变频器开关电源的供电取自何处
东元 海利普开关电源电路分析

两例变频器开关电源电路实例——兼论电容C23在电路中的重要作用先看以下电路实例:图1 东元7200PA 37kW变频器开关电源电路CN4图2 海利普HLPP001543B型15kW变频器开关电源电路图1、图2电路结构和原理基本上是相同的,下面以图1电路例简述其工作原理。
开关电源的供电取自直流回路的530V直流电压,由端子CN19引入到电源/驱动板。
电路原理简述:由R26~R33电源启动电路提供Q2上电时的起始基极偏压,由Q2的基极电流Ib的产生,导致了流经TC2主绕组Ic的产生,继而正反馈电压绕组也产生感应电压,经R32、D8加到Q2基极;强烈的正反馈过程,使Q2很快由放大区进入饱合区;正反馈电压绕组的感应电压由此降低,Q2由饱合区退出进入放大区,Ic开始减小;正反馈绕组的感应电压反向,由于强烈的正反馈作用,Q2又由放大状态进入截止区。
以上电路为振荡电路。
D2、R3将Q2截止期间正反馈电压绕组产生的负压,送入Q1基极,迫使其截止,停止对Q2的Ib的分流,R26-R33支路再次从电源提供Q1的起振电流,使电路进入下一个振荡循环过程。
5V输出电压作为负反馈信号(输出电压采样信号)经稳压电路,来控制Q2的导通程度,实施稳压控制。
稳压电路由U1基准电压源、PC1光电耦合器、Q1分流管等组成。
5V输出电压的高低变化,转化为PC1输入侧发光二极管的电流变化,进而使PC1输出测光电三极管的导通内阻变化,经D1、R6、PC1调整了Q2的偏置电流。
以此调整输出电压使之稳定。
这是我的第二本有关变频器维修的书中,对图1电路原理的简述,由于疏漏了对电容C23作用的讲解,给读者带来了一些疑问:1)N2绕组负电压是如何加到Q2基极的?2)电路中C23的作用是什么?3)C23的充、放电回路是怎样走的?这3问题涉及到电路原理的关键部分,无它,开关电管Q2即无法完成由饱和导通→进入放大区→快速截止→重新导通的工作状态转换,三个问题其实又只是一个问题,即图1的C23(或图2中的C38)究竟对电路的工作状态转换起到怎样的重要作用?先不要忙,将这个问题暂且按下不表,先说几句题外话。
变频器电源电路图

频器电路-电源电路1变频器的电源电路主要有三种:(1)串联稳压电源;(2)分立元件开关电源;(3)集成电路开关电源;第一种串联稳压电源是将220V或380V交流电压通过变压器变成各种所需的低压交流电,通过整流,滤波,稳压后输出稳定的直流电源。
早期的变频器有些是用这种电源,现在已经很少使用了,比如赫力,森兰。
下面主要介绍开关电源。
分立元件开关电源1.台安N2-2P5开关电源电路这个开关电源提供了4路电压:+12V,+15V,两路+5V。
2.安川G5A4015开关电源电路T1是高频变压器,Q1是开关管,R22,R24-R27是启动电阻,给开关管提供启动电压,开关管导通,反馈绕组产生的反馈电压经过R14,C7,D14到开关管,光耦PS2和Q2,D2,R4构成稳压电路。
R28,D16,C13是开关管截止时反向电压吸收电路,保护开关管。
开关管QM5HL-24可以用2SD2579替代。
这个开关电源提供了11路电压和一路欠压检测信号:上桥供电电压3路,下桥供电电压一路,+5V,+15V,-15V,+12V,+20V,两路24V变频器 ( Wed, 29 Jul 2009 18:21:39 +0800 )Description:变频器原理图变频器主要由模块,CPU控制板,电源驱动板组成,见上图.L1为进线电抗器,一般需外接,L2为直流电抗器,大部份变频器需要外接,象施耐德,丹佛斯变频器都内置了直流电抗器。
PM1为整流模块,PM2为逆变模块,一般小功率变频器是将整流和逆变整合在一起,大功率变频器整流和逆变都是分开的,功率越大电流越大,因为单一的整流和逆变的电流有限,所以整流和逆变可以并联使用。
PM3是制动晶体,15KW以下的变频器都内置制动晶体,外接一个制动电阻就能做能耗制动。
C1,C2是滤波电容,变频器功率越大,电容的容量就越大,滤波电容的耐压一般是450V,因为380V级的变频器整流滤流后的电压是600V,所以可以将两个耐压为450V的滤波电容串联使用,总的耐压就可以达到900V。
变频器开关电源工作原理

变频器开关电源工作原理首先我们先通俗地概括一下开关电源电路的工作原理:开关电源,顾名思义是指工作在开关状态下的电源电路,那么,电路中哪一个元件工作在开关状态呢?我想大家都知道,就是电源管(通常称为开关管)。
既然电源管工作在开关状态,因此电源管必须具备良好的开关特性,所以电源管通常采用大功率晶体管或场效应晶体管(以场效应晶体管为多)。
要让电源管工作在开关状态,就必须有一个能使电源管由截止变为导通,再由导通变为截止的电路(称为振荡电路),过去大多用分裂元件组成,而现在常用IC(如UC3844)集成电路。
而电源管的导通和截止就使流过N1(开关变压器主绕组上)的电流发生变化,从而产生一个电动势,这个电动势的波形就是一个脉冲信号(称为脉宽调制信号简称PWM)。
开关变压器是一个电磁转换器件,负责一次、二次功率转换,根据变压器的原理,初级和次级线圈匝数之比决定次级感应电动势(脉冲电压)的大小,而线圈的线径决定该绕组所能承受电流的大小(功率),这个电动势的波形也是一个脉冲信号(脉宽调制信号),且频率和输出的开关频率相同,只是峰值不一样而已,再经过整流和滤波后,就可以得到相应的直流输出电压。
变频器开关电源主要包括输入滤波电路,输入整流滤波电路,功率变换电路,控制电路,保护电路,输出整流滤波电路。
1、输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流很大(电容器的电压不会跃变,开启瞬间相当于短路,电感的电流也不会跃变,开启瞬间相当于开路)。
接入RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,这时电阻的温度快速升高后,RT1阻值减小(RT1为负温系数元件),这时它的能量消耗非常小,后级电路可正常工作。
2、整流滤波电路:交流220由桥式整流电路(D1-D4或用桥堆)整流后,经C5滤波后得到较为纯净的直流电压。
台安变频器维修

