传感器实验报告--应变片的温度效应及补偿
应变式传感器的温度误差及补偿方法
Value Engineering 0引言应变式传感器以电阻应变片为转换元件,应变片粘贴在被测试件表面,由于被测试件的变形使其表面产生应变,从而引起电阻应变片的阻值变化,通过测量电阻的变化即反映了应变或应力的大小。
电阻应变片不仅能够测量应变,而且对其他的物理量,只要能变为应变的相应变化,都可进行测量,如可以测量力、压力、位移、力矩、重量、温度和加速度等物理量。
它结构简单、体积小、测量范围广、频率响应特性好、适合动态和静态测量、使用寿命长、性能稳定可靠,是目前应用最广泛的传感器之一[1-3]。
电阻应变片由于温度变化引起的电阻变化与试件应变所产生的电阻变化几乎有相同的数量级,如果不采取必要的措施克服温度的影响,测量的精度无法保证。
1温度误差产生的原因1.1电阻温度系数的影响应变片敏感栅的电阻丝阻值随温度变化的关系可用下式表示:R t =R 0(1+α0)Δt (1)式中:R t ———温度为t 时的电阻值;R 0———温度为t 0时的电阻值;α0———温度为t 0时金属丝的电阻温度系数;Δt ———温度变化值,Δt=t-t 0。
当温度变化Δt 时,电阻丝电阻的变化值为:ΔR=R t -R 0=R 0α0Δt (2)1.2试件材料和电阻丝材料的线膨胀系数的影响当试件与电阻丝材料的线膨胀系数相同时,不论环境温度如何变化,电阻丝的变形仍和自由状态一样,不会产生附加变形。
当试件与电阻丝材料的线膨胀系数不同时,由于环境温度的变化,电阻丝会产生附加变形,从而产生附加电阻变化。
设电阻丝和试件在温度为0℃时的长度均为l 0,它们的线膨胀系数分别为βs 和βg ,若两者不粘贴,则它们的长度分别为l s =l 0(1+βs Δt ),l g =l 0(1+βg Δt )(3)当两者粘贴在一起时,电阻丝产生的附加变形Δl 、附加应变εβ和附加电阻变化ΔR β分别为Δl =l g -l s =(βg -βs )l 0Δt(4)εβ=Δl 0=(βg -βs )Δt ,ΔR t =K 0R 0εβ=K 0R 0(βg -βs )Δt (5)那么由于温度变化而引起的应变片总电阻相对变化量为ΔR t 0=ΔR α+ΔR β0=[α0+K 0(βg -βs )]Δt (6)折合成附加应变量或虚假的应εt ,有εt =ΔR tR 00=αK 0+(βg -βs")Δt (7)由式(6)和式(7)可知,因环境温度变化而引起的附加电阻的相对变化量,除了与环境温度有关外,还与应变片自身的性能参数(K 0,α0,βs )以及被测试件线膨胀系数βg 有关。
电阻应变测试原理及温度补偿方法实验
电阻应变测试原理及温度补偿方法实验一、实验目的1.掌握电阻应变片的粘贴技术。
2.初步掌握电阻应变片的绝缘处理、防潮、接线和粘贴质量检查等基本技术。
3.了解电测应力、应变实验原理与电桥接线方法。
二、实验设备及器材 1.电阻应变片。
2.试件。
3.万用表、兆欧表。
4.电烙铁、镊子、丙酮、细砂纸、药棉等工具和材料。
5.502胶水、连接导线、704胶。
6.烘干设备。
三、电测法基本原理电阻应变测量技术(简称电测法),就是将物理量、力学量、机械量等非电量通过敏感元件转换成电量来进行测量的一种实验方法,又称非电量电测法。
将电阻应变片粘贴在构件上,当构件受力变形时应变片也随之一起变形,应变片的电阻值发生变化,通过测量电桥将电阻变化转换成电压信号,经放大处理及模/数转换,最后直接输出应变值。
电测法在工程中得到广泛应用,其主要特点: (1) 尺寸小、重量轻、安装方便,对被测构件的应力分布不产生干扰。
(2) 精度和灵敏度高,最小应变读数为1με=10。
6−(3) 测量范围广、适应性强,既能进行静态测试也能进行动态测试,频率响应范围从零到几万赫。
还可以在高、低温及高压、水中等特殊条件下进行测量。
(4) 可测量多种力学量。
采用应变片作为敏感元件制成各种传感器可测力、位移、压强、转角、速度、加速度、扭矩等。
但电测法也有局限性,其缺点是: (1) 只能测构件表面的应变,并且是有限个点,测量数据是离散的,难以得到整个应力-应变场的分布全貌。
(2)对于应力集中和应变梯度较大的部位,会引起比较大的误差。
