数控恒流源-简介
数控恒流源
![数控恒流源](https://img.taocdn.com/s3/m/dbda2ce3f8c75fbfc77db2d1.png)
3.1 数控恒流源数控恒流源为电阻测量提供恒定的电流。
单片机由测量所需的电流而控制输出恒定电流的大小。
实际电路中采用的三极管为TIP41,三极管本身在这里不具备控制电流大小的作用,但是起到驱动和扩流的作用。
前面是一个电压跟随,后面一个负反馈。
R9上的电压为输入的电压Vin。
理论计算I 1=VR1/R1=(Vi-V+)/R1;I 2=VR2/R2=(V+-Va)/R2;因为I+=0,得I1=I2所以Va=(V+-Vi)R2/R1+V+;I 3=VR3/R3=V-/R1;I4=VR4/R4=(VO-V-)/R4;因为I-=0,得I3= I4所以VO=V-(R3/R4+1);从而可得R5上电压为UR5=VO-Va=(R4/R3)×V-- (R2/R1)×V++(V--V+)+ (R2/R1)×Vi ,若R2=R1,R3=R4,且 V-=V+则UR5=Vi(输入电压)假设I5=IL可得VA/RL=VI/R5,由上式的Va=(V+-V-)R2/R1+V+;及R2=R1;可得(2V+-V-)/RL=Vi / R5 即(2V+/V-)-1= RL/ R5;当V+<Vi 和RL<R5,R3+R4>>R5, R3+R4>>RL,时可满足RL上电流恒定。
高精度数控恒流源
![高精度数控恒流源](https://img.taocdn.com/s3/m/0a967cf3eefdc8d377ee327c.png)
摘要本文介绍了一种开环智能数控直流电流源的设计原理和实施方案,该方案采用D/A(MAX531)转换器、运算放大器等器件来控制场效应管导通状态的原理,达到了输出恒流的目的。
整个系统采用AT89S52单片机作为主控部件,将预置电流值数据送入D/A转换器(MAX531),经硬件电路变换为恒定的直流输出,同时采用基本没有温度漂移的康锰铜电阻丝作为精密采样电阻。
采用性能优于普通晶体管的场效应管作为恒流源的主要部件,大功率晶体管作为扩流电路的主要器件,结合三端稳压管和多层滤波使得整个系统性能提升了一个层次,从而实现了高精度恒流源的目的。
系统还对输出电压进行实时采样,通过A/D转换器采样回单片机与用户给定的限压值进行比较,从而监控了输出电压。
同时通过键盘的控制,实现了输出电流值和限压值可预置,可步进调整、输出的电流信号和电压信号可直接数字显示的功能,并具有输出电压实时监控限压报警并自动降低输出电流等功能。
与以往的直流恒流源相比,此次所设计的恒流源具有精度高、结构简单、工作稳定、操作方便、成本低廉、带负载能力强等优点。
关键词:恒流源 AT89S52单片机 MAX531 MAX187AbstractThis paper introduces a smart NC open-loop DC current source design principle and the implementation of the programme, using the D / A (MAX531) converters, op amp, and other devices to control FET on-state principle, the output reached constant current purposes. AT89S52 the entire system uses a single-chip microcomputer control components, preferences current value data will be sent to the D / A converters (MAX531), the hardware circuit for the constant transformation of DC output, but not using the basic temperature drift Concord Manganin resistor Silk as a sophisticated sampling resistor. Performance is better than the ordinary use of the FET transistor as a constant current source of major components, high-power transistors as expanding the main circuit device, the combination of three-terminal regulators and the multi-filter makes the whole system a performance boost levels to achieve a high-precision constant current source purposes. Output voltage of the system to conduct real-time sampling, through the A / D converters with sampling to MCU users to set limit values to compare pressure to control the output voltage. At the same time, the keyboard control and realized the value of output current and voltage-limiting values can be preset, stepping adjustment, the current signal and the output voltage signal can be directly figures show that the function, and real-time monitoring of the output voltage, such as over-voltage alarm function. In the past compared to DC current source, the design of a high-precision constant current source, simple structure and work stability, and easy to operate, low cost, with a payload capacity, and other