿AC下滑所用的时间等于小球在高度为4R的位置做自由落体运动所用的时间,即4R=g,联立有=,选项D正确.6.C根据题述, 物块A、B刚要滑动,可知A、B之间的摩擦力f AB=μmg cos 45°,B与木板之间的摩擦力f=μ·3mg cos 45°.隔离A进行受力分析,由平衡条件可得轻绳中拉力F= f AB+ mg sin 45°.对AB整体,由平衡条件得2F=3mg sin 45°-f,联立解得μ=,选项C正确.7.(1)1 m/s(2)1.9 m解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B所受的摩擦力大小分别为f1、f2,地面对木板的摩擦力大小为f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1.在物块B与木板达到共同速度前有f1=μ1m A g ①f2=μ1m B g ②f3=μ2(m+m A+m B)g ③由牛顿第二定律得f1=m A a A④f2=m B a B⑤f2-f1-f3=ma1⑥设在t1时刻,B与木板达到共同速度,其大小为v1.由运动学公式有v1=v0-a B t1⑦v1=a1t1⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s⑨.(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-a B设在B与木板达到共同速度v1后,木板的加速度大小为a2.对于B与木板组成的系统,由牛顿第二定律有f1+f3=(m B+m)a2由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2.设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2对A有v2=-v1+a A t2在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-a2在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-a A(t1+t2)2A和B相遇时,A与木板的速度恰好相同.因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B联立以上各式,并代入数据得s0=1.9 m.(也可用如图的速度—时间图线求解)8.(1)0.5 s (2)2.75 s解析:(1)物块在传送带上的加速时间即为滑上木板的时间差,设物块A、B在传送带上的加速度为a0,则有μ1mg=ma0解得a0=8 m/s2根据v=a0Δt可得Δt==0.5 s.(2)过程一物块A滑上木板C与木板有相对运动,则有μ2mg=ma A,解得a A=2 m/s2,方向水平向右水平方向对木板C有μ2mg=μ3·2mg,木板C保持静止过程二经过Δt=0.5 s后,物块B滑上木板C,此时物块A的速度为v A=v-a AΔt=3 m/s物块B和木板C有相对运动,则有μ2·2mg=2ma B代入数据解得a B=2 m/s2,方向向右对木板C有μ2·2mg+μ2mg-μ1(2m+2m)g=ma C代入数据解得a C=2 m/s2,方向水平向左木板C由静止开始向左匀加速运动,物块A与木板C共速时有v A-a A t1=a C t1=v AC代入数据解得t1=0.75 s,v AC=1.5 m/s此时v B=v-a B t1=2.5 m/s过程三物块B相对木板C继续向左运动,仍做a B=2 m/s2的匀减速运动,木板C和物块A保持相对静止,将木板C和物块A看作整体有μ2·2mg-μ3(2m+2m)g=2ma AC解得a AC=0故木板C和物块A向左做匀速直线运动,直到A、B、C共速,速度为v B-a B t2=v AC,解得t2=0.5 s过程四三物体保持相对静止,一起做匀减速运动,直到减速到零,木板C停止运动,则有μ3(2m+2m)g=4ma ABC代入数据解得a ABC=1 m/s2t3==1.5 s故木板C运动的总时间为t=t1+t2+t3=2.75 s.图甲9.2 s解析:开始阶段,传送带对物体的滑动摩擦力沿传送带向下,物体由静止开始加速下滑,受力分析如图甲所示由牛顿第二定律得mg sin θ+μmg cos θ=ma1解得a1=g sin θ+μg cos θ=10 m/s2物体加速至速度与传送带速度相等时需要的时间t1==1 s物体运动的位移s1=a1 =5 m<16 m即物体加速到10 m/s时仍未到达B点图乙当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带对物体的滑动摩擦力沿传送带向上,如图乙所示由牛顿第二定律得mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2设此阶段物体滑动到B所需时间为t2,则L AB-s1=v0t2+a2,解得t2=1 s故所需时间t=t1+t2=2 s.10.AD A、B两物块间的距离不变,则弹簧弹力不变,对A、B及弹簧整体应用牛顿第二定律可得F-(m A+m B)g sin θ-μ(m A+m B)·g cos θ=(m A+m B)a,所以两物块做匀加速直线运动的加速度a=-g sin θ-μg cos θ,对物块B应用牛顿第二定律可得T-m B g sin θ-μm B g cos θ=m B a,所以弹簧弹力T=m B(g sin θ+μg cos θ)+m B a=.只改变斜面粗糙。

专题三 牛顿运动定律

专题三 牛顿运动定律

专题三牛顿运动定律【2013山东卷14】伽利略开创了实验研究和逻辑推理相结合探索物理规律的科学方法,利用这种方法伽利略发现的规律有A.力不是维持物体运动的原因B.物体之间普遍存在相互吸引力C.忽略空气阻力,重物与轻物下落得同样快D.物体间的相互作用力总是大小相等,方向相反【答案】AC【解析】伽利略用理想斜面实验指出力不是维持物体运动的原因,A选项正确,万有引力是牛顿提出的,B错;伽利略在研究自由落体运动是指出忽略空气阻力,重物与轻物下落得同样快,C对;牛顿第三定律总结了作用力和反作用力的关系,D错。

