2020年新版北师大版八年级下册数学知识点

合集下载

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结北师大版八年级下册数学各章学问要点总结北师大版八年级数学下册各章学问要点总结第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

1、能使不等式成立的未知数的值,叫做不等式的解. 2、不等式的解不唯一,把全部满意不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共局部。

6、等式根本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.根本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的根本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。

)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变.不等式的根本性质、若a>b,则ac>bc;、若a>b,c>0则ac>bc,若cc,则a>c四、一元一次不等式与一次函数五、一元一次不等式组※1.定义:由含有一个一样未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共局部叫做不等式组的解集.假如这些不等式的解集无公共局部,就说这个不等式组无解.几个不等式解集的公共局部,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共局部,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种状况(a、b为实数,且a找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取一样的字母,字母的指数取较低的;(3)取一样的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a+2ab+b或a-2ab+b的式子称为完全平方式.六、分解因式的方法:1、提公因式法。

北师大版|八年级数学下册知识点归纳总结,预习必备

北师大版|八年级数学下册知识点归纳总结,预习必备

北师大版|八年级数学下册知识点归纳总结,预习必备寒假是大家学习预习和查缺补漏。

逆袭反超的大好时机。

唐老师给大家准备了北师大版八年级下的各章节的知识要点,这部分知识大家在预习新课的时候可以先看一看,它主要的考点和内容都在这里。

初中阶段寒假假期并不是全部都是休息的时间,要合理地安排好自己的学习和休息时间,才能在假期的时候不至于只是为了玩而落下学习。

我们学习的过程当中遇到的这些定理和推论给大家做题提供了一些思路和方法。

大家是否能运用熟练,还要靠大家去把它运用到相应的题目当中。

寒假新课重难点预习,大家除了对知识点有一定的了解和能够完成基本的题题型的前提下,一定要对这些定理和推论,进行深入的了解。

比如说,一个定理,他在什么情况下能够运用推论用什么情况才能运用?这些都是我们需要理清楚的问题,只有思考明白了这些问题,那么大家在做题的时候,才能够在第一时间连接到这些知识考点,解题思路才会更加的清晰。

因式分解这个章节基本上是计算偏多的章节对于你是否能熟练地计算,那么不仅是公式的运用,而且对于每一种一是分解的方法都要进行变式的训练,否则当题目稍微有变动的时候,很多同学都会措手不及。

对于分式方程中增根的问题,唐老师在之前的视频中也多次提到,那么大家在学习的时候如有遇到困难可以去翻看之前唐老师发过的有关增根的解题方法和解题的技巧。

写在最后:学习是自己的事情,学习好不好,学习有没有压力,学习困不困难,只有自己最清楚。

恰巧寒假假期相对于平时的休息时间来说还是比较充裕,所以大家一定要利用好这个时间段,不仅要做好查缺补漏,还且对于下学期要学习的重点和难点的章节先进行预习;这样到课堂上的时候,自己的听课效率和学习的效率才会有所提高,缓解自己的学习压力,这样分配才能学习更加的轻松。

北师大版初二数学下册知识点归纳

北师大版初二数学下册知识点归纳

北师大版初二数学下册知识点归纳北师大版初二数学下册知识点归纳1第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

