ASK调制与解调电路设计方案

合集下载

ASK

ASK

二进制振幅键控(ASK)调制与解调设计一、ASK 调制解调系统的原理1、ASK调制原理及其方法数字幅度调制又称幅度键控(ASK),二进制幅度键控记作 2ASK。

2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。

有载波输出时表示发送“1”,无载波输出时表示发送“0”。

借助于第3 章幅度调制的原理,2ASK 信号可表示为e0 = s(t) cos ωc t式中,c 为载波角频率, s(t ) 为单极性 NRZ 矩形脉冲序列s(t) = ∑ a n g (t - nT b )其中, g(t) 是持续时间为 Tb 、高度为 1 的矩形脉冲,常称为门函数,an 为二进制数字。

2、ASK实现有两种方法;A、乘法器实现法. a、乘法器实现法的输入是随机信息序列,经过基带信号形成器,产生波形序列,乘法器用来进行频谱搬移,相乘后的信号通过带通滤波器滤除高频谐波和低频干扰。

b、带通滤波器的输出是振幅键控信号。

c、乘法器常采用环形调制器。

B、键控法键控法是产生ASK信号的另一种方法。

二元制ASK又称为通断控制(OOK)。

典型的实现方法是用一个电键来控制载波振荡器的输出而获得。

示意图如图1所示。

图1 3、ASK 解调原理及设计方法ASK 信号解调的常用方法主要有两种:包络检波法和相干检测法。

包络检波法的原理方框图如图2 所示:带通滤波器(BPF )恰好使 2ASK 信号完整地通过,经包络检测后输出其包络。

低通滤波器(LPF )的作用是滤除高频杂波,使基带信号(包络)通过。

抽样判决器包括抽样、判决及码元形成器。

定时抽样脉冲(位同步信号)是很窄的脉冲,通常位于每个码元的中央位置,其重复周期等于码元的宽度。

不计噪声影响时,带通滤波器输出为 2ASK 信号。

经抽样、判决后将码元再生,即可恢复出数字序列{an}。

相干检测法原理方框图如图3 所示相干检测就是同步解调,要求接收机产生一个与发送载波同频同相的本地载波信号,称其为同步载波或相干载波。

实验三-ASK调制及解调实验

实验三-ASK调制及解调实验

实验三-ASK调制及解调实验一、实验目的1、掌握用键控法产生ASK信号的方法。

2、掌握ASK非相干解调的原理。

二、实验器材1、主控&信号源、9号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图信号源PN15128K基带信号调制输出载波1ASK解调输出门限判决LPF-ASK低通滤波整流输出半波整流解调输入门限调节9#数字调制解调模块ASK调制及解调实验原理框图2、实验框图说明ASK调制是将基带信号和载波直接相乘。

已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。

四、实验步骤实验项目一ASK调制概述:ASK调制实验中,ASK(振幅键控)载波幅度是随着基带信号的变化而变化。

在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理。

1、关电,按表格所示进行连线。

源端口信号源:PN信号源:128KHz目的端口连线说明模块9:TH1(基带信号)调制信号输入模块9:TH14(载波1)载波输入模块9:TH4(调制输出)模块9:TH7(解调输入)解调信号输入2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【ASK数字调制解调】。

将9号模块的S1拨为0000。

3、此时系统初始状态为:PN序列输出频率32KHz,调节128KHz载波信号峰峰值为3V。

4、实验操作及波形观测。

(1)分别观测调制输入和调制输出信号:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH4,验证ASK调制原理。