台安变频器是一种台产变频器,一般功率在22KW以下,一般故障以开关电源和驱动电路损坏较多,以下是台安变频器N2系列的开关电源电路图:台安变频器开关电源电路图一、电路原理分析开关电源电路的供电由直流回路的530V取得。
四只75kΩ2W电阻承担了输送电源启动电流的任务,电源起振后,IC201的供电即由自供电绕组的输出电压经D215、C236整流滤波成直流电压供给。
电源启动后,IC201的8脚输出5V基准电压,除提供8、4脚之间的R、C振荡定时电路的供电外,还提供稳压控制电路中PC9输出侧三极管的电源;IC201的1、2脚之间所并联R、D、C等元件,构成了内部电压误差放大器的反馈回路,决定了放大器的增益和频率传输特性;6脚内部为PWM波形成电路,振荡脉冲由6脚输出,由R241、ZD204消噪和正向限幅,经R240加到开关管TR1的栅极,TR1的导通,形成了开关变压器TL1初级绕组中的电流,TL1的自供电绕组、次级绕组随即产生感生电压,并经负载电路形成输出电流通路。
TL1初级绕组中的电流,在R242、R243、R244三只并联电流采样电阻上,产生压降信号,此电流采样信号经R261输入到IC201的3脚,与内部电路基准电压比较,产生控制信号送后级PWM波形成电路。
因电流采样信号能对主绕组电流变化做出快速反应,使整体电路有较好的电流控制性能,在过流程度较轻时,电流的闭环控制,使输出电流减小,在过流程度较重时,使开关电源停振,保护了开关管和后级负载电路的安全。
稳压电路由+5V输出端、R233、R234、IC202、PC9、IC201的8脚基准电压、R235、R236等环节构成。
开关电源输出的+5V为CPU直接供电,而CPU较之其它电路对供电有较苛刻的要求,要求电压的波动不大于5%,因而开关电源的电压反馈信号就取自这里。
+5V电源是直接受开关电源稳压支路控制的,属于嫡系电源,其它各路输出电源的稳压精度稍次之,属于旁系电源了。
小功率变频器的UC3844开关电源原理及维修技巧

小功率变频器的UC3844开关电源原理及维修技巧作者:宋林桂来源:《无线互联科技》2018年第21期摘要:文章主要介绍小功率变频器的UC3844典型开关电源的基本工作原理,根据笔者的维修变频器开关电源实践经验,介绍开关电源故障产生的原因和维修技巧。
关键词:变频器;UC3844;开关电源原理;维修技巧变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备,是“中国制造”向“中国智造”是转变过程中的重要技术选项,变频器在机电自动化产业中应用广泛、使用频繁,故障时常发生,其中开关电源故障占变频器故障的大概30%。
下面介绍小功率变频器的UC3844典型开关电源的基本工作原理和维修技巧。
1 UC3844开关电源原理1.1 UC3844芯片介绍UC3844是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片,其内部电路结构如图1所示。
芯片包括参考稳压器、欠压锁定电路、振荡器、电压误差放大器、电流取样比较器和脉冲调制锁存器。
芯片引脚1是补偿端,外接阻容元件以补偿误差放大器的频率特性。
引脚2是输出电压反馈端,将输出采样电压加至误差放大器的反相输入端,与同相输入端的2.5 V基准电压进行比较,误差放大器输出电压控制6脚PWM的输出大小,实现输出电压的稳压闭环控制。
引脚3是输出电流反馈端,实现过流保护控制。
引脚4外接接定时电阻Rt和定时电容Ct得UC3844的振荡工作频率,计算公式为:f=1/T=1.72/(Rt×Ct)。
引脚5为GND。
引脚6为PWM输出端,有拉、灌电流的能力。
引脚7为VCC,电压范围为10~34 V。
引脚8为5 V基准电压输出端,带载能力50 mA,为引脚4外接的RC电路提供电压[1]。
1.2 UC3844开关电源工作原理介绍如图2是由UC3844构成的小功率变频器的开关电源电路。
变频器母线530 V直流电压经电阻R1降压后加到UC3844的VCC端,为UC3844提供启动电压,电路启动后高频变压器的次级线圈经过D3和C6整流滤波为UC3844提供正常工作电压。
变频器主电路工作原理

变频器主电路工作原理一、引言变频器是一种用于控制交流电机转速的电子设备,广泛应用于工业生产中。
本文将详细介绍变频器主电路的工作原理。
二、背景知识1. 交流电机:交流电机是一种将交流电能转换为机械能的设备,常见的有感应电机和同步电机两种。
2. 变频器:变频器是一种能够改变交流电源频率和电压的装置,通过控制交流电机的转速和运行方式。
三、变频器主电路的组成1. 整流器:变频器主电路的第一部分是整流器,用于将交流电源转换为直流电源。
常见的整流器有单相整流器和三相整流器两种。
2. 中间电路:整流器输出的直流电压经过滤波电容器后,形成中间电路电压。
中间电路电压的稳定性对变频器的性能有着重要影响。
3. 逆变器:逆变器是变频器主电路的核心部分,将中间电路的直流电压转换为交流电压。
逆变器通常采用IGBT(绝缘栅双极型晶体管)作为开关元件。
4. 输出滤波器:逆变器输出的交流电压经过输出滤波器进行滤波,消除高频噪声和谐波,以保证电机的正常运行。
四、变频器主电路的工作原理1. 启动过程:当变频器通电时,整流器将交流电源转换为直流电源,经过滤波电容器后形成中间电路电压。
逆变器通过控制开关元件的通断,将中间电路的直流电压转换为交流电压。
输出滤波器对逆变器输出的交流电压进行滤波,消除高频噪声和谐波。
最后,交流电压通过输出端口连接到交流电机,实现电机的启动。
2. 运行过程:变频器通过控制逆变器输出的交流电压的频率和电压,来控制电机的转速和运行方式。
通过改变逆变器开关元件的通断时间,可以改变输出电压的有效值和频率,从而实现对电机转速的精确控制。
变频器还可以实现电机的正转、反转、快速停止、缓慢启动等功能。
3. 保护功能:变频器主电路还具有多种保护功能,以确保电机和变频器的安全运行。
常见的保护功能包括过压保护、欠压保护、过流保护、过载保护、过热保护等,可以根据实际需求进行设置和调整。
五、总结变频器主电路是变频器的核心部分,通过整流器、中间电路、逆变器和输出滤波器等组成,实现对交流电机转速和运行方式的精确控制。
变频器开关电源的原理及维修