四、电阻应变片1.工作原理 由物理学可知,金属导线的电阻为:R=A L/ρ (2 - 1)式中:ρ为导线材料电阻率;L为导线长度;A 为导线截面积。
当金属导线因受力变形引起电阻相对变化,对式(2-1)两边取对数再微分得:AALLRRd d d d −+=ρρ(2 - 2)式中:ρρd ≈ ⎟⎠⎞⎜⎝⎛+=LL AACVVCd d d ; ε=LLd ;⎟⎠⎞⎜⎝⎛−==LLDDAAd 2d 2d μC为与材料种类和加工方法相关的常数;V为体积;ε为应变;D为导线直径;μ为导线材料泊松比。
传感器实验部分
实验一金属箔式应变片一一单臂电桥性能实验一、实验目的:了解金届箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为::R/ R = K ;式中AR/R为电阻丝电阻的相对变化,K为应变灵敏系数,&=A l/l为电阻丝长度相对变化,金届箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
单臂电桥输出电压U OI =EK&/4。
三、需用器件与单元:应变式传感器实验模块、应变式传感器、石去码、数显表、士5V电源、也V电源、万用表(自备)。
四、实验步骤:1、根据图1-1应变式传感器已装丁应变传感器模块上。
传感器中各应变片已接入模块的左上方的R l、R2、R3、R4O加热丝也接丁模块上,可用万用表进行测量判别,R1= R2= R3=R4=350Q,加热丝阻值为50 Q左右。
应变片托盘图1-1应变式传感器安装示意图2、接入模块电源i15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器RW3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi相连,调节实验模块上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。
关闭主控箱电源。
3、将应变式传感器的其中一个应变片 R 1 (即模块左上方的R i )接入电桥作为一 个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好),接好电桥调零电 位器Rw i,接上桥路电源&V (从主控箱引入)如图1-2所示。
检查接线无误后,合 上主控箱电源开关。
调节 Rw i,使数显表显示为零。
O 。
加热4、在电子秤上放置一只石去码,读取数显表数值,依次增加石去码和读取相应的数显 表值,直到500g (或200g )石去码加完。
应变片温度补偿
应变片温度补偿1. 引言在工程领域中,应变片常被用于测量物体的应变情况。
然而,应变片的测量结果受到温度的影响,因此需要进行温度补偿以获得准确的应变数据。
本文将探讨应变片温度补偿的原理、方法和应用。
2. 温度对应变片的影响温度对应变片的影响主要表现在两个方面:热膨胀和电阻变化。
2.1 热膨胀当应变片受到温度变化时,其材料会发生热膨胀现象,导致应变片的形状和尺寸发生变化。
这种变化会引起应变片的应变量产生误差,从而影响测量结果的准确性。
2.2 电阻变化应变片的电阻值也会随温度的变化而发生变化。
这是因为材料的电阻率会随温度的升高而增加或减小。
因此,如果不进行温度补偿,应变片的电阻变化会直接影响到测量结果的准确性。
3. 温度补偿原理应变片的温度补偿原理是基于应变片的温度响应特性。
应变片的温度响应特性可以通过实验获得,通常以温度系数来表示。
3.1 温度系数温度系数是指应变片在单位温度变化下的应变量变化率。
温度系数可以分为热膨胀系数和电阻温度系数两种。
3.1.1 热膨胀系数热膨胀系数表示应变片在单位温度变化下的长度或体积变化率。
热膨胀系数可以通过实验测量获得,一般以线膨胀系数和体膨胀系数来表示。
3.1.2 电阻温度系数电阻温度系数表示应变片在单位温度变化下的电阻变化率。
电阻温度系数可以通过实验测量获得,一般以温度系数α来表示。
3.2 温度补偿公式根据应变片的温度响应特性,可以建立温度补偿公式来消除温度对测量结果的影响。
温度补偿公式通常包括热膨胀补偿和电阻补偿两部分。
3.2.1 热膨胀补偿热膨胀补偿是通过测量应变片的温度来计算热膨胀引起的应变量,并将其从测量结果中减去。