【2013海南7】科学家关于物体运动的研究对树立正确的自然观具有重要作用。

下列说法符合历史事实的是( )A.亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变B.伽利略通过“理想实验”得出结论:一旦物体具有某一速度,如果它不受力,它将以这一速度永远运动下去C.笛卡儿指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向D.牛顿认为,物体具有保持原来匀速直线运动状态或静止状态的性质【答案】BCD【解析】亚里士多德认为运动不需要力来维持,伽利略认为力是改变物体运动状态的原因,A错;伽利略通过“理想实验”得出结论:一旦物体具有某一速度,如果它不受力,它将以这一速度永远运动下去,B对;笛卡尔指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向,C对;牛顿认为,物体具有保持原来匀速直线运动状态或静止状态的性质。

【2013新课标14】右图是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表。

表中第二列是时间,第三列是物体沿斜面运动的距离.第一列是伽利略在分析实验数据时添加的。

撤据表中的数据,伽利略可以得出的结论是A 物体具有惯性B 斜面倾角一定时,加速度与质量无关C 物体运动的距离与时间的平方成正比D 物体运动的加速度与重力加速度成正比【答案】C【解析】分析表中数据,发现物体运动的距离之比近似等于时间平方之比,所以C选项正确。

牛顿运动定律--2023年高考真题和模拟题物理分项汇编(解析版)

牛顿运动定律--2023年高考真题和模拟题物理分项汇编(解析版)

专题03牛顿运动定律2023年高考真题1(2023全国甲卷)一小车沿直线运动,从t =0开始由静止匀加速至t =t 1时刻,此后做匀减速运动,到t =t 2时刻速度降为零在下列小车位移x 与时间t 的关系曲线中,可能正确的是()A. B.C. D.【答案】D【解析】x -t 图像的斜率表示速度,小车先做匀加速运动,因此速度变大即0-t 1图像斜率变大,t 1-t 2做匀减速运动则图像的斜率变小,在t 2时刻停止图像的斜率变为零。

故选D 。

2(2023全国甲卷)用水平拉力使质量分别为m 甲、m 乙的甲、乙两物体在水平桌面上由静止开始沿直线运动,两物体与桌面间的动摩擦因数分别为μ甲和μ乙。

甲、乙两物体运动后,所受拉力F 与其加速度a 的关系图线如图所示。

由图可知()A.m 甲<m 乙B.m 甲>m 乙C.μ甲<μ乙D.μ甲>μ乙【答案】BC【解析】根据牛顿第二定律有F -μmg =ma 整理后有F =ma +μmg则可知F -a 图像的斜率为m ,纵截距为μmg ,则由题图可看出m 甲>m 乙,μ甲m 甲g =μ乙m 乙g 则μ甲<μ乙故选BC 。

3(2023山东卷)质量为M 的玩具动力小车在水平面上运动时,牵引力F 和受到的阻力f 均为恒力,如图所示,小车用一根不可伸长的轻绳拉着质量为m 的物体由静止开始运动。

当小车拖动物体行驶的位移为S 1时,小车达到额定功率,轻绳从物体上脱落。

物体继续滑行一段时间后停下,其总位移为S 2。

物体与地面间的动摩擦因数不变,不计空气阻力。

小车的额定功率P 0为()A.2F 2(F -f )S 2-S 1 S 1(M +m )S 2-MS 1 B.2F 2(F -f )S 2-S 1 S 1(M +m )S 2-mS 1C.2F 2(F -f )S 2-S 1 S 2(M +m )S 2-MS 1D.2F 2(F -f )S 2-S 1 S 2(M +m )S 2+mS 1【答案】A【解析】设物体与地面间的动摩擦因数为μ,当小车拖动物体行驶的位移为S 1的过程中有F -f -μmg =(m +M )a v 2=2aS 1P 0=Fv轻绳从物体上脱落后a 2=μgv 2=2a 2(S 2-S 1)联立有P 0=2F 2(F -f )S 2-S 1 S 1(M +m )S 2-MS 1故选A 。

专题3 牛顿运动定律学生

专题3 牛顿运动定律学生

专题3 牛顿运动定律一、单项选择题1.一条足够长的浅色水平传送带自左向右匀速运行。

现将一个木炭包无初速地放在传送带的最左端,木炭包在传送带上将会留下一段黑色的径迹。

下列说法中正确的是()A.黑色的径迹将出现在木炭包的左侧B.木炭包的质量越大,径迹的长度越短C.传送带运动的速度越大,径迹的长度越短D.木炭包与传送带间动摩擦因数越大,径迹的长度越短2.放在水平地面上的一物块,受到方向不变的水平推力F的作用,F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10m/s2.由此两图线可以求得物块的质量m和物块与地面之间的动摩檫因数μ分别为()A.m=0.5kg,μ=0.4 B.m=1.5kg,μ=0.4 C.m=0.5kg,μ=0.2 D.m=1kg,μ=0.23.质量均为5kg的物块l、2放在光滑水平面上并用轻质弹簧相连,如图所示,今对物块1、2分别施以方向相反的水平力F1、F2,且F1=20 N、F2=10 N,则弹簧称的示数为()A.30N B.15NC.20N D.10N4.如图所示,一物块m从某曲面上的Q点自由下滑,通过一粗糙的静止传送带后,落到地面P点。