(2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。

实验项目二ASK解调概述:实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证ASK解调原理。

观测解调输出的中间观测点,如:TP4(整流输出),TP5(LPF-ASK),深入理解ASK解调过程。

1、保持实验项目一中的连线及初始状态。

ask调制与解调实验报告

ask调制与解调实验报告

ask调制与解调实验报告ASK调制与解调实验报告一、引言调制与解调是通信领域中非常重要的技术手段之一。

本实验旨在通过实际操作,探索并理解ASK调制与解调的原理和实现方法。

二、实验目的1. 理解ASK调制与解调的基本原理;2. 掌握ASK调制与解调的实验操作方法;3. 分析ASK调制与解调的优缺点及应用领域。

三、实验原理ASK(Amplitude Shift Keying)调制是一种基于信号幅度变化的数字调制技术。

在ASK调制中,将数字信号的高低电平分别对应于载波信号的高低幅度,从而实现数字信息的传输。

解调过程则是将调制信号恢复为原始的数字信号。

四、实验步骤1. 搭建ASK调制电路:将数字信号源与载波信号源连接至调制器,调制器输出ASK调制信号。

2. 搭建ASK解调电路:将ASK调制信号与载波信号输入解调器,解调器输出解调信号。

3. 连接示波器:将ASK调制信号和解调信号分别连接至示波器,观察波形变化。

4. 调整参数:根据实验要求,调整数字信号源的频率和幅度,观察ASK调制信号和解调信号的变化。

五、实验结果与分析1. 观察ASK调制信号的波形:通过示波器显示的波形图,我们可以清晰地看到数字信号的高低电平对应于载波信号的高低幅度。

这种幅度变化的方式可以有效地传输数字信息。

2. 观察ASK解调信号的波形:解调器将ASK调制信号恢复为原始的数字信号,解调信号的波形应与数字信号源的波形一致。

通过比较两者的波形图,可以验证解调的准确性。

3. 分析ASK调制与解调的优缺点:ASK调制与解调的优点是实现简单,传输效率高。

然而,由于ASK调制信号的幅度变化较大,容易受到噪声的干扰,因此抗干扰性较差。

4. 应用领域:ASK调制与解调广泛应用于短距离通信系统中,如遥控器、无线门铃等。

在这些应用中,传输距离相对较短,抗干扰性要求不高,因此ASK调制与解调是一种经济实用的选择。

六、实验总结通过本次实验,我们深入了解了ASK调制与解调的原理和实现方法。

ASK调制与解调实验

ASK调制与解调实验

2ASK调制与解调一、实验目的:(1)掌握2ASK的调制与解调原理。

(2)学会运用Matlab编写2ASK调制程序。

(3)会画出原信号和调制信号的波形图。

(4)掌握数字通信的2ASK调制方式。

二、实验原理分析1、二进制振幅键控(2ASK)频移键控是利用载波的幅度变化来传递数字信息,而其频率和初始相位保持不变。

在2ASK中,载波的幅度只有两种变化状态,分别对应二进制信息“0”或“1”。

二进制振幅键控的表达式为:s(t) = A(t)cos(w+θ) 0<t≤T式中,w0=2πf为载波的角频率;A(t)是随基带调制信号变化的时变振幅,即A(t) =⎩⎨⎧A典型波形如图1所示:图12ASK信号的产生方法通常有两种:相乘法和开关法,相应的调制器如图2。

图2(a)就是一般的模拟幅度调制的方法,用乘法器实现;图2(b)是一种数字键控法,其中的开关电路受s(t)控制。

在接收端,2ASK有两种基本的解调方法:非相干解调(包络检波法)和相干解调(同步检测法),相应的接收系统方框图如图:三、附录2ASK调制matlab程序:clear all;close all;clc;max = 8;s=[1 1 0 1 1 0 1 0];cp=[];fs=100;fc=1;t1=(0:1/fs:8);f=1;%载波频率tc=0:2*pi/99:2*pi;nsamp = 100;cm=[];mod=[];for n=1:length(s);if s(n)==0;m=zeros(1,nsamp);b=zeros(1,nsamp);else s(n)==1;m=ones(1,nsamp);b=ones(1,nsamp);endc = sin(f*tc);cm=[cm m];cp = [cp b];mod=[mod c];endtiaozhiqian=sin(2*pi*t1*fc);tiaozhi=cm.*mod;%2ASK调制t = linspace(0,length(s),length(s)*nsamp); figure;subplot(3,1,2);plot(t,cp);grid on;axis([0 length(s) -0.1 1.1]);title('二进制信号序列');subplot(3,1,1);plot(t1,tiaozhiqian);grid on;%axis([0 length(s) -1.1 1.1]);title('未调制信号');subplot(3,1,3);plot(t,tiaozhi);grid on;axis([0 length(s) -1.1 1.1]);title('2ASK调制信号');图1 2ASK调制2ASK解调matlab程序:%加性高斯白噪声信道tz=awgn(tiaoz,10);%信号tiaoz中加入白噪声,信噪比为SNR=10dB figure;subplot(2,1,1);plot(t,tz);grid onaxis([0 length(s) -1.5 1.5]);title('通过高斯白噪声信道后的信号');jiet = mod.*tz;%相干解调subplot(2,1,2);plot(t,jiet);grid onaxis([0 length(s) -1.5 1.5]);title('乘以相干载波后的信号波形')图2 2ASK解调六、总结与心得体会通过实验,基本掌握了MATLAB的基本功能和使用方法,对数字基带传输系统有了一定的了解,加深了对2ASK的调制原理的认识,理解了如何对他进行调制,通过使用MATLAB仿真,对个调制和解调电路中各元件的特性有了较为全面的理解。