热膨胀补偿公式可以表示为:ε_compensation = ε_meas ured - α * (T_measured - T_reference)其中,ε_compensation为补偿后的应变量,ε_measured为测量得到的应变量,α为应变片的热膨胀系数,T_measured为测量得到的温度,T_reference为参考温度。
电阻应变式传感器误差原因以及补偿方法
3.1 对于温度误差我们采用线路补偿法和应变 片自补偿
作者简介 袁明(1998-),男,江苏省盐城市人。大学 本科学历,就读于西北民族大学电气工程及其
(1)线路补偿法即采用电桥补偿法。我 自动化专业。
们将工作应变片 R2 和补偿应变片,二者完全 相同,且都贴在同样材料的试件上,并处于同 样的温度下,这样由于温度变化让工作片产生
• Power Electronics 电力电子
电阻应变式传感器误差原因以及补偿方法
文/袁明
摘
本文主要讲述电阻式应变式
传感器在实际的应用当中产生误 要 差的原因以及提出针对性的解决
方 法, 电 阻 式 应 变 式 传 感 器 基 于
的 效 应 是 金 属 电 阻 的 应 变 效 应,
而在实际的应用当中由于温度对
3 补偿的方法
通过采用电子电路组成压力变送器和温 度变送器,再通过 A/D 转换,送计算机进行 处理,通过编辑程序可以使粘贴在试件上的应 变片,在不承受载荷的条件上,电阻可以不随 时间变化,从而解决零漂的问题。
4 结束语
电阻应变式传感器应用于很多领域,并 且随着科技的发展对于精度的要求越来越高, 而电阻式应变片存在的温度误差以及制造工艺 不精确存在的零漂这两个问题对于精度的影响 很大,因此本文针对性的提出了补偿方法,最 为广泛使用的就是电桥补偿法然后在配用计算 机处理从而对电阻式传感器精度进行提高,对 于电阻式传感器未来的发展有着重要的意义。
3.2 对于制造工艺不精确所引起的零漂现象, 我们可以通过计算机电路进行处理
【关键词】电阻应变传感器 零漂 温度误差 补偿方法
电阻应变式传感器是目前应用最广泛的 传感器之一,可以测量力,荷重,应变,位移, 速度,加速度等各种参数。电阻应变式传感器 具有结构简单,尺寸小,性能稳定可靠,精度 高,变换电路简单,易于实现测试自动化和多 点同步测量,远距测量,因此应用于很多领域, 然而温度对电阻的影响,所引起的温度误差以 及制造工艺上引起的零漂,为了测量的精确性 因此对于误差的研究是很有必要性的。 1 应变式传感器的工作原理
传感器实验报告
传感器实验报告传感器实验实验⼀、电阻应变⽚传感器1.实验⽬的(1) 了解⾦属箔式应变⽚的应变效应,单臂电桥⼯作原理和性能。
(2) 了解半桥的⼯作原理,⽐较半桥与单臂电桥的不同性能、了解其特点(3) 了解全桥测量电路的原理及优点。
(4) 了解应变直流全桥的应⽤及电路的标定。
2.实验数据整理与分析由以上两趋势图可以看出,其中⼀个20.9997R =,另⼀个20.9999R =,两个的线性都较好。
其中产⽣⾮线性的原因主要有:(1)04x R e e R R ?=+?,0e 和R ?并不成严格的线性关系,只有当0R R ?<<才有04x Re e R=,所以理论上并不是绝对线性的,总会出现⼀些⾮线性。
(2)应变⽚与材料的性能有关,这也可能产⽣⾮线性。
(3)实验中外界因素的影响,包括外界温度之类的影响。
为什么半桥的输出灵敏度⽐单臂时⾼出⼀倍,且⾮线性误差也得到改善?答:单臂:04x R e e R ?=半桥:1201()2x R R e e R R ??=-灵敏度公式:U S W=;所以半桥测量时是单臂测量的灵敏度的两倍。
0k 受电阻变化影响变得很⼩改善了⾮线性误差。
3.思考题a .半桥测量时两⽚不同受⼒状态的电阻应变⽚接⼊电桥时,应放在:(1)对边(2)邻边。
解:邻边 b .桥路(差动电桥)测量时存在⾮线性误差,是因为:(1)电桥测量原理上存在⾮线性(2)应变⽚应变效应是⾮线性的(3)调零值不是真正为零。
解:(1)(2)(3)。
c .全桥测量中,当两组对边(R1、R3为对边)值R 相同时,即R1=R3,R2=R4,⽽R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。