advantages.Key words: Current source AT89S52MCU MAX531 MAX187目录摘要 (I)前言 (1)第一章系统结构及功能介绍 (2)1.1系统工作原理概述 (2)1.2系统的特点和使用 (2)1.2.1 系统的特点 (2)1.2.2 系统的使用说明 (3)第二章设计方案 (4)2.1方案比较 (4)2.1.1整体方案 (4)2.1.1.1 方案一 (4)2.1.1.2 方案二 (5)2.1.1.3 方案三 (5)2.1.2恒流源方案 (6)2.1.2.1 方案一 (6)2.1.2.2 方案二 (6)2.1.2.3 方案三 (7)2.2最终选用方案 (7)第三章硬件系统设计 (8)3.1系统硬件基本组成 (8)3.2各模块单元电路设计 (8)3.2.1 电源电路 (8)3.2.2 扩流电路 (9)3.2.2.1 电路的优点. (9)3.2.2.2 电路工作原理 (10)3.2.3 恒流电路 (10)3.2.4 采样电路 (11)3.3系统主要芯片介绍 (12)3.3.1 AT89S52单片机 (12)3.3.2 MAX531 (12)3.3.3 MAX187 (13)3.3.4 AT24C16 (14)第四章软件设计 (18)4.1概述 (18)4.2主程序结构 (18)4.3各模块子程序设计原理 (20)4.3.1 MAX531工作原理 (20)4.3.2 MAX187工作原理 (20)4.3.2 键盘扫描原理 (21)4.3.3 LCD 12864显示 (22)第五章系统调试 (23)5.1硬件设计要点 (23)5.1.1 共地问题 (23)5.1.2 采样电阻选择 (23)5.1.3 D/A及A/D电路处理 (24)第六章数据测试及分析 (25)6.1输出电流测试 (25)6.2步进电流测试 (26)6.3 工作时间测试 (27)6.4 负载阻值变化测试 (28)6.5 输出电压值测试 (29)第七章结束语 (31)参考文献 (32)附录 (33)一、系统电路原理图: (33)图1.1 系统电源原理图 (33)图1.2 系统恒流源电路原理图 (33)图1.3 系统单片机最小系统原理图 (34)图1.4 系统D/A、A/D原理图 (34)图1.5 系统显示电路及存储电路 (35)二、系统部分程序设计 (35)2.1 MAX531子程序 (35)2.2 MAX187子程序 (36)2.3 键盘扫描子程序 (37)2.4 AT24C16子程序 (38)2.5 LCD12864子程序 (42)致谢 (44)前言随着电子技术的发展、数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注。
数控恒流源
![数控恒流源](https://img.taocdn.com/s3/m/ddeee3927fd5360cbb1adb36.png)
目录、方案摘要二、作品完成功能三、系统方案论证四、硬件结构设计及实现五、软件结构设计及实现六、作品测试数据七、不足及今后改进方向八、附录总设计电路图摘要:本方案釆用AT 8 9S52单片机作为系统控制核心,实现数控恒流源方案。
设计采用大功率双极型三极管2 SC 3 997以及仪表放大器等构成闭环恒流源控制电路,配以8位 A / D, D/A芯片完成单片机对输出电流的实时检测与实时控制,实现了OmA~15 0 OmA 范围内步进20mA恒定电流输出的功能,保证了纹波电流小于1mA,达到了较高的稳定度。
人机接口釆用4 * 4键盘以及LCD1602液晶显示器,控制界面直观简洁,具有良好的人机交互性。
一作品完成功能1•输出电流范围:0mA"1500mA ;2.可设置并显示输出电流给定值,输出电流与给定值偏差的绝对值W给定值1 %+10 mA:3. 具有“ + ”、“一”步进调整功能,步进W20mA;4. 纹波电流W2mA;5. 自制电源二系统方案论证1. 系统总设计模块DA转换模块自制电源2. 方案论证本系统设计关键在于恒流源模块方案,关于恒流源模块方案电压控制的电流源模块,可采用的方案有以下三种:①功率集成运放,如OPA501、OPA54 1、PA 05等;②运放+晶体三极管放大;③可调集成稳压模块,如LM317o方案一:直接使用功率集成运放。
特点:使用容易、性能稳定可靠。
常用的功率集成运放一般能够输出土4OV, 10〜1 5A的功率,性能指标也较高,完全能够满足本题要求。
功率集成运放还可以双极性输出,但本题只需单极性输出,却需要为功率集成运放配置正负双电源。
方案二:利用三端可调直流稳圧集成芯片,通过调整其输出电圧來实现负载的恒流特性。
特点:直接利用稳压片提供所盡功率,只需要添加相应控制电路即可实现本题的大部分要求,但是,其电流调整率指标只能达到0. 5ko. 1 5%,不满足题目要求,方案三:采用“运放+功率三极管”的结构构成恒流源。
简易数控恒压恒流源
![简易数控恒压恒流源](https://img.taocdn.com/s3/m/3bc5c2235901020207409c0d.png)
设计报告--简易数控恒压恒流电源目录摘要-------------------------------------------------------------------------------------------------4关键词----------------------------------------------------------------------------------------------4 1.方案论证与比较----------------------------------------------------------------------------51.1DC-DC主回路方案------------------------------------------51.2控制方案的比较论证---------------------------------------51.3输出方案-------------------------------------------------51.4提高效率的方案-------------------------------------------61.5SIMPLE SWITCHER Power Module仿真-------------------------62.