第六章 重水反应堆
核电行业核反应堆设计与安全方案
核电行业核反应堆设计与安全方案第一章:核反应堆设计概述 (3)1.1 设计原则与目标 (3)1.2 设计流程与方法 (4)第二章:核反应堆类型及选型 (4)2.1 常见核反应堆类型 (4)2.2 反应堆选型依据 (5)2.3 反应堆选型方法 (5)第三章:核反应堆物理设计 (5)3.1 反应堆物理基础 (5)3.1.1 核反应堆概述 (6)3.1.2 核反应堆物理基本原理 (6)3.1.3 反应堆物理参数 (6)3.2 反应堆物理计算 (6)3.2.1 反应堆物理计算方法 (6)3.2.2 反应堆物理计算内容 (6)3.3 反应堆物理试验 (6)3.3.1 反应堆物理试验目的 (6)3.3.2 反应堆物理试验方法 (7)3.3.3 反应堆物理试验内容 (7)第四章:核反应堆热工水力设计 (7)4.1 热工水力基本原理 (7)4.2 热工水力计算方法 (7)4.3 热工水力实验研究 (8)第五章:核反应堆结构设计 (8)5.1 反应堆结构设计原则 (8)5.2 反应堆结构材料选择 (9)5.3 反应堆结构强度计算 (9)第六章:核反应堆安全分析 (9)6.1 安全分析基本方法 (9)6.1.1 定性分析方法 (10)6.1.2 定量分析方法 (10)6.1.3 混合分析方法 (10)6.2 安全分析指标体系 (10)6.2.1 安全指标 (10)6.2.2 风险指标 (10)6.2.3 功能指标 (10)6.3 安全分析实例 (10)6.3.1 故障树分析 (10)6.3.2 事件树分析 (11)6.3.3 概率安全分析 (11)6.3.4 风险评估 (11)第七章:核反应堆预防与处理 (11)7.1 预防措施 (11)7.1.1 设计阶段预防措施 (11)7.1.2 运行阶段预防措施 (11)7.1.3 管理阶段预防措施 (11)7.2 处理流程 (12)7.2.1 报告 (12)7.2.2 分类与评估 (12)7.2.3 处理 (12)7.2.4 调查与分析 (12)7.3 应急响应 (12)7.3.1 应急预案 (12)7.3.2 应急响应等级 (12)7.3.3 应急响应措施 (12)第八章:核反应堆运行与维护 (13)8.1 反应堆运行管理 (13)8.1.1 运行管理目标 (13)8.1.2 运行管理组织 (13)8.1.3 运行管理制度 (13)8.1.4 运行监测与控制 (13)8.2 反应堆维护保养 (13)8.2.1 维护保养目标 (13)8.2.2 维护保养组织 (13)8.2.3 维护保养制度 (13)8.2.4 维护保养内容 (13)8.3 反应堆故障处理 (14)8.3.1 故障分类 (14)8.3.2 故障处理原则 (14)8.3.3 故障处理程序 (14)8.3.4 故障处理措施 (14)第九章:核反应堆辐射防护 (14)9.1 辐射防护基本原理 (14)9.1.1 辐射的分类及危害 (14)9.1.2 辐射防护的基本原则 (14)9.2 辐射防护措施 (14)9.2.1 辐射防护设计 (14)9.2.2 辐射防护操作 (15)9.2.3 辐射防护监测 (15)9.3 辐射防护监测 (15)9.3.1 辐射监测方法 (15)9.3.2 辐射监测数据分析 (15)9.3.3 辐射监测管理 (15)第十章:核反应堆环境保护 (16)10.1.1 设计原则 (16)10.1.2 环境保护措施 (16)10.2 环境影响评价 (16)10.2.1 评价内容 (16)10.2.2 评价方法 (17)10.3 环境监测与治理 (17)10.3.1 监测体系 (17)10.3.2 治理措施 (17)第一章:核反应堆设计概述1.1 设计原则与目标核反应堆设计是一项涉及众多学科、技术复杂、安全性要求极高的工程。
07 第六章 重水反应堆CANDU(PHWR)
Xi’an Jiaotong University
冷却剂和慢化剂的绝热
作为冷却剂的重水在管内 流动带走热量。作为慢化 剂的重水在反应堆排管容 器中,为了防止热量传到 慢化剂重水中,在压力管 外设置一同心容器管,两 管之间充以二氧化碳作隔 热层,以保持慢化剂温度 不超过60℃。压力管和容 器管贯穿反应堆排管容器, 两端与法兰固定,与容器 连成一体。
46
学习目的
Xi’an Jiaotong University
➢ 掌握CANDU堆得特点(与PWR比较)和优势,表6-1 ➢ 掌握CANDU核燃料组件结构特点 ➢ 了解CANDU堆的发展演变和ACR的技术特点
47
2010年代 - SCW直接循环模块堆?