解:(1)d .某⼯程技术⼈员在进⾏材料拉⼒测试时在棒材上贴了两组应变⽚,如何利⽤这四⽚电阻应变⽚组成电桥,是否需要外加电阻。
解:可组成全路电桥实验⼆差动变压器1.实验⽬的(1)了解差动变压器的⼯作原理和特性(2)了解三段式差动变压器的结构(3)了解差动变压零点残余电压组成及其补偿⽅法(4)了解激励频率低差动变压器输出的影响2.实验数据整理与分析实验A中产⽣⾮线性误差的原因:(1)存在零点残余电压(2)零点附近波动较⼤(3)读数时的⼈为误差分析产⽣零点残余电压的原因,对差动变压器的性能有哪些不利影响。
【大学物理实验】 电阻应变式传感器 实验报告
大连理工大学大 学 物 理 实 验 报 告院(系) 专业 班级 姓 名 学号 实验台号实验时间 年 月 日,第 周,星期 第 节实验名称 电阻应变式传感器教师评语实验目的与要求:1. 学习电阻应变式传感器的基本原理、 结构、 特性和使用方法2. 测量比较几种应变式转换电路的输出特性和灵敏度3. 了解温度变化对应变测试系统的影响和温度补偿方法主要仪器设备:CSY 10A 型传感器系统实验仪实验原理和内容: 1. 应变效应导体或半导体在外力的作用下发生机械变形时, 其阻值也会发生相应的变化, 成为应变效应。
电阻应变片的工作原理即是基于这种效应, 将本身受力形变时发生的阻值变化通过测量电路转换为可使用的电压变化等以提供相关力的大小。
金属丝的电阻应变量可由以下算式表达: 金属丝的原始电阻值为SLR ρ=, 收到轴向拉力时, 发生电阻值变化R ∆, 变化比例的表达式为:SS LL RR ∆-∆+∆=∆ρρ, 根据金属丝在力学和材料学上的相关性质, 在弹性范围内可以对公式进行改写, 得到L Lk L L L L RR ∆=∆⎥⎦⎤⎢⎣⎡∆∆++=∆ρρμ)21(, 其中系数k 称为电阻应变片的灵敏系数, 表示单位应变量引起的电阻值变化, 它与金属丝的几何尺寸变化和本身的材料特性有关; 一般半导体的灵敏系数要远大于金属的灵敏系数。
(由于受力会影响到半导体内部的载流子运动, 固可以非常灵敏地反映细微的变化)2. 电阻式应变传感器的测量电路转换电路的作用是将电阻变化转换成电压或电流输出, 电阻应变式传感器中常用的是桥式电路, 本实验使用直流电桥。
驳接阻抗极高的仪器时, 认为电桥的输出端断路, 只输出电压信号; 根据电桥的平衡原理, 只有当电桥上的应变电阻发生阻值变化时, 电压信号即发生变化; 电桥的灵敏度定义为RR V k v /∆=根据电阻变化输入电桥的方法不同, 可以分为单臂、 半桥和全桥输入三种方式:2.1 单臂电桥只接入一个应变电阻片, 其余为固定电阻。
传感器实验报告
重庆邮电大学传感器实验报告姓名:李振洲学号:2012216478班级:5121201实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器双杆式悬臂梁应变传感器、电压温度频率表、直流稳压电源(±4V )、差动放大器、电压放大器、万用表(自备) 三、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为ε⋅=∆k RR(1-1) 式中RR∆为电阻丝电阻相对变化; k 为应变系数;ll∆=ε为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件。
如图1-1所示,将四个金属箔应变片(R1、R2、R3、R4)分别贴在双杆式悬臂梁弹性体的上下两侧,弹性体受到压力发生形变,应变片随悬臂梁形变被拉伸或被压缩。
图1-1 双杆式悬臂梁称重传感器结构图通过这些应变片转换悬臂梁被测部位受力状态变化,可将应变片串联或并联组成电桥。
如图1-2信号调理电路所示,R5=R6=R7=R 为固定电阻,与应变片一起构成一个单臂电桥,其输出电压RR R R E U ∆⋅+∆⋅=211/40 (1-2)E 为电桥电源电压;式1-2表明单臂电桥输出为非线性,非线性误差为L=%10021⋅∆⋅-RR。
图1-2 单臂电桥面板接线图四、实验内容与步骤1.悬臂梁上的各应变片已分别接到面板左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。
