数字频率计

合集下载

数字频率计的使用

数字频率计的使用

一、实验项目
数字频率计的使用
二、实验目的
训练大家对电子线路设计、安装、调试等环节,培养学生运用课程中所学的理论与实践紧密结合,独立地解决实际问题的能力。

三、实验设备
1、函数信号发生器
2、数字频率计
四、实验内容
说明:NFC-1000C-1系列多功能数字频率计:具有测频、测周期、
计数等功能
输入阻抗:1M(A通道),50(B通道)
灵敏度:50mVrms(1Hz-10Hz)
30mVrms(10Hz-100MHz)
20mVrms(100MHz-1000MHz)
1、频率测量
(1)利用函数信号发生器产生频率f,幅度A的周期信号(正
弦波、方波、三角波)
(2)将信号输入数字频率计的A通道
(3)功能开关选择FA(测频)
输入5Hz信号,计数时间为30秒,观看计数结果。

经过观看后的结果是 151
五、实验总结与体会
实验中组员之间要互相配合,分工明确,充分利用各自的优势,相互合作,共同解决出现的问题,保证在有限的时间内完成任务。

检查问题时采取逐步缩小故障的范围,最后定位,再对相应的位置做检查,解决问题。

数字频率计毕业论文

数字频率计毕业论文

数字频率计毕业论文数字频率计是一种用于测量信号频率的仪器,广泛应用于电子工程、通信工程、无线电技术等领域。

它的原理是通过将输入信号与参考信号进行比较,从而得到信号的频率信息。

本文将从数字频率计的原理、应用以及未来发展方向等方面进行探讨。

一、数字频率计的原理数字频率计的原理基于周期计数法。

它通过将输入信号与参考信号进行比较,并计算两个信号之间的相位差,从而得到信号的频率。

具体来说,数字频率计将输入信号分成若干个周期,并通过计数器记录每个周期的时间。

然后,通过计算每个周期的时间差,即可得到信号的频率。

二、数字频率计的应用数字频率计在电子工程领域有着广泛的应用。

首先,它可以用于测量无线电信号的频率。

在通信工程中,我们经常需要测量无线电信号的频率,以确保信号的稳定性和准确性。

数字频率计能够提供高精度的测量结果,使我们能够更好地了解信号的特性。

其次,数字频率计还可以用于频谱分析。

频谱分析是一种将信号分解成不同频率成分的方法,可以帮助我们了解信号的频率分布情况。

数字频率计可以通过测量信号的频率,为频谱分析提供准确的数据支持,从而帮助我们更好地理解信号的特性。

此外,数字频率计还可以用于音频设备的调试和校准。

在音频工程中,我们经常需要调试和校准音频设备,以确保音频信号的准确性和稳定性。

数字频率计能够提供高精度的频率测量结果,为音频设备的调试和校准提供准确的参考。

三、数字频率计的未来发展方向随着科技的不断发展,数字频率计也在不断演进和改进。

未来,数字频率计有望在以下几个方面得到进一步发展。

首先,数字频率计的测量精度将进一步提高。

随着技术的进步,数字频率计的测量精度将得到进一步提升。

高精度的测量结果将使得我们能够更准确地了解信号的特性,为相关领域的研究和应用提供更可靠的数据支持。

其次,数字频率计的测量范围将进一步扩大。

目前,数字频率计的测量范围通常在几十Hz到几GHz之间。

未来,随着技术的发展,数字频率计的测量范围有望进一步扩大,从而能够满足更广泛的应用需求。

数字频率计

数字频率计

一、总体设计思想1.基本原理数字频率计是用数字显示被测信号频率的仪器,是测量周期信号的频率的。

我们这里要求的是对峰峰值3~5V的方波进行测频。

说到原理,我们应该从什么是频率说起。

所谓频率,就是周期性信号在单位时间(1秒) 内变化的次数。

但是我们既然用到数字测频器,并且用LED显示出来,最好是起到简便的作用,因此如果我们能在给定的单位时间(例如1秒)或其他时间内对信号波形计数,并将计数结果用LED显示出来,就能知道被测信号的频率。

因此,可以将时钟信号先经过分频器把信号的时间脉冲调整成单位时间脉冲,也就是标准秒信号。

这样方便与下面的控制与测频。

然后把被测信号以及刚刚获得的标准秒信号都经过控制电路,设置控制电路的目的是检测是否这两个脉冲信号能否成功送入计数器计数。

而计数器的作用是对输入脉冲计数。

这样我们就有时间脉冲的记录,然后在经过数据锁存器,设置数据锁存器的目的是为了锁定刚刚计数器所记录下来的结果,这样才会有稳定的输出,否则将会造成计数器的结果丢失。

紧接着连接一个显示译码器主要是把信号通过译码器转换成为显示器能够识别的码制,最后则是通过LED显示我们的最终结果。

2.设计框图根据这次课程设计的要求:设计一个数字频率计,测量频率范围:1~100kHz。

频率的LED数字显示。

测量信号方波峰峰值3~5V。

我设计了如下的总体设计框图。

主要是针对我的设计的基本原理也就是先将时钟信号先经过分频器,再把被测信号以及刚刚获得的标准秒信号都经过控制电路,接着是计数器,然后是数据锁存器,数据译码器,最后是LED 显示器。

二、设计步骤和调试过程 1、总体设计电路这次课程设计的要求是设计一个数字频率计,测量频率范围:1~100kHz 。

频率的LED 数字显示。

测量信号方波峰峰值3~5V 。

所以我先将时钟信号先经过分频器把信号的时间脉冲调整成单位时间脉冲,也就是标准秒信号。

这样方便与下面的控制与测频。

然后把被测信号以及刚刚获得的标准秒信号都经过控制电路,设置控制电路的目的是被测信号计数检测是否这两个脉冲信号能否成功送入计数器计数。

基于 fpga 的数字频率计的设计与实现

基于 fpga 的数字频率计的设计与实现

基于 FPGA 的数字频率计的设计与实现随着现代科技的不断发展,我们对数字信号处理的需求也越来越高。

数字频率计作为一种用来测量信号频率的仪器,在许多领域有着广泛的应用,包括无线通信、雷达系统、声音处理等。

在这些应用中,精确、高速的频率测量常常是至关重要的。

而基于 FPGA 的数字频率计正是利用了 FPGA 高速并行处理的特点,能够实现高速、精确的频率计算,因此受到了广泛关注。

本文将从设计思路、硬件实现和软件调试三个方面,对基于 FPGA 的数字频率计的设计与实现进行详细讲解。

一、设计思路1.1 频率计原理数字频率计的基本原理是通过对信号进行数字化,然后用计数器来记录单位时间内信号的周期数,最后根据计数器的数值和单位时间来计算信号的频率。