皮克灵A,1971-1973
CANDU-9
CANDU原型堆,1962 ZEEP,1945
布鲁斯B,1984-1987
达灵顿,1990-1993
重水堆概述
CANDU的概念: CANada Deuterium Uranium
重水堆的特点: 天然铀作燃料 重水做慢化剂,造价较高
Xi’an Jiaotong University
19
换料方式
Xi’an Jiaotong University
由于重水堆的卧式布置压力管,每根压力管在反应堆容器的两端都设有密 封接头,可以装拆。因此,可以采用遥控装卸料机进行不停堆换料。换料 时,由装卸料机连接压力管的两端密封接头,新燃料组件从压力管一端顶 入,烧过的乏燃料组件侧从同一压力管的另一端被推出。这种换料方式称 为“顶推式双向换料”。
挑战
大量的重水以及泄漏导致高造价,防止重水泄漏的高密封性能设 备也提高了造价 。核燃料燃耗比较浅,1/3压水堆,换料太频繁。
重水堆
压力管式,压力壳式
5
CANDU的基本结构特点
6
7
8
燃料组件结构
重水堆的核燃料是天然铀, 制成圆柱状装在外径为 13(20)毫米长约500毫米的 锆合金包壳管内,构成棒 状燃料元件,37根燃料棒 组成一束,棒之间用锆合 金块隔开,端头由锆合金 支承板连接,构成长为半 米,外径为150毫米左右的 燃料棒束。 反应堆堆芯由384根带燃料 棒束的压力管排列而成。 每根压力管内装有12束燃 料棒束。
8 足够充足的应急流量 9 尽可能的减少重水泄漏
14
蒸汽发生器
主要结构材料位 炭钢 一次测: 封头,管板和管束一次测
二次侧:壳体,汽水分离器,管束套筒,管板和管 束二次侧,预热段隔板,管子支承等,
15
主泵
单级、单吸入口、双出口、立式离心泵
支管和集流总管 稳压器
16
CANDU慢化剂系统
慢化作用,失冷事故下的热阱作用 慢化剂系统原理流程图: 串连/并联
控制棒设置在反应堆上部,穿过反应堆排管容器,插入在 慢化剂中。快速停堆时将控制棒快速插入堆内。
反应性的调节还可以通过改变反应堆容器中重水慢化剂的 液位来实现。 紧急停堆时可以将控制棒快速插入堆内,还可打开氦气阀, 将储存在毒物箱内的硝酸钆毒物注入反应堆容器的重水 慢化剂中,还可以打开装在容器底部的大口径排水阀, 把重水慢化剂急速排入贮水箱。
19
20
21
22
23
24
25
26
27
28
29
30
31
32
11
换料方式
由于重水堆的卧式布置压力管,每根压力管在反应堆容器的两端都设 有密封接头,可以装拆。因此,可以采用遥控装卸料机进行不停堆换 料。换料时,由装卸料机连接压力管的两端密封接头,新燃料组件从 压力管一端顶入,烧过的乏燃料组件侧从同一压力管的另一端被推出。 这种换料方式称为“顶推式双向换料”。
全球现有的核反应堆技术概述:轻水堆,压水堆,重水堆,熔盐堆等
全球现有的核反应堆技术概述:轻水堆,压水堆,重水堆,熔盐堆等核反应堆,是一种可以控制和维持自我连锁反应的装置。
核反应堆主要用途是发电(核电厂)和作为船舶的动力装置。
位于瑞士的一座小型研究反应堆其中,一些反应堆还被用来生产医疗和工业用的同位素或者生产武器级钚。
截止2019年初,全球共有680座核反应堆在运行,其中包括226座研究堆。
现有的核反应堆主要包括轻水堆,沸水堆,重水堆,高温气冷堆和熔盐堆。
下面将逐一介绍:1.轻水堆轻水堆中,冷却剂起着减速剂的作用这种反应堆使用压力容器来容纳核燃料、控制棒、慢化剂和冷却剂。
离开压力容器的热放射性水通过蒸汽发生器循环,蒸汽发生器又将次级(非放射性)水环加热成蒸汽,使涡轮机运转。
它们占据了当前反应堆的大多数(约80%)。
VVER1000反应堆结构华龙一号示范工程航拍美军核动力航母编队轻水堆最新的典型代表有俄罗斯的VVER-1000,美国的AP1000,中国的华龙一号和欧洲的EPR。
美国海军军舰上的反应堆也都属于这种类型。
2.沸水堆福岛核事故的反应堆类型就是沸水堆沸水堆就像没有蒸汽发生器的压水堆。
冷却水的较低压力使其在压力容器内沸腾,产生运行涡轮机的蒸汽。
与压水堆不同,没有主回路和副回路。
这些反应堆的热效率更高,结构也更简单,发生两次严重核事故(切尔诺贝利和福岛核事故)的堆型都属于沸水堆。
3.重水堆(CANDU)秦山核电站的两座重水堆(CANDU堆)重水堆非常类似于压水堆,但使用重水。
虽然重水比普通水贵得多,但它具有更大的中子经济性(产生更多的热中子),允许反应堆在没有燃料浓缩设施的情况下运行。
燃料不是像压水堆那样使用一个大型压力容器,而是包含在数百个压力管中。
这些反应堆以天然铀为燃料,重水反应堆可以在满功率时加燃料,这使得它们在铀的使用方面非常高效(这使得堆芯中的流量控制更加精确)。
加拿大、阿根廷、中国、印度、巴基斯坦、罗马尼亚和韩国都建造了重水堆。
4.高能通道反应堆(RBMK)切尔诺贝利核电站(RBMK,沸水堆)RBMKs是一种苏联设计,在某些方面与CANDU相似,因为它们在动力运行期间可以重新加料,并采用压力管设计。
重水堆核电站工作原理
重水堆核电站工作原理一、引言重水堆核电站是目前应用较为广泛的核电站之一。
具有较高安全性和良好的核废料管理,是清洁能源的重要组成部分。
本文将深入探讨重水堆核电站的工作原理。
二、核反应堆核反应堆是重水堆核电站的核心设施,用于产生核裂变反应。
核反应堆通常由燃料元件、控制棒和冷却剂组成。
2.1 燃料元件燃料元件是核反应堆中的燃料载体,通常采用浓缩铀或钚等放射性物质。
在核反应过程中,这些物质会发生裂变,释放出大量的能量。
2.2 控制棒控制棒是用于控制核反应的设备。
通过控制棒的升降来调节核反应堆的功率。
当控制棒完全插入燃料堆中时,反应堆将停止产生裂变反应。
2.3 冷却剂冷却剂在核反应过程中起到冷却燃料和带走热量的作用。
重水堆核电站使用的冷却剂为重水,即重水和控制棒的存在可以减缓燃料产生的中子流速和中子通量。
三、工作原理重水堆核电站的工作原理主要包括中子产生、中子减速和中子传递三个过程。
3.1 中子产生核反应堆中的燃料元件中,通过中子与核燃料原子的相互作用,产生裂变反应。
裂变反应会释放出大量的能量,形成链式反应。
3.2 中子减速通过控制棒的调节,可以改变中子的速度,减小中子的速度使其更容易与燃料原子发生相互作用。
重水作为冷却剂可以起到减速中子的作用,提高中子与核燃料原子发生相互作用的概率。
3.3 中子传递中子在燃料堆中传递,与燃料原子发生裂变反应,释放出能量。
这些能量将转化为热能,通过燃料元件和冷却剂之间的传热作用,将热能带出核反应堆,并利用热能产生蒸汽驱动涡轮发电机组,最终产生电能。