2.按图1-2接好“差动放大器”和“电压放大器”部分,将“差动放大器”的输入端短接并与地相连,“电压放大器”输出端接电压温度频率表(选择U ),开启直流电源开关。
将“差动放大器”的增益调节电位器与“电压放大器”的增益调节电位器调至中间位置(顺时针旋转到底后逆时针旋转5圈),调节调零电位器使电压温度频率表显示为零。
关闭“直流电源”开关。
传感器检测技术实验报告
《传感器与检测技术》实验报告姓名:学号:院系:仪器科学与工程学院专业:测控技术与仪器实验室:机械楼5楼同组人员:评定成绩:审阅教师:传感器第一次实验实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。
二、基本原理电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。
电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
单臂电桥输出电压 1/4o U EK ε=,其中K 为应变灵敏系数,/L L ε=∆为电阻丝长度相对变化。
三、实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。
四、实验步骤1. 根据接线示意图安装接线。
2. 放大器输出调零。
3. 电桥调零。
4.应变片单臂电桥实验。
测得数据如下,并且使用Matlab 的cftool 工具箱画出实验点的线性拟合曲线:由matlab 拟合结果得到,其相关系数为0.9998,拟合度很好,说明输出电压与应变计上的质量是线性关系,且实验结果比较准确。
系统灵敏度S =ΔUΔW =0.0535V /Kg (即直线斜率),非线性误差= Δm yFS =0.0810.7×100%=0.75%五、思考题单臂电桥工作时,作为桥臂电阻的应变片应选用:(1)正(受拉)应变片;(2)负(受压)应变片;(3)正、负应变片均可以。
答:(1)负(受压)应变片;因为应变片受压,所以应该选则(2)负(受压)应变片。
实验三 金属箔式应变片——全桥性能实验一、实验目的了解全桥测量电路的优点二、基本原理全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。
当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ∆=∆=∆=∆时,其桥路输出电压3o U EK ε=。
应变传感器实验指导书(2013版)
4R 。 R
2R ; 用四个应变片组成二个差动对工作, 且 R1= R2= R3= R4=R, R
R ;当二个应变片组成差 R
(3)称重原理 本实验选用的是标准商用双孔悬臂梁式称重传感器,灵敏度高,性能稳定,四个特性相 同的应变片贴在如图 1 所示位置,弹性体的结构决定了 R1 和 R3、R2 和 R4 的受力方向分 别相同,因此将它们串接就形成差动电桥。 (弹性体中间上下两片为温度补偿片) 当弹性体受力时,根据电桥的加减特性其输出电压为:
金属箔式应变计实验 1 实验目的
(1)了解箔式应变片的结构及粘贴方式 (2)掌握使用电桥电路对应变片进行信号调理的原理和方法 (3)掌握使用应变片设计电子秤的原理 (4)掌握应变片的温补原理和方法
2 实验原理
(1)应变片测量原理 应变片是最常用的测力传感元件。 当用应变片测试时, 应变片要牢固地粘贴在测试体表 面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过 测量电路,即可将电阻变化转换成电信号输出。 (2)应变电桥原理 电桥电路是最常用的非电量电测电路中的一种, 当电桥平衡时, 桥路对臂电阻乘积相等, 电桥输出为零,在桥臂四个电阻 R1、R2、R3、R4 中,电阻的相对变化率分别为△R1/ R1、 △R2/ R2、△R3/ R3、△R4/ R4 ,当使用一个应变片时, R 动状态工作, 则有 R 则有 R
图 1 双孔悬臂梁称重传感器 (4)温补原理 当应变片所处环境温度发生变化时,由于其敏感栅本身的温度系数,自身的标称电阻值 发生变化,而贴应变片的测试件与应变片敏感栅的热膨胀系数不同,也会引起附加形变,产 生附加电阻。 为避免温度变化时引入的测量误差,在实用的测试电路中要进行温度补偿。本实验中采 用的是电桥补偿法,如图 2 所示。