检查并联在开关变压器一次绕组的尖峰电压吸收网络(由电阻与电容并联后与二极管串联),用指针式万用表测量二极管正反向电阻均为15欧姆,感觉异常。将两只并联二极管拆开检测,正常。细观察,电容器有细微裂纹,测其引脚,查出为2kV 103电容击穿短路。更换后,机器恢复正常。
此电容短路引起开关电源起振困难的故障殊不多见。
顺便说明一下,该机的启动支出路电阻为300k,再加上其它环节的电阻,实际加到开关管栅极的启动电流仅1mA多一点。虽然场效应管为电压控制器件,理论上不吸取电流,但能使其导通的结电容充电电流,恰恰是使其导通的硬指标。从此一角度来讲,场效应管仍为电流驱动器件。当电路参数产生变动后,原启动支路的供给电流不足以使开关管导通乃至微导通,所以电路不能起振。将此启动电流值稍稍加大,电路便有可能起振。300k启动电阻有阻值偏大之嫌,我认为稍稍减小其阻值有利无弊。
只有乙机的故障稍微有趣,试分析如下:
表面看起来,乙机查不出一个坏件,致使维修陷入困境。但减小启动支路的电阻值后,则能正常工作。乙机的“异常之处”到底在哪里呢?可能是元器件性能的微弱变化导致电器参数的的变动,如开关管放大能力的些微降低、或开关变压器因轻度受潮使Q值变化、或3844B输出内阻有所增大,或阻容元件有轻微变异,上述原因的查找与确认委实不易,或者是有一种,甚至有可能是数种原因参与其中。但上述多种原因只导致了一个后果:开关管不能被有效启动,电路不能起振!解决的办法是转变掉现有状态,往促成开关管起振的方面下力气,在起动支路并联电阻是最省力也是最有效的一个方法。
变频器开关电源的原理及维修
维修部 杨海涛
电源是每一个电路的重要组成部分,担负着为电路提供能量的重要作用,它是设备能够正常运行的重要保障。电源的种类很多,开关电源由于体积小、重量轻、效率高、动态稳压效果好,因此被广泛应用到了各种电子设备中。下面就以UC3844开关电源芯片为例讲述一下开关电源的基本原理和在变频电路中的作用。右图a-1所示为开关电源PWM波形调制芯片。该图为8脚双列直插封装。 7脚是芯片的电源输入端,该端在内部集成了稳压器和最低门限电压控制器,所以该芯片不用在外围设置稳压电路,只要接一只降压电阻即可。最低门限值为10V,当7脚输入电压低于10V,该芯片将禁止输出,处于保护状态。正常工作时该端电压约为12V—16V之间。 4脚是内部压控振荡器的定时端,通过接上合适的RC网络,使输出的PWM波控制在20KHZ—100KHZ之间。 a—1 2脚、3脚是输出取样反馈端,用于检测开关电源的输出,以便进行PWM调制控制,从而达到稳压的目的。 在变频器系统中,开关电源需要输出:一组5V/DC、一组±12V/DC、四组20V/DC等多组电压。其中5V/DC 主要用作主板及控制板的供电,±12V/DC用作霍尔检测器件的供电,四组20V/DC用作IGBT的触发供电。变频器的型号及品牌不同,其开关电源的电压值也不尽相同,但基本构架是一样的,在此仅以下图为例讲一讲开关电源的工作原理。 a—2 如图a—2所示:电源经D1—D4、C1、C2整流滤波之后,通过降压电阻R3到了UC3844的7脚电源正端,为其供电,UC3844通过检测当7脚电压大于10V时,控制内部压控振荡器开始工作,通过R8、C5将PWM的频率控制在要求范围之内。此时6脚输出PWM信号去控制开关管Q1的通断,R10是开关管的电流检测电阻,通过检测R10的电压值来实时调整PWM的脉冲度,从而达到自动稳压的目的。在图中变压器的副绕组通过D6、C7、C8整流滤波之后到了UC3844的7脚,增强了UC3844的驱动能力。C9、R11、D5是开关管的滤波吸收网络,目的在于吸收变压器的反向脉冲,保护开关管。AC-1——AC-4是开关变压器的次级输出绕组,通过D7、D8、D9、D10、C10、C11---C17进行整流滤波后输出对后级电路进行供电。了解了开关电源的原理之后,让我们来看看如果开关电源出现问题应该怎样进行维修。开关电源的几个维修步骤如下: 1、检测整流电路D1—D4是否击穿或断路,滤波电路的电容是否损坏,平衡电阻R1、R2是否正常,降压电阻R3是否烧断或阻值增大失效(断电情况下测试)。 2、检测开关管b-e结、c-e结是否有击穿短路现象、测量开关变压器各个绕组是否有短路现象,以确定开关管、及开关变压器的好坏(断电情况下测试)。 3、检测次级输出绕组的整流滤波元件,重点察看滤波电容是否鼓包或损坏,以排除次级电路短路的可能。 4、检测吸收回路D5、R11、C9是否正常(断电情况下测试)。 5、在确定上述元件正常的情况下,我们可以把开关电源板从变频器上取下单独对其进行加电试验。用调压器缓缓地调至开关电源的额定电压值,此时应能听到变压器起振时的吱吱声,如没有听到起振的声音,用万用表检测UC3844的电源正、负级之间是否有12V—16V左右的直流电压。 6、在确定UC3844的供电端电压正常后,可用示波器察看一下UC3844的6脚是否有PWM波输出到开关管的触发端(根据电路设计的不同,PWM波的频率一般在20KHZ—100KHZ之间)。 7、如果没有PWM波输出,则更换定时元件C5、R8、C6或UC3844。经过上述几个步骤的排除,开关电源应该可以正常工作了。在变频器中,开关电源的种类很多,但基本原理都是一样的,比如说每个PWM管理芯片都有供电端、定时元件RC网络、输出PWM波的端口等,只要我们了解了它们的工作原理,按照一定的方法步骤都能够把故障排除掉。下面就把实际维修中遇到的问题和解决办法列举出来,供大家参考一下。案例1:台达变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,因此确定为开关电源板故障。按照上述维修步骤对开关电源板进行测量。在进行第一步测量时,发现直流母线560V到PWM调制芯片之间的的330KΩ/2W的降压电阻损坏,标称330KΩ/2W的电阻,实际测量值达2MΩ以上,因此PWM调制芯片得不到启动的电源,所以无法起振工作。为谨慎起见又检测了开关管、变压器、整流二极管及滤波电容等关键器件,在确定没问题之后上电试验,OK!开关电源起振,输出各组电压正常,装回变频器后开机试验正常,此变频器修复完毕(注:维修人员在维修中,一定要养成习惯:发现坏元件后不要急于更换试机,一定要把功率大的、容易坏的元件都测一下,确定没问题后再试机,这样既安全又保险)。案例2:台安变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量时发现开关管c-e结击穿,将其拆下,然后检测变压器、及整流二极管、滤波电容等关键器件,在确定没问题之后上电试验,输出各组电压正常,装机测试正常,故障排除。案例3:西门子变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量通过,第三步测量通过,第四步测量通过,然后单独对电源板加电测量PWM调制芯片的电源端对地有12.5V左右的电压,说明供电正常。用示波器看芯片的PWM输出端,发现没有PWM调制波形。更换PWM调制芯片后,上电试验正常,故障排除。案例4:施耐德变频器(故障现象:上电无显示)屡烧开关管经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量发现开关管击穿,第三步测量通过,第四步测量通过,更换新的开关管,单独对电源板加电,管子又烧了。把开关管拆下后不装管子,通电试验,测量PWM调制芯片的电源端对地有12V左右的电压,也正常。用示波器看芯片的PWM输出端,发现PWM波只有5-6 KHZ左右,断电后把定时元件拆下测量,发现定时电阻阻值变大,更换定时电阻、开关管后上电正常,不再烧电源管,故障排除。案例5:伦茨变频器(故障现象:上电无显示)屡烧开关管按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量时发现开关管c-e结击穿,第三、四、五、六、七步都测量通过。装上新的开关管上电试验,随着调压器电压的升高,可以听到起振的吱吱声,就是有点响,把电压调到额定电压后测量输出电压低于正常值,不到2分钟,突然闻到一股烧焦的味,保险丝就断了,赶快断电发现开关管很烫手,测量发现其已经击穿。拆下开关管通电试验,测量PWM调制芯片的电源端对地有12V左右的电压,用示波器看芯片的PWM输出端,发现有PWM波输出且频率在30 KHZ左右,也正常。因此怀疑刚换的开关管质量不行,又换上一只,上电试验,结果又把管子给烧了,断电后无意之间碰到了吸收回路的元件,发现烫手,可是在测量的时候正常啊,于是又测一遍,还是正常。干脆把吸收回路先拆了,又换上一只管子通电试验,发现变压器的吱吱声小了,测量各组输出电压也正常。运行了20分钟开关管也没再烧,断电后触摸开关管微热,属正常起热状态,因此判断故障在吸收回路,更换吸收回路元件,故障排除。有的元件老化后虽然我们在冷态测量是好的,可能加电一起热就不行了。以上是一些维修的小经验,在此和大家分享。
变频器的工作原理以及接线图