电路设计与参数计算----------------------------------------------------------------------62.1系统总体设计原理图---------------------------------------62.2主回路器件的选择及参数计算-------------------------------62.3控制电路设计与参数计算-----------------------------------62.4效率的分析及计算-----------------------------------------72.5保护电路设计与参数计算-----------------------------------72.6数字设定及显示电路的设计---------------------------------72.7软件设计-------------------------------------------------73.测试方法与数据------------------------------------------------------------------------------73.1 测试方法-------------------------------------------------7 3.2 测试仪器-------------------------------------------------83.3 测试数据-------------------------------------------------84.测试结果分析----------------------------------------------------------------------------------9 4.1 恒压源---------------------------------------------------9 4.2 恒流源---------------------------------------------------94.3 改进方案-------------------------------------------------95.附件列表----------------------------------------------------------------------------------------10附件一-------------------------------------------------------10 附件二-------------------------------------------------------11 附件三-------------------------------------------------------12摘要:本系统以ATmega16单片机为核心,对主回路采样值(电流、电压)进行AD-DA 处理后,以PWM波的形式对占空比进行调节,到达了使输出电压,电流值稳定的目的。
数控恒流源文档
![数控恒流源文档](https://img.taocdn.com/s3/m/b56713e5856a561252d36f48.png)
目录一方案设计与论证---------------------------------------------------------21.1总体设计方案与比较--------------------------------------------------2二模块电路设计及比较-----------------------------------------------------32.1电源模块-----------------------------------------------------------32.2周立功显示模块-----------------------------------------------------42.3 D/A转换模块-------------------------------------------------------52.4 恒流源模块---------------------------------------------------------52.5 输出采样-----------------------------------------------------------6三软件设计---------------------------------------------------------------63.1 数值处理原理------------------------------------------------------73.2 程序流程方框图----------------------------------------------------73.3 程序清单----------------------------------------------------------8四系统测试---------------------------------------------------------------84.1 功能测试----------------------------------------------------------84.2纹波系数测试-------------------------------------------------------9五数据处理---------------------------------------------------------------95.1 误差测试---------------------------------------------------------9六发挥与创新-------------------------------------------------------------9参考文献------------------------------------------------------------------10仪器仪表-----------------------------------------------------------------10数控直流电流源(F题)摘要:本设计分五个模块:单片机控制及显示模块、数模(D/A)转换模块、恒流源模块、输出显示模块。
高精度数控恒流源
![高精度数控恒流源](https://img.taocdn.com/s3/m/995a55bbe43a580216fc700abb68a98271feacd3.png)
高精度数控恒流源高精度数控恒流源是一种电子设备,其主要作用是为各种电子设备提供恒定的电流输出。
高精度数控恒流源是目前电子设备中必不可少的一种设备,特别是在半导体器件和光器件的制造过程中。