ASK FSK PSK数字调制及解调

ASK FSK PSK数字调制及解调
15位m序列输出(或用DDS信号源送出2kHz的方 波信号,由P03输出端送至16P01输入铆孔)。 5.载波幅度调节: 16W01:调节32KHz载波幅度大小。 用示波器测量16TP03波形。 6.ASK调制信号和巳调信号波形观察: 双踪示波器测量探头接16P01,另一测量探头接 16P02,调节示波器使两波形同步,观察ASK调 制信号和巳调信号波形,记录实验数据。
• 16TP03:32KHz载波信号测试点,可调节电位器16W01改变幅 度。
• 16TP04:16KHz载波信号测试点,可调节电位器16W02改变幅 度。
• 16P01: 数字基带信码信号输入铆孔。
• 16P02: FSK已调信号输出铆孔,此测量点需与16P01点波形 对比测量。
• 17W01:解调载波同步调节。
9.加噪声ASK解调输出波形观察:
调节3W01逐步增加调制信号的噪声电平大小,看是 否还能正确解调出基带信号。
10.关机拆线:
实验结束,关闭电源,拆除信号连线,并按要求放 置好实验模块。
表1 ASK调制各点波形
测试点
波形
幅度(V)Vp-p
16TP01 32kHz方 波
16TP0332kHz载波
16P01输入 调制波
2.信号线连接: 用专用导线将4P01、16P01;16P02、3P01;3P02、17P01连
接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。
3.加电:
打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯 显示不正常,请立即关闭电源,查找异常原因。
4.设置好跳线及开关: 用短路块将16K02的1-2、3-4相连。 拨码器4SW02:设置为“00000”,4P01产生2K的 15位m序

实验一 ASK调制与解调实验

实验一 ASK调制与解调实验

通信原理实验报告学院:信息与通信工程学院专业:光电工程班级:12051041学号:12051041姓名时间:2014.11.21实验一 ASK调制与解调实验一实验目的1.理解ASK调制的工作原理及电路组成。

2.理解ASK解调的原理及实现方法。

3.了解ASK信号的频谱特性。

二实验内容1.观察ASK调制与解调信号的波形。

2.观察ASK信号频谱。

三实验器材1.信号源模块 5.20M双踪示波器一台2.数字调制模块 6.连接线若干3.数字解调模块 7.频谱分析仪4.同步提取模块四实验原理1.2ASK 调制原理ASK 基带信号经过电压比较器(LM339),输出高/低电平驱动模拟开关(74HC4066)导通/关闭,ASK 载波通过电压跟随电路(TL082)提高带负载能力,然后通过模拟开关电路选择通过/截止,最后得到 ASK 调制信号输出。

2.2ASK 解调原理本实验采用的是包络检波法,ASK 调制信号经过 RC 组成的耦合电路,输出波形可从OUT1观察,然后通过半波整流器(由 1N4148 组成),输出波形可从 OUT2 观察,半波整流后的信号经过低通滤波器(由 TL082 组成),滤波后的波形可从 OUT3 观察,再经过电压比较器(LM339)与参考电位比较后送入抽样判决器(74HC74)进行抽样判决,最后得到解调输出的二进制信号。

