贝叶斯估计ppt课件

合集下载

贝叶斯公式算法PPT课件

贝叶斯公式算法PPT课件
j 1
直观地将Ai 看成是导致随机事件B发生的各 种可能的原因,则P(Ai)可以理解为随机事件 Ai发生的先验概率(a priori probability).如 果我们知道随机事件B发生这个新信息,则它 可以用于对事件Ai发生的概率进行重新的估计 .事件P(Ai|B)就是知道了新信息“A发生”后 对于概率的重新认识,称为随机事件Ai的后验
n
P( Ai | B) P( Ai )P(B|Ai ) P( Aj )P(B|Aj )
j 1
i 1,2,, n 该公式于1763年由贝叶斯(Bayes)给出.
它是在观察到事件B已发生的条件下,寻找导 致B发生的每个原因的概率.
13
贝叶斯公式:
n
P( Ai | B) P( Ai )P(B|Ai ) P( Aj )P(B|Aj )
由全概率公式:
P(B) P(B | A)P(A) P(B | A)P(A)
1
4 p 1
p (1 p)
5
5
16
2019/10/23
17
得到:
P(A | B) P(AB) 5 p P(B) 4 p 1
例如,若 p 1 2
则 P(A | B) 5 6
这说明老师们依据试卷成绩来衡量学 生平时的学习状况还是有科学依据的.
i 1
称满足上述条件的A1,A2,…,An为完备事件组.
6
n
P(B) P ( Ai )P(B|Ai )
i 1
全概率公式的来由, 不难由上式看出:
“全”部概率P(B)被分解成了许多部分之和.
它的理论和实用意义在于:
在较复杂情况下直接计算P(B)不易,但B总是 伴随着某个Ai出现,适当地去构造这一组Ai

第五章贝叶斯决策PPT资料44页

第五章贝叶斯决策PPT资料44页
个样本,参数 的先验分布为共轭先验分
布 N(0, 2),其中 2 已知,损失函数为
L(,x)10,,
求参数 的贝叶斯估计
例5.6 在新的止痛剂的市场占有率 的估计问题中
已给出损失函数 L(,x) 2( ,) 0, 1
药厂厂长对市场占有率 无任何先验信息。在市场
调查中,在n个购买止痛剂的顾客中有x个人买了新
我们约定,若已知
(1)有一个可观察的随机变量X,其密度函数 p(x )依赖于未知
参数 ,且 。
(2)在参数空间 上有一个先验分布
(3)有一个行动集 {a}。
在对 做点估计时,一般取;在对 做区间估计
时,行动a就是一个区间,的一切可能的区间构成行动 集 ;在对 作假设检验时,只有两个行动:接受和拒
一.平方损失函数下的贝叶斯估计
定理5.1 在平方损失函数L (,x) ( )下2 ,的贝叶 斯估计为后验均值,即 BxE(x)
定理5.2在加权平方损失函数 L ( ,x ) ( )2下,
的贝叶斯估计为
Bx
Ex Ex
定理5.3 在参数向量 (1,2,,k) 的场合下,对
多元二次损失函数 L(,)()Q()Q ,为正定矩
的止痛剂,试在后验风险准则下对 作出贝叶斯估
计。
例5.7 设样本x只能来自密度函数 p0 (x)或 p1(x)
中的一个,为了研究该样本到底来自哪个分布,
我们来考虑如下简单假设的检验问题:
H 0:x来 p 0(自 x), H 1:x来 p 1(自 x)
损失函数用矩阵表示如下:
L
0 1
1 0
5.3 常用损失函数下的贝叶斯估计
个样本,其中 已知。
试在平方损失函数下寻求 1 的贝叶斯估计。

信号检测与估计 第三章 贝叶斯估计ppt课件

信号检测与估计  第三章 贝叶斯估计ppt课件
需要数据的n维pdf与有关gxgxxxxn看作确定参数看作随机参数经典估计不提供的全部先验信息贝叶斯估计要利用的先验pdfppt学习交流最小方差准则均方误差准则meansquareerrormse一个很自然的准则10ppt学习交流11ppt学习交流12ppt学习交流13ppt学习交流14ppt学习交流15ppt学习交流16ppt学习交流对应于均匀代价函数17ppt学习交流18ppt学习交流经典估计理论小结主要估计方法lse

• 作业4-2

E(ˆ)
2

Var(ˆ) b2 ( )
条件中位数估计
最大后验概率估计
对应于均匀代价函数
关于估计的准则
经典估计理论——小结
主要估计方法
LSE:不需要统计信息 MLE:需要先验概率密度函数 矩估计:相应的矩信息 MVUE和BLUE:一阶、二阶矩信息(均值、方差)
θ看作确定参数 θ看作随机参数
经典估计,不提供θ的全部先验信息 贝叶斯估计,要利用θ的先验pdf
最小均方估计
最小方差准则
均方误差准则(mean square error,MSE)——一个很自然的准则
mse(ˆ)