四、重水堆核电站优势相比于其他核电站类型,重水堆核电站具有以下优势:1.高安全性:重水堆核电站采用重水作为冷却剂,具有出色的冷却性能。
在事故发生时,重水可以有效地降低反应堆的热功率,减缓事故的发展,提供更多的时间进行事故应对和处理。
2.良好的核废料管理:重水堆核电站产生的废料中富含重水。
重水可以被回收利用,减少核废料的产生。
同时,重水也使得重水堆核电站的废料处理更加安全可靠。
秦山CANDU-6重水反应堆锆合金压力管的老化形式与缓解措施
秦山C A N D U 一 6重水反应堆锆 合金压 力管 的 老化 形式 与缓 解 措 施
赵卫东 ,石秀强2
1 .中核核 电运 行管 理有 限公 司 ,浙江海 盐 ,3 1 4 3 0 0 ;2 .上海 核工 程研 究设 计 院 ,上海 ,2 0 0 2 3 3
摘要 :C A N DU - 6 重水 反应堆堆 芯压力管采用 的锆合金 ( Z r - 2 . 5 N b) 材料长期处于高温 、高压 、高辐 照的
内径 约为 1 0 3 . 4 r n n l ,最小壁厚约 为 4 . 2 m n l 。其化 学成份遵 照标 准 C A N/ C S A- N2 8 5 . 6中有关 R 6 0 9 0 1
合金化学成份上的要求 , 但对个别元素 ( 如 H、O 等) 作 了特别要求: H含量小于 5 x 1 0 ~ , O含量为 l 0 ~ l I 3 × l 0 一 ;其机械 l 生 能要求为:在 3 0 0 ℃时极 限屈服强度大于等于 4 8 0 SP a , 0 . 2 % 屈服强度大于 等于 3 3 0 1 V [ P a , 延伸率大于等于 1 2 %【 J J 。
昌
垂
捍
等效满 功率时问/ 1 0 ' h
图2 压力管轴向伸长量预测
F i g . 2 P r Mi  ̄i o n o f Ax i M El o n g  ̄i o n
变形是由热蠕变、 辐照蠕变和辐照生长这 3 个相互 独立并叠加的因素引起的, 通过大量的测量、 分析 和校验工作 ,最终得出如下变形关系方程式l 2 , 3 J :
> l Me V) 的作用下, 锆原子克服周 围原子的束缚 , 脱离正常的结点位置, 移到晶体表面、 界面或点阵 间隙位置上 , 产生空位和间隙原子。 获得足够能量 的原子甚至可再促使其他原子脱位。 粒子不停地碰 撞 ,使具有各向异性的锆合金晶格参数发生变化。 这种微观变形导致锆合金压力管在宏观上的各向 异性变形。主要表现为 : 压力管轴 向伸长、 径向膨 胀, 壁厚减薄以及下垂弯曲等 。 宏观上的变形程度 取决于锆合金材料的织构、 微观组织以及运行条件 ( 如温度、承受 的载荷、快中子注量率 ) 等因素。
重水堆简介
重水堆工程安全特性
1.反应堆停堆系统: CANDU核电厂设有两套完全独 立和全功能的SDS-1和SDS-2停堆 系统,该系统能使反应堆在必要 时停闭。 2.应急堆芯冷却系统(ECCS): 应急堆芯冷却系统向热传输系统 提供轻水,以补偿发生假像的失 水事故时损失的重水冷却剂,并 循环和冷却从反应堆厂房地面上 收集的重水、轻水混合物,将其
重水堆系统的设计特征
重水堆与压水堆在反应堆和燃料方面的主要区别见下表:
重水堆的安全特性
重水堆的结构设计具有一些独特的安全特性,与压水堆一 样,这些安全特性中一部分为重水堆所固有的,另一部分则是 特殊设计的工程安全设施提供的。 重水堆固有的安全特性: 重水堆固有的安全性是由核燃料、反应性调节特性等提供的。 1.燃料 CANDU堆采用天然铀作为核燃料,235-U约占0.7%,较 压水堆低得多,这就大大降低了在堆外或者燃料贮存水池内燃 料处理时发生反应性引入事故的可能性,而且堆芯严重损坏导 致的燃料重新布置所引入的反应性也十分有限。
Thank you !!!
停堆系统
重水堆工程安全特性
送到反应堆集管以保证长期的燃料冷却,以达到向反应堆燃料 通道再注射冷却剂和从燃料排出余热或衰变热的目的。
重水堆工程安全特性
3.安全壳系统: 如果反应堆系统发生 事故,则安全壳系统 的运行可以提供包容 所释放出放射性物质 的密封外壳,以防止 从反应堆溢出的放射 性物质释放到环境中 。其包括:自动喷淋 系统、空气冷却器、 过滤空气排放系统以 及人员和设备闸门。
姓名:王小亮 班级:0902301 学号:1090230113
重水反应堆-PHWR?
概念:用重水作为慢化剂的热中子反 应堆。 可以用重水、普通水、二氧化碳和有 机物作冷却剂。由于重水的热中子吸 收截面很小,可以采用天然铀燃料。 铀燃料的利用率高于轻水堆,烧过的 燃料的235U含量仅为0.13%,乏燃料不 必进行后处理。这种堆可以作为生产 堆、动力堆和研究堆使用。堆内中子 经济性好,可生产氚和发展成为先进 的转化堆。堆内重水装载量大,反应 堆造价较高。
反应堆冷却剂材料
反应堆冷却剂材料通常是用于吸收和传递核反应过程中产生的热量的材料。
不同类型的反应堆使用不同的冷却剂材料,下面是一些常见的冷却剂材料:水:轻水反应堆(LWR)使用普通水(H2O)作为冷却剂,这是目前最常见的类型。
水具有良好的冷却性能和热传导性能。
重水:重水反应堆(HWR)使用重水(D2O)作为冷却剂,其中氢原子被氘原子代替。
重水可以在中子中起到减慢中子速度的作用,从而增加反应截面积。
氦气:气冷反应堆(GCR)使用氦气作为冷却剂,具有较好的热传导性能和较高的工作温度。
钠:钠冷快中子反应堆(SFR)使用液态钠作为冷却剂。
钠具有良好的传热性能和冷却性能,适用于高温高效率的反应堆。
液态金属合金:某些先进的反应堆设计中使用液态金属合金作为冷却剂,如锂铅(LiPb)合金和铅铋(PbBi)合金。
这些材料具有较高的工作温度和良好的传热性能。
需要注意的是,不同的冷却剂材料在各自的使用条件下具有不同的特性和安全性考虑,其选择会受到多种因素的影响,包括反应堆类型、工作温度、设计要求以及安全性要求等。
以上只是一些常见的例子,并不代表全部的冷却剂材料。
重水反应堆技术的发展与应用
重水反应堆技术的发展与应用重水反应堆技术是一种利用重水(D2O)作为冷却剂和减速剂的核能发电技术。
它在核能领域具有重要的地位,不仅可以提供清洁、高效的能源,还可以用于核武器的生产和核医学的研究。
本文将探讨重水反应堆技术的发展历程以及其在能源和其他领域的应用。
一、重水反应堆技术的发展历程重水反应堆技术最早起源于20世纪40年代,当时加拿大和英国的科学家们开始研究利用重水作为冷却剂和减速剂的核反应堆。
1944年,加拿大的麦克马斯特大学成功建成了世界上第一座重水反应堆,这标志着重水反应堆技术的诞生。