在 FPGA 中,可以通过硬件逻辑来实现这一过程,从而实现高速的频率计算。

1.2 FPGA 的优势FPGA 作为一种可编程逻辑器件,具有并行处理能力强、时钟频率高、资源丰富等优点。

这些特点使得 FPGA 在数字频率计的实现中具有天然的优势,能够实现高速、精确的频率测量。

1.3 设计方案在设计数字频率计时,可以采用过采样的方法,即对输入信号进行过取样,得到更高精度的测量结果。

还可以结合 PLL 锁相环等技术,对输入信号进行同步、滤波处理,提高频率测量的准确性和稳定性。

二、硬件实现2.1 信号采集在 FPGA 中,通常采用外部 ADC 转换芯片来对输入信号进行模数转换。

通过合理的采样率和分辨率设置,可以保证对输入信号进行精确的数字化处理。

2.2 计数器设计频率计最关键的部分就是计数器的设计。

在 FPGA 中,可以利用计数器模块对输入信号进行计数,并将计数结果送入逻辑单元进行进一步的处理。

2.3 频率计算通过对计数结果进行适当的处理和归一化,可以得到最终的信号频率。

在这一过程中,需要注意处理溢出、误差校正等问题,以保证频率测量的准确性和稳定性。

三、软件调试3.1 FPGA 开发环境在进行基于 FPGA 的数字频率计设计时,可以选择常见的开发工具,例如 Xilinx Vivado 或 Quartus II 等。

简易数字频率计

简易数字频率计

简易数字频率计引言数字频率计是一种用来测量信号频率的仪器。

在电子工程、通信工程和音频工程等领域中都有广泛的应用。

本文将介绍一个简易的数字频率计,它基于微控制器和计数器电路,能够精准地测量输入信号的频率。

设计原理该简易数字频率计的设计原理主要包括三个部分:输入电路、计数器电路和显示电路。

输入电路输入电路用于接收待测量的信号,并将其转换为微控制器可以处理的数字信号。

一般使用一个信号放大器将输入信号放大,并通过一个阻抗匹配电路将信号阻抗与测量电路相匹配。

计数器电路计数器电路是本频率计的核心部分。

它通过计数器器件来测量输入信号的周期时间,并计算出频率值。

常见的计数器器件有74HCxx系列、CD40xx系列等。

在该设计中,我们选择了74HC160 4位可编程同步二进制计数器。

显示电路显示电路用于将测量得到的频率值以可读性良好的方式展示出来。

一般使用数码管进行数字显示。

本设计中使用了共阴极的4位7段数码管,通过串口通信将测量到的频率值发送给数码管进行显示。

硬件设计硬件设计主要包括信号放大电路、计数器电路和显示电路。

信号放大电路设计信号放大电路使用了一个运放进行信号放大,具体的放大倍数可以根据实际需求进行调整。

为了防止输入信号的干扰,还可以添加一个低通滤波器来滤除高频噪声。

计数器电路设计74HC160计数器电路的设计如下: - 连接74HC160的CLK 引脚到信号输入引脚,即可通过输入信号的上升沿触发计数器的计数。

- 使用74HC160的O0~O3输出引脚接到后续的显码驱动电路。

显示电路设计数码管的控制可以使用74HC595移位寄存器进行。

通过接口电路和微控制器进行通信,将测量到的频率值发送给74HC595,然后74HC595控制数码管进行数字显示。

软件设计软件设计主要包括信号处理和数据显示。

信号处理软件部分主要是通过计数器来测量输入信号的周期时间并计算出频率值。

通过编写的程序,将计数器的数值传输给微控制器,并进行运算得到频率值。

简易数字频率计

简易数字频率计

频率计算:通过测量信号的周期或 频率,计算出数字频率值
添加标题
添加标题
添加标题
添加标题
信号处理:通过数字滤波器对采集 到的信号进行滤波,以消除噪声和 干扰
数据输出:将计算出的频率值通过 串口或其他方式输出到计算机或其 他设备
计数器和计时器的编程实现
使用计时器对计数器进行计 时,计算信号的周期
将计数器和计时器的结果通 过软件进行显示和控制
能源监测:简易数字频率计可实现对新能源发电设备的实时监测,提高能源利用效率。 环保监测:简易数字频率计可用于监测环保设备的运行状态,确保污染物排放达标。 智能电网:简易数字频率计可应用于智能电网中,实现电网的智能化管理和优化。 节能减排:简易数字频率计可帮助企业实现节能减排,降低生产成本。
简易数字频率计的技术挑战和发展方向
分析仪等。
科学实验领域: 用于各种与频率 相关的实验,如 电磁波的发射与 接收、无线电通
信等。
工业生产领域: 用于生产过程中 的各种频率测量 和控制,如电机 转速的测量和控 制、生产线上各 种设备的状态监
测等。
简易数字频率计在生物医学工程领域的应用
监测生理信号:简易数字频率计可 以用于监测人体的心电图、脑电图 等生理信号,辅助医生进行疾病诊 断和治疗。
添加标题
添加标题
添加标题
添加标题
频谱分析:对信号进行频谱分析, 了解信号的成分和特性
音频处理:用于音频信号的频率测 量和处理,如音频压缩、降噪等
简易数字频率计在通信和电子测量领域的应用
通信领域:用于 信号频率的测量, 如调频信号、调
相信号等。
电子测量领域: 用于测量电子设 备的频率特性, 如示波器、频谱
界面优化:根据实际需求对显示和控制界面进行优化,提高用户体验和操作便捷性

