2016年考研数学一【试题版】【无水印】
2016全国硕士研究生入学统一考试数学一真题及答案解析

2016考研数学(一)真题及详细答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且【答案】(C )(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩【答案】(D )(3)若()()222211y xy x =+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111x x A x x B x x C D x x +-+-++【答案】(A )(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩ ,则( ) (A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 【答案】(D )(5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( )(A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似 【答案】(C )(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (D )柱面 【答案】(B )(7)设随机变量()()0,~2>σσμNX ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加(C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 【答案】(B )(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )(缺失)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx【答案】21(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA 【答案】()1,1,0-y(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz【答案】dy dx 2+-(12)设函数()21arctan ax xx x f +-=,且()10''=f ,则________=a【答案】21(13)行列式100010014321λλλλ--=-+____________. 【答案】432234++++λλλλ(14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.【答案】()8.10,2.8三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.【答案】3325+π (16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.【答案】()II k3 (17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()t L f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值 【答案】3(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑【答案】21(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.【答案】略(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?【答案】2-=a 时,无解;1=a 时,有无穷多解,⎪⎪⎪⎭⎫ ⎝⎛----=21211133k k k k X ;2-≠a 且1≠a 时,有唯一解,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+=01240231a a a a X (21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2016年全国硕士研究生招生考试数学(一)真题(含解析)

Cov(x,y)
PXY
VD(X) - VD(Y)
二、填空题
2
---------- X
一9
=----1
94
2'
(9)【答案】
【解】
Zln(l + Zsin t)dt
lim 0
■r f 0
i
1
―
COS
X
2
t ln( 1 + /sin / )dt
lim 0
工f 0
14
—X
2
(10)[答案】_/ +(》一1)4
x ln( 1 + j? sin x )_ 1
lim
j--*0
2工3
【解】rot A
a
a
=j + (y — 1)R.
xyz
N
(11) 【答案】 一djr +2d』・
【解】将x =Q ,y =1代入得n 1.
(工l)z — y2 =x2f (x —nq)两边关于jc求偏导得
n + («z +1)n: = 2jc f Jjc 一 z
:
*:
*
9
)9
)
99
)) 99
))
8
(8
(
:
*
9
)
99
))
8
(
2016年数学(一)真题解析
一、选择题
(1)【答案】(O.
「+°°
【解】
0
dx ( 1 + j? )6
1
cLz
*
o j?"(l +工)"
1
djr
1+ 壬“(
2016考研数学一真题及答案解析(完整版)

2016年全国硕士研究生入学考试数学一一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题纸..指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()22222211,11y x x y x x =+-+=+++是微分方程()()y px y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩ ,则( ) (A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点(C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )T A 与T B 相似 (B )1A -与1B -相似(C )T A A +与T B B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2fx x x=在空间直角坐标下表示的二次曲面为( ) (A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面 (7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( ) (A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加(C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题..纸.指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA (11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a(13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,t f y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz x I 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n x x ∞+=-∑绝对收敛;(II )limn n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ 分别表示为123,,ααα的线性组合。
2016考研数学一真题及解析标准答案

2016考研数学(一)真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()011b a dx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且 (2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( ) ()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点(C )()f x 在0x =处连续但不可导 (D)()f x 在0x =处可导(5)设A,B 是可逆矩阵,且A 与B相似,则下列结论错误的是( )(A)T A 与T B 相似 (B )1A -与1B -相似(C)T A A +与T B B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A)单叶双曲面 (B)双叶双曲面 (C)椭球面 (C)柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( ) (A)p 随着μ的增加而增加 (B)p 随着σ的增加而增加(C )p 随着μ的增加而减少 (D)p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim 200=-+⎰→x dt t t t x x(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axx x x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;。
考研数学一真题及答案解析(完整版)

2016考研数学(一)真题完整版一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 (8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式100010014321λλλλ--=-+____________. (14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题..纸.指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2016考研数学一真题及答案解析(完整版)