标号为“ASK 判决电压调节”的电位器用来调节电压比较器的判决电压。

判决电压过高,将会导致正确的解调结果的丢失;判决电压过低,将会导致解调结果中含有大量错码,因此,只有合理选择判决电压,才能得到正确的解调结果。

抽样判决用的时钟信号就是 ASK 基带信号的位同步信号。

五实验步骤1.将信号源模块、数字调制模块、数字解调模块、同步提取模块、频谱分析模块小心地固定在主机箱中,确保电源接触良好。

2.插上电源线,打开主机箱右侧的交流开关,再分别按下五个模块中的开关 POWER1、POWER2,对应的发光二极管 LED01、LED02 发光,按一下信号源模块的复位键,五个模块均开始工作。

实验三 ASK调制与解调

实验三 ASK调制与解调

实验三 ASK调制解调一、实验目的1.掌握ASK调制器的工作原理及性能测试;2.学习基于软件无线电技术实现ASK调制、解调的实现方法。

二、实验仪器1.RZ9681实验平台2.实验模块:●主控模块●基带信号产生与码型变换模块-A2●信道编码与频带调制模块-A4●纠错译码与频带解调模块-A53.信号连接线4.100M四通道示波器三、实验原理3.1调制与解调数字信号的传输方式分为基带传输和带通传输。

然而,实际中的大多数信道(如无线信道)因具有带通特性而不能直接传送基带信号,这是因为数字基带信号往往具有丰富的低频分量。

为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。

这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号(已调信号)的过程称为数字调制(digital modulation)。

在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调(digital demodulation)。

通常把包括调制和解调过程的数字传输系统叫做数字频带传输系统。

数字信息有二进制和多进制之分,因此,数字调制可分为二进制调制和多进制调制。

在二进制调制中,信号参量只有两种可能的取值;而在多进制调制中,信号参量可能有M(M>2)种取值。

本章主要讨论二进制数字调制系统的原理。

3.2 2ASK调制振幅键控(Amplitude Shift Keying,ASK)是利用载波的幅度变化来传递数字信号,而其频率和初始相位保持不变。

在2ASK中,载波的幅度只有两种变换状态,分别对应二进制信息“0”或“1”。

2ASK信号的产生方法通常有两种:数字键控法和模拟相乘法。

实验中采用了数字键控法,并且采用了最新的软件无线电技术。

结合可编程逻辑器件和D/A转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成ASK,FSK 调制,还可以完成PSK,DPSK,QPSK,OQPSK等调制方式。

振幅键控(ASK)调制与解调实验报告

振幅键控(ASK)调制与解调实验报告
模块7:DIN
锁相环法位同步提取信号输入
模块7:BS
模块4:FSK-BS
提取的位同步信号
2、将模块7上的拨码开关S2拨为“1000”,观察模块4上信号输出点“FSK-DOUT”处的波形,并调节模块4上的电位器W5(顺时针拧到最大),直到在该点观测到稳定的PN码。
3、用示波器双踪分别观察模块3上的“FSK-NRZ”和模块四上的“OUT2”出的波形,将“OUT2”出FSK解调信号与信号源产生的PN码进行比较。
FSK调制模块:
TH7:FSK-NRZ经过反相后信号观测点。
FSK-OUT:FSK调制信号输出点。
FSK解调模块:
TH7: FSK调制信号经整形1后的波形观测点。
TH8:FSK调制信号经单稳(U10A)的信号观测点。
TH9:FSK调制信号经单稳(U10B)的信号观测点
TH10:FSK调制信号经两路单稳后相加信号观测点。
3、观察ASK解调输出“OUT1”处波形,并与信号源产生的PN码进行比较。调制前的信号与解调后的信号形状一致,相位有一定偏移。
4、通过信号源模块上的拨码开关S4控制产生PN码,改变送人的基带信号,重复上述实验;也可以改变载波频率来实验。
实验感想:通过此次实验,使我更加地了解用键控法产生ASK信号的方法,更深地懂得了ASK非相干解调的原理。观察到ASK调制和解调地波形。也使我更加熟练地操作示波器。
目的端口
连线说明
模块3:ASK-OUT
模块4:ASKIN
ASK解调输入
模块4:ASK-DOUT
模块7:DIN
锁相环法位同步提取信号
模块7:BS
模块4:ASK—BS
提取的位同步信号
2、将模块上的拨码开关S2拨为“ASK-NRZ”频率的16倍,如:“ASK-NRZ”选8K时,s2选128k,即拨“1000”。观察模块4上信号输出点“ASK-DOUT”处的波形,把电位器W3顺时针拧到最大,并调节电位器W1(改变判决门限),直到在“ASK-DOUT”出观察到稳定的PN码。