变频器介绍:变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备.变频器主要由整流〔交流变直流〕、滤波、逆变〔直流变交流〕、制动单元、驱动单元、检测单元微处理单元等组成.变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的.变频器工作原理变频器可分为电压型和电流行两种变频器.电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容.电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感.是整流器,整流器,逆变器.而变频器的主电路由整流器、平波回路和逆变器三部分构成,将工频电源变换为直流功率的"整流器",吸收在变流器和逆变器产生的电压脉动的"平波回路.变频器接线图上图是一副变频器接线图.在变频器的安装中,有一些问题是需要注意的.例如变频器本身有较强的电磁干扰,会干扰一些设备的工作,因此我们可以在变频器的输出电缆上加上电缆套.又或变频器或控制柜内的控制线距离动力电缆至少100mm等等.变频器接线方法一、主电路的接线1、电源应接到变频器输入端R、S、T接线端子上,一定不能接到变频器输出端〔U、V、W〕上,否则将损坏变频器.接线后,零碎线头必须清除干净,零碎线头可能造成异常,失灵和故障,必须始终保持变频器清洁.在控制台上打孔时,要注意不要使碎片粉末等进入变频器中.2、在端子+,PR间,不要连接除建议的制动电阻器选件以外的东西,或绝对不要短路.3、电磁波干扰,变频器输入/输出〔主回路〕包含有谐波成分,可能干扰变频器附近的通讯设备.因此,安装选件无线电噪音滤波器FR-BIF或FRBSF01或FR-BLF线路噪音滤波器,使干扰降到最小.4、长距离布线时,由于受到布线的寄生电容充电电流的影响,会使快速响应电流限制功能降低,接于二次侧的仪器误动作而产生故障.因此,最大布线长度要小于规定值.不得已布线长度超过时,要把Pr.156设为1.5、在变频器输出侧不要安装电力电容器,浪涌抑制器和无线电噪音滤波器.否则将导致变频器故障或电容和浪涌抑制器的损坏.6、为使电压降在2%以内,应使用适当型号的导线接线.变频器和电动机间的接线距离较长时,特别是低频率输出情况下,会由于主电路电缆的电压下降而导致电机的转矩下降.7、运行后,改变接线的操作,必须在电源切断10min以上,用万用表检查电压后进行.断电后一段时间内,电容上仍然有危险的高压电.二、控制电路的接线变频器的控制电路大体可分为模拟和数字两种.1、控制电路端子的接线应使用屏蔽线或双绞线,而且必须与主回路,强电回路〔含200V继电器程序回路〕分开布线.2、由于控制电路的频率输入信号是微小电流,所以在接点输入的场合,为了防止接触不良,微小信号接点应使用两个并联的节点或使用双生接点.3、控制回路的接线一般选用0.3~0.75平方米的电缆.三、地线的接线1、由于在变频器内有漏电流,为了防止触电,变频器和电机必须接地.2、变频器接地用专用接地端子.接地线的连接,要使用镀锡处理的压接端子.拧紧螺丝时,注意不要将螺丝扣弄坏.3、镀锡中不含铅.4、接地电缆尽量用粗的线径,必须等于或大于规定标准,接地点尽量靠近变频器,接地线越短越好.变频器的作用1.变频器可以调整电机的功率,实现电机的变速运行,以此来达到省电的目的.例子体现在离心风机和水泵上,当离心风机和水泵使用了变频器后,操作人员变频调速,可根据需要轻松控制流量,从而节省了能源2.变频器可以降低电力线路中电压的波动,避免了一旦电压发生异常而导致设备的跳闸或者出现异常运行的现象.3.变频器可以减少对电网的冲击,从而有效地减少了无功损耗,增加了电网的有效功率.4.变频器还可以减少机械中传动部件之间的磨损,因此,在一定程度上也降低了成本,提高了系统的稳定性.5.此外,变压器的控制功能非常齐全,可以很好的配合其他的控制设备或者一起,从而实现集中监视和实时控制,为用户解决了很多系统兼容性的麻烦等问题。
变频器各部分的原理