数字频率计用测频法测量的方法

数字频率计用测频法测量的方法

数字频率计用测频法测量的方法
数字频率计是一种常见的测量设备,通常用于测量信号的频率。

测频法是一种常用的测量频率的方法,它可以通过测量信号的周期来确定信号的频率。

数字频率计通常使用测频法来测量信号的频率。

具体来说,数字频率计可以通过以下步骤来测量信号的频率:
1. 将信号输入到数字频率计中,数字频率计会对其进行处理,并显示信号的频率。

2. 测量信号的周期,数字频率计可以通过测量信号的持续时间来确定信号的周期。

3. 根据信号的周期,可以计算出信号的频率。

数字频率计使用测频法来测量信号的频率,具有准确、快速、方便等特点,适用于许多不同的应用场景。

拓展:
测频法是一种测量频率的方法,它可以通过测量信号的周期来确定信号的频率。

具体来说,测频法可以通过以下步骤来测量信号的频率:
1. 将信号输入到测频法仪器中,仪器会对其进行处理,并显示信号的频率。

2. 测量信号的周期,测频法仪器可以通过测量信号的持续时间来确定信号的周期。

3. 根据信号的周期,可以计算出信号的频率。

测频法仪器通常用于测量信号的频率,特别是在电子学、通信学等领域。

什么是数字频率计它在测量仪器中的应用有哪些

什么是数字频率计它在测量仪器中的应用有哪些

什么是数字频率计它在测量仪器中的应用有哪些数字频率计是一种用于测量信号频率的仪器,它可以精确地测量各种周期性信号的频率,并且在不同领域有广泛的应用。

本文将介绍数字频率计的原理和测量方法,并探讨它在不同测量仪器中的应用。

一、数字频率计的原理数字频率计是基于现代计算机和数字信号处理技术的一种测量仪器。

它通过对输入信号进行数字化处理,获得信号的周期或脉冲宽度,并由此计算出信号的频率。

数字频率计的工作原理可以简化为以下几个步骤:首先,将输入信号通过模数转换器(ADC)转换成数字信号;然后,通过计数器对数字信号进行计数,以获得信号的周期或脉冲宽度;最后,根据信号的周期或脉冲宽度计算出信号的频率,并显示在数字频率计的显示屏上。

二、数字频率计的测量方法数字频率计可以使用不同的测量方法获得准确的频率值,其中常见的方法包括时间测量法、周期测量法和脉冲宽度测量法。

1. 时间测量法时间测量法是最常用的数字频率计测量方法之一。

它通过测量信号周期内的时间来计算频率。

该方法适用于周期性信号,如正弦波、方波等。

时间测量法的基本原理是:首先,将输入信号信号与参考时间间隔进行比较,以判断信号周期的整数倍;然后,使用高精度时钟计数器测量信号周期内的时间,最后根据测得的时间计算出信号的频率。

2. 周期测量法周期测量法适用于脉冲信号或周期性信号。

它通过测量脉冲宽度或信号的占空比来计算频率。

周期测量法的基本原理是:首先,测量脉冲信号或周期性信号的周期或脉冲宽度;然后,根据测得的周期或脉冲宽度计算信号的频率。

3. 脉冲宽度测量法脉冲宽度测量法适用于脉冲信号。

它通过测量脉冲信号的宽度来计算频率。

脉冲宽度测量的基本原理是:首先,检测脉冲信号的上升沿和下降沿;然后,测量脉冲信号上升沿和下降沿之间的时间差,即脉冲信号的宽度;最后,根据脉冲信号的宽度计算信号的频率。

三、数字频率计在测量仪器中的应用数字频率计在各个领域的测量仪器中有广泛的应用,下面将介绍几个主要的应用领域。

数字频率计

数字频率计

数字频率计(51单片机)(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--自动化与电子工程学院单片机课程设计报告课程名称:单片机原理与应用学院:自动化与电子工程院专业班级:学生姓名:完成时间:报告成绩:评阅意见:评阅教师日期目录第1章数字频率计概述 (1)数字频率计概述 0数字频率计的基本原理 0单脉冲测量原理 (1)第2章课程设计方案设计 (1)系统方案的总体论述 (1)系统硬件的总体设计 (2)处理方法 (2)第3章硬件设计 (3)单片机最小系统 (3)第4章软件设计 (4)系统的软件流程图 (4)程序清单 (6)第5章课程设计总结 (6)参考文献 (7)附录Ⅰ仿真截图 (8)附录Ⅱ程序清单 (14)第1章数字频率计概述数字频率计概述数字频率计又称为数字频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

它是一种用十进制数字显示被测信号频率的数字测量仪器。

它的基本功能是测量方波信号及其他各种单位时间内变化的物理量。

本数字频率计将采用定时、计数的方法测量频率,采用6个数码管显示6位十进制数。

测量范围从10Hz—,精度为1%,用单片机实现自动测量功能。

基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。

它以测量频率的方法对方波的频率进行自动的测量。

数字频率计的基本原理数字频率计最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N 时,则被测信号的频率f=N/T(如图所示)。

图频率测量原理频率的测量实际上就是在1s时间内对信号进行计数,计数值就是信号频率。

用单片机设计频率计通常采用的办法是使用单片机自带的计数器对输入脉冲进行计数;好处是设计出的频率计系统结构和程序编写简单,成本低廉,不需要外部计数器,直接利用所给的单片机最小系统就可以实现。

缺陷是受限于单片机计数的晶振频率,输入的时钟频率通常是单片机晶振频率的几分之一甚至是几十分之一,在本次设计使用的AT89C51单片机,由于检测一个由“1”到“0”的跳变需要两个机器周期,前一个机器周期测出“1”,后一个周期测出“0”。

数字显示频率计的设计1

数字显示频率计的设计1

模拟电子技术电路设计仿真作业简易数字频率计1.问题的重述数字频率既是一种十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号以及其他各种单位时间内变化的物理量,因此,它的用途十分广泛。

2. 频率计电路分析及设计设计要求:1.测量范围:0~9999Hz2.最大读数9999Hz,闸门信号的采样时间为1s3.采用4位数码显示4.输入信号最大幅值可以扩展设计原理:所谓“频率”,就是周期性信号在单位时间(1s)内变化的次数。