实验七 振幅键控ASK调制与解调

实验七 振幅键控ASK调制与解调

实验七振幅键控(ASK)调制与解调一、概述为使数字信号在带通信道中传输,必须对数字信号进行调制。

在幅移键控中,载波幅度是随着调制信号而变化的。

最简单的形式是载波在二进制调制信号1或0控制下通或断,这种二进制幅度键控方式称为通-断键控(OOK)。

本实验采用这种方式。

二、实验原理1.调制部分:二进制幅度键控的调制器可用一个相乘器来实现。

对于OOK信号,相乘器则可以用一个开关电路来代替。

调制信号为1时,开关电路导通,为0时切断。

OOK信号表达式:s OOK(t) = a(n)A cos(c t)式中:A -载波幅度,c-载波频率,a(n)-二进制数字信号原理框图基带信号a(n) 已调信号s OOK(t)c2.解调部分:解调有相干和非相干两种。

非相干系统设备简单,但在信噪比较小时,相干系统的性能优于非相干系统。

这里采用相干解调。

原理框图低通滤波(t) 解调信号â(n)OOK载波Acos(ωc t)三、实验步骤1.根据ASK调制与解调原理,用Systemview软件建立一个仿真电路,如下图所示:2.元件参数配制Token 0,5:基带信号-PN码序列(频率=10Hz,电平=2,幅度=1V,偏移=1V)Token 1,22:乘法器Token 2, 7,23:载波-正弦波发生器(频率=50Hz,幅度=1V,相位=0deg)Token 14,26:模拟低通滤波器(截止频率=10Hz,阶数=3)Token 15,27:抽样保持器Token 16,28:脉冲(频率=10Hz,幅度=1V,脉宽=0.05s)Token 12,24:比较器(真值=1V,假值=-1V)Token 17,29:门限值(幅度=0.1V)其它为观察点-分析窗3.运行时间设置:采样点数=2048,采样频率=1000Hz4.运行系统:运行该系统后,转到分析窗观察的波形。

5.功率谱:在分析窗绘出该系统调制后的功率谱。

四、实验报告1.观察并记录实验波形:Token 4-基带信号波形,Token 33-调制波形,Token 18-解调波形,并与理论参考波形相比较。

实验3 ASK调制与解调实验报告

实验3 ASK调制与解调实验报告
提取的位同步信号波形:
(采用双踪示波器比较信号源的位同步波形与提取的位同步信号波形,它们应当一致,表示发送端与接收端的码元宽度是一样的)
ASK解调输出波形:
(采用双踪示波器比较提取的位同步信号波形与ASK解调输出波形,从而可以得到数字信号,它与我们在SW01、SW02、SW03设置的数字信号应该一致)
OUT2测试点输出波形:(即ASK调幅波经半波整流器后的信号输出波形)
OUT3测试点输出波形:(即ASK调幅波经低通滤波器后的信号输出波形)
ASK—OUT测试点输出波形:(即ASK调幅波经电压比较器后的信号输出波形,未经同步判决。波形与ASK判决电压调节的调节幅度有关)
a、ASK判决电压调节过高,误判为0的概率增加:
(采用双踪示波器比较ASK基带输入波形与ASK—OUT测试点输出波形)
b、ASK判决电压调节过低,误判为1的概率增加:
(采用双踪示波器比较ASK基带输入波形与ASK—OUT测试点输出波形)
c、适当调节ASK判决电压,使ASK—OUT输出波形与ASK基带输入波形最接近:
(采用双踪示波器比较ASK基带输入波形与ASK—OUT测试点输出波形)
七、实验思考题解答
1、说明用键控法产生2ASK信号的方法。
2、调节判决电平,当它过大或过小时会出现误码,说明为什么会产生误码。
八、调试中遇到的问题及解决方法
现代通信原理
实验室名称:通信原理实验室实验日期: 年 月 日
学院班级、Biblioteka 号姓名实验项目名称
ASK调制与解调实验
指导
教师
一、实验目的
二、实验内容
三、实验仪器
四、实验原理
五、实验步骤
六、实验结果及分析
ASK基带输入: 信号源测试点NRZ输出的NRZ码