高精度数控恒流源的主要特性是稳定性好、响应迅速、输出精度高。
它可以有效地控制电子设备的功率,确保其稳定运行。
这种设备的工作原理是根据输入电信号来控制输出电流,并具备对输出电流、电压、功率等参数进行精准控制的功能。
高精度数控恒流源通过稳定的电流输出,可以为各种电子设备提供一个恒定的电流源,从而保障设备的正常运行。
高精度数控恒流源的主要应用领域是半导体器件和光器件,其中最常用的是在半导体的制造过程中。
在半导体材料的化学腐蚀、电镀、轻蚀等工艺中,高精度数控恒流源能够保证电流和电压的恒定输出,确保制造过程的正常进行。
此外,在光器件中,高精度数控恒流源还能够为激光二极管驱动、LED驱动等提供恒定的电流。
高精度数控恒流源的性能对于电子设备的稳定性和精度来说十分重要。
因此,高精度数控恒流源使用的材料、硬件、软件设计等方面都要求十分严格。
一般来说,高精度数控恒流源的设计必须符合以下几个方面的要求:1. 稳定性高精度数控恒流源必须具有良好的稳定性,这意味着其需要对其输出电流进行精准的控制和调整。
当其中任何一个元件失去稳定性时,都能对整个系统产生不良的影响,降低系统的精度和可靠性。
2. 精度高精度数控恒流源需要提供高精度电流输出,这是它的主要功能之一。
它可以通过对输出电流进行调整和控制,以保证其精度。
同时还需要提供对输出电流、电压等参数进行监测和测量的功能。
3. 响应速度在不同的应用场景中,需要高精度数控恒流源能够快速地响应变化,来满足其特定的需求。
响应速度通常是指设备需要从一个电流输出值迅速切换到另一个电流输出值时所需的时间。
4. 可靠性高精度数控恒流源需要在长时间运行中保持其良好的性能,以保证其不会因为设备故障而中断正常的运行。
数控恒压恒流源
![数控恒压恒流源](https://img.taocdn.com/s3/m/202935cd5fbfc77da269b1d7.png)
基于msp430单片机的数控恒压恒流电源设计一.Msp430单片机简介MSP430系列单片机是美国德州仪器(TI)1996年开始推向市场的一种16位超低功耗、具有精简指令集(RISC)的混合信号处理器(Mixed Signal Processor)。
称之为混合信号处理器,是由于其针对实际应用需求,将多个不同功能的模拟电路、数字电路模块和微处理器集成在一个芯片上,以提供“单片机”解决方案。
该系列单片机多应用于需要电池供电的便携式仪器仪表中。
二.项目研究内容该电源具有两种工作模式,恒压模式和恒流模式。
在恒压模式下,按照恒压电源的特征工作;在恒流模式下,则按照恒流电源的模式工作。
两种模式具有不同的电路结构。
一种是恒压状态,按照恒压电源的特征在工作,一种是恒流状态,按照恒流电源的特征在工作。
这种电源内部有两个控制单元,一个是稳压控制单元,在负载发生变化的情况下,努力使输出电压保持稳定,前提是输出电流必须小于预先设定的恒流值。
实际上在恒压状态时,恒流控制单元处于休止状态,它不干扰输出电压和输出电流。
当由于负载电阻逐步减小,使得负载电流增加到预先设定的恒流值时,恒流控制单元开始工作,它的任务是在负载电阻继续减小的情况下,努力使输出电流按预定的恒流值保持不变,为此需要使输出电压随着负载电阻的减小而随之降低,在极端情况下,负载电阻阻值降为零(短路状态),输出电压也随之降到零,以保持输出电流的恒定。
这些都是恒流部件的功能,在恒流部件工作时,恒压部件亦处于休止状态,它不再干预输出电压的高低。
直流稳压电源,又称直流稳压器。
它的供电电源大都是交流电源,当交流供电电源的电压或负载电阻变化时,稳压器的直接输出电压都能保持稳定。
稳压器的参数有电压稳定度、纹波系数和响应速度等。
前者表示输入电压的变化对输出电压的影响。
纹波系数表示在额定工作情况下,输出电压中交流分量的大小;后者表示输入电压或负载急剧变化时,电压回到正常值所需时间。
基于单片机的高性能数控恒流源设计与实现
![基于单片机的高性能数控恒流源设计与实现](https://img.taocdn.com/s3/m/c8ea4ff6d05abe23482fb4daa58da0116c171fc9.png)
基于单片机的高性能数控恒流源设计与实现数控恒流源是一种功能比较强大的电子元器件。
它能够为其他电子元器件提供稳定的电流输出,这对很多电子设备的正常运行起到了重要的保障作用。
在工业生产领域,尤其是半导体、电路板等领域,数控恒流源的应用相当广泛。
在本文中,我将介绍一种基于单片机的高性能数控恒流源,让我们一起来看看吧。
一、设计原理该数控恒流源主要由单片机、操作界面、甄别功放和恒流稳压器四部分组成。
单片机和操作界面相连,利用程序控制电流的大小,同时可以显示电流大小和一些操作信息。
甄别功放是用来放大输出电流的,而恒流稳压器则是保证输出电流的稳定性。
二、具体实现1. 单片机电路在本设计中,我们选择了AVR单片机,主要是因为其性价比高以及易于编程的特点。
使用单片机所需的周边电路如晶振、电源电路等,这里就不再赘述。
2. 操作界面我们选择了一个12864的液晶显示器,以及四个按键,分别为上、下、左、右。
通过这些按键来选择电流大小和操作模式等。
3. 甄别功放甄别功放主要是用来放大输出电流的,我们选择了OPA548T 作为甄别功放。
其最大音量及输出功率分别为24V和200W,应该足够满足在工业生产领域的需求。
4. 恒流稳压器稳压芯片使用的是LM317,它可以输出1.2V至37V的电压,并可以有一个电流稳定的输出。
在本设计中,我们将其设置为输出1A的电流。
并用一个调节电阻来实现输出电流的调节。
三、总结本文介绍了一种基于单片机的高性能数控恒流源。
它具有功能强大、精度高、控制方便等优点。
在工业生产领域中,它有着广泛的应用。
希望本文能够对大家在这一领域里的设计和实现提供一些启示和帮助。
基于单片机的数控恒流源设计
![基于单片机的数控恒流源设计](https://img.taocdn.com/s3/m/ba2622d7c9d376eeaeaad1f34693daef5ef7136f.png)
基于单片机的数控恒流源设计
基于单片机的数控恒流源设计是指利用单片机控制程序实现数字恒流源。
可以用于研究实验室中的电路测试,工厂自动化测试,航空电子测量,通讯等各种设备中对电流源做准确测量。
数控恒流源有效控制了输出电流大小,从而使电路中恒流保持在规定的电流值。
基于单片机的数控恒流源的设计,首先要选择单片机,单片机的功能越强大,能控制的电流越精确,相应的性能越好,如常用的均为大功率晶体管 MOS6553,MOSFET等。
然后确定电路,它拥有使能、放大两个部分,使能部分实现电流控制,当控制信号为高电平时,使能部分的电源开启,否则保持在空闲状态;放大部分实现电流的分配和调整,以此来调节输出的电流大小。