变频器各部分的原理
变频器是一种电子设备,用于将电源输入的交流电转换成可调频率的交流电输出。
它主要由以下几个部分组成:
1. 整流器:变频器的输入是交流电,而输出一般是直流电。
整流器的作用是将输入的交流电转换为直流电,以供后续电路使用。
2. 滤波器:由于输入电源的交流电存在纹波,需要通过滤波器将纹波进行滤除,以保证输出的直流电的稳定性和质量。
3. 逆变器:逆变器是变频器的核心部分,它将直流电转换为可调频率的交流电输出。
逆变器一般使用可控硅、晶体管或功率电子器件作为开关元件,通过控制开关的开关状态和频率,控制输出电压和频率的大小。
4. 控制电路:变频器的控制电路是对逆变器和其他电路进行控制和调节的部分。
它根据输入的控制信号和反馈信号,控制逆变器的开关元件的开关状态和频率,以实现所需的输出电压和频率。
5. 驱动电路:驱动电路主要用于驱动逆变器开关元件的工作,提供足够的电流和电压,以保证开关元件的可靠工作。
总之,变频器通过整流、滤波、逆变和控制等部分的合作,实现了将输入交流电
转换为可调频率的交流电输出的功能。
不同类型的变频器可能还有其他特殊的部分,如保护电路、输出滤波器等。
变频器的电路原理图及其调速原理

变频器电路原理图一、变频器开关电源电路变频器开关电源主要包括输入电网滤波器、输入整流滤波器、变换器、输出整流滤波器、控制电路、保护电路。
我们公司产品开关电源电路如下图,是由UC3844组成的开关电路:开关电源主要有以下特点:1,体积小,重量轻:由于没有工频变频器,所以体积和重量吸有线性电源的20~30%2,功耗小,效率高:功率晶体管工作在开关状态,所以晶体管的上功耗小,转化效率高,一般为60~70%,而线性电源只有30~40%二、二极管限幅电路限幅器是一个具有非线性电压传输特性的运放电路。
其特点是:当输入信号电压在某一范围时,电路处于线性放大状态,具有恒定的放大倍数,而超出此范围,进入非线性区,放大倍数接近于零或很低。
在变频器电路设计中要求也是很高的,要做一个好的变频器维修技术员,了解它也相当重要。
1、二极管并联限幅器电路图如下所示:2、二极管串联限幅电路如下图所示:三、变频器控制电路组成如图1所示,控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路。
在图1点划线内,无速度检测电路为开环控制。
在控制电路增加了速度检测电路,即增加速度指令,可以对异步电动机的速度进行控制更精确的闭环控制。
1)运算电路将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
2)电压、电流检测电路与主回路电位隔离检测电压、电流等。
3)驱动电路为驱动主电路器件的电路,它与控制电路隔离使主电路器件导通、关断。
4)I/0输入输出电路为了变频器更好人机交互,变频器具有多种输入信号的输入(比如运行、多段速度运行等)信号,还有各种内部参数的输出“比如电流、频率、保护动作驱动等)信号。
5)速度检测电路以装在异步电动轴机上的速度检测器(TG、PLG等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
变频器开关电源原理

变频器开关电源原理
变频器开关电源原理是通过将输入电源的直流电转换成高频脉冲信号,再经过输出变压器的变压变频处理,实现电力的调节和变换。
变频器开关电源主要由输入滤波器、整流桥、功率开关器件、变压器和输出滤波器等组成。
工作时,输入电源首先经过输入滤波器,将输入的交流电信号进行滤波去噪,然后交流电信号通过整流桥,将交流电转换为直流电。
接下来,直流电信号经过功率开关器件,例如MOS管、IGBT 等,通过开关管的开关控制,产生高频脉冲信号。
开关频率一般在几十千赫兹至几百千赫兹之间,具体频率取决于应用需求。
高频脉冲信号经过输出变压器的变压变频处理,输出电压和频率可以通过控制开关频率和占空比实现精确调节。
最后,经过变压变频后的信号经过输出滤波器,去除掉高频噪声,使输出电流更加平稳。
变频器开关电源具有高效率、高可靠性和精确控制等特点。
通过改变开关频率和占空比,可以实现对输出电压和频率的精确调节,适应不同负载的需求。
由于采用开关技术,可以大大提高电源的转换效率,减少能量损耗。
总之,变频器开关电源利用开关管的开关控制,将输入电源经过变压变频处理,实现对电力的调节和变换。
它可以精确控制
输出电压和频率,具有高效率和高可靠性的优点,被广泛应用于各种电力调节和变换的场合。
变频器的构造及工作原理