传感器原理实验报告
《传感器原理实验报告》指导教师:张学锋班级:物联网131班组序:第七组组员:程少锋 139074366陈习武139074364高扬 139074373孙明明139074386目录实验一金属箔式应变片性能——单臂电桥 (1)实验二金属箔式应变片:单臂、半桥、全桥比较 (4)实验三金属箔式应变片温度效应及补偿 (7)实验四热电偶原理及分度表的应用 (8)实验五移相器实验 (11)实验六相敏检波器实验 (13)实验七金属箔式应变片——交流全桥 (16)实验十二差动变压器(互感式)零残余电压的补偿 (23)实验十三差动变压器(互感式)的标定 (24)实验十九电涡流式传感器的静态标定 (34)实验二十三霍尔传感器的直流激励特性 (38)实验二十五霍尔式传感器的交流激励特性 (41)实验二十六霍尔式传感器的应用——振幅测量之四 (43)实验二十七磁电式传感器的性能 (45)实验二十九压电传感器引线电容对电压放大器、电荷放大器的影响 (47)实验三十一双平行梁的动态特性 (51)实验三十二电涡流传感器位移特性实验 (52)实验三十三 PN结温度传感器测温实验 (53)实验三十四热敏电阻演示实验 (55)实验三十五半导体扩散硅压阻式压力传感器实验 (56)实验三十六光纤位移传感器静态实验 (58)12电源连到加热器的上插口,加热器下插口接地,打开加热开关4电压/频率表的显示在变化,待电压/频率表显示稳定后,记下显示数值,并用液晶温度表测出温度,记下温度值。
关闭主、副电源,等待数分钟使梁体冷却到室温。
7、将 电压/频率表的切换开关置20V 档,把4组应变片中的任一组换成标有→符号的应变片(补偿片),重复4-6过程。
8、比较两种情况的 电压/频率表数值:在相同温度下比较,补偿后的输出变化小很多。
9、实验完毕,关闭主、副电源,所有旋钮转至初始位置。
实验四 热电偶原理及分度表的应用一、实验目的:了解热电偶的原理及分度表的应用。
传感器技术实验指导书
传感器技术实验指导书2013年10月实验一 电阻应变片特性实验一、实验目的(1)了解金属箔式应变片的特性,掌握传感器的工作原理。
(2)明确掌握应变片在直流电桥中的几种接法,并通过每种接法的输入输出特性,分析应变式传感器和应变片的灵敏度与线性度。
(3 ) 了解温度对应变测试系统的影响。
二、实验设备CSY910传感器系统实验仪 三、实验原理应变片电阻式传感器采用悬臂梁,在梁的正反面贴有应变片电阻如图1所示。
利用这四个应变片电阻可构成一个测量桥路。
当在应变梁的自由端加载时,梁产生弯曲变形。
粘贴在表面的电阻应变片也随之图1 金属等强度悬臂梁实验架 图2 直流电桥接线板变形,从而阻值也偏离初始值。
若将应变片电阻构成不同的桥路,电桥的输出电压与所加载荷之间的关系就是应变特性。
图2所示电阻检测电路上的虚线是供使用者接上应变电阻或固定电阻值的电阻,并构成电桥,本身没接电阻。
以单臂电桥为例,直流电桥的输出表达式为))((424142310R R R R R R R R UU ++-=当R 1感受应变ε产生电阻增量ΔR 1时,电桥输出为440U K R R U U ε=∆=由此可见,应变片电阻发生变化时,电桥的输出电压也随着变化,当面ΔR <<R 时,电桥的输出与应变成线性关系 四、实验内容(一)金属箔式应变片性能——单臂电桥所需单元及部件:直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、F /V 表、主副电源。
旋钮初始位置:直流稳压电源打到±2V档,F/V表打到2V档,差动放大增益最大。
实验步骤:(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。
上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。
(2)将差动放大器调零:用连线将差动放大器的正(+)负(一)、地短接。
应变片的温度误差及补偿
应变片的温度误差及补偿1、应变片的温度误差由于测量现场环境温度的改变而给测量带来的附加误差, 称为应变片的温度误差。