2016考研数学〔一〕真题完整版一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 〔1〕若反常积分()11badx x x +∞+⎰收敛,则〔 〕〔2〕已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是〔 〕〔3〕若()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,则()q x =〔 〕〔4〕已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则〔 〕〔A 〕0x =是()f x 的第一类间断点 〔B 〕0x =是()f x 的第二类间断点 〔C 〕()f x 在0x =处连续但不可导 〔D 〕()f x 在0x =处可导 〔5〕设A,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是〔 〕 〔A 〕TA 与TB 相似 〔B 〕1A -与1B -相似 〔C 〕TA A +与TB B +相似 〔D 〕1A A -+与1B B -+相似〔6〕设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为〔 〕〔A 〕单叶双曲面 〔B 〕双叶双曲面 〔C 〕椭球面 〔C 〕柱面 〔7〕设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则〔 〕〔A 〕p 随着μ的增加而增加 〔B 〕p 随着σ的增加而增加 〔C 〕p 随着μ的增加而减少 〔D 〕p 随着σ的增加而减少 〔8〕随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为〔 〕二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.〔9〕()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx〔10〕向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA〔11〕设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz〔12〕设函数()21arctan axxx x f +-=,且()10''=f ,则________=a 〔13〕行列式100010014321λλλλ--=-+____________. 〔14〕设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.〔15〕〔本题满分10分〕已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.〔16〕〔本题满分10分〕设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.〔17〕〔本题满分10分〕设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值〔18〕设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,.3 / 3计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑〔19〕〔本题满分10分〕已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明:〔I 〕级数11()n n n xx ∞+=-∑绝对收敛;〔II 〕lim n n x →∞存在,且0lim 2n n x →∞<<.〔20〕〔本题满分11分〕设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?〔21〕〔本题满分11分〕已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭〔I 〕求99A〔II 〕设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合.〔22〕〔本题满分11分〕设二维随机变量(,)X Y 在区域(){2,01,D x y x xy =<<<<上服从均匀分布,令〔I 〕写出(,)X Y 的概率密度;〔II 〕问U 与X 是否相互独立?并说明理由; 〔III 〕求Z U X =+的分布函数()F z .〔23〕设总体X 的概率密度为()⎪⎩⎪⎨⎧<<=其他,00,3,32θθθx x x f ,其中()∞+∈,0θ为未知参数,321,,X X X 为来自总体X 的简单随机样本,令()321,,max X X X T =. 〔1〕求T 的概率密度〔2〕确定a ,使得aT 为θ的无偏估计 参考答案:。
2016考研数学一真题及答案解析完整版

2016考研数学一真题及答案解析(完整版)2016年考研数学一真题及答案解析(完整版)一、单选题1.已知函数 f(x) 在(0, +∞) 上连续,且满足 f(x+y) = f(x) + f(y) +2√[f(x)f(y)],则 f(x) 的解析式是() A. f(x) = x^2 B. f(x) = x^2 + 2x C. f(x) = x^2 + 4x D. f(x) = x^2 + 6x答案:C解析:将 x=y=0 代入方程得到 f(0) = 0,将 y=0 代入方程得到 f(x) = f(x) + f(0),所以 f(0) = 0。
将 y=x 代入方程得到 f(2x) = 4f(x),所以 f(2x) =4f(x) = 4(x^2 + 2x) = (2x + 4)^2。
所以 f(x) = (x + 2)^2 = x^2 + 4x + 4。
2.在等差数列 1, 3, 5, 2015 中,有多少个数能被 3 整除? A. 672 B. 671C. 670D. 669答案:A解析:等差数列的公差是 2,所以第 n 项是 1 + (n-1)2 = 2n-1。
要使 2n-1 能被 3 整除,则 n 必须是 3 的倍数。
2015 ÷ 3 = 671 余 2,所以有 671 个数能被 3 整除。
3.设 A 是m×n 的矩阵,B 是n×m 的矩阵,则 AB 的秩为() A. m B. nC. m + nD. 0答案:D解析:秩的定义是矩阵的非零行的最大数目。
AB 的秩等于 B 的非零行的最大数目,因为 AB 的行是 A 的行与 B 的列的线性组合,所以 AB 的秩不可能超过 B 的非零行的最大数目。
而 B 的非零行的最大数目不可能大于 n,所以 AB 的秩不可能大于 n,所以 AB 的秩为 0。
二、填空题1.设函数 f(x) = x^2 + ax + b,其中 a, b 是常数,f(x) 的图像经过点 (1,2),则 a + b 的值是 ______。
2016考研数学一真题及解析答案