基于FPGA的ASK调制解调器设计与实现

基于FPGA的ASK调制解调器设计与实现

基于FPGA的ASK调制解调器设计与实现近年来,随着无线通信技术的迅猛发展,ASK调制解调器作为无线通信系统的重要组成部分,得到了广泛应用。

本文将介绍一种基于FPGA的ASK调制解调器的设计与实现,旨在为读者提供一种可行的设计思路和实际操作方法。

一、引言在无线通信系统中,ASK调制解调器的作用是将数字信号转换为模拟信号进行传输,并将接收到的模拟信号转换为数字信号进行处理。

FPGA(Field-Programmable Gate Array,现场可编程门阵列)作为一种灵活可重构的集成电路,具有高度集成度、高性能和可编程性的特点,因此被广泛应用于无线通信系统中各种调制解调器的设计与实现。

二、设计思路基于FPGA的ASK调制解调器主要包括两个功能模块,分别为ASK调制模块和ASK解调模块。

其中,ASK调制模块负责将数字信号转换为ASK调制信号进行传输,而ASK解调模块则负责将接收到的ASK调制信号进行解调,还原为数字信号进一步处理。

三、ASK调制模块设计ASK调制模块的设计主要包括数字信号生成、载波信号生成和ASK调制信号合成三个子模块。

1. 数字信号生成在数字信号生成模块中,我们可以根据实际需求,采用VerilogHDL等硬件描述语言来描述数字信号的生成过程,通过逻辑运算和状态切换等方式生成需要传输的数字信号。