完成电路设计之后,根据电路原理编写单片机控制程序,使之可以按照所要求的电流进行调节,最后实现电路的连接,做好容错措施,便可以完成数控恒流源的设计。
基于单片机的数控恒流源设计不仅易于操作,而且可以精确控制输出电流,具备稳定可靠的特性,是我们在实际应用中的绝对优势之一。
数控恒压恒流电源设计
![数控恒压恒流电源设计](https://img.taocdn.com/s3/m/82fdf78ad4bbfd0a79563c1ec5da50e2524dd1d5.png)
数控恒压恒流电源设计数控恒压恒流电源是一种在电子设备研发和制造工作中十分常见的装置,它能够提供稳定的电流和电压输出,广泛应用于电子元器件的测试、电子设备的加工和电子设备的研发等领域。
本文将详细介绍数控恒压恒流电源的设计原理、关键技术以及实际应用等内容。
一、设计原理当负载发生变化时,电源会检测到输出端的电压和电流的变化,然后通过反馈回路根据设定值进行调整,使输出端的电压和电流保持在设定值附近的范围内。
通过不断的反馈和调整,可以实现输出电压和电流的精确控制。
二、关键技术1.电压检测技术:设计电压检测电路,通过传感器或电路来实时检测输出端的电压。
可以使用电压分压器和运算放大器等电路来进行电压检测。
2.电流检测技术:设计电流检测电路,通过传感器或电路来实时检测输出端的电流。
可以使用电流采样电路和运算放大器等电路来进行电流检测。
3.反馈控制技术:通过比较检测到的电压和电流与设定值的差异,设计控制回路来实现恒压和恒流的输出控制。
可以使用控制芯片和电路来进行反馈控制。
4.保护技术:设计过流保护和过压保护电路,当输出端的电流或电压超过设定值时,能够及时切断输出,保护负载和电源设备的安全。
5.数控技术:设计数字控制电路,通过微处理器或可编程逻辑器件等实现对电源的数字控制和参数设定。
三、实际应用在电子设备测试中,数控恒压恒流电源可以提供稳定的电流和电压输出,用于测试电路的工作状态、负载能力等。
在电子设备加工中,数控恒压恒流电源可以提供稳定的电流和电压输出,用于控制电子设备的加工过程,确保电子设备的质量和性能。
在电子设备研发中,数控恒压恒流电源可以提供稳定的电流和电压输出,用于电路原型的调试、电路参数的测量和电路性能的验证等。
总结:数控恒压恒流电源是一种在电子设备研发和制造工作中常见的装置。
其设计原理基于电压和电流的控制回路,通过反馈控制实现稳定的恒压和恒流输出。
数控恒压恒流电源的设计涉及到多个关键技术,如电压检测、电流检测、反馈控制等。
单片机数控电流源设计说明
![单片机数控电流源设计说明](https://img.taocdn.com/s3/m/b5b7a4d9b9d528ea80c7795c.png)
1绪论1.1电流源简介所谓恒流源就是输出电流极其稳定不随负载变化。
为了保证电流不变,输出电压必须始终符合V=I*R。
即负载需要多大电压,恒流源就必须输出多大电压,“无条件”予以满足。
从外部看,就是Ro=∞。
如果R→∞,那么V→∞。
所以理想恒流源都不允许输出开路。
对于实际电路,当R大到一定程度,电压输出能力就会不够,输出电流必然下降,不再恒定。
在一般恒流电路多采用电流负反馈来恒定电流负反馈的作用就是“使之稳定”。
通过时刻“检查”控制对象的状态,并进行调整。
发现小了,就设法使之增大,发现大了,就设法使之减小。
形象地说,电流负反馈电路则是采样输出电流,计算误差,据此调节自身状态,使输出电流稳定,因而,输出特性接近恒流源。
衡量“接近”程度的指标就是输出电阻R远大于零。
一般希望Ro→∞。
(只能接近,不可能完全达到)1.2数控电流源的必要性作为常用的电子仪器在学校和研发和检测部门都有着相当广泛的应用,特别在电路原理实验和电子元件老化测试中都离不开电流源。
随着电子技术的不断进步对电子仪器的要求不断提高,电源作为电路的动力源泉更是扮演着越来越重要的角色,不论是学校实验室还是维修中心都离不开实验电源,然而传统的电源不论是在控制精度还是输出特性上都无法满足要求。
首先从精度上来看传统电流源的调整大多采用旋转电位器的方式,在调整时电流值主要从电位器的刻度读出,容易产生读数误差。
从可操作性来看传统电流原电位器上的刻度有限,不可能非常精细,仅仅靠电位器的几个刻度对操作者的技巧要求比较高,同时误差也比较大。
传统的实验电源急待改进电源。
1.3数控电流源的可行性由于单片机技术的不断发展和D/A,A/D元件的普及使得数控电源成为可能,数控电源不论是在控制精度还是在可操作性上都有传统电源无法比拟的优势,由于单片机的平民化,使得数控电源与传统电源的成本日益接近。
另外,SMT技术也是飞速发展,使得数控电源体积和重量都大大减小,为其在特殊领域的应用奠定了基础。
数控恒流源
![数控恒流源](https://img.taocdn.com/s3/m/405bd9e14afe04a1b071de20.png)
目录一方案比较、设计与论证 (2)二理论分析与计算 (5)三系统框图及电路设计 (6)四单片机软件设计 (11)五校准、测试数据及结果分析 (13)六设计总结 (15)七参考资料 (16)八附件一(系统设计总电路图) (17)摘要本数控电流源由四部分组成:CPU主控及键盘显示电路、恒流源产生电路、信号检测电路和电源电路。
采用128×64点阵LCD汉字显示使显示更为直观。
MAX531 12位D/A转换器作数控电流源控制,具用1/4096的分辨率。
采用高性能运算放大器使电流源的调节范围达到了2~2200mA,步进为1mA,最大负载电压可以大于10V,负载变化对电流无影响。
使用具有双路检测功能的16位Σ-ΔA/D转换器AD7705作为测量部件,测量精度达到了0.01%。
在信号处理时用标准表测量数据和数字恒流源显示数据相比对的方法对数控电流源的误差进行修正,从根本上消除了系统误差。
系统采用线性直流稳压电源,减小了纹波电流。
CPU 采用89C51,软件用C51编写。
整体技术指标达到了题目的全部要求并有所创新。