随着时间的推移,重水反应堆技术得到了不断的改进和发展。
1950年代,加拿大建成了世界上第一座商业化的重水反应堆,开始向国内外供应重水和核燃料。
1960年代,重水反应堆技术进一步发展,出现了更加高效和安全的重水反应堆设计,如加拿大的CANDU(加拿大重水反应堆)和法国的重水压力管式反应堆。
二、重水反应堆技术在能源领域的应用1. 发电:重水反应堆技术是一种可持续发展的能源解决方案。
它可以利用铀等核燃料进行核裂变,产生大量的热能,进而驱动蒸汽涡轮发电机组发电。
与传统的燃煤发电相比,重水反应堆发电具有零排放、高效率和长寿命的优势。
2. 核燃料再处理:重水反应堆技术还可以用于核燃料的再处理。
在重水反应堆中使用的核燃料可以通过再处理过程进行回收和再利用,减少核废料的产生,并提高核燃料的利用率。
3. 核武器生产:重水反应堆技术在核武器生产中起到了重要的作用。
重水反应堆可以产生大量的裂变产物,如钚-239,这是一种重要的核武器材料。
然而,由于核武器的非法性和危险性,国际社会对于重水反应堆技术的应用存在一定的限制和监管。
三、重水反应堆技术在其他领域的应用1. 核医学研究:重水反应堆技术可以用于核医学研究,如放射性同位素的生产和放射治疗。
重水反应堆可以产生各种放射性同位素,用于医学诊断和治疗,如放射性碘用于甲状腺治疗。
2. 同位素标记:重水反应堆技术还可以用于同位素标记。
核反应堆课后题
核反应堆课后题第一章思考题1.为什么压水堆在高压下运行?2.水在压水堆中起什么作用?3.压水堆和沸水堆的主要区别是什么?4.压水堆主冷却剂系统都包括哪些设备?5.与分散式压水堆相比,一体化压水堆的优点和缺点是什么?6.重水堆使用的核燃料富集度为什么可以比压水堆的低?7.在相同的反应堆功率下,为什么重水反应堆的堆芯比压水反应堆的堆芯大?8.气冷堆与压水堆相比有什么优缺点?9.白沫在石墨气冷堆中的作用是什么?10.快中子堆与热中子堆相比有哪些优缺点?11.快中子反应堆在核能利用中扮演什么角色?12.回路式制冷堆与池式饷冷堆的主要区别是什么?13.使用铀作为反应堆冷却剂时应注意什么?14.快中子堆内使用的燃料富集度为什么要比热中子反应堆的高?第二章思考问题1.简述热中子反应堆内中子的循环过程。
2.为什么热中子反应堆通常使用轻水作为慢化剂ij?3.解释扩散长度、中子年龄的物理意义。
4.反射器对反应堆的影响。
5.简述反应性负温度系数对反应堆运行安全的作用。
6.解释“冲坑”的形成过程。
7.什么是反应堆的燃耗深度和堆芯寿期?8.大型压水反应堆的反应性通常采用什么方法控制?9.简述缓发中子对反应堆的作用。
10.简要描述反应堆中子密度在小阶跃反应性变化下的响应。
第三章思考题1.可用于压水堆的裂变同位素是什么?它们是如何产生的?2.为什么在压水堆内不直接用金属铀而要用陶瓷u02作燃料?3.简要描述u02的熔点和导热系数随温度和辐照程度的变化。
4.简述u02芯块中裂变气体的产生及释放情况。
5.燃料元件包壳的功能是什么?6.对燃料包壳材料有哪些基本要求?目前常用什么材料?7.当错误的合金用作包层时,为什么要将其使用温度限制在350℃以下?8.何谓错合金的氢脆效应,引起氢脆效应的氢来源何处?9.错误的合金镀层氢脆效应的危害是什么?如何减少这种不利影响?10.什么是u02燃料芯块的肿胀现象,应采取什么防范措施?11.控制棒直径较小有什么好处?12.定位格架采用什么材料制戚,为什么?13.定位网格的功能是什么?14.对用作控制棒的材料有什么基本要求?15.控制棒通常使用哪些元件和材料?16.简单说明ag-in-cd控制材料的核特性。
重水堆
重水堆核电站重水堆按其结构型式可分为压力壳式和压力管式两种。
压力壳式的冷却剂只用重水,它的内部结构材料比压力管式少,但中子经济性好,生成新燃料钚-239的净产量比较高。
这种堆一般用天然铀作燃料,结构类似压水堆,但因栅格节距大,压力壳比同样功率的压水堆要大得多,因此单堆功率最大只能做到30 万千瓦。
因为管式重水堆的冷却剂不受限制,可用重水、轻水、气体或有机化合物。
它的尺寸也不受限制,虽然压力管带来了伴生吸收中子损失,但由于堆芯大,可使中子的泄漏损失减小。
此外,这种堆便于实行不停堆装卸和连续换料,可省去补偿燃耗的控制棒。
压力管式重水堆主要包括重水慢化、重水冷却和重水慢化、沸腾轻水冷却两种反应堆。
这两种堆的结构大致相同。
(1) 重水慢化,重水冷却堆核电站这种反应堆的反应堆容器不承受压力。
重水慢化剂充满反应堆容器,有许多容器管贯穿反应堆容器,并与其成为一体。
在容器管中,放有锆合金制的压力管。
用天然二氧化铀制成的芯块,被装到燃料棒的锆合金包壳管中,然后再组成短棒束型燃料元件。
棒束元件就放在压力管中,它借助支承垫可在水平的压力管中来回滑动。
在反应堆的两端,各设置有一座遥控定位的装卸料机,可在反应堆运行期间连续地装卸燃料元件。
这种核电站的发电原理是:既作慢化剂又作冷却剂的重水,在压力管中流动,冷却燃料。
像压水堆那样,为了不使重水沸腾,必须保持在高压(约90大气压)状态下。
这样,流过压力管的高温(约300℃)高压的重水,把裂变产生的热量带出堆芯,在蒸汽发生器内传给二回路的轻水,以产生蒸汽,带动汽轮发电机组发电。
(2)重水慢化、沸腾轻水冷却堆核电站这种堆是英国在坝杜堆(重水慢化、重水冷却堆)的基础上发展起来的。
加拿大所设计的重水慢化重水冷却反应堆的容器和压力管都是水平布置的。
而重水慢化沸腾轻水冷却反应堆都是垂直布置的。
它的燃料管道内流动的轻水冷却剂,在堆芯内上升的过程中,引起沸腾,所产生的蒸汽直接送进汽轮机,并带动发电机。
《农业生态学》第六章农业的资源与效益
• 岛屿意味着生境片断化(fragmentation)和 隔离(isolation)。
• MacArthur和Wilson于1967年在普林斯顿大 学提出著名的均衡理论(equilibrium theory)
• 若 h < MSY ,则生物种群有两个平衡点
( 2 )限制开发能力
• dN/dt = rN(1-N/K)-EN • 其中E为开发能力;EN为收获量 • 当 dN/dt = rN(1-N/K)–EN=0 ,处于平衡状态,平
衡点 N 3 *=K(1-E/r) • 调节开发能力 E ,可使收获量 EN 改变。 • 当 N 3 * 与 N* 重合时,开发能力达到最大值 (E
• 最适持续收获量OSY(Optimum sustainable yield):由于生物资源的更新常受环境影响而 波动,稳妥的资源收获量应略低于最大持续 收获量,这个量称为OSY.