E

ˆ


2

E

Байду номын сангаас
ˆ

E(ˆ)
§ 贝叶斯估计
误差平方代价函数
误差绝对值代价函数
均匀代价函数
几种贝叶斯估计
估计的数学问题
已知观测数据 X x[0] x[1] L x[N 1]
未知参量
1 2 L p
如何得到估计问题的统计信息?
需要数据的N维pdf,与θ有关

Bayes(贝叶斯)估计

Bayes(贝叶斯)估计


参数作为随机变量
• 条件分布: p(x1,x2,..xn | )
精选完整ppt课件
几个学派(3)
• 信念学派:
• 带头人:Fisher
• 观点:概率是频率

主观不是概率,而是信念度

参数不是随机变量,仅是普通变量
• 似然函数: L( | x1,x2,..xn)
精选完整ppt课件
批评1:置信区间
后验风险:
• Bayesian风险与后验风险
(L(,)p(x|) ()d)dx
• 后验分析最小=>Bayesian风险最小
精选完整ppt课件
两种常用损失函数:
• 平方损失:
L(,)()2
– 最小Bayesian风险估计:后验期望
• 点损失:
L(a,
)
0,|
a
|
1,|
a
|
– 最大后验密度估计
精选完整ppt课件
• 3、联合分布密度->条件分布密度
• p(x1,x2,..xn | ), 是随机变量
• 4、确定的先验分布() • 5、利用Bayesian公式求后验分布密度 • 6、使用后验分布做推断(参数估计、假设检验)
精选完整ppt课件
例1:两点分布b(1,p)的
• 1. 联合分布:p(x|)nxx(1)nx
• 使得 h ( |r ) p (x |)* ( )与先验分布同类型
• 若p(x|)服从正态分布,选正态分布 • 若p(x|)服从两点分布,选Beta分布 • 若p(x|)服从指数分布,选逆Gamma分布
精选完整ppt课件
Bayes统计推断问题
• 参数估计:
– 点估计 – 区间估计

简单贝叶斯方法ppt课件

简单贝叶斯方法ppt课件
P ( X x | C 0 ) P ( C 0 ) P ( X x | C 0 ) P ( C 0 ) 0 0 P ( C 0 | X x ) 0 P ( X x ) P ( X x | C 1 ) P ( C 1 ) P ( X x | C 0 ) P ( C 0 ) 0 0 0
从这个意义上讲,它是一个“执果索因”的条 件概率计算公式.相对于事件B而言 ,概率论中 把 P(Ai) 称为先验概率( Prior Probability), 而 把 P(Ai|B) 称 为 后 验 概 率 ( Posterior Probability),这是在已有附加信息(即事件 B已发生)之后对事件发生的可能性做出的重新 认识,体现了已有信息带来的知识更新.
简单贝叶斯方法
本节内容纲要
• • • • • • 贝叶斯定理回顾 简单贝叶斯(Naï ve Bayes) 贝叶斯分类法:二类别 对分类法的实用评价 不对称错误分类代价和贝叶斯风险分类 贝叶斯风险分类:多类别
贝叶斯定理回顾
定义 事件组A1,A2,…,An (n可为),称为样 本空间S的一个划分,若满足:
– 目标是预测类别C – 特别地, 我们想找能够最大化P(C| A1, A2,…,An )的 C值
• 能否从直接数据中估计P(C| A1, A2,…,An )?
贝叶斯分类方法
• 方法:
– 使用贝叶斯定理对于分类变量C的所有值计算后验概率 P(C | A1, A2, …, An) ,
P ( A A A | C ) P ( C ) P ( C | A A A ) P ( A A A )
i 1
P ( A P ( B |A j) j)
式子就称为贝叶斯公式。
贝叶斯定理回顾

《贝叶斯估计》PPT课件

《贝叶斯估计》PPT课件

前面的分析总结如下:人们根据先验信息对参数θ
已有一个认识,这个认识就是先验分布π (θ )。通
过试验,获得样本。从而对θ 的先验分布进行调整,
调整的方法就是使用上面的贝叶斯公式,调整的结
果就是后验分布 ( x1,。, xn后) 验分布是三种信息 的综合。获得后验分布使人们对θ 的认识又前进一
1)
,
x

0,1, n
( x)
(n 2)
x (1 )nx ,0 1
(x 1)(n x 1)