若在一定时间间隔T内测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。

数字频率计测量频率的原理框图如下图。

其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率。

时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路的输出信号持续时间亦准确的等于1s。

闸门电路由标准秒信号进行控制,当秒信号到来时,闸门开通,被测脉冲信号通过闸门送到级数译码显示电路。

秒信号结束时闸门关闭,计数器停止计数。

由于计数器记得的脉冲数N是在1s时间内的累计数,所以被测信号ui的频率为NHz。

脉冲形成电路脉冲形成电路是555电路构成的施密特触发器。

为了扩展被测信号的频率范围,输入信号u i先经过限幅器,再经过施密特触发器整形,当输入信号幅值较小时,限幅器的二极管截止,不起限幅作用。

图中电阻R3和R4的作用是将被测信号进行电平移动,因为555构成的施密特触发器的上触发电平U T+=(2/3)U CC,下触发电平U T−=(1/3)U CC。

输入信号的直流电平U IO应满足下列关系:(1/3)U CC<U IO<(2/3)U CC。

输入信号的幅度U im与直流电平幅度U IO和回差∆U T有关,一般来说,∆U T越小,对输入信号的幅度U im要求越小。

若取+U CC=+5V,则回差∆U T=1.67V。

若取U IO=2.5V,则取R3=R4=10kΩ,则输入信号的幅度U im=0.83V。

数字频率计实训报告

数字频率计实训报告

一、实训目的本次数字频率计实训旨在使学生掌握数字频率计的基本原理、结构、工作原理以及实际操作技能。

通过实训,学生能够了解数字频率计在电子技术中的应用,提高电子测量和信号处理能力,为今后从事相关领域的工作打下坚实基础。

二、实训环境1. 实训设备:数字频率计、示波器、信号发生器、万用表等。

2. 实训软件:数字频率计操作软件、示波器操作软件等。

3. 实训场地:电子实验室。

三、实训原理数字频率计是一种用于测量信号频率的仪器,它通过数字电路对输入信号进行采样、计数、处理,最终显示出信号的频率。

其基本原理如下:1. 采样:将输入信号按照一定的采样频率进行采样,得到一系列离散的采样值。

2. 计数:对采样值进行计数,得到在一定时间内信号变化的次数。

3. 处理:根据计数结果和采样频率,计算出信号的频率。

四、实训过程1. 数字频率计的结构认识:了解数字频率计的组成部分,如:模拟输入电路、数字信号处理电路、显示电路等。

2. 数字频率计的使用方法:学习数字频率计的操作步骤,包括:开机、设置测量范围、输入信号、读取频率值等。

3. 信号发生器的使用:掌握信号发生器的操作方法,产生不同频率、幅度和波形的信号。

4. 数字频率计的测量:使用数字频率计测量信号发生器产生的信号频率,并与理论值进行比较,分析误差原因。

5. 示波器的使用:观察信号波形,分析信号的频率、幅度、相位等特性。

6. 数据分析与处理:对测量数据进行处理和分析,得出结论。

五、实训结果1. 成功掌握了数字频率计的基本原理、结构和工作原理。

2. 熟练掌握了数字频率计的操作方法,能够独立进行测量和数据分析。

3. 通过实验,验证了数字频率计在电子技术中的应用价值。

4. 提高了电子测量和信号处理能力。

六、实训总结1. 数字频率计是一种重要的电子测量仪器,广泛应用于电子技术领域。

2. 掌握数字频率计的基本原理、结构和工作原理,对于从事电子技术工作具有重要意义。

3. 实训过程中,应注意以下几点:- 熟悉数字频率计的操作方法,避免误操作。

数字频率计课程设计报告

数字频率计课程设计报告

THANKS
精度
精度是数字频率计的重要指标之一, 表示测量结果与真实值之间的接近程 度。提高精度的方法包括采用高精度 计数器、降低系统误差等。
分辨率
分辨率指数字频率计能够分辨的最小 频率间隔,与计数器的位数有关。
稳定性
稳定性指数字频率计在长时间使用过 程中保持其性能参数不变的能力。提 高稳定性的措施包括选用优质元器件 、优化电路设计等。
计数与显示
采用高速计数器对输入信号的脉冲进行计数,同 时将计数值实时显示在数码管或液晶屏幕上。
3
控制与处理
通过微处理器或单片机等控制核心,实现计数器 的启动、停止、清零等操作,并对计数值进行处 理,得到频率值。
关键技术参数
计数范围
数字频率计的计数范围决定了其能够 测量的频率范围,一般应满足实际需 求。
显示器
选用LED或LCD显示器,用于显示测量结果的频率值。
硬件电路图设计
电源电路
设计稳定的电源电路 ,为整个系统提供所 需的工作电压。
输入信号调理电路
根据实际需求设计输 入信号调理电路,包 括放大倍数、滤波截 止频率等参数的确定 。
微控制器电路
设计微控制器的最小 系统电路,包括晶振 、复位电路等。
02
数字频率计基本原理
频率定义及测量方法
频率定义
频率是单位时间内周期性信号重复的 次数,通常以赫兹(Hz)为单位表示 。
测量方法
频率的测量可以通过计数单位时间内 信号周期的个数来实现。常见的测量 方法包括直接计数法、测周法和等精 度测频法。
数字频率计工作原理
1 2
输入信号处理
数字频率计首先接收输入信号,经过放大、整形 等处理,将其转换为适合计数的脉冲信号。

数字频率计的课程设计

数字频率计的课程设计

引言近年来, 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要.在电子系统非常广泛应用领域内, 到处可见到解决离散信息的数字电路。

供消费用的微波炉和电视、先进的工业控制系统、空间通讯系统、交通控制雷达系统、医院急救系统等在设计过程中无一不用到数字技术。

数字电路制造工业的进步, 使得系统设计人员能在更小的空间内实现更多的功能, 从而提高系统可靠性和速度。

数字集成电路具有结构简朴(如其中的晶体管是工作于饱和与截止2种状态, 一般不设偏置电流)和同类型电路单元多(如一个计数系统需要很多同类型的触发器和门电路)的特点, 因而容易是高集成度和归一化。

由于数字集成电路与电子计算机的发展紧密相关, 因而发展不久, 目前已是集成电路中产量最高、集成度最大的一种器件。

集成电路的类型很多, 从大的方面可分为模拟和数字集成电路两大类。

虽然它们都可模拟具体的物理过程, 但其工作方式有着很大的不同。

甚至也许完全不同。

电路中的工作信号通常是用电脉冲表达的数字信号。

这种工作方式的信号, 可以表达2种截然不同的现象。

如以有脉冲表达“1”, 无脉冲便表达“0”;以“1”表达“真”, 则“0”便表达“假”, 等等。

反之亦然。

这就是“数字信号”的含义。

所以, “数字量”不是连续变化的量, 其大小往往并不改变, 但在时间分布上却有着严格的规定, 这是数字电路的一个特点。

数字式频率计基于时间或频率的A/D转换原理, 并依赖于数字电路技术发展起来的一种新型的数字测量仪器。

由于数字电路的飞速发展, 所以, 数字频率计的发展也不久。

通常能对频率和时间两种以上的功能数字化测量仪器, 称为数字式频率计(通用计数器或数字式技术器)。

在电子测量技术中, 频率是一个最基本的参量, 对适应晶体振荡器、各种信号发生器、倍频和分频电路的输出信号的频率测量, 广播、电视、电讯、微电子技术等现代科学领域。