( 1 )直接限制收获量
• dN/dt = rN(1-N/K)-h
h 为限定的收获量
• 当 dN/dt = rN(1-N/K)–h=0 ,处于平衡状态,
比如,2005年10月,加拿大前任总理马丁,即 曾以停止输出石油为威胁,逼迫美国取消对加 拿大木材征收惩罚性关税。
• 2005年4月,中海油集团斥资1.22亿美元, 收购了加拿大MEG能源公司17%的股权。 预计到2008年,其阿尔伯塔北部油田的 油砂中,将能提取出2.5万桶原油。
• 政府开发各种清洁能源。“无论能源或 电力的发展,都要本着对环境负责的态 度。加中将加强清洁能源科技方面的合 作。”
重水堆工作原理
重水堆工作原理嗨,朋友!今天咱们来唠唠重水堆这个超有趣的东西的工作原理呀。
你知道吗?重水堆呢,它可是核能利用的一种超酷的方式。
重水,这名字听起来就有点神秘兮兮的,它和咱们平常说的水可有点不一样哦。
普通的水是由两个氢原子和一个氧原子组成的,氢原子呢就是那种最简单的原子啦。
但是重水里面的氢原子有点特殊,它是重氢,也叫氘。
这就好比是氢原子家族里的大力士,比普通氢原子要重一些呢。
那重水堆是怎么工作的呢?想象一下,重水堆就像是一个超级大的能量工厂。
在这个工厂里,有燃料棒,这燃料棒就像是能量的小仓库。
这些燃料棒里面装着一种叫铀 - 235的东西。
铀 - 235可是个很厉害的角色,它就像一颗一颗小小的能量炸弹。
当铀 - 235在重水堆里的时候,就开始搞事情啦。
重水在这个过程中就像是一个超级好的中间人,或者说是一个特别的助手。
铀 - 235的原子会发生裂变,就像一个大苹果突然分成了好几个小苹果一样。
这个裂变的过程可不得了,它会释放出大量的能量。
这能量就像突然爆发出来的小宇宙一样。
那重水在这中间起到啥作用呢?重水就像是一个温柔的缓冲带。
它能让铀 - 235裂变产生的中子慢下来。
你想啊,这些中子就像一群调皮的小豆子,跑得太快了可不好控制。
重水就把它们的速度降下来,让它们可以更好地去撞击其他的铀 - 235原子。
这样就可以让更多的铀 - 235原子发生裂变,释放出更多的能量。
在重水堆里,还有冷却剂呢。
这冷却剂就像是一个冷静的消防员。
因为铀 - 235裂变产生能量的时候会产生大量的热,热得不得了,如果不把这些热带走,那重水堆可就要出大问题啦。
冷却剂就会在重水堆里循环,把热量带走。
就像在炎热的夏天,有个小风扇一直给你吹凉风,让你不会热得中暑一样。
重水堆产生的能量可不是就这么浪费掉的哦。
这些能量可以被转化成电能。
就像是把一股强大的力量,通过魔法一样的转化,变成了我们家里可以用的电。
这样我们就可以看电视、吹空调、给手机充电啦。
重水反应堆
light water reactor (LWR) 以水和汽水混合物作为冷却剂和慢化剂的反应堆。
轻水堆就堆内载出核裂变热能的方式可分为压水堆和沸水堆两种,是目前国际上多数核电站所采用的两种堆型。
据统计,1992年运行的413座核电站中,轻水堆核电站约占64.15%,装机容量约占80%,加上正在建设和已经订货的轻水堆核电站将占80%,装机容量将占90%。
轻水反应堆是和平利用核能的一种方式.用轻水作为慢化剂和冷却剂的核反应堆被称为轻水反应堆,包括沸腾水堆和加压水堆轻水也就是一般的水,广泛地被用于反应堆的慢化剂和冷却剂。
与重水相比,轻水有廉价的长处,此外其减速效率也很高沸腾水堆的特点是将水蒸汽不经过热交换器直接送到气轮机,从而防止了热效率的低下,加压水堆则用高压抑制沸腾,对轻水一般加100至160个大气压,从而热交换器把一次冷却系(取出堆芯产生的热)和二次冷却系(发生送往蜗轮机的蒸汽)完全隔离开来。
用重水即氧化氘(D2O)作为慢化剂的核反应堆被称为重水反应堆,或简称为重水堆现在的反应堆几乎都利用热中子,因此慢化剂是反应堆不可缺少的组成部分慢化剂与中子碰撞使中子亦即减少中子的数量的话,便失去了意义。
所以,重水是非常优异的慢化剂,它与石墨并列是最常用的慢化剂。
重水与普通水看起来十分相像,是无臭无味的液体,它们的化学性质也一样,不过某些物理性质却不相同。
普通水的密度为1克/厘米3,而重水的密度为1.056克/厘米3;普通水的沸点为100℃,重水的沸点为101.42℃;普通水的冰点为0℃,重水的冰点为3.8℃。
此外,普通水能够滋养生命,培育万物,而重水则不能使种子发芽。
人和动物若是喝了重水,还会引起死亡。
不过,重水的特殊价值体现在原子能技术应用中。
制造威力巨大的核武器,就需要重水来作为原子核裂变反应中的减速剂,作中子的减速剂,也可作为制重氢的材料,普通水中含量约为0.02%(质量分数)。
重水和普通水一样,也是由氢和氧化合而成的液体化合物,不过,重水分子和普通水分子的氢原子有所不同。
反应堆工程学复习总结
反应堆工程学复习总结第一章1、反应堆的分类:按用途分:1)实验堆,2)生产堆,3)动力堆按慢化剂和冷却剂分:轻水堆、重水堆、石墨气冷堆、钠冷快堆等。
2、动力反应堆的类型:水冷堆(包括轻水堆和重水堆)、气冷堆和快中子增殖堆。
3、压水堆:作为冷却剂的水始终保持在整体过冷状态。
压水堆由堆芯、堆内构件、压力容器及控制棒驱动机构等部件组成。
堆芯由核燃料组件、控制棒组件和启动中子源组件等组成。
4、沸水堆:作为冷却剂的水在进入堆芯时是过冷的,流出堆芯的是水与饱和蒸汽的两相混合物。
沸水堆壳体内装有堆芯、堆内支承结构、汽水分离器、蒸汽干燥器和喷射泵等。
5、沸水堆电厂与压水堆电厂的比较:(1)沸水堆压力容器内直接产生蒸汽,承受的压力只有压水堆的1/2,因此压力容器的厚度可以减小。
但沸水堆功率密度较低,且沸水堆压力容器内还放置汽水分离器、干燥器和喷射泵等设备,致使压力容器尺寸增大,这两个影响基本互相抵消。
(2)沸水堆采用直接循环,系统比较简单,回路设备少,且设备所承受的压力较低,易于加工制造。
尤其是省去了蒸汽发生器,减少了核电厂事故,使用效率提高,且沸水堆采用喷射泵循环系统,使压力容器开孔的直径减少,电厂失水事故的可能性及严重性降低。