X ~ Be(x 1, n x 1)
9
贝叶斯统计学首先要想方设法先去寻求θ的先验分布。 先验分布的确定大致可分以下几步: 第一步,选一个适应面较广的分布族作先验分布族, 使它在数学处理上方便一些,这里我们选用β分布族
步,可看出,获得样本的的效果是把我们对θ的认识
由π(θ)调整到 应建立在后验分布
( 。x1,所,以xn)对θ的统计推断就 ( 的x1,基础, xn上) 。
7
例1 设事件A(产品为废品)的概率为 ,即P(A) 。 为了估计 而作n次独立观察,其中事件A出现次数
为X,则有X服从二项分布 b(n, )
第三章 贝叶斯估计
§3.1贝叶斯推断方法 一 、统计推断中可用的三种信息
美籍波兰统计学家耐(E.L.Lehmann1894~1981) 高度概括了在统计推断中可用的三种信息:
1.总体信息,即总体分布或所属分布族给我们 的信息。譬如“总体是指数分布”或“总体是正 态分布”在统计推断中都发挥重要作用,只要有 总体信息,就要想方设法在统计推断中使用。
假设Ⅱ 当给定θ后,从总体p(x|θ)中随机抽取一个样 本X1,…,Xn,该样本中含有θ的有关信息。这种信 息就是样本信息。

贝叶斯统计及其推断(PowerPoint 123页)

贝叶斯统计及其推断(PowerPoint 123页)

1.先验矩法
历史数据得的估计值1,..., k
计算
1 +...+k
k
, S2
1 k 1
k
(i
i 1
)2
令E =
Var
(
)2 (
1)
S2
解得 , 的一个估计 ,
先验分布的确定
2.利用先验分位数
若历史经验得 ( )的下P1和上P2分位数L和U
则有
L 0
( ) 1(1 ) 1d ( )T ( )
解:m(x) p(x, )d p(x | ) ( )d , ( | x) p(x, ) / p(x, )d p(x | ) ( ) / m(x).
求解的例子
设x b(n, ), ~ U (0,1).求m(x), ( | x)
解:m(x)
1 0
Cnx
x
(1
)nx
1d
Cnx
函数为P(x)=c.h(x)
则称h(x)为P(x)的核
由于 ch(x)dx 1(或 ch(x) 1) x
c
1
从而P(x) h( x)
h(x)dx
h(x)dx
即P( x)由核唯一确定,
除了相差一个常数倍外,核也由P(x)唯一确定
计算的简化---边缘密度的核
例3.1.设x ~ N (1, 4)
可信区间——选择标准
由上例知的1 可信区间a, b不唯一
选择区间长度最短的。假如,某人年龄的两个
1 可信区间为30,40和38,41,则38,41更好,
精度更高,信息更精确
可信区间——选择标准
a, b为1 可信区间,则
b
a ( | x)d 1

贝叶斯统计ppt课件

贝叶斯统计ppt课件

29
二 参数的Bayes点估计
(3)后验中位数估计
若 Me是后验分布h(θ| x )的中位数, 则 Me称为θ的后验中位数估计。即若
u0.5 h( x)d 0.5
则后验分布中位数估计
Me u0.5
30
二 参数的Bayes点估计
以上三种估计统称θ的Bayes估计,记为
或简记B 为 。它们 皆是样本观察值
18
历史迭代图
不收敛 收敛
19
(2)观察自相关性图 (m)
自相关性图用于描述(m)序列在不同迭代
延迟下的相关性,延迟i的自相关性是指相 距i步的两迭代之间的相关性。具有较差的 性质的链随着迭代延迟的增加会表现出较 慢的自相关衰弱。
20
21
22
23
Bayes Bayes统计推断
Bayes统计推断概述 参数的Bayes点估计 Bayes区间估计 Bayes假设检验
选择检验统计量,确定抽样分布,等等。
41
四 Bayes假设检验
Bayes假设检验不同型:
简单假设 简单假设
复杂假设 复杂假设 假单假设 复杂假设
42
四 Bayes假设检验
Bayes因子
设两个假设Θ0,Θ1的先验概率分布为π0与π1,
即:
0 P( 0 ),1 P( 1)
则 0 1 称为先验概率比。
3
(一)预备知识
4
5
(二)基本思想
6
(三)常用MCMC算法 Gibbs抽样(吉布斯采样算法)
7
8
立即更新的Gibbs抽样
每次迭带的时候 的一些元素已经被跟新了,如果在更
新其他的元素时不使用这些更新后的元素会造成一定程度 的浪费。事实上, Gibbs抽样 可通过在每一步都利用近似 得到的其他元素的值来获得更好的效果。这种方法改进了 练的混合,换句话说,链能更加迅速,更加详尽的搜索目 标分布的支撑空间。