八年级下册数学北师知识点总结

八年级下册数学北师知识点总结

八年级下册数学北师知识点总结本文将对八年级下册数学北师知识点进行全面总结,帮助学生更好地掌握课程内容。

一、代数式的应用
1. 一次函数的表示与应用
2. 二次函数的表示与应用
3. 线性方程组与解法
4. 二元一次方程组的应用
5. 不等式的基本性质及应用
二、几何图形的认识
1. 三角形的基本性质
2. 三角形中的角平分线定理
3. 相似三角形及其应用
4. 圆的定义及性质
5. 弧长、扇形面积的计算
6. 圆的切线与切线定理
三、函数的知识
1. 函数的概念及性质
2. 一次函数的图像及性质
3. 二次函数的图像及性质
4. 指数函数与对数函数
5. 幂函数与反比例函数
四、统计与概率
1. 统计调查及其方法
2. 统计图的绘制及应用
3. 概率及其计算方法
4. 条件概率及其应用
5. 排列组合及其应用
五、解析几何
1. 坐标系与直线方程
2. 直线的截距式与一般式
3. 圆的方程及其性质
4. 双曲线及其基本知识
六、立体几何
1. 空间图形的基本认识
2. 球的认识及其性质
3. 空间旋转体的认识及其性质
4. 几何体的表面积及体积计算
七、数学建模
1. 数学建模的基本方法
2. 数学模型的设计与建立
3. 数学模型的求解与应用
八、数学思维
1. 判断与推理能力的培养
2. 问题解决能力的提升
3. 数学思维的应用技巧。

北师大版八年级下册数学知识点总结

北师大版八年级下册数学知识点总结

北师大版八年级下册数学知识点总结北师大版八年级下册数学主要包括以下知识点:
1. 分式:
- 分式的概念和性质
- 分式的化简和展开
- 分式的四则运算(加减乘除)
- 分式方程的解法
2. 二次根式:
- 二次根式的概念和性质
- 二次根式的化简和展开
- 二次根式的运算(加减乘除)
- 二次根式的求值和应用
3. 平面图形与变换:
- 平行四边形、菱形和正方形的性质和判定
- 三角形的内角和外角性质
- 相似三角形的判定和性质
- 平面图形的位似变换(翻转、旋转、平移)
4. 数据与统计:
- 统计图表的读取和分析
- 数据的表示和处理(频数、频率、平均数等)
- 抽样调查和用样本估计总体
5. 方程与不等式:
- 一元一次方程的概念和性质
- 一元一次方程的解法(整数解、分数解、无解)
- 一元一次方程应用问题的解法
- 一元一次不等式的概念和性质
- 一元一次不等式的解法
6. 概率与统计:
- 随机事件的概念和性质
- 独立事件、互斥事件和相反事件
- 事件的概率计算
- 概率的应用(排列组合、事件的发生次数等)
这些是北师大版八年级下册数学的主要知识点总结,希望对你有帮助。

如果你还有其他问题,请继续提问。

八下数学知识点归纳北师大版

八下数学知识点归纳北师大版

八下数学知识点归纳北师大版
八下数学知识点归纳(北师大版)
1. 整式的加减运算:将同类项相加或相减,并注意合并同类项的系数。

2. 一元一次方程:解一元一次方程时,可以通过加减变换、乘除变换或移项来求解。

3. 二元一次方程组:通过消元法或代入法来求解含有两个未知数的方程组。

4. 三角形的面积:根据三角形的底和高、两边和夹角的正弦公式、两边和夹角的余弦公式来计算三角形的面积。

5. 平行线与比例:根据平行线的性质来求解问题,应用相似三角形的性质计算比例。

6. 一元二次方程:利用配方法或公式法来解一元二次方程,并注意解的情况。

7. 空间图形的计算:通过计算形体的体积或表面积来解决空间图形的问题。

8. 圆的面积和周长:通过半径、直径、弦和扇形的关系来计算圆的面积和周长。

9. 概率与统计:根据事件发生的可能性来计算概率,并通过统计数据的分析和整理来得出结论。

10. 点、直线、平面的关系:通过点和直线的位置关系来判断它们是否相交或平行。

以上是八下数学教材中的一些重要知识点,希望对你的学习有所帮助。

北师大版八年级(下)数学知识点归纳总结

北师大版八年级(下)数学知识点归纳总结

第一章 三角形的证明第1节 等腰三角形一、全等三角形的性质与判定1、全等三角形的性质定理1 全等三角形的对应边相等。

定理2 全等三角形的对应角相等。

推论1 全等三角形的面积相等。

推论2 全等三角形的周长相等。

2、全等三角形的判定公理1 两边夹角对应相等的两个三角形全等(SAS )公理2 两角及其夹边对应相等的两个三角形全等(ASA )公理3 三边对应相等的两个三角形全等(SSS )定理1 两角及其中一角的对边对应相等的两个三角形全等(AAS )定理2 斜边和一条直角边分别相等的两个直角三角形全等。