若传送带的皮带轮沿逆时针方向转动起来,传送带也随之运动,再把该物体放在Q点自由下滑,则A.它仍落在P点B.它将落在P点左方C.它将落在P点右方D.无法确定落点5.如图所示,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b,a球质量为m,静置于地面,b球质量为4m,用手托住,高度为h,此时轻绳刚好拉紧,从静止开始释放b后,a能离地面的最大高度为()A.hB.1.5hC.1.6hD.2.2h 6.如图所示,斜面体M放置在水平地面上,位于斜面上的物块m受到沿斜面向上的推力F作用.设物块与斜面之间的摩擦力大小为f1,斜面与地面之间的摩擦力大小为f2。

增大推力F,斜面体始终保持静止,下列判断正确的是()A.如果物块沿斜面向上滑动,则f1、f2一定增大B.如果物块沿斜面向上滑动,则f1、f2一定不变C.如果物块与斜面相对静止,则f1、f2一定增大D.如果物块与斜面相对静止,则f1、f2一定不变7.在加速上升的电梯地板上放置着一个木箱,下列说法正确的是()A.木箱对电梯地板的压力小于木箱的重力B.木箱对电梯地板的压力等于木箱的重力C.电梯地板对木箱的支持力大于木箱对电梯地板的压力D.电梯地板对木箱的支持力等于木箱对电梯地板的压力8.如图所示,A、B两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的摩擦力()A.方向向左,大小不变B.方向向左,逐渐减小C.方向向右,大小不变D.方向向右,逐渐减小9.如图所示,在光滑水平面上,用弹簧水平连接一斜面,弹簧的另一端固定在墙上,一玩具遥控小车,放在斜面上,系统静止不动。

2020年高考山东版高考理科物理 专题三 牛顿运动定律

2020年高考山东版高考理科物理       专题三 牛顿运动定律

例3 如图所示,是某同学站在压力传感器上做下蹲—起立的动作时记 录的力随时间变化的图像,纵坐标为力(单位为牛顿),横坐标为时间。由 图像可知 ( )
A.该同学做了两次下蹲—起立的动作 B.该同学做了一次下蹲—起立的动作 C.下蹲过程中人处于失重状态 D.下蹲过程中先处于超重状态后处于失重状态
解析 在一次下蹲过程中,该同学要先后经历失重状态和超重状态,所 以对压力传感器的压力先小于自身重力后大于自身重力,而在一次起立 过程中,该同学又要先后经历超重状态和失重状态,所以对压力传感器 的压力先大于自身重力后小于自身重力,所以题图记录的是一次下蹲— 起立的动作。
考向突破
考向一 对牛顿运动定律的理解 1.牛顿第一定律与牛顿第二定律的关系 (1)牛顿第一定律不是实验定律,它是以伽利略的“理想实验”为基础, 经过科学抽象、归纳推理而总结出来的;牛顿第二定律是通过探究加速 度与力和质量的关系得出的实验定律。 (2)牛顿第一定律不是牛顿第二定律的特例,而是不受任何外力的理想 情况,在此基础上,牛顿第二定律定量地指出了力和运动的联系:F=ma。
方向相反
(2)三异 不同物体
不同效果
(3)二无关 与 与物 物体 体的 是运 否动 受状 其态 他无 力关 无关
2.一对作用力、反作用力和一对平衡力的区别
作用力与反作用力
一对平衡力
相同点
等大、反向,作用在⑩ 同一条直线 上
受力物体 作用在两个不同的物体上 作用在同一个物体上
解题导引
解析 方法一 以人为研究对象,受力分析如图(a)所示,建立如图所示 的坐标系,并将加速度分解为水平方向加速度ax和竖直方向加速度ay,如 图(b)所示,则ax=a cos θ,ay=a sin θ。
由牛顿第二定律得F静=max,mg-FN=may 求得F静=ma cos θ,FN=m(g-a sin θ)。

高中物理-专题3.3 牛顿第三定律(原卷版)

高中物理-专题3.3 牛顿第三定律(原卷版)

2021年高考物理100考点最新模拟题千题精练第三部分牛顿运动定律专题3.3.牛顿第三定律一.选择题1.(2020年4月浙江三地市质检)在2020 年的春节晚会上,杂技《绽放》表演了花样飞天,如图是女演员举起男演员的一个场景,两位杂技演员处于静止状态。

下列说法正确的是A.水平地面对女演员的支持力等于两演员的重力之和B.水平地面对女演员的摩擦力水平向右C.女演员对男演员的作用力大于男演员对女演员的作用力D.女演员对男演员的作用力小于男演员对女演员的作用力2.(2020年1月浙江选考)如图所示,一对父子瓣手腕,父亲让儿子获胜。

若父亲对儿子的力记为F1,儿子对父亲的力记为F2,则A. F1>F2B.F1和F2大小相等C.F1先于F2产生D.F1后于F2产生3.(2020北京第二次学业水平考试)2019年1月3日,“嫦娥四号”探测器在月球背面软着陆,这是人类制造的探测器第一次登陆月球背面.如图所示,当着陆后的“嫦娥四号”探测器静止在月球表面时,下列说法正确的是()A. 探测器对月球表面的压力大于月球表面对探测器的支持力B. 探测器对月球表面的压力小于月球表面对探测器的支持力C. 探测器对月球表面的压力与月球表面对探测器的支持力大小相等D. 探测器对月球表面的压力与月球表面对探测器的支持力方向相同4. (2019浙江台州模拟)冰上表演刚开始时,甲、乙两人都静止不动,如图(甲)所示,随着优美的音乐响起,他们在相互猛推一下对方后分别向相反方向运动如图(乙)所示。