产生应变片温度误差的主要因素有:1) 电阻温度系数的影响敏感栅的电阻丝阻值随温度变化的关系可用下式表示:Rt=R0 ( 1+ α 0 Δ t ) (3 - 14)式中: Rt——温度为t ℃时的电阻值;R0——温度为t 0 ℃时的电阻值;α 0——金属丝的电阻温度系数;Δ t——温度变化值, Δ t=t -t0 。
当温度变化Δ t 时, 电阻丝电阻的变化值为Δ Rt=Rt- R0= R0 α 0 Δ t ( 3 - 15 )2) 试件材料与电阻丝材料的线膨胀系数的影响当试件与电阻丝材料的线膨胀系数相同时, 不论环境温度如何变化, 电阻丝的变形仍与自由状态一样, 不会产生附加变形。
当试件与电阻丝线膨胀系数不同时, 由于环境温度的变化, 电阻丝会产生附加变形, 从而产生附加电阻。
设电阻丝与试件在温度为0 ℃时的长度均为L0 ,它们的线膨胀系数分别为β s 与β g, 若两者不粘贴, 则它们的长度分别为Ls= L0 ( 1+ β s Δ t ) ( 3 - 16 )Lg= L0 ( 1+ β g Δ t ) ( 3 - 17 )当二者粘贴在一起时, 电阻丝产生的附加变形Δ L, 附加应变εβ与附加电阻变化Δ R β分别为Δ L= Lg - Ls = (β g- β s ) L0 Δ t (3 - 18)εβ = Δ LL0= (β g- β s )Δ t (3 - 19)Δ R β = K0 R0 εβ = K0 R0( β g- β s) Δ t (3 - 20)由式( 3 - 15 )与式( 3 - 20 ) , 可得由于温度变化而引起应变片总电阻相对变化量为折合成附加应变量或虚假的应变ε t, 有由式( 3 - 21 )与式( 3 - 22 )可知, 因环境温度变化而引起的附加电阻的相对变化量, 除了与环境温度有关外, 还与应变片自身的性能参数( K0 ,α 0 ,β s )以及被测试件线膨胀系数β g 有关。
应变片温度补偿
应变片温度补偿一、背景介绍随着技术和工艺的不断创新发展,应变片温度补偿技术在工业自动化领域中得到了广泛应用。
应变片温度补偿是指通过对应变片在不同温度环境下的数据进行修正和补偿,以提高测量精确性和数据可靠性。
本文将介绍一种针对应变片温度补偿的方案。
二、问题描述在实际工作中,温度变化对应变片测量结果的准确性产生了很大的影响。
温度的变化会引起应变片的电阻值、灵敏度等特性的变化,从而影响到应变片读数的精确性。
由此需要一种有效的方法对应变片的测量结果进行温度补偿。
三、方案原理本方案基于热敏电阻传感器和数学模型的原理,通过监测环境温度并结合预先建立的温度-电阻模型,对应变片的电阻进行实时修正,从而实现对应变片的温度补偿。
四、方案实施1. 热敏电阻传感器的安装:在应变片附近合适位置处安装热敏电阻传感器,保证其与应变片之间没有其他热源干扰。
2. 温度数据的获取:使用合适的芯片或传感器模块,实时获取环境温度数据,并将其转化为电信号传输至计算机或控制系统。
3. 温度-电阻模型的建立:利用实测数据和数学建模等方法,建立应变片的温度-电阻模型。
该模型应包括温度对应变片电阻的影响规律。
4. 数据处理与修正:利用所建立的温度-电阻模型,将应变片测得的电阻数据进行实时修正,得到经过温度补偿后的准确数据。
5. 实时监控和控制:将补偿后的数据接入系统中,实时监控和控制设备运行状态,确保温度补偿的准确性。
五、方案优势1. 精度提升:通过对应变片温度补偿,可以显著提高测量精确性和数据可靠性。
2. 节约成本:准确的温度补偿可以降低因温度波动引起的误差,减少需要重新校准的频率,节约成本和时间。
3. 适应性强:该方案适用于多种工业自动化环境,可广泛应用于各类温度变化敏感的测量和控制系统中。
六、结论应变片温度补偿是提高测量精确性和数据可靠性的重要方式之一。
通过合理选择温度传感器、建立温度-电阻模型和实时数据处理,可以有效进行应变片的温度补偿,实现更准确的测量结果。
应变片温度补偿
应变片温度补偿
(实用版)
目录
1.应变片的定义与作用
2.温度补偿的概念
3.应变片温度补偿的必要性
4.温度补偿的方法
5.结论
正文
一、应变片的定义与作用
应变片是一种由敏感栅等构成的元件,用于测量应变。
其工作原理是基于应变效应,即当导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化。
应变片广泛应用于各种测量应变的场景,如电子秤、机械振动检测等。