(3)沸水堆堆芯内产生大量蒸汽,调节反应堆功率比较方便。
(4)沸水堆的比功率较小,因此虽然系统简单,但总投资较压水堆略大。
(5)由于沸水堆采用直接循环,给设计、运行、维修都带来不便。
总之,沸水堆和压水堆各有其优缺点,在技术上和经济上不相上下。
6、重水堆:使用天然铀作燃料,利用率高,但卸料燃耗浅,卸料量大,消耗的结构材料及后处理量都增加。
重水中子吸收截面小,且慢化性能也比较好,但重水价格昂贵,所以重水堆投资高。
7、气冷堆:目前发展的主要气冷堆是高温气冷堆(HGTR)。
高温气冷堆的冷却剂出口温度高,热效率较高,堆内没有金属结构材料,中子寄生俘获少,转换比高,每年所需补充的核燃料少。
一般高温气冷堆都将堆芯、氦气鼓风机、蒸汽发生器等一回路设备布置在预应力混凝土反应堆容器内,减少了发生冷却剂丧失事故的可能性。
重水堆压水堆
沸水堆(BWR)
加压重水堆(PHWR)
5
秦山三期全厂概貌
6
二 重水堆和压水堆比较
冷却剂/慢化剂 堆芯布置 慢化比 燃料 燃耗 换料 燃料棒长度 棒束数
重水堆
压水堆
重水/独立 卧式
轻水/一体 立式
2100 天然铀
70 浓缩铀
低(~200天) 不停堆
高 停堆
0.5m
4.8m
4560(380*12) 193
重水堆
179
60
39
42
40
25
26
20
3.7
4.45
3.7
初始U235富集度
0
4
0.71
秦山三核两座重水堆发电100亿度仅需消耗179吨天然铀。与发同等电量的压水堆相比,可节约45 -75吨天然铀,天然铀资源利用率高25%-42%。
固有的严重事故预防和缓解特性
两套实体完全隔离的停堆系统,每一套都 具有完全的快速停堆功能。
大容量的慢化剂在严重事故工况下作为非 能动热阱带走衰变热。
反应堆腔室的大量轻水为严重事故提供了 第二道备用非能动热阱。
堆顶喷淋水箱提供非能动冷却。
大规模生产钴60同位素
目前国内钴60年需求为800万居里,可能很快突 破1000万居里。 重水堆具有大批量生产钴60的能力,全世界90% 的钴60都是重水堆上生产的。 国内自主完成了相关技术开发,年产600万居里。 从2009年到现在,秦山三期两台重水堆已辐照 出3000万居里钴60,超过1600万居里已投放到 国内市场。
AP1000:42*7=294个钒探 SR+IR+PR
27
2、反应堆功率控制包括哪些参量?与压水堆有哪些不同? 参与量:cmΔt,ṁ(hs-hw)
核电关键材料范文
核电关键材料范文一、反应堆材料1.燃料元素:核电站的燃料元素主要是铀、铀-钚和铀-铀燃料。
这些燃料元素需要具备高温抗辐射、稳定性和易于加工的特点。
此外,还需要考虑核燃料的回收和处理问题。
2.燃料包壳:燃料包壳是保护燃料元素的关键组件,需要具备高温抗辐射和耐腐蚀的特点。
常用的包壳材料有锆合金、不锈钢和镍基合金。
3.反应堆压力容器:反应堆压力容器是核电站的核心组件,负责容纳反应堆燃料和冷却剂,并承受高温和高压。
常用的压力容器材料有低合金钢和不锈钢。
二、冷却剂材料1.轻水反应堆:轻水反应堆使用水作为冷却剂,因此需要具备耐高温和高压的特性。
常用的材料有不锈钢、钛合金和镍基合金。
2.重水反应堆:重水反应堆使用重水作为冷却剂,因此需要具备耐腐蚀和抑制中子吸收的特性。
常用的材料有铝合金、锆合金和镍基合金。
三、辅助设备材料1.冷却塔:冷却塔用于将核电站中发热的冷却剂冷却至环境温度。
常用的材料有水泥、钢筋和玻璃钢。
2.控制棒:控制棒用于控制核反应堆的输出功率,需要具备较高的耐辐射性和热导性能。
常用的材料有铜-铌合金、不锈钢和锆合金。
未来的发展趋势:1.开发高温材料:随着核电站的发展,对高温材料的需求也越来越大。
目前正在研发的高温材料主要包括碳化硅、碳化钨和氮化硼等。
2.创新防腐材料:核电站中的材料容易受到腐蚀,因此需要开发新的防腐材料。
目前的研究方向包括氧化铝涂层、陶瓷材料和高温合金等。
3.提高材料性能:随着科技的进步,可以通过改变材料的原子结构和添加适量的合金元素来提高其性能,例如提高材料的强度、导热性和耐辐射性。
总之,核电关键材料是实现核能产生和控制的基础,对核电站的运行稳定性和安全性起着关键作用。
随着核能的广泛应用和技术的不断进步,核电关键材料的研究和开发将成为核能领域的重要课题。
重水堆简介
重水堆的主要优点
在目前常用的慢化剂当中,重水的慢化能力仅次于轻水, 但重水的最大优点是它的吸收热种子的几率,即吸收截面要比 轻水小两百多倍,从而使得重水的慢化比远高于其他各种慢化 剂。 1. 由于重水吸收热种子的几率小,所以中子经济性好,以重 水作为慢化剂的反应堆,可以采用天然铀作为核燃料,从而使 得建造重水堆的国家,不必建造浓缩铀工厂。
重水堆固有的安全特性
3.堆芯余热排出 通常,堆芯余热可以通过两种相互独立的途径释出:其 一为蒸汽发生器,将热量传递给二回路侧的给水;其二为余 热排出系统(停堆冷却系统),热量通过停堆冷却热交换器 传递给工艺水系统。 在发生LOCA时,需要用ECCS冷却水再淹没堆芯,并释 出一部分堆芯余热。ECCS释出的热量最终通过ECCS热交换 器排到工艺水系统。在重水堆中,由于承压边界在堆芯内是 由几百个小直径的压力管构成,这些压力管内的冷却剂汇集 于反应堆进出口的集管,所以热传输系统中发生的最大的破 口尺寸仅限于反应堆进、出口集管的尺寸。由于反应堆进、
CANDU-6型重水堆核电厂介绍
由于由加拿大原子能公 司发展起来的以天然铀为 核燃料、重水慢化、加压 重水冷却卧式压力管式重 水堆(CANDU型),是 唯一达到商业化技术要求 的重水堆。因此下面着重 论述CANDU-6型重水堆 核电厂的设计特性、安全 特性和事故响应特点。右 图为CANDU型的反应堆 组件结构。
重水反应堆简介
姓名:王小亮 班级:0902301 学号:1090230113
重水反应堆-PHWR?