2016考研数学(一)真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )(3)若()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面 (7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 (8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9?14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2016考研数学一真题完整版

(2)已知函数
f
(x)
2(x 1), x 1,
ln x, x 1.
则
f
(x)
的一个原函数是(
)
(A)
F
(
x)
(x 1)2 , x 1,
x(ln
x
1),
x
1.
(B)
F
(
x)
Hale Waihona Puke (x 1)2 x(ln x 1)
, x 1, 1, x
1.
(C)
((9) (10)向量场
(11)设函数
可微,
. 的旋度
由方程
. 确定,则
=.
2
(12)设函数
f
x = arctan
x
x 1 ax2
,且
,则 a= .
(13)行列式
=
.
(14)设
为来自总体
的简单随机样本,样本均值 =9.5,参数 的置信
度为 0.95 的双侧置信区间的置信上限为 10.8,则 的置信度为 0.95 的双侧置信区间为 .
(D) A A1 与 B B1 相似
(6)设二次型 f (x1, x2 , x3 ) x12 x22 x32 4x1x2 4x1x3 4x2 x3 ,则 f (x1, x2 , x3 ) 2
在空间直角坐标下表示的二次曲面为( (A)单叶双曲面 (C)椭球面
) (B)双叶双曲面 (D)柱面
(Ⅱ)
lim
n
xn
存在,且
0
lim
n
xn
2
.
(20)(本题满分 11 分)
2016年考研数学一真题及答案

2016考研数学一真题及答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+-=++是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩K ,则( ) (A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 (8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式100010014321λλλλ--=-+____________. (14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______. 三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2016考研数学一试题

(C) 椭球面.
7. 设随机变量 X ∼ N (µ, σ 2 ) (σ > 0), 记 p = P {X ⩽ µ + σ 2 }, 则 (A) p 随着 µ 的增加而增加. (B) p 随着 σ 的增加而增加. (D) p 随着 σ 的增加而减少.
(C) p 随着 µ 的增加而减少.
8. 设随机试验 E 有三种两两不相容的结果 A1 , A2 , A3 , 且三种结果发生的概率均为 1 , 将试验 E 独立重复做两次, X 表示两次试验中结果 A1 发生的次数, Y 表示两次 3 试验中结果 A2 发生的次数, 则 X 与 Y 的相关系数为 1 1 1 1 (B) − . (C) . (D) − . (A) − . 2 3 3 2 二、填空题:9 ∼ 14 小题, 每小题 4 分, 共 24 分. ˆ x t ln (1 + t sint) dt 0 9. lim = . x →0 1 − cosx2 10. 向量场 A(x, y, z ) = (x + y + z )i + xy j + z k 的旋度 rotA = .
(C) a < 1 且 a + b > 1. 2(x − 1), 2. 已知函数 f (x) = lnx,
则 f (x) 的一个原函数是 (x − 1)2 , x(lnx + 1) − 1, (x − 1)2 ,
(x − 1)2 , x < 1, (A) F (x) = x(lnx − 1), x ⩾ 1. (x − 1)2 , x < 1, (C) F (x) = x(lnx + 1) + 1, x ⩾ 1. 3. 若 y = (1 + x2 )2 − 两个解, 则 q (x) = (A) 3x(1 + x2 ). (B) −3x(1 + x2 ).
2016考研数学一真题及解析答案