假定两人的冰鞋与冰面的动摩擦因数相同,甲的质量小于乙的质量,则下列说法中正确的是()A.两人刚分开时,甲的速度比乙的速度大B.两人分开后,甲的加速度比乙的加速度大C.在推的过程中,甲推乙的力小于乙推甲的力D.在推的过程中,甲推乙的时间小于乙推甲的时间5.(2019湖南永州二模)如图所示,人站立在体重计上,下列说法正确的是()A.人所受的重力和人对体重计的压力是一对平衡力B.人所受的重力和人对体重计的压力是一对作用力和反作用力C.人对体重计的压力和体重计对人的支持力是一对平衡力D.人对体重计的压力和体重计对人的支持力是一对作用力和反作用力6.(6分)(2019吉林长春四模)在班级清扫卫生的劳动中,某同学用水平方向的力推桌子,桌子没动,下列说法中正确的是()A.桌子受到的重力和地面对桌子的支持力是一对相互作用力B.桌子对地面的压力和地面对桌子的支持力是一对平衡力C.同学推桌子的力与桌子受到的摩擦力是一对平衡力D.同学推桌子的力与同学受到的摩擦力是一对相互作用力7. (2019浙江模拟)瑜伽单脚站立用于锻炼平衡能力,若对其受力分析,下列判断正确的是()A.支持力F的施力物体是人B.支持力F的反作用力作用在人身上C.重力G的受力物体是人D.支持力F和重力G是一对相互作用力8.(2018·新疆模拟)关于反作用力在日常生活和生产中的应用,下列说法中正确的是()A.在平静的水面上,静止着一只小船,船上有一人,人从静止开始从小船的一端走向另一端时,船向相反方向运动B.汽车行驶时,通过排气筒向后排出燃气,从而获得向前的反作用力即动力C.如图所示,是农田灌溉用的自动喷水器,当水从弯管的喷嘴喷射出来时,弯管会自动转向D.软体动物乌贼在水中经过体侧的孔将水吸入鳃腔,然后用力把水挤出体外,乌贼就会向相反方向游去9.(2018·海南中学高三月考)A、B、C三个物体如图所示放置,所有接触面均不光滑。

专题三:第3讲 牛顿运动定律的应用

专题三:第3讲 牛顿运动定律的应用
答案:BC
热点2 超重和失重 【例2】(双选,广东六校2011届高三联考)如图 3-3-4 所示,轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂
一个小铁球,在电梯运行时,乘客发现弹簧的伸长量比电梯静
止时的伸长量大了,这一现象表明( A.电梯一定是在下降 B.电梯可能是在上升 C.电梯的加速度方向一定是向下 D.乘客一定处在超重状态 图3-3-4
力达到最大值.
解析:设 A 和 B 之间最大静摩擦力为 fmax,当水平拉力 F 作用在 B 上时,则 F=(mA+mB)a,fmax=mAa 所以 fmax=1 N 当水平拉力作用在 A 上时,A、B 不发生相对运动,一起运 动的最大加速度和拉力的最大值分别为 fmax 1 4 2 amax= = m/s ,Fmax=(mA+mB)amax= N mB 6 3
备考策略:连接体问题是牛顿第二定律应用中的重点,连 接体内各物体具有相同的加速度时,可以把它们视为一整体, 利用整体法求出加速度,再结合隔离法求解它们之间的作用力.
易出现错误的地方是对物体进行受力分析.
1.(双选,2010年东莞一中模拟)如图 3-3-3 所示,A、
B 两物体质量分别为mA、mB ,紧靠着放在光滑水平面上,现
持 A 与 B 相对静止在水平面上做加速运动,作用在 B 上的水平
拉力 F 不能超过 4 N.如果将此水平拉力作用在物体 A 上,则 可能出现的运动情况是( )
图3-3-6
A.A、B 仍相对静止一起加速运动 B.A、B 将发生相对运动
C.A 做匀速运动,B 做加速运动 D.A、B 一起做匀速运动
审题突破:静摩擦力是被动力,其存在及大小、方向取决 于物体间的相对运动的趋势,而且静摩擦力存在最大值.存在 静摩擦的连接系统,相对滑动与相对静止的临界条件是静摩擦