课程设计数字频率计

课程设计数字频率计

课程设计数字频率计一、教学目标本课程旨在通过数字频率计的学习,让学生掌握以下知识目标:理解数字频率计的基本原理和构成;掌握数字频率计的各部分电路及其功能;了解数字频率计在工程和科学研究中的应用。

技能目标为:能够熟练使用数字频率计进行频率测量;能够分析并解决数字频率计使用中遇到的问题。

情感态度价值观目标为:培养学生对电子技术的兴趣和好奇心,激发学生探索科学的热情。

二、教学内容本课程的教学内容主要包括数字频率计的基本原理、构成及其各部分电路的功能,数字频率计的使用方法,以及数字频率计在实际工程和科学研究中的应用。

具体涉及教材的第三章“数字频率计”,内容涵盖数字频率计的定义、分类、工作原理、主要技术指标、使用方法等。

三、教学方法为了提高教学效果,将采用多种教学方法相结合的方式进行教学。

包括:讲授法,用于讲解数字频率计的基本原理、构成及使用方法;讨论法,用于分析数字频率计在实际应用中遇到的问题;实验法,用于让学生亲自动手操作数字频率计,加深对知识的理解。

四、教学资源教学资源包括教材、实验设备、多媒体资料等。

教材为《电子技术基础》第三版,实验设备包括数字频率计、示波器等,多媒体资料包括教学PPT、视频等。

这些资源将有助于支持教学内容和教学方法的实施,提高学生的学习兴趣和效果。

五、教学评估本课程的评估方式包括平时表现、作业、考试等。

平时表现主要评估学生在课堂上的参与度、提问回答等情况;作业包括课堂练习和课后作业,主要评估学生的理解和应用能力;考试包括期中考试和期末考试,主要评估学生对课程知识的掌握程度。

评估方式将客观、公正,全面反映学生的学习成果。

六、教学安排本课程的教学安排如下:共32课时,每周2课时,共计16周。

教学地点为教室。

教学进度安排合理、紧凑,确保在有限的时间内完成教学任务。

同时,教学安排还考虑学生的实际情况和需要,如学生的作息时间、兴趣爱好等,以提高学生的学习效果。

七、差异化教学根据学生的不同学习风格、兴趣和能力水平,本课程将设计差异化的教学活动和评估方式。

频率计资料

频率计资料

频率计频率计是一种用于测量信号频率的仪器,广泛应用于各种领域,包括电子、通信、电力等。

频率计的原理是利用输入信号的周期或脉冲数来计算其频率,从而实现频率测量。

本文将介绍频率计的工作原理、分类、应用及未来发展方向。

工作原理频率计主要通过计算输入信号的周期或脉冲数来确定其频率。

一般来说,频率计可以分为两种类型:数字频率计和模拟频率计。

数字频率计通过将输入信号转换为数字形式,并利用计数器来计算周期或脉冲数。

随着技术的进步,数字频率计在精度和稳定性方面有了显著提高,逐渐成为主流。

模拟频率计则通过比较输入信号与参考信号,利用锁相环等电路来测量频率。

尽管模拟频率计在某些特定应用中仍具有优势,但受限于精度和稳定性较差,逐渐被数字频率计所替代。

分类根据测量范围和精度的不同,频率计可以分为基本频率计和精密频率计。

基本频率计通常用于测量工程中的常用频率范围,如电力系统中的50Hz/60Hz,通信系统中的几百kHz至几GHz等。

这类频率计具有成本低、易操作等特点,适用于大多数应用场景。

精密频率计则用于对频率要求更高的领域,如科学研究、航空航天等。

这类频率计具有更高的精度、稳定性和抗干扰能力,在特定场合中得到广泛应用。

应用频率计作为一种关键的测量仪器,在各个行业都有着重要的应用。

在电力系统中,频率计用于监测电网频率的稳定性,保障电网运行的安全可靠。

在通信系统中,频率计用于测量无线信号的频率,确保通信系统正常工作。

在科学研究中,频率计用于实验室中各种信号的频率测量,为科学家们提供准确的数据支持。

未来发展随着科学技术的不断进步,频率计也在不断发展和完善。

未来,随着5G技术的广泛推广,对高频率、高精度频率计的需求将进一步增加,频率计将朝着更加智能、精准、高效的方向发展。

另外,随着人工智能技术的不断成熟,频率计的自动化、智能化程度也将得到提升,从而进一步提高频率测量的精度和效率。

总的来说,频率计作为一种重要的测量仪器,将在未来的科技发展中继续发挥重要作用,并不断适应各种新的应用场景,为人类的科学研究和生产生活带来更多的便利和效益。

数字频率计实训报告总结

数字频率计实训报告总结

一、实训背景与目的随着科技的飞速发展,数字频率计在各个领域得到了广泛应用。

为了更好地了解数字频率计的工作原理和实际应用,提高自身的实践能力,我们选择了数字频率计作为实训项目。

本次实训旨在使学生掌握数字频率计的设计原理、实现方法及调试技巧,提高学生在电子设计、电路分析等方面的综合能力。

二、实训内容与过程1. 实训内容本次实训主要包括以下内容:(1)数字频率计的基本原理和设计方法(2)TMS320F2812 DSP芯片及其在数字频率计中的应用(3)数字频率计的硬件电路设计(4)数字频率计的软件编程(5)数字频率计的调试与优化2. 实训过程(1)理论学习:通过查阅相关资料,了解数字频率计的基本原理、TMS320F2812 DSP芯片的功能和应用,为后续的实践环节打下理论基础。