2016考研数学〔一〕真题及答案解析一、选择题:1~8小题,每题4分,共32分,以下每题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 〔1〕假设反常积分()11badx x x +∞+⎰收敛,则〔 〕()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且〔2〕已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是〔 〕()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩〔3〕假设()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,则()q x =〔 〕()()()()()()2222313111xx A x x B x x C D x x +-+-++〔4〕已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则〔 〕〔A 〕0x =是()f x 的第一类间断点 〔B 〕0x =是()f x 的第二类间断点 〔C 〕()f x 在0x =处连续但不可导 〔D 〕()f x 在0x =处可导〔5〕设A ,B 是可逆矩阵,且A 与B 相似,则以下结论错误的选项是〔 〕 〔A 〕TA 与TB 相似 〔B 〕1A -与1B -相似 〔C 〕TA A +与TB B +相似 〔D 〕1A A -+与1B B -+相似〔6〕设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为〔 〕〔A 〕单叶双曲面 〔B 〕双叶双曲面 〔C 〕椭球面 〔C 〕柱面〔7〕设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则〔 〕〔A 〕p 随着μ的增加而增加 〔B 〕p 随着σ的增加而增加 〔C 〕p 随着μ的增加而减少 〔D 〕p 随着σ的增加而减少 〔8〕随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为〔 〕二、填空题:9-14小题,每题4分,共24分,请将答案写在答题纸...指定位置上. 〔9〕()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx〔10〕向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA〔11〕设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz〔12〕设函数()21arctan axxx x f +-=,且()10''=f ,则________=a 〔13〕行列式1000100014321λλλλ--=-+____________.〔14〕设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.〔15〕〔此题总分值10分〕已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.〔16〕〔此题总分值10分〕设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 假设'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.〔17〕〔此题总分值10分〕设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值〔18〕设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个外表的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑〔19〕〔此题总分值10分〕已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: 〔I 〕级数11()n n n xx ∞+=-∑绝对收敛;〔II 〕lim n n x →∞存在,且0lim 2n n x →∞<<.〔20〕〔此题总分值11分〕设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?〔21〕〔此题总分值11分〕已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭〔I 〕求99A〔II 〕设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2016考研数学一试题及答案详解

(8) 随机试验 E 有三种两两不相容的结果 A1 , A2 , A3 ,且三种结果发生的概率均为
1 ,将试验 E 独 3
立重复做 2 次, X 表示 2 次试验中结果 A1 发生的次数, Y 表示 2 次试验中结果 A2 发生的次数, 则 X 与 Y 的相关系数为 ( ) (B)
1 2 【答案】(A) 【解析】方法一:
x, x 0, (4) 已知函数 f ( x) 1 则 1 1 , x , n 1,2, , n n 1 n
(A) x 0 是 f ( x )的第一类间断点. (C) f ( x )在 x 0 处连续但不可导. 【答案】(D) 【解析】因为 lim f ( x) lim x 0 , lim f ( x ) lim
2 2 (11) 设函数 f u, v 可微, z z x, y 由方程 x 1 z y x f x z , y 确定,则
dz | 0,1 _____ .
5
【答案】 dx 2dy 【解析】将 x 0, y 1 代入 ( x 1) z y 2 x 2 f ( x z , y ) 得 z 1 .
所以相关系数 XY
Cov ( X , Y ) D( X ) D(Y )
1 2
.
4
方法二: 设 Z 表示 2 次试验中结果 A3 发生的次数,则 X Y Z 2 。 根据方差的性质有 D(Y )=D( 2 X Z ) D( X Z ) D( X ) D( Z ) 2Cov( X , Z ) ,注意 到 D(Y ) D( X )=D( Z ), Cov( X , Z ) Cov( X , Y ) ,从而 D( X )= 2Cov( X , Y ) 。所以根据相关 系数的定义有 XY
考研数学一真题(word清晰版)