概念:用重水作为慢化剂的热中子反 应堆。 可以用重水、普通水、二氧化碳和有 机物作冷却剂。由于重水的热中子吸 收截面很小,可以采用天然铀燃料。 铀燃料的利用率高于轻水堆,烧过的 燃料的235U含量仅为0.13%,乏燃料不 必进行后处理。这种堆可以作为生产 堆、动力堆和研究堆使用。堆内中子 经济性好,可生产氚和发展成为先进 的转化堆。堆内重水装载量大,反应 堆造价较高。
【doc】先进重水反应堆综述
先进重水反应堆综述2004皋国外核动力第6期先进重水反应堆综述朱常桂(中国核动力研究设计院610041)摘要:重水反应堆是~种重要的堆型重水堆要占领更大的市场,将面临三个挑战,即降低成本,提高安全性和可持续发展根据铀富集度的不同和燃料管理战略,燃料运行周期从6O天到180天将轻水堆(LWR).fz.燃料元件用于重水反应堆,是实现铀资源最佳利用的范例而且混合氧化物(MOX)燃料也将引入重水反应堆,本文介绍了EIJ度的先进重水堆,该堆率先采用了钍燃料;俄罗斯联邦正在开发高度安全的气冷重水慢化堆;加拿大在基于CANDU6成熟经验的基础上,开发出下一代重水堆NgCANDU,功率为65MWe:在经济性和固有安全性和操作性能方面均有大的改进关键词:重水反应堆;先进重水堆;气冷重水慢化堆;钍燃料1前言蓖水反应堆与整个核工业一样面临着挑战,即核能要继续保持作为一种可靠的,成本低的和叮被接受的能源.全球能源增长的原因是需要满足人口增长和生活水平提高对能源的要求重水堆作为一种环境安全的,可持续的和经济的能源,可以为这一需求作出贡献未来能源市场不仅仪从传统的油,煤,天然气等化石燃料获得,而且可以由不同的先进反应堆获得,甚至可以由新技术获得,例如氢燃料电池.这些能源形式都会占有自己应有的位置:重水堆面临的挑战不仅仅是保持它的原有位置,而是要扩大它在能源市场的份额重水堆要占领更大的份额,面临着三个挑战,即降低成本,提高安全性和可持续发展2经济性分析重水堆的经济性和所有其它水冷反应堆一样,都是由投资成本和利息来计算的:可能减少投资成本的方法如下:2.1增加工厂规模重水堆目前的规模是200MWe,500~700MWe和900MWe;这是由目前的能源需求和技术发展而形成的为满足未来需求,正在设计~1200MWe的重水堆,甚至更大功率也在考虑之中.扩大规模可以降低成本:2.2提高热效率投资成本与热效益成反比,提高反应堆的热效率可以降低成本.2.3简化设计不同的设计要求和运行条件对成本有重大影响.简化辅助系统和对安全尢重大影响2的环节,可以降低成本.3安全性分析在未来lO年内,将对安全性提高的要求进行性价比分析.尽量发挥重水堆的固有安全性.可以预测在未来2O年里,重水堆将保持一个大的市场份额.重水堆核电厂将以高的热效率运行,这是由于应用了高温冷却剂或超I临界水作冷却剂.这些重水堆将采用以非能动安全技术:(1)采用非能动高温流道;(2)消除流道流阻;(3)采用自然循环余热排出;(4)采用非能动安全壳排出热量:4发展的可持续性在未来1O年,将采用先进的燃料设计,也就是采用低富集度铀或采用压水堆乏燃料元件回收的铀.这种新的燃料设计将能大大降低成本,改善运行裕度.提高功率和减乏燃料元件数量.采用低富集度燃料元件将使得给定功率的重水堆产生更大的功率如果采用更高富集度铀和更紧凑的元件栅格.采用 1.2%1.5%的铀富集度,再加上采用轻水作冷却剂,将能更大地降低成本,更进一步,将研究高性能,高燃耗和高温的燃料元件:这就是DUPIC或MOX燃料5正在发展的概念5.1PHWR在采用卧式流道的加压重水堆(PHWR)中,正在发展3种概念.首先,CANDU型HWR概念正在不断演变,例如:CANDU6(700MWe),CANDU9 (单堆900MWe).第二个概念是低成本CANDU.这种新一代的CANDU将输出蒸汽温度提高到~330~C,压力一13MPa;减少重水用量;通过采用低富集度铀(1.5%)增加每个流道的功率输出;通过采用轻水来降低成本;这种堆型的功率一般为600MWe.第三个概念是采用超临界水,通过一个间接的轻水或重水冷却循环来冷却重水慢化剂,运行压力为25MPa.5_2先进的燃料通道设计在CANDU6型反应堆中,有380个卧式燃料通道.每一个燃料通道形成一个压力管这些压力管是由冷加工的Zr.2.5%Nb合金制造的,在310~C,10MPa的运行工况下,寿命可达3O年.5.3燃料和燃料循环5.3.1天然铀和低富集度由于天然铀循环的灵活性,在今后一段时间,CANDU堆仍将主要采用天然铀燃料元件.正在开发低富集度燃料元件,铀富集度为O.9%1.2%,可以提高燃耗,减少乏燃料3元件数量,而且燃料循环成本比天然铀降低20%~30%.5.3_2燃料循环根据铀富集度的不同和燃料管理战略,燃料运行周期从60天到180 天(即燃牦为800~2400MWd/tU):将LWR乏燃料元件用于CANDU堆.是实现铀资源最佳利用的范例而且MOX燃料也将引入CANDU反应堆.6印度的先进重水堆(AHWR).6.1简介AHWR电功率为235MW,重水慢化,轻水冷却,垂直式的压力管,适用于钍循环初步设计已经完成,现已进入详细设计反应堆设计采用了非能动技术,具有如下特点:(1)只用重水作慢化剂,用轻水作冷却剂.降低了成本,减少了重水泄漏和氚的辐射;(2)采用简单结构的蒸汽发生器代替常规的蒸汽发生器;(3)丰要部件可以工厂化生产,缩短lr现场安装n,/l'.-J和降低安装费用:6-2堆芯及燃料设计a.堆芯有452个冷却剂流道.燃料由30%的(Yh.,'U)Oz,24%(Th.,Pu)Oz和46% (U,Pu)Oz组成.b.