贝叶斯估计PPT课件

贝叶斯估计PPT课件
贝 叶 斯 统 计(Bayesian Statistics)
(Bayes,Thomas)(1702─1761)
贝叶斯是英国数学家.1702年生于伦敦;1761年4月17日 卒于坦布里奇韦尔斯.
贝叶斯是一位自学成才的数学家.曾助理宗教事务,后来 长期担任坦布里奇韦尔斯地方教堂的牧师.1742年,贝叶斯被 选为英国皇家学会会员.
如今在概率、数理统计学中以贝叶斯姓氏命名的有贝叶 斯公式、贝叶斯风险、贝叶斯决策函数、贝叶斯决策规则、贝 叶斯估计量、贝叶斯方法、贝叶斯统计等等.
贝叶斯方法(Bayesian approach )
• 贝叶斯方法是基于贝叶斯定理而发展起来用于系 统地阐述和解决统计问题的方法(Samuel Kotz和 吴喜之,2000)。
P(
i) n
i
,i
1,2,...,n
若这个分布的概率部 绝分 大在 0附近,那么,该产品为 "信得过产"品 ,
可见假定以后每天取 都几 抽件产品与历史的 资不 料合格率分布一 ,
使用单位就可以确"认 免为 检产品 ".
基于上述三种信息(总体信息、样本信息和先验信息)进行的 统计推断被称为贝叶斯统计学。它与经典统计学的主要差别在于 是否利用先验信息。贝叶斯统计学派把任意一个未知参数都看成 随机变量,应用一个概率分布去描述它的未知状况,该分布称为 先验分布。
信息处理
样 本 信 息
先 验 信 息 贝 叶 斯 定 理
后 验 信 息
统 计 推 断
从概率论的Bayes公式谈起
设自然状态有k种, 1,2,…, k, P(i)表示自然状态i发生的先验概率分布, P(x︱i)表示在状态i条件,事件为x的概 率。 P(i ︱x )为i发生的后验概率。

贝叶斯决策分析培训教材(PPT39页)

贝叶斯决策分析培训教材(PPT39页)
若不作进一步调查研究,则采用方案1(即采用新产品)可获期望利润3.
同理可计算得:P(B2|A)=0. 经财务部门预算,进行一次试销调查花费60万元。 因亏损的先验概率较大,故该厂还要研 若进一步调查研究,则可获期望利润值6. 经过必要的风险估计后,他们估计出:
第一节 引言
一、问题的提出
在实际进行决策时,我们一直强调要调查研究, 注意预测,以掌握机会,制订对策,明确结果, 改进决策过程,提高决策水平。
这种对验前概率分布要否采取一些方法、途径 和手段以获取新信息来进行修正,其效果如何, 是否值得等一系列分析就称为后验预分析。
3.验后分析
根据预后验分析,如果认为采集信息和 进行调查研究是值得的,那么就应该决 定去做这项工作。
验后分析就是根据实际发生的调查结果 的信息修正验前概率的方法。
4.序贯分析
贝叶斯定理:
设B1,B2,……Bn是一组互斥的完备事件集, 即所有Bi互不相容,∪Bi=Ω,且P(Bi)>0,则 对任一事件有:
P(Bi
|
A)
P(Bi A) P( A)
P(Bi )P( A | Bi )
n
P(Bi )P( A | Bi )
i 1
其中:
P(Bi)为试验前就已知道了的概率,称为验前概率或先验概率; P(A)为边际概率,它按全概率公式求得; P(Bi|A)表示试验发生后,由于事件A发生而引起Bi发生的条件概率, 它是对先验概率P(Bi)的一种修正,故称验后概率或修正概率。
P(A| B) P(AB) P(B)
乘法公式: 对任意两个事件A与B,有: P(AB)=P(A|B)P(B)=P(B|A)P(A) 对任意三个事件A1,A2,A3,有: P(A1A2A3)=P(A1)P(A2|A1)P(A3|A1A2) 依次可以推广到四个或更多的事件上去。