关键词:数控恒流源;串联稳压电源;数字校准AbstractThe NC current supply comes in four parts: CPU and keyboards circuits and displaying circuits; constant-current source; signal detecting circuits of current and voltage; power circuits. It has more intuitive displaying by using 128×64 dot matrix LCD. MAX531, 12 bits D/A converter with 1/4096 resolution, controls NC current supply. Higher performance operational amplifier adjusts current range from 2 to 2200mA, in which current step is set 1mA. The change of load does not affect current, when the maximum of load voltage less or equal to 10V. Measurement components use 16 bits Σ-Δ A/D converter AD7705 with two-way detecting function, and its accuracy arrives 0.01%. By comparing standard meter measuring data with NC current supply displaying data, the system corrects error of the NC current source in processing signals in order to eliminate systematic errors radically. The system reduces ripple current by using DC regulated power supply.The CPU uses 89C51 MCU. The software is programmed by C51. The whole technology data has met entirely the needs of this subject and has some innovation.Key Words: Numeric control constant current source; Series-wound regulated power supply; Numeric calibration一方案比较、设计与论证⒈恒流源电路的选择根据题目要求,设计一个输出电流范围在20~2000mA、负载电压在10V以内变化的受控恒流源,我们构想了如下三个方案:方案一:图1-1为固定恒流源,如果把基准源LM336-2.5 上的基准电压替换成D/A转换器上的输出电压,此恒流源就是一个受控电流源。
数控恒流源的设计与制作
![数控恒流源的设计与制作](https://img.taocdn.com/s3/m/28ecc40c7f1922791788e8c8.png)
数控恒流源的设计与制作一,解析课题设计并制作一个数控恒流源电路,数控恒流源电路原理图如下图所示。
数控恒流源是指在给定的数字量控制下,负载电阻阻值在一定范围内调节变化时输出电流恒定不变,改变控制数字量,输出恒定电流不随负载改变。
二,设计原理四,单元电路元器件选择(1)计数器采用74HC161计数器。
74HC161的主要功能:1,异步清零功能:当CLR 的反为零时,不论有无时钟脉冲CLK和其他信号输入,计数器被清零,即Qd~Qa都为0。
2,同步并行置数功能:当CLR的反=1,LOAD的反=0时,在输入时钟脉冲CLK上升沿的作用下,并行输入的数据dcba被置入计数器,即Qd~Qa=dcba。
3,计数功能:当LOAD的反=CLR的反=ENP=ENT=1,当CLK端输入计数脉冲时,计数器进行二进制加法计数4,保持功能:当LOAD的反=CLR 的反=1时,且ENP和ENT中有”0“时,则计数器保持原来状态不变。
(2)驱动译码器采用74HC4511芯片。
74HC4511将输入BCD标准代码变换成驱动七段数码管所需的码信号,其中四线A~D为BCD码输入端,高电平有效,A为低位输入端,D为高位端,七段a~g输出高电平以驱动共阴极数码管发光。
LE为锁存控制端,高电平时能够锁存输入的BCD码。
LT为灯测试反相控制端,BI为消隐反相控制端。
(3)数模转换器DAC0832是采样频率为8位的D/A转换芯片,集成电路内有两级输入寄存器,使DAC0832芯片具备双缓冲、单缓冲和直通三种输入方式,以便适于各种电路的需要(如要求多路D/A异步输入、同步转换等)。
DAC0832中有两级锁存器,第一级锁存器称为输入寄存器,它的锁存信号为ILE;第二級锁存器称为DAC 寄存器,它的锁存信号为传输控制信号。
因为有两级锁存器,DAC0832可以工作在双缓冲器方式,即在输出模拟信号的同时采集下一个数字量,这样能有效地提高转换速度。
此外,两级锁存器还可以在多个D/A转换器同时工作时,利用第二级锁存信号来实现多个转换器同步输出。
高精度数控恒流源
![高精度数控恒流源](https://img.taocdn.com/s3/m/01835a03ff4733687e21af45b307e87101f6f8b8.png)
高精度数控恒流源简介高精度数控恒流源是一种用于驱动和控制直流电机的装置,可以根据设定的电流值精确地输出恒定的电流。
它具有高精度、可调节范围广、稳定性好等特点,适用于各种需要恒定电流的应用场合。
工作原理高精度数控恒流源的工作原理基于反馈控制系统。
它通过测量电路中的电压和电流,并与设定的目标电流进行比较,然后通过调节输出电压或电流的方式来实现恒定电流输出。
具体来说,高精度数控恒流源一般由以下几个部分组成:1.控制电路:控制电路担负着整个系统的控制任务。
它可以根据用户设定的目标电流值,通过反馈控制算法计算出合适的控制信号,并将其发送给功率电路。
2.反馈电路:反馈电路用于测量实际电流和电压,将测量结果用作控制电路的输入。
常见的反馈方式包括电压放大器、电阻和电压表等。
3.功率电路:功率电路根据控制电路发送的控制信号,控制输出电流或电压。
它通常由功率放大器、开关元件和滤波电路等组成。
特点与优势高精度数控恒流源具有以下特点与优势:1.高精度:采用先进的控制算法和精确的测量技术,实现恒定电流的高精度输出。
通常,其精度可达到0.1%或更高。
2.宽范围调节:可以根据实际需求,设定不同的电流值,满足不同工作条件下的要求。
调节范围通常为输出电流的10%到100%。
3.稳定性好:通过反馈控制系统的稳定性设计,使高精度数控恒流源具有较好的输出稳定性。
输出电流的波动范围一般在0.1%以内。
4.高效率:采用高效的功率放大器和滤波电路,最大程度地减少功率损耗,并提高能源利用效率。
5.多种保护功能:内置多种保护功能,如过流保护、过温保护、短路保护等,保证设备的安全运行。