(HL )二、等腰三角形的性质与判定1、等腰三角形的性质定理 等腰三角形的两个底角相等。

(等边对等角)推论1 等腰三角形顶角平分线、底边上的中线和底边上的高互相重合。

(三线合一) 推论 2 等腰三角形两腰上的中线、两腰上的高、两个底角的平分线都相等,并且它们的交点到底边两端点距离相等。

【说明】①等腰直角三角形的两个底角相等且等于45°。

②等腰三角形的底角只能为锐角,不能为钝角或直角,但顶角可为钝角或直角。

③等腰三角形的三边关系:设腰长为a ,底边长为b ,周长为C ,则2b<a <2C④等腰三角形的三角关系:设顶角为∠C ,底角为∠A 、∠B ,则∠C =180°—2∠A =180°—2∠B ,∠A =∠B =2180A∠-︒2、等腰三角形的判定定义:有两条边相等的三角形叫做等腰三角形。

定理:有两个角相等的三角形是等腰三角形。

(等角对等边)三、等边三角形的性质与判定1、等边三角形的性质定理1 等边三角形的三条边都相等。

定理2 等边三角形的三个内角都相等,并且每个角都等于60°。

推论:在直角三角形中,如果有一个锐角等于30°,那么它所对直角边等于斜边一半。

2、等边三角形的判定定义:三条边都相等的三角形叫做等边三角形。

定理:三个角都相等的三角形是等边三角形。

初二数学北师大版下册数学知识点总结

初二数学北师大版下册数学知识点总结

初二数学北师大版下册数学知识点总结一、三角形的证明1、等腰三角形(1)性质:等腰三角形的两腰相等;等腰三角形的两底角相等(等边对等角);等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(三线合一)。

(2)判定:有两边相等的三角形是等腰三角形;如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

2、等边三角形(1)性质:等边三角形的三条边都相等;等边三角形的三个内角都相等,并且每个角都等于 60°。

(2)判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是 60°的等腰三角形是等边三角形。

3、直角三角形(1)性质:直角三角形的两个锐角互余;直角三角形斜边上的中线等于斜边的一半;在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半。

(2)判定:如果三角形的三边长 a、b、c 满足 a²+ b²= c²,那么这个三角形是直角三角形。

4、反证法先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

二、一元一次不等式与一元一次不等式组1、不等式的基本性质(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变。

(2)不等式两边乘(或除以)同一个正数,不等号的方向不变。

(3)不等式两边乘(或除以)同一个负数,不等号的方向改变。

2、一元一次不等式(1)定义:只含有一个未知数,未知数的次数是 1,且不等号两边都是整式的不等式叫做一元一次不等式。

(2)解法:去分母、去括号、移项、合并同类项、系数化为 1。

3、一元一次不等式组(1)定义:几个含有同一个未知数的一元一次不等式合在一起,就组成了一个一元一次不等式组。

(2)解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。

(3)解不等式组:分别求出不等式组中各个不等式的解集,然后找出它们的公共部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学考试知识点复习第一章证明(二)一、全等三角形的判定及性质※1性质:全等三角形对应相等、对应相等※2判定:分别相等的两个三角形全等(SSS);分别相等的两个三角形全等(SAS)分别相等的两个三角形全等(ASA)④相等的两个三角形全等(AAS)⑤相等的两个直角三角形全等(HL)二. 等腰三角形※1. 性质:等腰三角形的两个底角相等(等边对等角).※2. 判定:有两个角相等的三角形是等腰三角形(等角对等边).※3. 推论:等腰三角形、、互相重合(即“”).※4.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于;等边三角形是轴对称图形,有条对称轴.判定定理:(1)有一个角是60°的等腰三角形是等边三角形;(2)三个角都相等的三角形是等边三角形.三.直角三角形※1. 勾股定理及其逆定理定理:直角三角形的两条直角边的等于的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是.※2.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么等于的一半. ※3.直角三角形斜边上的中线等于的一半。