堆芯性能(1)钍燃料堆芯;(2)微弱的负反应性;(3)卸料燃耗大于20,000MWd/tU;(4)原始钚加入量低在MOX燃料中.Pu含量为3%;(5)以.u维持链式反应;(6)热功率750MW7高度安全的气冷重水慢化堆HWR1000a,俄罗斯联邦正在开发HWR1000,主要特点如下:(1)整个一回路系统,包括主要气体循环装置,蒸汽发生器,中间热交换器都安置在预应力混凝土压力容器内;(2)低温重水用作慢化剂;(3)气体作冷却剂,可用CO2或COz与He的混合气体b.主要参数如:铀装载量160t天然铀;平均燃耗9,500MWt/d;增值比0.8008下一代CANDU堆加拿大原子能公司(AECL)在基于CANDU6成熟经验的基础上,开发出下一代重水堆NgCANDU,功率为65MWe.在经济性,同有安全性和操作性能方面均有大的改进:8.1设计目标a.在保持CANDU堆成熟性能的基础上,采用低富集度燃料以减小堆芯尺寸,这样可以减少重水的用量,丽且可以不用零水作冷却剂.b.提高反应堆冷却剂和蒸汽汽轮机系统的压力和温度以提高回路效率c.核蒸汽系统标准化设计:d.降低设备成本,提高设备寿命,减少设备安装时间,并且提供设备置换的简便方法e.确保寿期40年.考虑到现有CANDU堆的寿期以及延寿经验,设计寿命延长到50年4f.强化CANDU堆的智能系统,以改进核电厂的监测和控制.g.通过调节反应堆堆:剖然料元件通道的数量,功率在400—1200MWe范围内可以模块化没计.8-2设计基础a.模块式的卧式燃料通道的堆芯b.不停堆换料.C.分离的,冷的和低压的慢化剂.d.相当低的中子吸收.e.用轻水代替重水作为一回路冷却剂f.紧凑堆芯设计,减少重水用量g.提高安全裕度,减少放射性废物量.h.提高冷却剂和蒸汽的温度和压力,以提高整体热效率.8.3燃料元件a.燃料形式:u富集度为1.65%~JUO2芯块b.燃耗:20,000MWd/tU.C.燃料捧束元件棒数量:43根元件棒.d.燃料棒束长度:495mm.e.燃料捧束铀含量:17.8kg.f每个通道燃料棒束数:l2..9结论重水堆技术有重大的发展,其设计和性能持续得到改进.NgCANDU在投资,建设周期和运行成本方面可以与同等功率的天然气或燃煤发电相竞争,也可以与其它类型的核电项目相竞争.重水堆核电站在核能市场上占有重要地位.参考文献:【1】TechnicalReportsseriesNo.407.HeavyWaterReactors:StatusandProjectedDevelopment. InternationalAtomicEnergyAgency,Vienna,2002.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
蒸汽发生器
主要结构材料位 炭钢 一次测: 封头,管板和管束一次测
二次侧:壳体,汽水分离器,管束套筒,管板和管 束二次侧,预热段隔板,管子支承等,
14
主泵
单级、单吸入口、双出口、立式离心泵
支管和集流总管 稳压器
15
CANDU慢化剂系统
慢化作用,失冷事故下的热阱作用 慢化剂系统原理流程图: 串连/并联
11
CANDU一回路系统和设备
380根燃料管 4 SG 4 Pump 4 入口集流管 4 出口集流管 1 电加热Pre.
12
回路设计特点和要求
1 保证冷却剂循环
2 主泵飞轮
3 保证一定的自然循环流量 4 压力控制 5 超压保护系统 6 设有单独的停堆冷却系统
7 过虑净化等装置,控制冷却剂的化学成分
8
冷却剂和慢化剂的绝热
作为冷却剂的重水在管内流动带走热量。作为慢化剂的重 水在反应堆排管容器中,为了防止热量传到慢化剂重水 中,在压力管外设置一同心容器管,两管之间充以二氧 化碳作隔热层,以保持慢化剂温度不超过60℃。压力管 和容器管贯穿反应堆排管容器,两端与法兰固定,与容 器连成一体。
9
反应性的控制
18
19
20
21
22
23
24
25
26
27
28
29
30
31
10
换料方式
由于重水堆的卧式布置压力管,每根压力管在反应堆容器的两端都设 有密封接头,可以装拆。因此,可以采用遥控装卸料机进行不停堆换 料。换料时,由装卸料机连接压力管的两端密封接头,新燃料组件从 压力管一端顶入,烧过的乏燃料组件侧从同一压力管的另一端被推出。 这种换料方式称为“顶推式双向换料”。
控制棒设置在反应堆上部,穿过反应堆排管容器,插入在 慢化剂中。快速停堆时将控制棒快速插入堆内。
反应性的调节还可以通过改变反应堆容器中重水慢化剂的 液位来实现。 紧急停堆时可以将控制棒快速插入堆内,还可打开氦气阀, 将储存在毒物箱内的硝酸钆毒物注入反应堆容器的重水 慢化剂中,还可以打开装在容器底部的大口径排水阀, 把重水慢化剂急速排入贮水箱。
目前国际上已投入运行的重水堆核电站共30余座,总电功率 为2335.4万千瓦,约占全世界核电厂总功率的6.5% .
1
2
3
重水堆概述
CANDU的概念:CANada Deuterium Uranium 重水堆的特点:天然铀作燃料,收到发展中国家青睐
重水做慢化剂,造价较高
重水堆的分类:
压力管式,压力壳式
4
CANDU的基本结构特点
5
6
7
燃料组件结构
重水堆的核燃料是天然铀, 制成圆柱状装在外径为 13(20)毫米长约500毫米的 锆合金包壳管内,构成棒 状燃料元件,37根燃料棒 组成一束,棒之间用锆合 金块隔开,端头由锆合金 支承板连接,构成长为半 米,外径为150毫米左右的 燃料棒束。 反应堆堆芯由384根带燃料 棒束的压力管排列而成。 每根压力管内装有12束燃 料棒束。
电源系统:
16
其它类型的重水堆
压力壳式重水堆
压力管式沸腾轻水冷却重水堆
17
重水堆的发展前景
机遇:重水堆中子经济性好,节省核燃料,可以直接 利用天然铀,不需要建造核扩散厂,这对未掌握核 浓缩技术的国家利用核燃料资源是很有意义的。 挑战:大量的重水以及泄漏导致高造价。 核燃料燃耗比较浅,1/3压水堆。换料频繁,后处 理成本较大,防止重水泄漏的高密封性能设备也提 高了造价。