变频器的构造及工作原理变频器是一种电力电子设备,用于控制交流电动机的转速和输出功率。
它通过改变输入电源的频率和电压来实现对电动机的精确控制。
本文将介绍变频器的构造和工作原理。
一、变频器的构造变频器由电源模块、整流模块、中间直流环节、逆变模块、控制模块和输出滤波器等主要组成部分构成。
1.电源模块:负责提供变频器所需的电能,将电网交流电转换为直流电,并为后续的整流模块和逆变模块提供电力支持。
2.整流模块:将电源模块输出的直流电进行整流,得到电压稳定的直流电。
3.中间直流环节:由电容器组成的直流电容器大容量滤波电路,用于平滑整流模块输出的直流电。
4.逆变模块:将直流电转换为交流电,通过控制逆变器开关管的导通和断开以改变输出电压和频率。
5.控制模块:负责控制整个变频器的工作,包括对电机转速、电压、电流、输出功率等参数的调节和保护功能。
6.输出滤波器:用于滤除逆变模块输出的交流电中的高次谐波成分,提供负载所需的电能。
二、变频器的工作原理变频器的工作原理主要包括三个过程:整流过程、逆变过程和控制过程。
1.整流过程:交流电源经过电源模块的处理,转换为直流电,然后经过整流模块进行整流,产生电压稳定的直流电。
2.逆变过程:直流电经过中间直流环节的滤波处理后,送入逆变模块。
逆变模块通过控制逆变器开关管的导通和断开,将直流电转换为交流电,并且可以根据需要改变输出的电压和频率。
3.控制过程:控制模块负责对整个变频器系统进行监测和调节。
它通过采集电机的转速、电流、电压等参数,将其与用户设定的目标值进行比较,然后通过控制逆变模块来调整输出的电压和频率,实现对电动机的精密控制。
总结起来,变频器的工作原理是将输入的交流电转换为直流电,然后再将直流电转换为交流电,并通过控制模块中的逆变器来调节输出的电压和频率,从而实现对电动机的应有控制。
在实际应用中,变频器广泛用于各种需要调速和控制的交流电动机驱动系统,如风机、泵、压缩机等。
通过改变变频器输出的电压和频率,灵活调整电动机的转速和输出功率,可以实现节能降耗、提高系统效率和精确控制的目的,具有重要的应用价值。
变频器工作原理

变频器工作原理变频器是一种将电源交流电转换为不同频率和电压的电力调节装置。
其主要工作原理包括功率电路、控制电路和保护电路。
功率电路是变频器的主要部分,用于将输入的电源交流电转换为需要的频率和电压输出,通常采用IGBT(绝缘栅双极型晶体管)作为开关元件。
其工作原理如下:1.输入电源直流变换:变频器首先将输入的交流电源经过整流电路转换为直流电源。
通常采用整流桥或者整流器将交流电变成直流电。
2.中间电压模块:直流电源经过中间电压模块,其中包含电容器等元件,用于产生中间直流电压,为后续的逆变提供稳定的电源。
3.逆变电路:通过控制IGBT的开关状态,将中间直流电压转换成相应频率和电压的交流电输出。
逆变电路一般采用PWM(脉宽调制)控制方式,通过控制IGBT的导通时间和截止时间来调节输出电压和频率。
控制电路是变频器的重要组成部分,用于控制功率电路的开关状态和调节输出频率和电压。
其主要工作原理如下:1.控制信号生成:控制电路根据输入信号的要求,产生对应的控制信号,包括逆变电路中IGBT的控制信号和其他保护信号。
2.PWM控制:控制电路通过生成PWM信号,控制IGBT的导通和截止时间,从而调节输出电压和频率。
通常采用PID控制算法或者模糊控制算法来实现对输出的精确控制。
保护电路主要用于保障变频器和被控设备的安全运行,常见的保护措施有:1.过载保护:监测输出电流,当电流超过设定值时,及时停机并报警。
2.过温保护:监测变频器内部温度,当温度过高时,及时停机并报警。
3.短路保护:监测输出电路是否出现短路,一旦检测到短路,及时停机。
4.过电压和欠电压保护:监测输出电压的波形和大小,当电压超出或低于设定范围时,即刻停机。
5.缺相保护:监测输入电源的三相供电是否正常,如出现缺相,立即停机。
6.过流保护:监测输入电流,当电流超过额定值时,停机保护。
以上仅是变频器工作原理和保护的基本知识点,实际应用中还需综合考虑使用环境、负载特性等因素,因此在设计和使用变频器时,需要根据具体情况进行选择和配置。
变频器主电路工作原理

变频器主电路工作原理一、引言变频器是一种用于控制交流电机转速的电力调节设备。
它通过改变电源电压的频率和幅值,实现对电机的精确控制。
本文将详细介绍变频器主电路的工作原理。
二、变频器主电路的组成变频器主电路主要由整流器、滤波器、逆变器和控制电路组成。
1. 整流器整流器将交流电源输入转换为直流电源。
通常采用整流桥电路来实现,由四个二极管组成。
当交流电源输入时,整流器将交流电转换为脉冲直流电。
2. 滤波器滤波器用于平滑整流器输出的脉冲直流电,并降低电压的纹波。
常见的滤波器有电容滤波器和电感滤波器。
电容滤波器通过电容器对电压进行平滑,而电感滤波器则利用电感元件对电流进行平滑。
3. 逆变器逆变器将直流电源转换为可变频率和可调幅值的交流电源。
逆变器通常采用IGBT(绝缘栅双极型晶体管)作为开关元件。
通过逆变器的调节,可实现对电机转速的精确控制。
4. 控制电路控制电路是变频器的核心部分,用于控制整个系统的运行。
它接收来自用户的控制信号,并根据设定的参数来调节逆变器的输出频率和幅值。
控制电路通常由微处理器和各种传感器组成,用于监测电机的转速、电流和温度等参数。
三、变频器主电路的工作原理变频器主电路的工作原理可以分为以下几个步骤:1. 输入电源变频器通过输入电源获取供电。
输入电源通常为三相交流电源,频率为50Hz 或60Hz。
2. 整流器工作输入电源经过整流器,将交流电转换为脉冲直流电。
整流器的工作原理是利用四个二极管的导通和截止,将交流电的正半周和负半周分别转换为直流电。
3. 滤波器平滑整流器输出的脉冲直流电经过滤波器进行平滑处理,降低电压的纹波。
电容滤波器通过充放电的方式平滑电压,而电感滤波器则通过电感元件的储能和释能来平滑电流。
4. 逆变器控制平滑后的直流电经过逆变器进行控制。
逆变器中的IGBT开关元件根据控制电路的指令,将直流电转换为可变频率和可调幅值的交流电。
逆变器通过调节IGBT 的导通和截止时间,控制输出电压的频率和幅值。
变频器结构及工作原理