2016考研数学一真题(W O R D清晰版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2016考研数学(一)真题完整版一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+=++是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )T A 与T B 相似 (B )1A -与1B -相似 (C )T A A +与T B B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( ) (A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,t f y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值 (18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz x I 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n x x ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B aa a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2016考研数学一真题及标准答案解析(完整版)

2016考研数学(一)真题完整版一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()011b a dx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且 (2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( ) ()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A)0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点(C)()f x 在0x =处连续但不可导 (D)()f x 在0x =处可导(5)设A ,B是可逆矩阵,且A 与B 相似,则下列结论错误的是( )(A )T A 与T B 相似 (B)1A -与1B -相似(C )T A A +与T B B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B)双叶双曲面 (C )椭球面 (C)柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( ) (A)p 随着μ的增加而增加 (B)p 随着σ的增加而增加(C)p 随着μ的增加而减少 (D)p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim 200=-+⎰→x dt t t t x x(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axx x x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________. (14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题..纸.指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;。
2016考研数学一真题及解析参考答案

2016考研数学(一)真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(((()q x =(,则()(的第一类间断点(B )(处连续但不可导(D ) (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是()(A )TA 与TB 相似(B )1A -与1B -相似(C )TA A +与TB B +相似(D )1A A -+与1B B -+相似 (6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为()(A )单叶双曲面(B )双叶双曲面(C )椭球面(C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则() (A )p 随着μ的增加而增加(B )p 随着σ的增加而增加(少(22(((11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan ax x x x f +-=,且()10''=f ,则________=a(13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,nx x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在((D ⎧=⎨⎩(0,ky +=()I ()II (21),x ye-+且f 积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz x I 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}nx 满足1()(1,2...)n n xf x n +==,证明:(I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim nn x →∞存在,且0lim 2nn x→∞<<.(22a ⎫⎪⎪⎪-⎭当a ((I ()将12,,ββ(域D (I (U X (III )求Z U X =+的分布函数()F z . (23)设总体X 的概率密度为()⎪⎩⎪⎨⎧<<=其他,00,3,32θθθx x x f ,其中()∞+∈,0θ为未知参数,321,,X X X 为来自总体X 的简单随机样本,令()321,,m ax X X X T =。
2016年考研数学一真题及答案解析

2
观察选项,排除 B, C 。一元函数可导必连续,排除 A 。较易。 (3)考察非齐次方程解的性质 非齐次方程的两个解作减法是对应齐次方程的解, 即 2 1 x 是齐次解, 去系数 2 依 选 A。
2
旧是齐次解,代入齐次方程,记作方程①;非齐次方程的两个解取平均值,仍是非齐次方程 的解,即 1 x
1 1 1
1 上无定义, n 1
P AT P 1 P AT PT
T
T
T
1
P
T
1 1
AT PT BT ,符合;
1
同理,式①两边同时取逆得 P A P B ,记作式②,符合; 式①+②,即得 P 1 A A1 P B B 1 , D 亦符合。难度持平。 (6)考察二次型之惯性定理与二次曲面的方程 选B。
'
3、若 y (1 x ) 1 x , y (1 x ) 1 x 是微分方程 y p ( x) y q ( x) 的两 个解,则 q ( x ) (A) 3 x (1 x ) .
2
(B) 3 x(1 x ) .
2
( C)
x . 1 x2
( D)
1 .设数列 xn 满足 xn 1 f ( xn )( n 1, 2) . 2
证明: (1) 级数
(x
n 1
n 1
xn ) 绝对收敛;
(2) lim xn 存在,且 0 lim xn 2.
n n
20、 (本题满分 11 分)
2 1 1 1 2 a 1 ,B 1 a . 设矩形 A 2 1 1 a a 1 2
2016年全国硕士研究生入学统一考试数学(一)真题及解析