(2)硬件电路设计:根据实训要求,设计数字频率计的硬件电路,包括电源管理模块、输入调理模块、信号处理模块、通讯模块和D触发器等。

(3)软件编程:编写数字频率计的软件程序,实现频率测量、脉宽和占空比测量等功能。

(4)调试与优化:对数字频率计进行调试,检查电路性能,优化软件程序,确保数字频率计能够稳定、准确地测量频率。

三、实训成果与分析1. 实训成果本次实训成功设计并实现了一款基于TMS320F2812 DSP芯片的简易数字频率计。

该频率计具有以下特点:(1)高精度:采用多周期测量原理,提高了测量精度。

(2)宽量程:在保证最大相对误差的前提下,尽可能扩大了测量范围。

(3)易于扩展:可根据实际需求,增加其他功能模块。

2. 实训成果分析(1)硬件电路设计方面:在硬件电路设计过程中,我们充分考虑了电路的稳定性和可靠性,选用合适的元器件,确保电路性能。

(2)软件编程方面:在软件编程过程中,我们采用了模块化设计,提高了代码的可读性和可维护性。

同时,针对数字频率计的测量原理,进行了详细的误差分析,优化了软件程序。

(3)调试与优化方面:在调试过程中,我们针对电路性能和软件程序进行了多次优化,确保数字频率计能够稳定、准确地测量频率。

数字频率计设计实训报告

数字频率计设计实训报告

一、实训目的1. 熟悉数字频率计的原理和设计方法。

2. 学会使用数字电路设计工具进行电路设计。

3. 提高实际动手能力,培养创新思维。

4. 增强团队协作意识。

二、实训内容本次实训以设计一款简易数字频率计为目标,主要内容包括:1. 确定设计指标和功能要求。

2. 设计数字频率计的硬件电路。

3. 编写程序实现频率计的功能。

4. 进行电路调试和测试。

三、设计指标和功能要求1. 频率测量范围:1Hz~99.99kHz。

2. 波形测量:正弦波、方波、三角波等。

3. 数码显示:LCD1602液晶显示屏。

4. 量程选择:手动切换。

5. 误差:≤±1%。

四、硬件电路设计1. 信号输入电路:采用LM324运算放大器作为信号放大和整形电路,确保信号幅度在1Vpp以上。

2. 分频电路:采用74HC390计数器进行分频,将输入信号频率降低到计数器可计数的范围内。

3. 计数电路:采用74HC595移位寄存器实现计数功能,计数结果通过串口输出。

4. 显示电路:采用LCD1602液晶显示屏显示频率值。

5. 控制电路:采用AT89C52单片机作为主控制器,负责信号处理、计数、显示和量程切换等功能。

五、程序设计1. 初始化:设置计数器初值、波特率、LCD1602显示模式等。

2. 主循环:检测信号输入、计数、计算频率、显示结果。

3. 信号处理:对输入信号进行放大、整形、分频等处理。

4. 计数:根据分频后的信号频率,对计数器进行计数。

5. 计算频率:根据计数结果和分频系数计算实际频率。

6. 显示:将计算出的频率值通过串口发送到LCD1602显示屏。

7. 量程切换:根据手动切换的量程,调整分频系数。

六、电路调试与测试1. 调试信号输入电路,确保信号幅度在1Vpp以上。

2. 调试分频电路,确保分频后的信号频率在计数器可计数的范围内。

3. 调试计数电路,确保计数器能够正确计数。

4. 调试显示电路,确保LCD1602显示屏能够正确显示频率值。

数字频率计

数字频率计

数字频率计数字频率计是采纳数字电路制做成的能实现对周期性变化信号频率测量的仪器。

频率计重要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。

其扩展功能可以测量信号的周期和脉冲宽度。

通常说的,数字频率计是指电子计数式频率计。

目录优点用途重要构成基本原理优点用途在电子技术领域,频率是一个最基本的参数。

数字频率计作为一种最基本的测量仪器以其测量精度高、速度快、操作简便、数字显示等特点被广泛应用。

很多物理量,例如温度、压力、流量、液位、PH值、振动、位移、速度等通过传感器转换成信号频率,可用数字频率计来测量。

尤其是将数字频率计与微处理器相结合,可实现测量仪器的多功能化、程控化和智能化.随着现代科技的进展,基于数字式频率计构成的各种测量仪器、掌控设备、实时监测系统已应用到国际民生的各个方面。

重要构成频率计重要由四个部分构成:输入电路、时基(T)电路、计数显示电路以及掌控电路。

输入电路:由于输入的信号可以是正弦波,三角波。

而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。

在整形之前由于不清楚被测信号的强弱的情况。

所以在通过整形之前通过放大衰减处理。

当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。

当输入信号电压幅度较小时,若前级输入衰减为零时不能驱动后面的整形电路,则调整输入放大的增益,被测信号得以放大。

时基和闸门电路:闸门电路是掌控计数器计数的标按时间信号,被测信号的脉冲通过闸门进入计数器的个数就是由闸门信号决议的,闸门信号的精度很大程度上决议了频率计的频率测测量精度。

当要求频率测量精度高时,应使用晶体振荡器通过分频获得。

时基信号可由555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基按时间。

被测信号通过闸门,作为计数器的时钟信号。

计数显示电路:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。

数字频率计(51单片机)

数字频率计(51单片机)