课件-贝叶斯估计量

课件-贝叶斯估计量
山东财政学院
贝叶斯估计量
Oct-10
后者综合了经理的主观概率和实验结果而 获得,要比主观概率更具有吸引力, 获得,要比主观概率更具有吸引力,更贴近 当前实际 当然经过实验A后经理对投资改进质量 当然经过实验 后经理对投资改进质量 的兴趣更大了, 的兴趣更大了,但如果为了进一步保险起 见可以把这次得到的后验分布列再一次作 为先验分布在做实验验证, 为先验分布在做实验验证,结果将更贴近 实际
要么正面朝上要么反面朝上概率各占12这个概率分布是根据我们以前的知识和经验得出来的一般被称做先验分布山东财政学院贝叶斯估计量oct12先验分布先验分布但还是有不同的主要区别在与概率分布得到的途径上根据先验信息所给出的随机变量的分布这里的先验信息是指在抽样之前有关统计问题的一些信息先验分布与经典统计学里面的其他分布并没有什么区别同样有先验离散分布和先验连续分布山东财政学院贝叶斯估计量oct12经典统计学里要得到概率分布必须大量重复实验由大数定律中心极限定理这些基本定理来保证在大量重复实验中频率与概率具有一致从而的到随机变量的概率分布经典统计学的概率分布包含所有样本点即所有可能的实验结果都要被考虑进去贝叶斯统计学的先验概率分布考虑的只是已出现的样本来自于过去的经验山东财政学院贝叶斯估计量oct12可以由经验得来不必做大量的重复实验
f (x p ) = p x (1 p ) (1 x ) x = 0,1 0 < p < 1
山东财政学院
贝叶斯估计量
Oct-10
X 于是, 于是,= ( X , X
1
2
, , X n )
n
的联合条件概率函数为
(1 x i )
n x = p i=1 (1 p ) ∑ i i =1
q (x p ) = Π p xi (1 p )

6.4贝叶斯估计

6.4贝叶斯估计

由此即可利用贝叶斯公式求出 的后验分布。具体 如下:先写出X和 的联合分布
然后求X的h 边(x ,际) 分 n 布x x(1 )n x , x 0 ,1 , ,n , 0 1
n 1
x 0
x(1 )n xd n x (x 1 ) ( n ( n 2 )x 1 )
某些场合,贝叶斯估计要比极大似然估计更合理 一点。比如: “抽检3个全是合格品”与“抽检10 个全是合格品”,后者的质量比前者更信得过。 这种差别在不合格品率的极大似然估计中反映不 出来(两者都为0),而用贝叶斯估计两者分别是 0.2 和 0.083。 由此可以看到,在这些极端情况下,贝叶斯估计 比极大似然估计更符合人们的理念。
• 选择一个模型 f ( x ; )(在此处记为 f ( x | ) ) 来反映在给定参数 情况下我们对x的信念。
• 当得到数据 X1, X2,…Xn 后,我们更新我们的信
念并且计算后验分布 f(|X1,...,Xn) 。
• 从后验分布中得到点估计和区间估计。
整理ppt
6.4.2 贝叶斯公式的密度函数形式
应用贝叶斯公式即可得到后验分布
(|x ) h m (x ( ,x )) (2 /A )1 /2 e x p 2 1 /A ( B /A )2
这说明在样本给定后, 的后验分布为
N(B/A,1/A),即 |x~Nnxn 0 0 2 2 22,n0212 整理ppt
后验均值即为其贝叶斯估计:
整理ppt
例6.4.3 设x1, x2 , …, xn是来自正态分布
N(,02)的一个样本,其中02已知, 未 知,假设 的先验分布亦为正态分布 N( , 2),其中先验均值和先验方差 2均 已知,试求 的贝叶斯估计。

贝叶斯统计ppt课件

贝叶斯统计ppt课件
3
(一)预备知识
4
5
(二)基本思想
6
(三)常用MCMC算法 Gibbs抽样(吉布斯采样算法)
7
8
立即更新的Gibbs抽样
每次迭带的时候 的一些元素已经被跟新了,如果在更
新其他的元素时不使用这些更新后的元素会造成一定程度 的浪费。事实上, Gibbs抽样 可通过在每一步都利用近似 得到的其他元素的值来获得更好的效果。这种方法改进了 练的混合,换句话说,链能更加迅速,更加详尽的搜索目 标分布的支撑空间。
x=(x1,x2,…,xn)T 的函数,即
(x) (x1,x2, , xn )
在一般场合下,这三种估计是不同的,
当后验分布h(θ| x )对称时,这三种估计 是相等的。
31
三 Bayes区间估计
经典区间估计
参数θ是未知常数(非随机变量),其置信 度为1-α的区间估计[θL ,θU]满足
P(L U ) 1
理解为进行了大量重复试验,随机区间 [θL ,θU ]包含常数θ的概率为1-α (θL ,Θu样本x的 函数,是随机变量)。
32
三 Bayes区间估计
经典统计学中,对给定的样本容量n,若进 行多次反复的抽样,得到了众多个不同的 区间,其中每个区间,要么包含θ的真值, 要么不包含θ的真值。
=
0 0
建议分布为N( 0 ,I),再由它生成一个随机向量作为 0
1,然后看接受概率a,设先验 ( )为均匀分布,设 p(x,x' )=p(x',x),则a min(1, ( ' ))
( )
15
三、MCMC方法的收敛性诊断
要多久链才可以不依赖于其初始值以及需 要多久该链能完全挖掘目标分布函数支撑 的信息。