2021届高考复习第一轮专题三牛顿定律的理解

2021届高考复习第一轮专题三牛顿定律的理解

【解析】:地球对人的吸引力和人对地球的吸引力是一对相互作用力, 等大反向,A正确;相互作用力是两个物体间的相互作用,而人受到 的重力和人受到气流的力涉及人、地球、气流三个物体,不是一对相 互作用力,B错误;由于风洞喷出竖直向上的气流将实验者加速向上 “托起”,在竖直方向上合力不为零,所以人受到的重力大小不等于 气流对人的作用力大小,C错误;人被向上“托起”时加速度向上, 处于超重状态,D正确.
射出时的初速度是v0,上升过程中所受的平均阻力大小始终是自身重力的k 倍,那么v0和k分别等于(重力加速度g取10 m/s2)( C )
A.25 m/s 1.25 0.25
B.40 m/s 0.25C.50 m/s D.80 m/s 1.25
【解析】:根据 h=1at2,解得 a=12.5 m/s2,所以 v0=at=50 m/s;上升过程礼花弹所受的平 2
则有mg=kx1,物体向下匀加速过程,对物体受力分析,受重力、 弹簧向上的弹力、推力F,根据牛顿第二定律,有F+mg-F弹= ma,根据胡克定律,有F弹=k(x1+x)=mg+kx,解得F=ma- mg+F弹=ma+kx,故力F与x呈线性关系,且是增函数,故D正 确.
二、牛顿第二定律:物体的加速度跟合外力成正比,与物
体的质量成反比。a = F合/m或 F合=ma(合外力方向与加速度方向一致)
解题方法:先确定受力物体,受力分析,然后根据物体的运动方向建
立坐标系,将不在坐标系上的力分解。利用平衡力来解题。 = max Fy合力= may
Fx合力
知识点回顾
如受力在三个以内,可用力的合成:F合力= ma
【例2】一列以速度v匀速行驶的高铁列车内有一水平桌面,桌面上A处 有一相对桌面静止的小球.车厢中的旅客向窗外观察发现此时列车是减 速且在向南拐弯,由于列车运动状态的改变,桌面上的小球从B点运动 到了A点,则说明列车是减速且在向南拐弯的图是( C )

课件1:专题三 牛顿运动定律的综合应用

课件1:专题三 牛顿运动定律的综合应用
高考总复习·物理
第三节 牛顿运动定律的综合应用
物体的加速 产生
度方向 条件 __向__上__ 列原 F-mg=ma 理式 F=m(g+a)
运动 加速上升、 状态 _减__速__下__降__
物体的加速度
物体的加速 度方向_向__下__
方向_向__下__, 大小a=g
mg-F=ma mg-F=mg
F=m(g-a) F=0
高考总复习·物理
第三节 牛顿运动定律的综合应用
(1)滑块与地面间的动摩擦因数; (2)弹簧的劲度系数. [思路引导] ①速度图线的斜率表示物体的加速度. ②v-t图象的bc段为直线,表示物体做匀减 速直线运动.
高考总复习·物理
第三节 牛顿运动定律的综合应用
[解析] (1)从题中图象知,滑块脱离弹簧后的 加速度大小
将物体A放在容器B中,以某一速度把容器B竖直 上抛,不计空气阻力,运动过程中容器B的底面 始终保持水平,下列说法正确的是
高考总复习·物理
第三节 牛顿运动定律的综合应用
A.在上升和下降过程中A对B的压力都一定 为零
B.上升过程中A对B的压力大于物体A受到的 重力
C.下降过程中A对B的压力大于物体A受到的 重力
[解析] 该同学下蹲过程中,其加速度方向 先向下后向上,故先失重后超重,故选项D正 确. [答案] D
高考总复习·物理
第三节 牛顿运动定律的综合应用
◎规律总结 超重和失重现象的判断“三”技巧
1.从受力的角度判断,当物体所受向上的拉 力(或支持力)大于重力时,物体处于超重状态,小 于重力时处于失重状态,等于零时处于完全失重 状态.
x=21×(2+8)×6 m+12×8×4 m=46 m. 答案 (1)0.2 (2)6 N (3)46 m

课时3、牛顿运动定律

课时3、牛顿运动定律

专题三:牛顿运动定律一、复习基本知识(一)、牛顿第一定律:一切物体总保持状态或状态,直到有迫使它改变这种状态为止。

1.理解要点:①运动是物体的一种属性,物体的运动不需要力来维持。

②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,不是维持物体运动的原因。

2.惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。

①惯性是物体的固有属性,与物体的受力情况及运动状态。

②是物体惯性大小的量度。

④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用(二)、牛顿第二定律:1.牛顿第二定律的内容,物体的加速度跟成正比,跟成反比,加速度的方向跟方向相同。

2.公式:3.理解要点:①矢量性:物体加速度的方向与物体所受的方向始终相同。

②瞬时性:牛顿第二定律说明力的瞬时效应能产生加速度,物体的加速度和物体所受的合外力总是同生、同灭、同时变化,所以它适合解决物体在某一时刻或某一位置时的力和加速度的关系问题。

③独立性:分力和加速度的各个方向上的分量关系:4、用牛顿定律解题的主要步骤:(1)、明确研究对象(单个或是整体)(2)、分析物体的受力状况,画出正确的受力图(3)、根据牛顿定律列方程(一般采用正交分解法)(4)、解方程(三)、牛顿第三定律:1.物体间相互作用的规律:作用力和反作用力大小、方向,作用在同一条直线上2.作用力和反作用力同时产生、同时消失,作用在相互作用的两物体上,性质相同3.作用力和反作用力与平衡力的关系:二、典型例题1、如图所示:质量为5kg的物体与水平地面间的动摩撩因数μ=0.2,现用F=25N与水平方向成θ=37°的力拉物体,使物体加速运动,求物体加速度的大小?(g取10m/s2)2、如图所示,位于水平面上的质量为M的小木块,在大小为F,方向与水平方向成α角的拉力作用下沿地面做加速运动.若木块与地面之间的动摩擦因数为μ,则木块的加速度为多少?3、如图所示,一质量为m=2kg 的物体静止在斜面上,斜面足够长。