变频器结构及工作原理变频器是一种能够改变交流电频率的设备,主要用于改变电动机的转速、提高电机的效率和降低噪音。
它通过将输入的直流电转变为高频交流电,再通过整流、滤波和逆变等过程得到所需的输出电压和频率。
变频器一般由三部分组成,分别是整流器、滤波器和逆变器。
整流器将交流电转变为直流电,滤波器对直流电进行滤波,使其更加稳定和平滑。
逆变器通过将直流电转变为高频交流电,再通过控制输出波形和频率,实现对电机的控制。
变频器的工作原理如下:1.输入电源:接入220V或380V的交流电源,经过输入端的保险和开关,输入到整流器。
2.整流器:将输入的交流电转变为直流电,通常采用整流桥电路实现,即将交流电通过四个二极管组成的桥路进行整流。
3.滤波器:对整流后的直流电进行滤波处理,通常采用电容器作为滤波元件,使直流电的纹波尽量小,产生平稳的直流电。
4.逆变器:将滤波后的直流电通过逆变器转变为高频交流电。
逆变器的控制方式有很多种,常见的控制方式包括PWM控制、SPWM控制等,通过控制开关管的通断时间来控制输出波形的幅值和频率。
5.输出电路:经过逆变器转换的高频交流电输出到电机,驱动电机正常运行。
变频器根据运行要求与电机匹配,可实现电机运行速度的调节,改变转矩曲线,提高效率和降低噪音。
在变频器的操作过程中,还有一些辅助电路和保护措施,如温度保护、电流保护、过载保护等,以保证变频器的安全稳定运行。
同时,通过前馈控制器和反馈传感器可对输出电压和电流进行检测,并送回控制器进行反馈,从而实现对输出电压和频率的精确调节。
变频器的应用领域非常广泛,常见的应用包括空调、电梯、水泵、风机等各种电机驱动系统。
随着技术的不断发展,变频器不仅在工业领域得到广泛应用,而且在家用电器领域也有着重要的地位,如家用空调、冰箱、洗衣机等家电产品中都有变频器的身影。
变频器的发展将进一步提高电机的控制性能,促进电机驱动系统的发展。
变频器开关电源常识解析

变频器开关电源常识解析变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。
开关电源电路提供变频器的整机控制用电,是变频器正常工作的先决条件。
维修变频器,就得先搞明白开关电源电路。
变频器应用的开关电源电路,为直一交一直型的逆变电路,是一种电压和功率的变换器,将直流电压和功率转换为脉冲电压,再整流成为另一种直流电压。
输人、输出电压由开关变压器相隔离,开关变压器起到功率传递、电压/电流变换的作用。
开关变压器为降压变压器。
开关电源的特点如下:1)开关电源的振荡和调压方式是利用改变脉冲宽度或周期来调整输出电压的,称为时间比例控制,又分为PWM(调宽)和PFM(调频)两种控制方式。
2)从电路的能量转换特性看,可分为正激和反激两种工作方式。
开关管饱和导通时,二次绕组连接的整流器受反偏压而截止,开关变压器的一次绕组流入电流而储能〈电磁转换)。
开关管截止时,二次绕组经负载电路释放电能(磁电转换)。
正激方式则与此相反,实际应用不多。
3)从开关变压器的一次电路结构来看,有分立元件构成的和集成振荡芯片构成的两种电路形式。
因而从振荡信号的来源看,又分为自激(分立零件)和他激式(IC电路)开关电源。
两种电路结构都有应用。
4)开关管有采用双极型器件和采用场效应晶体管的。
5)小功率变频器采用单端正激式电路,大、中功率变频器常采用双端正激式电路。
一般变频器的开关电源,常提供以下几种电压输出:CPU及附属电路、控制电路、操作显示面板的+5V供电;电流、电压、温度等故障检测电路、控制电路的±15V供电;控制端子、工作继电器线圈的24V供电。
四路相互隔离的约为22V的驱动电路的供电,该四路供电往往又经稳压电路处理成+15V、-7.5V的正、负电源供驱动电路,为IGBT逆变输出电路提供激励电流。
任何电子设备,电源电路的故障率总是相当高的一因其要提供整机的电源供应,负担最重。
电梯通用变频器的工作原理

能源反馈型电梯变频器能耗制动型电梯变频器交流异步电动机变频调速原理:变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。
现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。
交-直部分整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。
对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。
(二)变频器元件作用电容C1:是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波,变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。
压敏电阻:有三个作用,一过电压保护,二耐雷击要求,三安规测试需要.热敏电阻:过热保护霍尔:安装在UVW的其中二相,用于检测输出电流值。
选用时额定电流约为电机额定电流的2倍左右。
充电电阻:作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。
如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。
一般而言变频器的功率越大,充电电阻越小。
充电电阻的选择范围一般为:10-300Ω。
储能电容:又叫电解电容,在充电电路中主要作用为储能和滤波。
PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC 的电容串起来作800VDC。
容量选择≥60uf/A均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。
变频器开关电源的供电取自何处