数字频率计(51单片机)数字频率计(51单片机)数字频率计(Digital Frequency Counter)是一种常用的电子测量仪器,可用于测量信号的频率。

在本文中,我们将介绍如何使用51单片机实现一个简单的数字频率计。

一、原理简介数字频率计的基本原理是通过计算信号波形周期内的脉冲数来确定频率。

在实际应用中,我们通常使用51单片机作为微控制器,通过计数器和定时器模块来实现频率计算。

二、硬件设计1.信号输入首先,我们需要将待测信号输入到频率计中。

可以使用一个输入接口电路,将信号连接到51单片机的IO口上。

2.计时模块我们需要使用51单片机的定时器/计数器来进行计时操作。

在这里,我们选择使用定时器0来进行计数,同时可以利用定时器1来进行溢出次数的计数,以扩展计数范围。

3.显示模块为了显示测量结果,我们可以使用数码管、LCD液晶显示屏等显示模块。

通过将结果以可视化的方式呈现,方便用户进行观察和读数。

三、软件设计1.定时器配置首先,我们需要对定时器进行配置,以确定计时器的计数间隔。

通过设置定时器的工作模式、计数范围和时钟频率等参数,可以控制定时器的计数精度和溢出时间。

2.中断服务程序当定时器溢出时,会触发中断,通过编写中断服务程序,实现对计数器的相应操作,例如将计数值累加,记录溢出次数等。

3.数字频率计算根据计数器的值和溢出次数,我们可以计算出信号的频率。

通过简单的公式计算,即可得到测量结果。

四、实验步骤1.搭建硬件电路,将待测信号连接到51单片机的IO口上,并连接显示模块。

2.根据硬件设计要求,配置定时器的工作模式和计数范围。

3.编写中断服务程序,实现对计数器的相应操作。

4.编写主程序,实现数字频率计算和显示。

5.下载程序到51单片机,进行测试。

五、实验结果与分析通过实验,我们可以得到信号的频率测量结果,并将结果以数码管或LCD屏幕的形式进行显示。

通过对比实际频率和测量频率,可以评估数字频率计的准确性和稳定性。

数字频率计

数字频率计

二 、数字频率计的设计实例(一)、.频率计测量的工作原理数字频率计是用于测量信号频率的电路。

测量信号的频率参数是最常用的测量方法之一。

实现频率测量的方法较多,在此我们主要介绍三种常用的方法:时间门限测量法、标准频率比较测量法、等精度测量法。

(1) 时间门限测量法在一定的时间门限T 内,如果测得输入信号的脉冲数为N,设待测信号的频率为f x ,则该信号的频率为 TNf x =改变时间T ,则可改变测量频率范围。

此方法的原理框图如图2-1所示,时序波形图如图2-2所示。

用时间门限测量方法测量时,电路实现起来较容易,但对产生的时间门限要求精度较高,测量的时间误差最大是正负一个待测信号周期,即x f /1t ±=∆。

图2-1 测频原理图图2-2 测频时序波形图(2)标准频率比较测量法用两组计数器在相同的时间门限内同时计数,测得待测信号的脉冲个数为N 1、已知的标准频率信号的脉冲个数为N 2,设待测信号的频率为f x ,已知的标准频率信号的频率为f 0;由于测量时间相同,则可得到如下等式:21N f N f x = 从上式可得出待测信号的频率公式为: 021f N N f x =标准频率比较测量法对测量产生的时间门限的精度要求不高,对标准频率信号的频率准确度和稳定度要求较高,标准信号的频率越高,测量的精度就越高。

该方法的测量时间误差与时间门限测量法的相同,可能的最大误差为正负一个待测信号周期,即x f /1t ±=∆。

测量时可能产生的误差时序波形如图2-3所示。

(3)等精度测量法以上介绍的两种测量频率的方法实现电路容易,但是,测量的精度与待测信号的频率有关,待测信号频率越高,测量的精度就越高,反之,测量精度越低。

为了提高测量低频时的精度,使得测量的高、低频率精度都一样,一般采用等精度测量法。

上面介绍的两种方法都是在闸门门限的控制下来实现计数器的计数开始和结束的。

当闸门门限的上升沿到来时,计数器计数开始,当闸门门限的下降沿到来时,计数器计数结束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 设计任务描述1.1设计题目:数字频率计1.2 设计要求:1.2.1 设计目的:(1)掌握数字周期测量计的构成、原理与设计方法;(2)熟悉集成电路的使用方法。

1.2.2 基本要求(1)要求被测信号为方波,峰值为3V到5V(和TTL兼容),被测信号周期范围:10us到1s;(2)设计石英晶体震荡器及分频系统,闸门时间:1ms,10ms,1s,10s;(3)可控制的计数、锁存、译码显示系统。

1.2.3 发挥部分(1)被测信号为三角波信号;(2)数据溢出报警2 设计思路数字周期测量计的设计思路比较明显,主要实现五个功能即可:被测信号的整形标准信号的产生;被测信号分频;利用闸门将两个信号进行比较;将比较结果,即数字的周期经过计数、锁存、译码、显示。

鉴于以上所需实现的功能,对每一步的器件选择就有了大致的设想。

非矩形波整形成矩形波,在这里,我想到了555定时器的一种派生产品,施密特触发器。

其功能后文详,此处不再赘述。

标准信号的产生,我选择的是超小型触发器--NL27WZ04,它的结构精简,而其工作最佳状态恰在本设计的要求之内,兼具造价低这一经济效益于一身,让我无法不把它收进设计之中。

被测信号的分频我使用的是74LS290,接成异步十进制计数器,四片级联使每一级的数量级降低十位,如此就可以实现分频。

最后是计数、锁存、译码、显示过程,这部分的器件分别选用了74LS160、74273、7448、七段显示器。

最后,在计数器上加装一个超量程报警器。

选用74LS85。

寄存之后的信号必须经过译码器才能显示,故在寄存后面用译码器将信号译码,这样输入进来的信号就能显示出来,显示在电子平上。

需要注意的是显示屏显示的数字并不是实际的周期,需要一个换算的过程:被测波=显示数字N×闸门单位×2因为我们做的这个数字周期测量计可能量程方面偏小,所以设置一个超量程报警系统必不可少。

超量程报警系统通过一个555定时器外接少量阻容元件,低电位响,响声时间为10秒。

3 设计方框图4 各部分电路设计及参数计算本设计电路主要分为5大部分,分别是整形电路部分,分频电路部分,主要控制电路部分,计数、译码、锁存电路部分和显示电路部分,以下为具体功能及参数计算。

4.1 整形电路整形电路主要由一个555定时器,一个电阻组成,将定时器的8脚4脚接电源,1脚接地5脚接电容接地,7脚接电阻接5v电源,2脚和6脚相联作为输入端,7脚作为输出端,这样就构成了一个施密特触发器,起到整形作用4.1.1工作原理①当Ui由0上升至≤Ucc*1/3时,Uc1=1,Uc2=0,触发器低电平置位,Q=U0=1。

②当Ui上升,在Ucc*1/3至Ucc*2/3之间,Uc1=1,Uc2=1,触发器保持,Q=U0=1。

③当Ui≥Ucc*2/3时,Uc1=1,Uc2=0,触发器低电平复位,Q=U0=0。

④当Ui由Ucc*下降至≤Ucc*1/3时,Uc1=1,Uc2=0,触发器低电平置位,Q=U0=1。

图4.1 555定时器组成的施密特触发器若输入电压的波形是个三角波,则对应的输出波形如图7.5所示,它是反相输出的施密特触发器。

图4.2三角波整形为方波若输入电压为正弦波,同理。

4.1.2电路特点施密特触发器具有滞回特性,即输出电压由高电平跳变为低电平时所对应的输入电压Ui和由低电平跳变为高电平所对应的输入电压Ui是不同的。

4.2分频电路分频电路由4个集成同步4位二进制递增计数器74LS161组成。

一级分频原理是每输入4个脉冲波形输出一次信号,这就实现了将周期扩大4倍的功能。

二级分频是将一级分频后的信号再次处理,将周期扩大10倍,三级,四级同理,这样就将石英晶体振荡器的发出的周期为信号分别变为100HZ,10HZ,1HZ和0.1HZ的信号,在通过相应的闸门传输。