高考物理一轮复习课件专题三:牛顿运动定律的综合应用

高考物理一轮复习课件专题三:牛顿运动定律的综合应用
• 应在什么方向物体才会产生题目给定的 运动状态.
• 方法二:假定某力沿某一方向,用运动 规律进行验算,若算得正值,说明此力与假
• 2.“极限法”分析动力学问题

在物体的运动状态变化过程中,往往
达到某个特定状态时,有关的物理

量将发生突变,此状态叫临界状态.
相应的待求物理量的值叫临界
• 2.
• 解析:在施加外力F前,对AB整体受力 分析可得:2mg=kx1,A、B两物体分离时 ,B物体受力平衡,两者加速度恰好为零, 选项A、B错误;对物体A:mg=kx2,由于 x1-x2=h,所以弹簧的劲度系数为k=mg/h ,选项C正确;在 B与A分离之前,由于弹
• 图3-3-7 •2-1 如图3-3-7所示,光滑水平面上放置 质量分别为m、2m的A、B两个物 •• 体解,析A:、当B间A、的B最之大间静恰摩好擦不力发为生μ相m对g,滑现动用 水时平力拉F最力大F拉,B此,时使,AB对以于同A一物体所受的合外
【例3】如图3-3-8所示,一辆卡车后面用轻绳拖着
• 擦因数相同.当用水平力F作用于图3B-上3-3且两 物块共同向右加速运动时,弹簧的伸
【例1】 如图3-3-4所示,质量为m的球与弹簧Ⅰ和 水平细线Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P、 Q.球静止时,Ⅰ中拉力大小为F1,Ⅱ中拉力大小为 F2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间时,球的加速 度a应是( )
压力
橡皮 绳
较大
一般不 能突变
只有拉 力没有
压力
• 当物不体受处力处突然变化时,物体的加速既度可有
轻弹 计 相等
一般不 拉力也
1.
图3-3-1 如图3-3-1所示,A、B两木块间连一轻质弹簧,A、B质量相等,一起静 止地放在一块光滑木板上,若将此木板突然抽去,在此瞬间,A、B两木块 的加速度分别是( )

高考物理 专题三 实验:验证牛顿运动定律【高考复习课件】

高考物理 专题三 实验:验证牛顿运动定律【高考复习课件】
图 3-4-11
实验步骤如下: ①用游标卡尺测量滑块的挡光长度 d,用天平测量滑块的质 量 m; ②用直尺测量 A、B 之间的距离 s,A 点到水平桌面的垂直 距离 h1,B 点到水平桌面的垂直距离 h2; ③将滑块从 A 点静止释放;由光电计时器读出滑块的挡光 时间 t;
④重复步骤 ③ 数次,并求挡光时间的平均值 t ;
求 M≫m,只有这样,才能使牵引小车的牵引力近似等于砂及砂 桶的重力.
(2)在平衡摩擦力时,垫起的物体的位置要适当,长木板形 成的倾角既不能太大也不能太小,同时每次改变 M 时,不再重 复平衡摩擦力.
(3)在验证 a 与 M 的关系时,作图时应将横轴用 1/M 表示, 这样才能使图象更直观.
1.(双选)(东莞五校 2011 届高三联考)某同学设计了一个探 究小车加速度 a 与小车所受拉力 F 及质量 m 关系的实验,图 3-4-3 为实验装置简图.他想用钩码的重力表示小车受到的合 外力,为了减小这种做法带来的实验误差,你认为下列哪两项
验证牛顿第二的实验一般都会利用打点计时器和 小车来进行,考察的重点是利用纸带运算加速度、平衡摩擦力 及误差分析.
1.(2011 年广州一模)用图 3-4-9 所示的实验装置来验证 牛顿第二定律
图 3-4-9 (1)为清除摩擦力的影响,实验前平衡摩擦力的具体操作为: 取下______,把木板不带滑轮的一端适当垫高并反复调节,直 到轻推小车后,小车能沿木板做______运动.
(2)该同学做实验时实际上是平衡摩擦力过度,故没有拉力 F 之前已经有加速度,故 C 正确.
(3)采用遂差得计算加速度的表达式 a=[s3+s14.0-×1s10+4 s2]f2 带入数据解得 a=0.60 m/s2.
热点1 验证牛顿第二定律 【例 1】(广东五校 2011 届高三联考)某同学设计了一个探 究加速度 a 与物体所受合力 F 及质量 m 关系的实验,图 3-4- 6 为实验装置简图.(交流电的频率为 50 Hz,打点时间间隔为 0.02 秒)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三牛顿运动定律一、知识结构:(一)牛顿第一定律:1. 定律内容:一切物体总保持静止或匀速直线运动,直到有外力迫使它改变这种状态为止。

2. 意义:(1)牛顿第一定律反映了物体不受外力时的运动状态。

(2)牛顿第一定律说明一切物体都有惯性。

(3)牛顿第一定律说明力是改变物体运动状态的原因,即力是产生加速度的原因。

3. 惯性:物体保持原来的静止或匀速直线运动状态的性质叫做惯性。

一切物体都有惯性,惯性是物体的固有性质。

质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小。

惯性与物体是否受力及受力大小无关,与物体是否运动及速度大小无关。

惯性的表现形式:(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)(2)物体受到外力时,惯性表现为运动状态改变的难易。