6.易操作性:采用直观的用户界面和易于操作的控制方式,使用户可以方便地进行设定和调节。
应用领域由于高精度数控恒流源的特点和优势,它被广泛应用于各个领域,包括但不限于:1.工业自动化:用于驱动和控制直流电机,如机床、工业机器人等,实现恒定电流驱动和精确控制。
2.实验研究:在科学研究和实验中,高精度数控恒流源可以提供稳定的电流源,满足实验和研究对电流的需求。
高效数控恒流源设计报告
![高效数控恒流源设计报告](https://img.taocdn.com/s3/m/192f3c9c48649b6648d7c1c708a1284ac85005a6.png)
高效数控恒流源设计报告一、引言数控恒流源(Numerical Control Constant Current Source)是一种广泛应用于电子设备和工业生产中的电源设备,主要用于稳定输出恒定的电流信号。
在很多应用场景中,对电流的精确控制和稳定性要求较高。
本文将介绍一种高效数控恒流源的设计方案,并详细讨论其工作原理、电路结构和性能指标。
二、设计方案2.1 工作原理数控恒流源的工作原理基于负反馈机制,通过对输出电流进行监测并与设定值进行比较,调整反馈回路中的控制信号,使输出电流保持在设定值附近。
典型的数控恒流源由四个主要部分组成:直流电源、电流检测电路、比较器和功率调节器。
2.2 电路结构本设计方案采用基本的电流控制回路,电路结构如下:电路示意图电路示意图主要组成部分包括:•直流电源:提供基准电压以供电路工作。
•电流检测电路:通过高精度电流传感器对输出电流进行实时监测,并输出检测信号。
•参考电流源:提供设定值参考电流作为比较器的输入。
•比较器:将检测信号与设定值参考电流进行比较,并产生误差信号。
•误差放大器:对比较器输出的误差信号进行放大,以提供足够的调节信号给功率调节器。
•功率调节器:根据误差信号的大小和方向,控制输出电流的大小和稳定性。
2.3 性能指标为了评估数控恒流源的性能,我们需要考虑以下指标:•稳定性:输出电流的稳定性是衡量数控恒流源性能的重要指标,要求输出电流在设定值附近波动幅度小。
•精度:指数控恒流源输出的电流与设定值之间的偏差程度,要求尽可能小。
•响应速度:数控恒流源对于设定值的改变能够快速响应并调整输出电流,要求响应速度较快。
•效率:数控恒流源的电能转换效率,要求尽可能高。
三、实验步骤3.1 集成电路选择和布局设计为了实现高效的数控恒流源设计,我们首先需要选择适合的集成电路并进行布局设计。
考虑到稳定性和性能需求,我们选择了XXX型号的集成电路,并根据电路结构进行布局设计。
3.2 元器件选型和连接根据设计方案,选择适合的元器件,并根据电路结构进行连接。
数控恒流源
![数控恒流源](https://img.taocdn.com/s3/m/aaf3908b8bd63186bcebbc80.png)
数控恒流源1.任务设计并制作数控直流电流源。
输入交流200~240V,50Hz;输出直流电压≤10V。
其原理示意图如下所示。
、要求基本要求(1)输出电流范围:200mA~2000mA;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA;(5)纹波电流≤2mA;(6)自制电源。
发挥部分(1)输出电流范围为20mA~2000mA,步进1mA;(2)设计、制作测量并显示输出电流的装置 (可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的%+1 mA;(4)纹波电流≤;(5)其他。
总体设计方案经初步分析设计要求,得出总体电路由以下几部分组成:电源模块,控制模块(包括AD、DA转换)恒流源模块,键盘模块,显示模块。
以下就各电路模块给出设计方案。
控制部分方案方案一:采用FPGA作为系统的控制模块。
FPGA可以实现复杂的逻辑功能,规模大,稳定性强,易于调试和进行功能扩展。
FPGA采用并行输入输出方式,处理速度高,适合作为大规模实时系统的核心。
但由于FPGA集成度高,成本偏高,且由于其引脚较多,加大了硬件设计和实物制作的难度。
方案二:采用单片机作为控制模块核心。
单片机最小系统简单,容易制作PCB,算术功能强,软件编程灵活、可以通过ISP方式将程序快速下载到芯片,方便的实现程序的更新,自由度大,较好的发挥C语言的灵活性,可用编程实现各种算法和逻辑控制,同时其具有功耗低、体积小、技术成熟和成本低等优点。
基于以上分析,选择方案二,利用STC89C52单片机将电流步进值或设定值通过换算由D/A转换,驱动恒流源电路实现电流输出。
数控恒流源的设计与实现
![数控恒流源的设计与实现](https://img.taocdn.com/s3/m/4f6a67075627a5e9856a561252d380eb6294230f.png)
数控恒流源的设计与实现数控恒流源是一种电子设备,它可以在恒定的电流范围内自动调节输出电流。
这种设备被广泛应用于电子、机械、光学、医疗等领域。
它具有精度高、效率高、可靠性强等优点。
下面,我们将详细讨论数控恒流源的设计与实现。
一、设计方案1.数控恒流源的工作原理数控恒流源的工作原理是利用电阻、电感和开关管等元件组成一个功率电路,通过对开关管的控制,来调节输出电流。
具体过程如下:①从外部输入一个控制信号。
②控制信号由微控制器或其他控制元件解码。
③解码器将控制信号转换为PWM信号。
④PWM信号控制开关管,使其按照一定的频率开闭。
⑤开关管在闭合瞬间,会将电源的电能存储在电感中。
⑥当开关管打开时,存储在电感中的电能会被释放,形成一定的输出电流。
(注:开关管的频率一般在几十KHz以上,这样可以减小开关管的体积,并提高效率。
)2.电路设计数控恒流源的电路设计需要考虑到以下因素:(1)电路的精度:为保证电路输出的电流精度,需要选择高精度的元件。
(2)电路的效率:在能满足精度要求的前提下,应尽量提高电路的效率,以减小体积和降低成本。
(3)电路的稳定性:电路需要在多种不同的工作条件下稳定地输出电流,因此需要在设计中考虑到各种因素的影响。
(4)电路的控制:为了保证电路的稳定和精度,需要采用数字控制技术,实现对电流的精确控制。
基于以上考虑,我们可以设计出如下电路:(1)控制电路:采用单片机或FPGA等数字控制芯片,实现对电路的精确控制。
(2)功率电路:由电源、电感、开关管、稳压电路等部分组成。
(3)反馈电路:通过反馈电路,实现对输出电流的精确测量和控制。
二、实现方法1.电路的制作电路的制作需要根据电路设计方案进行,选择合适的元件进行制作。
在制作的过程中需要注意以下几点:(1)元件的选取需要严格参照设计方案,要保证元件的精度、效率和稳定性。
(2)焊接需要仔细,避免焊接不牢固或损坏元件。