二、温度补偿的概念
温度补偿是指在测量过程中,由于温度变化引起的测量误差的消除或减小。
在实际应用中,温度对测量结果的影响往往不可忽视,因此需要采取一定的措施进行温度补偿。
三、应变片温度补偿的必要性
应变片在使用过程中,随着温度的变化,其内部电阻值也会发生变化,从而影响测量结果的准确性。
为了确保应变片在不同温度下的测量精度,必须进行温度补偿。
四、温度补偿的方法
目前,常见的温度补偿方法有以下几种:
1.配置温度传感器:在应变片附近配置一个温度传感器,通过测量温度传感器的输出信号,根据预先建立的温度补偿模型,计算出应变片在不同温度下的电阻值,从而实现温度补偿。
2.应变片材料选择:选择线性温度系数低的材料制作应变片,使其在不同温度下的电阻值变化较小,从而降低温度补偿的难度。
3.结构设计优化:通过优化应变片的结构设计,使其在受到温度变化时,内部电阻值的变化幅度减小,从而减小温度补偿的误差。
4.采用数字补偿技术:通过数字信号处理技术,对测量信号进行温度补偿,实现较高的测量精度。
五、结论
综上所述,应变片温度补偿对于确保测量精度至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京XX大学
实验报告
课程(项目)名称:实验三应变片的温度效应及补偿学院:自动化专业:自动化
班级:学号:
*名:*绩:
2013年12月10日
实验一
一、任务与目的
了解温度对应变测试系统的影响。
二、原理(条件)
当应变片所处环境温度发生变化时,由于其敏感栅本身的温度系数,自身的标称电阻值发生变化,而贴应变片的测试件与应变片敏感栅的热膨胀系数不同,也会引起附加形变,产生附加电阻。
为避免温度变化时引入的测量误差,在实用的测试电路中要进行温度补偿。
本实验中采用的是电桥补偿法
三、内容与步骤
(1)了解加热器在实验仪所在的位置及加热符号,加热器封装在双平行的上片梁与下片梁之间,结构为电阻丝。
(2)将差动放大器的(+)、(-)输入端与地短接,输出端插口与F/V表的输入插口Vi相连。
(3)开启主、副电源,调节差放零点旋钮,使F/V表显示零。
再把F/V表的切换开关置2V档,细调差放零点,使F/V表显示零。
关闭主、副电源,
F/V表的切换开关置20V档,拆去差动放大器输入端的连线。
(4)按图接线,开启主副电源,调电桥平衡网络的W1电位器,使F/V表显示零,然后将F/V表的切换开关置2V档,调W1电位器,使F/V表显示零。
(5)在双平行梁的自由端(可动端)装上测微头,并调节测微头,使F/V表显示零。
(6)将-15V电源连到加热器的一端插口,加热器另一端插口接地;F/V表的显示在变化,待F/V表显示稳定后,记下显示数值(起始-0.60 终止
0.094 温度:),并用温度计(自备)测出温度(室温),记下温度值。
(注
意:温度计探头不要触在应变片上,只要触及应变片附近的梁体即可。
)
关闭主、副电源,等待数分钟使梁体冷却到室温。
(7)将F/V表的切换开关置20V档,把图中的R3换成应变片(补偿片),重复4-6过程。
(8)比较二种情况的F/V表数值:在相同温度下,补偿后的数值小很多。
(9)实验完毕,关闭主、副电源,所有旋钮转至初始位置,
四、数据处理(现象分析)
(1)在完成步骤(5)调零之后,F/V表显示数值为0,此时室温20℃。
(2)在连接加热器的电源开始加热后,F/V表的显示在变化,待F/V表显示稳定后,记下显示数值为0.694,此时用温度计测出应变片附近的梁体温
度大约为
(3)将R3换成应变片(补偿片)并重复4-6过程之后,F/V表的读数最终稳定在0.017,发现在相同温度下,补偿后的数值小很多。
五、结论
通过实验进一步了解了应变片的温度效应及补偿原理,并且观察了实过程中的工作状况,实验根据电桥的性质,用一个应变片作为温度补偿片,将它粘贴在一块与被测构件材料相同但不受力的试件上。
将此试件和被测构件放在一起,使它们处于同一温度场中。
粘贴在被测构件上的应变片称为工作片。
在连接电桥时,使工作片与温度补偿片处于相邻的桥臂,。
因为工作片和温度补偿片的温度始终相同,所以它们因温度变化所引起的电阻值的变化也相同,又因为它们处于电桥相邻的两臂,所以并不产生电桥的输出电压,从而使得温度效应的影响被消除。