惯性大,物体运动状态难以改变;惯性小,物体运动状态容易改变。

当物体不受外力或所受外力的合力为零时,惯性表现为维持原来的静止或匀速直线运动状态不变。

当物体受到外力作用而做变速运动时,物体同样表现具有惯性。

这种表现可以从两方面说明:第一,物体表现出具有反抗外力的作用而维持其原来运动状态不变的趋向。

具体地说,外力要迫使物体改变原来的运动状态,而物体的惯性要反抗外力的作用而力图维持物体原来的运动状态,这一对矛盾斗争的结果表现为物体运动状态改变的快慢——产生大小不同的加速度,在同样大小的力作用下,惯性大的物体运动状态改变较慢(加速度小),惯性小的物体运动状态改变较快(加速度较大)。

第二,做变速运动的物体虽然每时每刻速度都在变化,但是每时每刻物体都表现出要维持该时刻速度不变的性质,只是由于外力的存在不断地打破它本身惯性的这种“企求”,致使速度继续变化。

如果某一时刻外力突然撤销,物体就立刻“维持住”该时刻的瞬时速度不变而做匀速直线运动,这充分反映了做变速运动的物体仍然具有保持它每时每刻的速度不变的性质——惯性。

有的同学总认为“惯性与物体的运动速度有关,速度大,惯性就大;速度小,惯性就小”。

理由是物体运动速度大,不容易停下来;速度小,容易停下来。

产生这种错误认识的原因是把“惯性大小表示运动状态改变的难易程度”理解成“惯性大小表示把物体从运动变为静止的难易程度”。

事实上,在受到了相同阻力的情况下,速度(大小)不同、质量相同的物体,在相同的时间内速度的减小量是相同的。

这就说明质量相同的物体,它们改变运动状态的难易程度是相同的,所以它们的惯性是相同的,与它们的速度无关。

4. 理想实验方法也叫假想实验或思想实验。

它是在可靠的实验事实基础上采用科学的抽象思维来展开的实验,是人们在思想中塑造的理想过程。

牛顿第一定律即是通过理想实验得出的,它不能由实际的实验来验证。

(二)牛顿第二定律1. 定律内容:物体的加速度a跟物体所受的外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

2. 公式:F合=ma。

关于牛顿第二定律的理解,注意以下几点:(1)牛顿第二定律反映的是加速度与力和质量的定量关系:①合外力和质量决定了加速度,加速度不能决定力和质量;②大小关系:加速度与合外力成正比,与质量成反比;③方向关系:加速度的方向总跟合外力的方向相同;④单位关系:应用F=ma进行计算时,各量必须使用国际单位制中的单位。

特别提示:力和加速度有瞬时对应关系,和速度没有瞬时对应关系,有力必定同时产生加速度,但不能同时产生速度。

力的方向与其产生的加速度方向一定相同,但力的方向和速度的方向没有确定关系。

对一定质量的物体,力的大小决定加速度的大小,但力的大小和速度的大小没有确定关系。

(2)牛顿第二定律是力的瞬时规律,它说明力的瞬时作用效果是使物体产生加速度。

加速度跟力同时产生、同时变化、同时消失。

(3)根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在正交的方向上分别应用牛顿第二定律的分量形式:F x=ma x,F y=ma y,列方程。

3. 牛顿第二定律的适用范围是:低速(相对于光速)、宏观(相对微观粒子)。

用F=ma列方程时还必须注意其“相对性”和“同一性”。

所谓“相对性”是指:在中学阶段利用F=ma求解问题时,式中的a相对的参考系一定是惯性系,一般以大地为参考系。

若取的参考系本身有加速度,那么所得的结论也将是错误的。

“同一性”是指式中的F、m、a 三量必须对应同一个物体。

譬如图中,在求物体A的加速度时,有些同学总认为B既然在A上,应该有F-μ1(m A+m B)g-μ2m B g=(m A+m B)a A。

分析此方程,方程的左边是物体A受的合外力,但方程的右边却是A和B的总质量,显然合力F与m不对应,故此方程是错误的。

(三)牛顿第三定律1. 定律内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。

2. 关于一对作用力、反作用力的关系,除牛顿第三定律反映的“等大、反向、共线”的关系外,还应注意以下几点:(1)同性:一对作用力、反作用力必定是同性质的力;(2)同时:一对作用力、反作用力必定同时存在同时消失;(3)异物:一对作用力、反作用力分别作用在两个物体上,它们的作用效果也分别体现在不同物体上,不可能相互抵消,这是一对作用力、反作用力和一对平衡力最根本的区别。

(四)牛顿运动定律的适用范围对于宏观物体低速的运动(运动速度远小于光速的运动),牛顿运动定律是成立的,但对于物体的高速运动(运动速度接近光速)和微观粒子的运动,牛顿运动定律就不适用了,要用相对论观点、量子力学理论处理。