十大经典算法朴素贝叶斯讲解PPT

十大经典算法朴素贝叶斯讲解PPT


在人工智能领域,贝叶斯方法是一种非常具有 代表性的不确定性知识表示和推理方法。
贝叶斯定理:

P(A)是A的先验概率或边缘概率。之所以称为“先验”是因为它不考 虑任何B方面的因素。 P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称 作A的后验概率。 P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称 作B的后验概率。 P(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant).
购买电脑实例:

购买电脑实例:
P(X | buys_computer = “no”) P(buys_computer = “no”) = 0.019×0.357 = 0.007

因此,对于样本X,朴素贝叶斯分类预测 buys_computer =”yes” 特别要注意的是:朴素贝叶斯的核心在于它假设向量 的所有分量之间是独立的。
扩展:


该算法就是将特征相关的属性分成一组,然后假设不 同组中的属性是相互独立的,同一组中的属性是相互 关联的。 (3)还有一种具有树结构的TAN(tree augmented naï ve Bayes)分类器,它放松了朴素贝叶斯中的独 立性假设条件,允许每个属性结点最多可以依赖一个 非类结点。TAN具有较好的综合性能。算是一种受限 制的贝叶斯网络算法。
Thank you!
贝叶斯算法处理流程:
第二阶段——分类器训练阶段: 主要工作是计算每个类别在训练样本中出现 频率以及每个特征属性划分对每个类别的条件 概率估计。输入是特征属性和训练样本,输出 是分类器。 第三阶段——应用阶段:

Hale Waihona Puke 这个阶段的任务是使用分类器对待分类项进行分类 ,其输入是分类器和待分类项,输出是待分类项与类 别的映射关系。

《贝叶斯决策理论》PPT课件

《贝叶斯决策理论》PPT课件
常表示为
p (x )~ N (, )
多元正态分布的性质
等密度点的轨迹是超椭球面
R 1
R 2
R 22 (12 22) p(x2)dx
R 1
P ( 1)(11 22) (21 11) p(x 1)dx (12 22) p(x2)dx
R 2
R 1
一旦R 1 和 R 2 确定,风险 R 就是先验概率 P (1 ) 的线性函数,可表
示为
RabP(1)
a22(1222) p(x2)dx
R 11P(1x)12P(2 x)p(x)dx
R1
21P(1x)22P(2 x)p(x)dx
R2
R11P(1)p(x1)12P(2)p(x2)dx
R 1
21P(1)p(x1)22P(2)p(x2)dx
R2
P (2 ) 1 P (1 ) p ( x 1 ) d x p ( x 1 ) d x 1
2.3 正态分布时的统计决策
贝叶斯分类器的结构可由条件概率密度 和先验概率来决定
最受青睐的密度函数——正态分布,也称 高斯分布
合理性:中心极限定理表明,在相当一般的 条件下,当独立随机变量的个数增加时,其 和的分布趋于正态分布
简易性
2.3.1 正态分布的定义及性质
单变量正态分布由两个参数完全确定,即 均值和方差
模式识别的目的就是要确定某一个给定 的模式样本属于哪一类
可以通过对被识别对象的多次观察和测
量,构成特征向量,并将其作为某一个
判决规则的输入,按此规则来对样本进 行分类
作为统计判别问题的模式分类
在获取模式的观测值时,有些事物具有 确定的因果关系,即在一定的条件下, 它必然会发生或必然不发生
例如识别一块模板是不是直角三角形,只要 凭“三条直线边闭合连线和一个直角”这个 特征,测量它是否有三条直线边的闭合连线 并有一个直角,就完全可以确定它是不是直 角三角形

贝叶斯决策理论课件(PPT90页)

贝叶斯决策理论课件(PPT90页)