2016考研真题完整版数学(一)一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y xy x=+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim2=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AXB =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016考研真题完整版
数学(一)
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分
()
11b
a
dx x x +∞
+⎰
收敛,则( )
()()()()11111111
A a b
B a b
C a a b
D a a b <>>><+>>+>且且且且
(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩
,则()f x 的一个原函数是( )
()()()()()()()()()()()()()()()()2
2
22
1,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1
x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪
⎪
==⎨
⎨
-≥+-≥⎪⎪⎩
⎩
⎧⎧-<-<⎪⎪
==⎨⎨
++≥-+≥⎪⎪⎩⎩
(3)若(
)(
)
2
2
2211y x
y x
=+=+是微分方程()()y p x y q x '+=的两
个解,则()q x =( )
()()()()()
()222
2
313111x
x A x x B x x C D x x +-+-
++
(4)已知函数(),0111
,,1,2,1
x x f x x n n n n ≤⎧⎪
=⎨<≤=⎪+⎩,则( )
(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )T
A 与T
B 相似 (B )1
A -与1
B -相似 (
C )T
A A +与T
B B +相似 (D )1
A A -+与1
B B -+相似
(6)设二次型()2
2
2
123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在
空间直角坐标下表示的二次曲面为( )
(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面
(7)设随机变量(
)()0,~2
>σσ
μN X ,记{}2
σμ+≤=X P p ,则( )
(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少
(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为
3
1,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...
指定位置上. (9)()__________cos 1sin 1ln lim
2
=-+⎰→x dt t t t x
x
(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA
(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,12
2
-=-+确定,则
()_________
1,0=dz
(12)设函数()2
1arctan ax
x
x x f +-
=,且()10''=f ,则________=a (13)行列式
10001
00014
3
2
1
λλλ
λ--=-+____________.
(14)设12,,...,n x x x 为来自总体()
2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.
三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15)(本题满分10分)已知平面区域()(),221cos ,2
2D r r π
πθθθ⎧⎫
=≤≤+-
≤≤
⎨⎬⎩
⎭
,计
算二重积分
D
xdxdy ⎰⎰.
(16)(本题满分10分)设函数()y x 满足方程''
'
20,y y ky ++=其中01k <<.
()I 证明:反常积分0
()y x dx +∞
⎰收敛;
()II 若'
(0)1,(0)1,y y ==求0
()y x dx +∞
⎰的值.
(17)(本题满分10分)设函数(,)f x y 满足
2(,)
(21),x y f x y x e x
-∂=+∂且(0,)1,t
f y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)
()t
L f x y f x y I t dx dy x y
∂∂=
+∂∂⎰
,并求()I t 的最小值
(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()
zdxdy
ydzdx dydz x
I 3212
+-+=
⎰⎰∑
(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,1
0'()2
f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数
1
1
()n n n x
x ∞
+=-∑绝对收敛;
(II )lim n n x →∞
存在,且0lim 2n n x →∞
<<.
(20)(本题满分11分)设矩阵1112221,1
1112A a B a a a --⎛⎫⎛⎫
⎪
⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝
⎭
当a 为何值时,方程AX
B =无解、有唯一解、有无穷多解?
(21)(本题满分11分)已知矩阵011230000A -⎛⎫
⎪
=- ⎪ ⎪⎝⎭
(I )求99
A
(II )设3阶矩阵23(,,)B ααα=满足2
B BA =,记100
123(,,)B βββ=将123,,βββ分别表
示为123,,ααα的线性组合。
(22)(本题满分11分)设二维随机变量(,)X Y 在区域()
{2
,01,D x y x x
y =<<<<上服从均匀分布,令
1,0,X Y
U X Y
≤⎧=⎨
>⎩ (I )写出(,)X Y 的概率密度;
(II )问U 与X 是否相互独立?并说明理由; (III )求Z U X =+的分布函数()F z .
(23)设总体X 的概率密度为()⎪⎩
⎪
⎨⎧<<=其他,00,3,32
θθθx x x f ,其中()∞+∈,
0θ为未知参数,321,,X X X 为来自总体X 的简单随机样本,令()321,,m ax X X X T =。
(1)求T 的概率密度
(2)确定a ,使得aT 为θ的无偏估计。