2. 载波信号生成载波信号生成模块是ASK调制的关键环节,可以采用时钟信号和正弦函数生成器相结合的方式实现。

通过控制正弦函数的频率和振幅,可以生成符合ASK调制要求的载波信号。

3. ASK调制信号合成将数字信号和载波信号进行合成,生成ASK调制信号。

可以通过乘法运算实现,即将数字信号与载波信号相乘,得到ASK调制信号。

四、ASK解调模块设计ASK解调模块的设计主要包括ASK解调信号提取和数字信号还原两个子模块。

1. ASK解调信号提取在ASK解调信号提取模块中,首先需要对接收到的调制信号进行滤波,以去除噪声和其他干扰。

ASK调制与解调电路设计及仿真

ASK调制与解调电路设计及仿真

ASK调制与解调电路设计及仿真在通信系统中,调制和解调电路是至关重要的组成部分。

调制是将信息信号转换成适合在通信信道中传输的信号的过程,而解调则是将传输过来的信号恢复成原始信号的过程。

下面将详细介绍调制与解调电路的设计及仿真。

1.调制电路设计和仿真:调制电路的设计目标是将原始信息信号转换成适合在通信信道中传输的信号。

常见的调制方式包括频率调制(FM)、相位调制(PM)和振幅调制(AM)。

调制电路的设计应考虑如下因素:(1)信号源:需确定原始信息信号的频率范围、幅度以及波形特征。

(2)载波信号源:选择适合的载波频率和波形。

(3)调制电路:根据调制方式选取合适的调制电路,如较简单的RC电路或相移电路等。

(4)调制参数调整:通过改变调制电路的参数,可以对调制信号的频率、相位和幅度进行调节。

(5) 仿真验证:利用电路仿真软件(如Multisim、LTspice等)对设计的调制电路进行仿真、调试和验证。

2.解调电路设计和仿真:解调电路的设计目标是将经过调制的信号恢复成原始信息信号。

解调电路的设计应考虑如下因素:(1)调制方式和参数:了解调制信号的调制方式和参数,确定解调电路的工作方式。

(2)解调电路选型:选择合适的解调电路,如包络检波电路、鉴频器等。

(3)解调参数调整:通过调整解调电路的参数,对解调信号的频率、相位和幅度进行调节。

(4)仿真验证:利用电路仿真软件对设计的解调电路进行仿真、调试和验证。

(5)信号恢复质量评估:通过仿真结果评估解调电路对原始信息信号的恢复质量,包括信噪比、失真度等。

3.综合设计和仿真:在设计调制和解调电路时,需要充分考虑信号传输的特性、噪声干扰、抗干扰性能等因素。

通过电路仿真软件,可以进行综合设计和仿真,优化调制和解调电路的性能。

此外,还可考虑以下因素:(1)双向通信:在调制和解调电路设计中,需要考虑双向通信的情况,即在同一通信链路上实现信号的传输和接收。

(2)多路复用:有时需要将多个信号在同一通信信道中传输,此时需要设计相应的多路复用电路,实现信号的分离和恢复。

ASK调制解调电路设计

ASK调制解调电路设计

ASK调制解调电路设计调制解调电路是通信系统中的关键组成部分,它负责将原始信号转换成适合传输的模拟或数字信号,并在接收端将其恢复原始形式。

在本文中,将介绍调制解调电路的设计原理、常见的调制解调技术以及一些实际设计中的考虑因素。

调制解调电路的设计原理:调制的目的是将原始信号与载波信号进行合并,以便在传输过程中提高信号的传输效率。

调制技术主要分为模拟调制和数字调制两种类型。

模拟调制是将原始信号通过其中一种调制方式,将其频率、振幅或相位与载波信号进行调制,生成调制信号。

常见的模拟调制技术有幅度调制(AM)、频率调制(FM)、相位调制(PM)等。

对于模拟调制,常用的调制解调电路包括运算放大器、功率放大器、滤波器等。

数字调制则是通过将原始信号转换为数字形式,以便在数字通信系统中传输和处理。

常见的数字调制技术有振幅移键(ASK)、频率移键(FSK)、相位移键(PSK)和正交振幅移键(QAM)等。

常见的调制解调技术:1.ASK调制解调电路设计:ASK是一种简单的数字调制技术,它将二进制信号转换为有限数量的离散振幅级别。

在调制端,二进制信号通过将载波的振幅进行调制。

在解调端,使用信号检波器将调制信号转换为原始二进制信号。

2.FSK调制解调电路设计:FSK是一种将二进制信号转换为不同频率的数字调制技术。

调制端通过控制两个频率,将二进制信号转换成相应频率的调制信号。

解调端通过对不同频率信号的检测,将调制信号恢复为原始二进制信号。

3.PSK调制解调电路设计:PSK是一种将二进制信号转换为不同相位的数字调制技术。

调制端通过控制载波的相位,将二进制信号转换成相应相位的调制信号。

解调端通过相位解调器将调制信号恢复为原始二进制信号。

考虑因素:在设计调制解调电路时1.带宽和数据率:调制解调电路的带宽需要与传输信号的带宽相匹配,以确保传输的完整性。

2.抗噪性能:调制解调电路需要在有噪声存在的环境中工作,并恢复原始信号的准确性。

3.功耗:调制解调电路在设计中应尽可能降低功耗,以提高系统的效率和延长电池寿命。

ASK调制与解调电路设计

ASK调制与解调电路设计

ASK调制与解调电路设计调制与解调电路是无线通信中的重要组成部分,用于将信息信号转换为适合传输的高频信号,并在接收端将高频信号还原为原始信息信号。

接下来将详细介绍调制与解调电路的设计。

一、调制电路设计:调制电路主要用于将低频信息信号调制到高频载波上进行传输,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。