Some about Bayes(2)
一所学校里面有 60% 的男生,40% 的女生。男生总是穿长 裤,女生则一半穿长裤一半穿裙子。假设你走在校园中, 迎面走来一个穿长裤的学生(很不幸的是你高度近似,你 只看得见他(她)穿的是否长裤,而无法确定他(她)的 性别),你能够推断出他(她)是女生的概率是多大吗?
要决策分类的类别数是一定的
引言
在连续情况下,假设对要识别的物理对象有d种特征
观察量x1,x2,…xd,这些特征的所有可能的取值范围构 成了d维特征空间。
称向量 x x1, x2, , xd T x Rd 为d维特征向量。
假设要研究的分类问题有c个类别,类型空间表示
为:
1,2 , ,i ,c
P(B|LB)∝P(LB|B)P(B)∝0.75P(B) P(~B|LB)∝P(LB|~B)P(~B)∝0.25(1-P(B)) 而西安的出租车10辆中有9辆是绿色的,则给出了先验概率P(B)=0.1,于 是有 P(B|LB)∝0.75×0.1=0.075 P(~B|LB)∝0.25(1-P(B))=0.25×0.9=0.225 P(B|LB)=0.075/0.072+0.225=0.25 P(~B|LB)=0.225/0.072+0.225=0.75 因此肇事车辆为绿色。
Neyman-Pearson准则
问题:先验概率和损失未知
通常情况下,无法确定损失。 先验概率未知,是一个确定的值 某一种错误较另一种错误更为重要。
基本思想:
要求一类错误率控制在很小,在满足此条件的 前提下再使另一类错误率尽可能小。
用lagrange乘子法求条件极值
Neyman-Pearson准则
和绿色的区分的可靠度是75%; 假设随后你又了解到第3条信息:(3)西安的出租车10辆

贝叶斯学习过程PPT课件

贝叶斯学习过程PPT课件

0 0
n 0
0
n ˆn
先验知识和经验数据各自的贡献取决于 和 的比值,这个比值称为决断因子(dogmatism)
当获得足够多的样本后, 和 的具体数值 的精确假定变得无关紧要, 将收敛于样本均 值
第28页/共48页
高斯情况:单变量, 未知, 已知
• 观察结论
• 随着样本数n的递增, 单调递
,其中的未知参数表示为向量
第20页/共48页
贝叶斯估计
• 贝叶斯估计 • 最大似然估计
第21页/共48页
贝叶斯估计
• 为明确数据集D的作用,类似于ML估计,贝叶斯决策所需后验概率可重新写作 • 简化
第22页/共48页
贝叶斯估计
• 核心问题
• 已知一组训练样本D,这些样本都是从固定但未知的概率密度函数p(x)中独立抽取的,要求根据这些样 本估计
第13页/共48页
ML估计-高斯情况: 未知
μ

• 在 下的对数似然
• 对数似然方程
• 的ML估计
数据集D的样本均值
第14页/共48页
ML估计-高斯情况: 和
• x为单变量情况 • 参数向量 • 在 下的对数似然
均未知
• 对数似然方程
μΣ
第15页/共48页
ML估计-高斯情况: 和
• x为单变量情况 • 的ML估计
第11页/共48页
最大化问题
• ML估计的解通过最大化似然函数或对数似然函数实现
第12页/共48页
最大化问题 • 记 表示p维参数向量
, 表示梯度算子
• 全局最大值的必要条件(似然方程)