(3)在调试电路时,需要注意安全,避免电路损坏或对人身安全造成影响。
高效数控恒流电源
![高效数控恒流电源](https://img.taocdn.com/s3/m/9cd34ab2d1d233d4b14e852458fb770bf78a3bd3.png)
高效数控恒流电源数控机床是目前制造业生产的重要设备之一,而数控恒流电源则是数控机床上不可或缺的关键元件之一。
高效数控恒流电源可以为数控机床提供稳定、可靠的电源,并在保证机床高效工作的同时还能减少能耗、提高生产效率。
本文将详细介绍数控恒流电源的工作原理、特点以及应用。
一、数控恒流电源的工作原理数控恒流电源主要由变压器、整流滤波器、电流调节器、反馈控制电路等组成。
其工作原理是通过控制电流来维持输出电压的稳定,使得数控机床能够获得稳定的电源输出,实现高效的加工作业。
具体而言,数控恒流电源的工作过程如下:首先,变压器将输入电压升高或降低,经过整流滤波器后,形成一个较为稳定的直流电压。
接着,电流调节器通过调节输出电流的大小来维持恒流输出。
这个过程需要通过反馈控制电路来实现,即将输出电流与设定电流进行比较,得出误差后将其控制在一定范围内,从而达到恒流输出的目的。
二、数控恒流电源的特点1、稳定可靠:数控恒流电源能够在恒流模式下稳定输出,即使外部环境的变化也能够适应,保持恒定的输出电流。
2、精度高:数控恒流电源的电流调节精度高,可以在短时间内快速控制电流输出。
3、适应性强:数控恒流电源能够根据不同的设备和需求进行调整,以适应不同的电源需求。
4、节能环保:数控恒流电源利用节能技术,能够在工作过程中自动调整输出功率,减少能耗,从而更加环保。
三、数控恒流电源的应用数控恒流电源广泛应用于数控机床、焊接设备、医疗设备、通讯设备等领域,为这些领域的高速高精度设备提供高效可靠的电源供应。
在数控机床中,数控恒流电源可通过精确调节输出电流,保证机床恒定的切削负载,从而提高机床的工作效率和精度。
总之,高效数控恒流电源的出现极大地提高了数控机床的生产效率和切削质量,对于现代制造业的发展有着重要的作用。
未来,随着制造业技术的不断更新,数控恒流电源也将不断适应市场需求而不断更新和改进,为数控机床领域的稳定高效发展提供更好的支持。
数控恒流源系统设计
![数控恒流源系统设计](https://img.taocdn.com/s3/m/2ad7e4752f3f5727a5e9856a561252d381eb204a.png)
数控恒流源系统设计数控恒流源系统是一种集数字控制和恒流源技术于一体的电子控制系统。
它主要应用于自动化生产线上的电子设备,能够实现对电子设备的稳定供电,从而保证设备的正常运转。
本文将详细介绍数控恒流源系统的设计方案、工作原理等内容。
一、设计方案1.系统组成数控恒流源系统由功率负载、分流器、电流检测器、控制器、电源及散热系统组成。
2.系统技术方案(1)分流器技术:分流器是指将输入电流分成不同的等份,以便控制其输出。
在数控恒流源系统中,分流器被用于分配电流。
分流器可以采用电阻、晶体管等器件构成,其中采用现代的导电聚合物技术制作的微型分流器更具有优势。
(2)电流检测技术:电流检测器可以实现对电流的精确检测和稳定输出。
它可以监测电子设备的电流信息,并纠正输出电流,确保恒流源输出恒定的电流。
(3)控制器技术:控制器是整个系统的核心部件。
采用先进的数字信号处理器(DSP)技术,可以实现对电压、电流的精确控制,确保系统稳定性。
控制器还提供了人机界面,可通过屏幕显示数字信息和交互指令。
3.系统特点(1)数控恒流源系统采用数字控制技术,具有稳定性好、响应速度快、精度高等特点。
(2)系统采用恒流源技术,能够实现输出固定的电流,从而保证电子设备正常工作。
(3)系统具有反馈控制功能,可以实时监测电流变化,从而自动调整电流输出。
二、工作原理数控恒流源系统的工作原理可以简单概括为三个过程:采样、比较和控制。
1.采样过程该过程是指通过电流检测器对电流进行采样。
检测器可以检测来自负载的电流信息,并将其转换成数值信号,提供给控制器进行处理。
采样周期一般越短,监测到的电流变化越精细。
2.比较过程该过程是指将采样到的电流值和系统设置的目标电流进行比较。
如果采样到的电流值与目标电流值相等,则直接通过恒流源源测出固定电流给负载;如果不相等,则控制器发出控制信号,调整恒流源输出的电流。
3.控制过程该过程是指控制器根据电流检测器采样到的实际电流值进行比较,对恒流源输出的电流进行调整。
数控恒流源设计
![数控恒流源设计](https://img.taocdn.com/s3/m/2fc4a87db207e87101f69e3143323968001cf44c.png)
数控恒流源设计数控恒流源是一种常见的电子设备,其主要功能是对电流进行精确的控制和稳定。
在许多工业和科学领域中,数控恒流源被广泛应用,提供了有效、可靠的电流输出。
以下是关于数控恒流源设计的详细介绍。
一、数控恒流源的定义和优势数控恒流源通常包括电路、控制系统、开关电源和显示屏等组件。
通常,该设备的输出电流可通过特定的控制方式进行设置和调整,实现对电流的精确控制,从而实现恒定电流的输出。
这种电流输出的优点是输出稳定、可靠,从而可以满足工业、科学和医学领域的人员需求。
数控恒流源的优点在于其控制方式灵活多样,可以根据需求进行精确控制。
此外,该设备具有高效、可靠、稳定的特点,可以满足长时间连续工作的需要。
数控恒流源的应用范围非常广泛,其主要应用于自动化设备、实验室、医学仪器等领域中。
二、数控恒流源的设计数控恒流源设计可以分为电路设计、控制系统设计、开关电源设计以及显示和用户界面设计等步骤。
首先是电路设计。
电路设计包括电路板的设计和电源系统的设计,其中电源系统可以选择电池、直流电源或交流电源等。
通常,为了保障设备的输出稳定,电路板部分会使用高精度的电子元件。
其次是控制系统设计。
控制系统设计主要包括数据采集系统、控制算法和控制器的选取等内容。
数控恒流源的控制系统需要使用高精度的传感器进行电流的采集,并需要借助特定的控制算法进行电流控制。
开关电源设计是设计中的关键部分。
开关电源可以通过目标的各种控制方式,如模拟控制和数字控制来实现输出的电流和电压的精确调节,具有较小的尺寸和体积,高效的功率转换,使用寿命长,能够应对各种复杂的工作环境等好处。
最后是显示和用户界面设计。
数控恒流源的显示可以使用LED数字显示、点阵显示等技术,用于显示输出的电流大小、电压、状态和故障等信息。
由于该设备需要接受用户控制,因此需要设计友好的用户界面,以便用户能够轻松掌握其使用方法。
三、数控恒流源的使用方法数控恒流源的使用步骤非常简单。
首先,需要将设备连接到所需的载体上,然后设置所需的电流和电压,最后启动设备即可完成任务。