要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法.四. 线段的垂直平分线※1. 线段垂直平分线的性质及判定性质:线段垂直平分线上的点到的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的 .※2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.五. 角平分线※1. 角平分线的性质及判定定理性质:角平分线上的点到的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.※2. 三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.这个点叫内心第二章一元一次不等式和一元一次不等式组一. 不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做¤2. 要区别方程与不等式: 方程表示的是的关系;不等式表示的是的关系.※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向 ,即:如果a>b,那么a+c>b+c, a-c>b-c. (2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向 ,即如果a>b,并且c>0,那么ac>bc, cb ca .(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向 ,即:如果a>b,并且c<0,那么ac<bc,cb ca ※2. 比较大小:(a 、b 分别表示两个实数或整式)一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三. 一元一次不等式组解集一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b) 一元一次不等式解集图示叙述语言表达b x a x x>bba同大取大b x a x x>abab x a x a<x<bbabxa x 无解ba第三章平移和旋转一.图形的平移※1. 概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

※2. 性质:(1)平移前后图形全等;(2)对应点连线平行或在同一直线上且相等。

二.图形的旋转※1. 概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

※2. 性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.三.中心对称※1.概念:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

※2. 基本性质:(1)成中心对称的两个图形具有图形旋转的一切性质。

(2)成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

※3. 中心对称图形(2)中心对称与中心对称图形的区别与联系如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。

图形的平移、轴对称(折叠)、中心对称(旋转)的对比第四章分解因式一. 分解因式第四章因式分解一.因式分解的定义※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.※2. 因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.二. 提公共因式法※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法如: )(c b a ac ab三. 运用公式法※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.※2. 主要公式: (1)平方差公式: ))((22b a b a ba(2)完全平方公式: 222)(2b a baba 222)(2b a bab a第五章分式一. 分式※1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.整式A 除以整式B,可以表示成BA 的形式.如果除式B 中含有字母,那么称BA 为分式,对于任意一个分式,分母都不能为零.※2. 整式和分式统称为有理式,即有:分式整式有理式※3. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.)0(,MMBM A BA MB M A BA ※4. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.二. 分式的乘除法※1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:BDAC DC B A ,CB D A CD B A DC BA ※2. 分式乘方,把分子、分母分别乘方.即:)(为正整数n BA BA n nn逆向运用nnn BA BA ,当n 为整数时,仍然有nn nBA BA 成立.※3. 分子与分母没有公因式的分式,叫做最简分式.三. 分式的加减法※1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.※2. 分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.(1)同分母的分式相加减,分母不变,把分子相加减; 上述法则用式子表示是:CBA CB CA (2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:BDBCAD BDBC BDAD DC BA 四. 分式方程※1. 解分式方程的一般步骤:新|课|标| 第|一| 网①去分母,在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.※2. 列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根; ⑤写出答案.第6章四边形【几种特殊四边形的性质】边角对角线平行四边形矩形菱形等腰梯形【几种特殊四边形的常用判定方法】平行四边形(1)两组对边分别;(2)两组对边分别;(3)一组对边;(4)两条对角线;(5)两组对角分别。

矩形(1)有三个是的四边形;(2)有一个角是的平行四边形(3)两条对角线的平行四边形。

新课标第一网菱形(1)四条边都相等的;(2有一组相等的平行四边形;(3)两条对角线的平行四边形。

正方形(1)有一组邻边相等的;(2)有一个角是直角。

(3)对角线的矩形(4)对角线的菱形【几个重要结论】1.菱形的面积等于两对角线乘积的一半.正方形同样如此。

2.直角三角形斜边上的中线等于斜边的一半.3.直角三角形中,如果有一个锐角等于30°,那么30°所对的直角边等于斜边的一半.。

相关文档
最新文档