4.3主要控制电路主控电路主要包括两个555定时器组成的延时电路和一与门的控制门电路组成,作用是控制整个系统的传输。

4.3.1延时电路此电路是由两个555定时器组成的,555定时器的作用是单稳电路延时作用,连接方式入下图4. 3图4.3 555定时器组成的延时电路Uo1----为一次延时输出端,用于给我锁寸信号Uo2----为二次延时输出端,用于输出清零信号4.3.2参数计算输出脉冲宽度等于暂稳态时间,也就是电容充电时间. Uc(0+)=0 , Uc(∞)=Vcc,Uc(Tw)=2Vcc/3;Tw=τln[Uc(∞)- Uc(0+)]/[ Uc(∞)- Uc(Tw)]=RCln(Vcc-0)/(Vcc-3/2Vcc)=RCln3=1.1RC=1.1×910MΩ×0.01μF=10sR——电阻,Ω/kΩ/MΩ;C——电容,μF;f——频率,HZ;tω——报警器报警时间,s。

5 工作过程分析我所做的数字周期测量计的工作过程大体为:信号通过选择开关直接或经过整形放大间接输入分频电路;由NL27WZ04Q超小型振荡器产生符合题设要求大小的标准周期频率,将标准周期信号与被测信号的分频周期一同送入与门,输入计数器的CP端,使计数器工作;另两片555组成的控制电路可控制锁存器工作的延迟时间,使数字的显示有间隔时间。

测量需要一个周期小的波,本设计用的是超小振荡器产生4MHz的波,也就是波长为1/4μs的波。

然后将它的波长先扩大4倍,得到1μs波长的波,我们以它为基准波,扩大4倍的原因是便于计算。

然后将被测波与基准波进行依次与运算,从而得到了被测波的的一个高电平相当于几个基准波的高电平,我们把得到的数记为N。

由于课题要求测量范围是1HZ到999HZ,所以,得到被测波的高电平的范围是0.5s到5μs,所以可以得出N的范围是5到0.5*106,设计一个闸门,对基准波进行扩大,而使N的值变小以达到四位显示器能显示的范围。

把基准波分别扩大10倍,100倍和1000倍得到10μs,100μs和1000μs的基准波,这就解决了数位太多的问题。

将上一步得到的脉冲为N的波就可以给计数器进行计数,需要有四位显示,所以设计了四个计数器,每个计数器满10则向下一位进1,分别对应个位,十位,百位,千位。

6 元器件清单7 主要元器件介绍7.174160同步十进制计数器:74160为十进制计数器,直接清除。

两个高电平有效允许输入EP和ET及动态进位输出使计数器易于级联;ET允许动态进位输出图7.1 74160同步十进制计数器管脚图表7.1 74160同步十进制计数器功能表7.27448共阴七段译码器/驱动器:有效高电平输出:内部有升压电阻因而无需外部电阻;输出最大电压5.5V;吸收电流6.4mA图7.2 7448共阴七段译码器/驱动器管脚图数字频率计7.3集成异步计数器74LS290图7.3 74290集成异步计数器管脚图S9(1)、S9(2)称为置“9”端,R0(1)、R0(2)称为置“0”端;CP0、CP1端为计数时钟输入端,Q3Q2Q1Q0为输出端,NC表示空脚。

74LS290具有以下功能:置“9”功能:当S9(1)=S9(2)=1时,不论其他输入端状态如何,计数器输出Q3 Q2 Q1 Q0=1001,而(1001)2=(9)10,故又称为异步置数功能。

置“0”功能:当S9(1)和S9(2)不全为1,并且R0(1)=R0(2)=1时,不论其他输入端状态如何,计数器输出Q3 Q2 Q1 Q0=0000,故又称为异步清零功能或复位功能。

计数功能:当S9(1)和S9(2)不全为1,并且R0(1)和R0(2)不全为1时,输入计数脉冲CP,计数器开始计数。

计数脉冲由CP0输入,从Q0输出时,则构成二进制计数器;计数脉冲由CP1输入,输出为Q2Q1Q0时,则构成五进制计数器;若将Q0和CP1相连,计数脉冲由CP0输入,输出为Q3Q2Q1Q0时,则构成十进制(8421码)计数器;若将Q3和CP0相连,计数脉冲由CP1输入,输出为Q3Q2Q1Q0时,则构成十进制(5421码)计数器。

因此,74LS290又称为“二—五—十进制型集成计数器”。

沈阳工程学院课程设计(论文)7.4 74273八D型触发器:74273是边沿触发器,具有公共时钟和清除功能。

可以作为缓冲器、存储器、和位移寄存器。

图7.4 74273八D型触发器管脚图7.45G555定时器:7.5555定时器是一种应用极为广泛的中规模集成电路。

该电路应用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器。

因而广泛用于信号的产生、变换、控制与检测。

图7.55G555管脚图数字频率计7.674LS85数值比较器图7.6 74LS85数值比较器管脚图74LS85的功能集成数值比较器74LS85是四位数值比较器,其功能表7.2.1功能表。

从表中可以看出。

该比较器的比较原理和两位比较器原理相同,两个4位数的比较是从A的最高位和B的最高位进行比较,如果它们不相等,则该位的比较结果可以作为两数的比较结果。

若最高位相等则比较次高位,依次类推。

沈阳工程学院课程设计(论文) 输 入输 出A B A B A B A B I I I F F F H L L L H L H L L L H L H L L L H L H L L L H L H L L L H L L L H L L L H H L A >B ××××××××××××××××××××××××××××××××××××A <B A >B A <B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A =B A <B A =B A =B A =B A >B A <BA =BA =B A =B A >B A =BA =BL L L L H H L H L L L H ××H 3333333333333333333333333333222222222222222222222222111111111111111111000000000000001100A>B A<B A=BA>B A<B A=B表7.5 74LS85的逻辑功能表数字频率计小结为期一周的电子技术课程设计结束了,经过一周的不泄努力,老师的循循善诱,我的设计报告终于完成。

相关文档
最新文档