(五)超重和失重在平衡状态时,物体对水平支持物的压力(或对悬绳的拉力)大小等于物体的重力。

当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力了。

当物体的加速度向上时,物体对支持物的压力大于物体的重力,这种现象叫做超重现象。

当物体的加速度向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象。

特别的,当物体向下的加速度为g时,物体对支持物的压力变为零,这种状态叫完全失重状态。

对超重和失重的理解应当注意以下几点:(1)物体处于超重或失重状态时,物体的重力始终存在,大小也没有变化。

(2)发生超重或失重现象与物体的速度无关,只决定于加速度的方向。

(3)在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等。

(六)连接体问题在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点)。

分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量);如果需要知道物体之间的相互作用力,就需要把物体从系统中隔离出来,将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程。

隔离法和整体法是互相依存、互相补充的。

两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。

【典型例题】[例1] 图1所示,质量为m的人站在自动扶梯上,扶梯正以加速度a向上减速运动,a与水平方向的夹角为θ。

求人受的支持力和摩擦力。

解析:利用牛顿定律解题时,基本思路是相同的,即先确定研究对象,再对其进行受力分析,最后列方程求解。

方法一:以人为研究对象,他站在减速上升的扶梯上,受到竖直向下的重力mg和竖直向上的支持力F N,还受到水平方向的静摩擦力F f由于物体斜向下的加速度有一个水平向左的分量,故可判断静摩擦力的方向水平向左。

人受力如图2示,建立如图所示的坐标系,并将加速度分解为水平加速度a x竖直加速度a y,如图3所示,则a x=acosθ,a y=asinθ由牛顿第二定律得F f=ma x,mg-F N=ma y求得F f=macosθ,F N=m(g-asinθ)。

图2 图3方法二:以人为研究对象,受力分析如图4所示。

因摩擦力F f为待求,且必沿水平方向,设为水平向右。

建立图示坐标,并规定正方向。

图4根据牛顿第二定律得x方向mgsinθ-F N sinθ-F f cosθ=ma ①y方向mgcosθ+F f sinθ-F N cosθ=0 ②由①②两式可解得F N=m(g-asinθ),F f=-macosθ。

F f为负值,说明摩擦力的实际方向与假设方向相反,为水平向左。

思考:(1)扶梯以加速度a加速上升时如何?(2)请用失重和超重知识定性分析人对扶梯的压力是大于人的重力还是小于人的重力。

说明:(1)利用正交分解法解决动力学问题建立坐标系时,常使一个坐标轴沿着加速度方向,使另一个坐标轴与加速度方向垂直,从而使物体的合外力沿其中一个轴的方向,另一轴上的合力为零。

但有时这种方法并不简便,例如本题。

所以要根据具体问题进行具体分析,以解题方便为原则,建立合适的坐标系。

(2)判断静摩擦力的方向、计算静摩擦力的大小是一难点。

在物体处于平衡状态时,可根据平衡条件判断静摩擦力的方向,计算静摩擦力的大小;若物体有加速度,则应根据牛顿第二定律判断静摩擦力的方向,计算静摩擦力的大小。

[例2] 如图5所示,ad、bd、cd是竖直面内三根固定的光滑细杆,每根杆上套着一个小滑环(图中未画出),三个滑环分别从a、b、c处释放(初速为0),用t1、t2、t3依次表示各滑环到达d所用的时间,则()A. t1< t2< t3B. t1>t2>t3C. t3>t1>t2D. t1=t2=t3解析:小滑环下滑过程中受重力和杆的弹力作用,下滑的加速度可认为是由重力沿斜面方向的分力产生的,设轨迹与竖直方向夹角为θ,由牛顿第二定律知mgcosθ=ma①设圆心为O,半径为R,由几何关系得,滑环由开始运动至d点的位移为x=2Rcosθ②由运动学公式得x=③由①②③联立解得t=2小圆环下滑的时间与细杆的倾斜情况无关,故t1=t2=t3答案:D[例3] 一位同学的家在一座25层的高楼内,他每天乘电梯上楼,经过多次仔细观察和反复测量,他发现电梯启动后的运动速度符合如图6所示的规律,他就根据这一特点在电梯内用台秤、重物和秒表测量这座楼房的高度。

他将台秤放在电梯内,将重物放在台秤的托盘上,电梯从第一层开始启动,经过不间断地运行,最后停在最高层。

在整个过程中,他记录了台秤在不同时间段内的示数,记录的数据如下表所示。

但由于0~3。

0 s段的时间太短,他没有来得及将台秤的示数记录下来。

假设在每个时间段内台秤的示数都是稳定的,重力加速度g取10 m/s2。

(1)电梯在0~3.0 s时间段内台秤的示数应该是多少?(2)根据测量的数据,计算该座楼房每一层的平均高度。

剖析:(1)由图象知,电梯先匀加速运动,再匀速运动,最后匀减速运动到停止,由表中数据可知,物体的质量为5.0 kg,电梯匀加速运动的时间为3.0 s,匀速运动的时间为10.0 s,匀减速运动的时间为6.0 s,此时台秤对物体的支持力为46 N,由牛顿第二定律可求得电梯匀减速运动的加速度为a2=由于电梯匀加速运动的时间是它匀减速运动时间的一半,而速度变化量相同,故电梯匀加速运动的加速度是它匀减速运动加速度的2倍,即a1=2a2=1.6 m/s2由牛顿第二定律得F l-mg=ma1F l=m(g+a l)=5.0×(10+1.6)N=58 N即电梯在0—3.0 s时间段内台秤的示数为5.8 kg。

相关文档
最新文档