变频器开关电源的供电取自何处变频器开关电源的供电取自何处在维修中常需将控制线路板,进行单独上电检修。
无论是检测CPU主板还是检修电源/驱动板,都需要先使开关电源工作起来,为各部分电路的检测提供条件。
所以须知晓开关电源电路的电源取自哪里,进而用外置维修电源来取代之。
开关电源的电源供给一般有以下几种来处:1、直接取自变频器主电路的直流回路的两端,即储能电容的两端,在变频器电路中,厂家往往标注为P(或P1,供电+端)、N 端(供电-端),P、N之间直流电压约为530V左右;大部分变频器开关电源的供电,皆取自此处。
如台达、东元、台安、康沃、富士等变频器一些机型的开关电源,都是取自直流回路530V直流电压的;2、直流回路的储能电容,由于耐压的关系,用两只串联接于直流回路上,两只电容对530V形成分压点,分压点电压为265V左右。
有的变频器开关电源的供电是取自a点,供电电压降低了一倍。
如英威腾INVT-P9系列小功率变频器的开关电源,取自直流回路的265V 分压;3、开关电源的供电,不接自直流回路,而另用380V/220V 变压器,从变频器电源输入端子R、S、T的任二相上取得,再经整流滤波后,送至开关电源。
如富士、安川、东元变频器的一些机型。
图1 开关电源电路的三种检修供电方式由图1中的三种变频器开关电源电路的的供电方式,可以自己动手制作一个简易的维修电源,放置于检修工作台的一个位置上,这个维修电源可用于对变频器进行拆机的上电检查、维修完毕装机后上电检查、对CPU主板和电源/驱动板的脱机检修等。
图2 开关电源电路的两种维修电源上图中(一)AC端子电源的作用:1、用户送修变频器,测量主接线端子无短路故障后,可从变频器的R、T电源输入端子接入上图(一)的AC端子电源,为变频器上电,进行初步检查,如操作显示面板无显示,控制端子无电压等,即可判断故障出在开关电源电路;操作面板有显示,可通过调看故障记录(一些变频器无此功能),启、停变频器,观察运行和报警(故障代码)情况,进一步判断故障所在,为拆机检测提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器开关电源的供电取自何处
变频器开关电源的供电取自何处
在维修中常需将控制线路板,进行单独上电检修。
无论是检测CPU主板还是检修电源/驱动板,都需要先使开关电源工作起来,为各部分电路的检测提供条件。
所以须知晓开关电源电路的电源取自哪里,进而用外置维修电源来取代之。
开关电源的电源供给一般有以下几种来处:
1、直接取自变频器主电路的直流回路的两端,即储能电容的两端,在变频器电路中,厂家往往标注为P(或P1,供电+端)、N 端(供电-端),P、N之间直流电压约为530V左右;大部分变频器开关电源的供电,皆取自此处。
如台达、东元、台安、康沃、富士等变频器一些机型的开关电源,都是取自直流回路530V直流电压的;
2、直流回路的储能电容,由于耐压的关系,用两只串联接于直流回路上,两只电容对530V形成分压点,分压点电压为265V左右。
有的变频器开关电源的供电是取自a点,供电电压降低了一倍。
如英威腾INVT-P9系列小功率变频器的开关电源,取自直流回路的265V 分压;
3、开关电源的供电,不接自直流回路,而另用380V/220V 变压器,从变频器电源输入端子R、S、T的任二相上取得,再经整流滤波后,送至开关电源。
如富士、安川、东元变频器的一些机型。
图1 开关电源电路的三种检修供电方式
由图1中的三种变频器开关电源电路的的供电方式,可以自己动手制作一个简易的维修电源,放置于检修工作台的一个位置上,这个维修电源可用于对变频器进行拆机的上电检查、维修完毕装机后上电检查、对CPU主板和电源/驱动板的脱机检修等。
图2 开关电源电路的两种维修电源
上图中(一)AC端子电源的作用:
1、用户送修变频器,测量主接线端子无短路故障后,可从变频器的R、T电源输入端子接入上图(一)
的AC端子电源,为变频器上电,进行初步检查,如操作显示面板无显示,控制端子无电压等,即可判断故障出在开关电源电路;操作面板有显示,可通过调看故障记录(一些变频器无此功能),启、停变频器,观察运行和报警(故障代码)情况,进一步判断故障所在,为拆机检测提供依据。
须注意的是:
a、如图3、1中的(三)电路,应将AC端子电压接入该变频器的S、T电源输入端子,否则机器内部开关电源因得不到工作电源,整机不
能工作。
测量T、S端子间只有几十欧姆电阻值,须细致检查和观察一下,不一定是整流模块短路故障,有可能是该电源端子接入了内部变压器的初级绕组啊。
b、部分变频器内部有三相电源输入检测电路,接入单相电源,上电会跳“输入缺相”故障,须找出线路板中的相关电路,将此一报警信号切断或屏蔽掉(见第六章故障电路维修)。
c、大功率变频器,如55kW以上机型,因直流回路的储能电容器容量大,电容器的瞬态充电电流过大,使维修电源中的空气断路器跳闸,此时可在AC端子上串联大功率电阻(如100Ω400W)进行限流充电。
d、维修部有三相动力电源,可直接用三相电源,上电检修。
2、变频器维修完毕,整机装配后,可送入上图(一)中的AC端子电源,将负载端接入2.2kW三相电机,上电试验。
虽然变压器TK1有较强的过载能力,但也要及时调整变频器的频率,使输出电流值较大时(如4A)的时间要短一些,限制在10秒以内,以保障变压器的运行安全。
维修部有三相动力电源,此一试机步骤则不必用维修电源。
上图(一)中DC端子的作用:
接入DC端子电源,是将原变频器内三相整流电路、直流回路全部脱开,而用此电源代替之。
从一定意义上讲,DC端子电源也是
一种安全检修电源,一是变压器本身供电隔离作用,要检修中万一触及强电部分,因无对地回路,不会造成对人体触电的危害(若同时接触两个电源端子,照常电人!)。
二是该电源为小容量电源,又串入2A保险,机器电路即使有短路故障存在,但因电源容量所限和保险的作用,不致于损坏整流和逆变模块。
1、单独维修电源/驱动板和CPU主板时,可将DC端子直接接入开关电源的供电端子上,为开关电源提供工作电源,对CPU主板电路和驱动电路进行检查;
2、整机试机时,可用此电源代替原直流回路,给逆变输出电路供电,对逆变电路进行试验与检查;
须注意的是:
1、中、大功率变频器,储能电容的容量较大,一般单独组装于框架式容器箱内。
在检修过程中,一定要将其撤去(当逆变电路、驱动电路及开关电源有异常时,储能电容上的储存电能,足以在瞬间内烧毁昂贵的逆变模块!),用DC端子电源可直接为逆变电路供电和开关电源电路供电。
严禁将原大容量储能电容并接于逆变供电电源上!待各部分电路检修完毕,进行整机装配时,再装入储能电容。
7.5kW以下小功率变频器,储能电容往往焊装于线路板上,如方便拆下,拆下最好。
如不能拆下,需从P端切断对逆变电路的供
电,串入1A或2A保险管后,再接入P端的供电。
DC端子电源可直接并接于7.5KW以下小功率变频器的直流回路。
上图(二)中的AC端子电源,可对220V交流供电的变频器,进行拆机前和装机后的上电检修;DC端子电源可对该供电级别的变频器进行CPU主板、电源/驱动板的上电检修;可做为图3-1第二种电路开关电源的供电,便于对线路板进行上电检修。
如果想把维修电源做得再方便一点,可以加上输出电压、输出电流指示,即添加电压、电流指示表,用起来,因为有了电压和电流的指示,就更加心中有数了。