等价的(对数似然方程)
• 似然方程或对数似然方程的解并不是获得全局最大值的充分条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h(1
|
B)
P(B | 1)π(1)
P(B)
0.883
h(2
|
B)
P(B |2 )π(2 )
P(B)
0.117
由此可见后验分布更能准确描述事情真相.
二、共轭先验分布
为了使得后验分布计算简单,为此引入共轭先验分布. 1、共轭分布族
定义3.5 设总体X的分布密度为p( x | ), F *为 的一个分布族, ( )为的任意一个先验分布, ( ) F *,若对样本的任意观测值x,的后验 分布h( | x) F *,则称F *是关于分布密度p( x | )
由此可以得到
h( | x) q( x | )π( ) ,
m( x)
(m( x) q( x | ) ( )d )
则称 h( | x)为的后验分布.即加入新的信息以后,
对原有分布进行修正.由此可见,后验分布综合用
运了先验分布与样本信息. 例2(p86例3.7) 为了提高某产品的质量,公司经理
考虑增加投资来改进生产设备,预计需投资90万元, 但从投资效果来看,顾问们提出两种不同的意见:
第3.2节 贝叶斯估计
一、先验分布和后验分布 二、共轭先验分布 三、贝叶斯风险 四、贝叶斯估计
一、先验分布与后验分布
上一章提出用风险函数衡量决策函数的好坏,但 是由于风险函数为二元函数,很难进行全面比较。 贝叶斯通过引入先验分布,给出了整体比较 的指标.
1、先验信息
在抽取样本之前,人们对所要估计的未知参数 所了解的信息,通常称为先验信息.
的共轭先验分布族,简称共轭分布族.
注 共轭分布族总是针对分布中的某个参数而言的.
2、后验分布核 由上一小节内容可知,后验分布为
h( | x) q( x | )π( ) , (m( x)为样本的边缘分布)
m( x) 可以看出,m(x)不依赖于参数,因而参数的后验 分布可以写为如下等价形式:
h( | x) q( x | )π( )
X N (9.80, 0.12 )
这个信息就是重力加速度的先验信息.
在统计学中,先验信息可以更好的帮助人们解决 统计决策问题. 贝叶斯将此思想应用于统计决策中,形 成了完整的贝叶斯统计方法.
2、先验分布
对未知参数的先验信息用一个分布形式()来 表示,此分布()称为未知参数的先验分布.
例如 例1中重力加速度的先验分布为
1:改进生产设备后,高质量产品可占90%,
:改进生产设备后,高质量产品可占70%,
2
经理根据以往的经验,两个顾问建议可信度分别为
π(1) 0.4
π(2 ) 0.6
这两个概率是经理的主观判断(也就是先验概率), 为了得到更准确的信息,经理决定进行小规模的试验, 实验结果如下:
A:试制5个产品,全是正品, 由此可以得到条件分布:
合密度为
n
q( x1, x2 , , xn ) p( xi , ),
i 1
而样本值是在知道的先验分布的前提下得到的,
因而上述分布可以改写为
n
q( x | ) q( x1, x2 , , xn | ) p( xi | ), i 1
又由于 和样本x的联合分布可以表示为
f ( x, ) q( x | ) ( ) m( x)h( | x)
N( , 2 )的一个样本,其中已知,现寻求 2的共
轭先验分布,由于该样本的似然函数为
n
q(x | ) i 1
1 e (
(
xi 2 2
)2

1
) e n
1 2
2
n
( xi )2
i 1

n
1 2
1
2 2
n
( xi )2
i 1
( ) e 2
哪一个分布具有上述核?结论是倒分布,这是因为 分布的密度函数为
p( A |1) (0.9)5 0.590 p( A | 2 ) (0.7)5 0.168
由全概率公式可以得到:
P( A) P( A | 1) (1) P( A | 2 ) (2 ) 0.337
其后验概率为:
h(1
|
A)
P( A | 1)π(1)
P( A)
0.700
h(2
|
A)
P( A |2 )π(2 )
f
(
x;
,
)
(
)
x
1e
x, x
0,
0,
x 0,
设Y X 1,则Y的密度函数为
f(y;, Nhomakorabea)
(
)
(
1 y
) 1 e y,y
0,
0,
y 0,
此分布密度为倒分布的密度函数, 设 ²的先验分 布为倒分布,即
(
2
)
(
)
(1
2
)
1
e
2
,y
0,
0,
y 0,
则 ²的后验分布为
h( 2 | x) q( x | 2 )π( 2 )
例1(p84例3.6) 某学生通过物理试验来确定当地 的重力加速度,测得的数据为(m/s²):
9.80, 9.79, 9.78, 6.81, 6.80 试求当地的重力加速度.
解 用样本均值估计其重力加速度应该是合理的,即
X 8.596 由经验可知,此结果是不符合事实的。在估计之前 我们知道,重力加速度应该在9.80附近,即
X N (9.80, 0.12 ) 3、后验分布
在抽取样本之前,人们对未知参数有个了解, 即先验分布。抽取样本之后,由于样本中包含未知 参数的信息,而这些关于未知参数新的信息可以帮 助人们修正抽样之前的先验信息。
设总体X的分布密度为p( x, ), ,的先验
分布为 ( ),( X1, X2 , , Xn )T 为总体X的样本,其联
1 +n+1 2
1
2
[
1 2
n i 1
(
xi
)2
]
( ) e 2
P( A)
0.300
显然经理对二位顾问的看法已经做了修改,为了得 到更准确的信息,经理又做了一次试验,结果为
B:试制10个产品,9个是正品,
π(1) 0.7
π(2 ) 0.3
P(B |1) 10(0.9)5(0.1) 0.387,
P(B |2 ) 10(0.7)5(0.3) 0.121 P(B) P(B |1)π(1) P(B |2 )π(2 ) 0.307
则称q( x | )π( )为后验分布h( | x)的核。其中符 号 表示左右两边相差一个不依赖的常数因子.
3、共轭先验分布族的构造方法
共轭先验分布族共有两种构造方法.
第一种方法 首先计算似然函数q(x|),根据似然 函数所含的因式情况,选取与似然函数具有相同核 的分布作为先验分布. 例3(p88例3.8) 设( X1, X 2 , , X n )T 是来自正态总体
相关文档
最新文档