1.AM调制电路设计:AM调制主要包括信号放大、频率变换、调幅和输出滤波等环节。

具体设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,一般使用运放进行放大。

(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。

(3)调幅:将频率变换后的高频信号经过调幅电路进行调幅,常用的调幅电路有晶体二极管调制器和集成电路调制器等。

(4)输出滤波:将调幅后的信号通过低通滤波器进行滤波,去除高频噪声和杂波。

2.FM调制电路设计:FM调制是将信息信号的频率变化转换为载波频率的变化,并将其用于传输。

FM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。

(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。

(3)调频:将频率变换后的高频信号进行调频,一般采用三角调制电路进行调频。

(4)输出滤波:将调频后的信号经过低通滤波器进行滤波,去除高频噪声和杂波。

3.PM调制电路设计:PM调制是将信息信号的相位变化转换为载波相位的变化,并将其用于传输。

PM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。

(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。

(3)调相:将频率变换后的高频信号进行调相,一般采用集成电路调相器进行调相。

ask调解解调课程设计

ask调解解调课程设计

ask调解解调课程设计一、课程目标知识目标:1. 让学生理解ask调解解调的基本概念,掌握调制与解调的原理;2. 学会使用相关设备进行ask调解解调实验,并能够分析实验结果;3. 了解ask调解解调技术在现实生活中的应用。

技能目标:1. 培养学生动手操作实验设备的能力,提高实验操作技巧;2. 培养学生运用理论知识解决实际问题的能力,提高问题分析能力;3. 提高学生的团队协作能力,培养良好的实验操作习惯。

情感态度价值观目标:1. 培养学生对ask调解解调技术的兴趣,激发学生学习通信原理的积极性;2. 培养学生严谨的科学态度,提高学生对待实验的认真程度;3. 增强学生的国家使命感和社会责任感,认识到通信技术在我国社会发展中的重要作用。

本课程针对年级特点,结合通信原理的知识体系,以实用性为导向,设计课程目标。

通过本课程的学习,学生能够掌握ask调解解调的基本原理和实验操作,培养实际操作能力,为后续深入学习通信技术打下坚实基础。

同时,注重培养学生的团队协作和情感态度,使学生在掌握知识技能的同时,形成良好的价值观。

二、教学内容1. ask调解解调原理:讲解ask调解解调的基本概念、原理及分类,结合教材第3章第1节内容,使学生理解调制解调技术在通信系统中的作用。

- 模拟调制与数字调制的区别;- ask调制原理及其数学表达式;- ask解调原理及其数学表达式。

2. ask调解调实验操作:根据教材第3章第2节,指导学生使用实验设备进行ask调解调实验,学习实验操作步骤,培养实际操作能力。

- 实验设备的认识与使用;- ask调制实验操作步骤;- ask解调实验操作步骤;- 实验结果分析。

3. ask调解解调应用:结合教材第3章第3节,介绍ask调解解调技术在现实生活中的应用,使学生认识到通信技术的重要性。

- ask调解解调在无线电通信中的应用;- ask调解解调在有线通信中的应用;- ask调解解调在物联网中的应用。

EDA课程设计 ASK调制与解调

EDA课程设计  ASK调制与解调

二进制振幅键控(ASK)的调制与解调引言:数字基带信号的功率谱从零频开始而且集中在低频段,因此只适合在低通型信道中传输。

但常见的实际信道是带通型的,因此,必须用数字基带信号对载波进行调制,使基带信号的功率谱搬移到较高的载波频率上,才可以在信道中进行传输。

在现代数字通信系统中,频带传输系统的应用最为突出。

将原始的数字基带信号,经过频谱搬移,变换为适合在频带上传输的频带信号。

传输这个信号的系统就称为频带传输系统。

在频带传输系统中,根据数字信号对载波不同参数的控制,形成不同的频带调制方法。

数字信号对载波信号的振幅调制称为振幅键控,即ASK调制。

当选择正弦波作为载波,用一个二进制基带信号对载波信号的振幅进行调制时,使载波时断时续地输出。

产生的信号就是二进制振幅键控信号(2ASK)。

本次实验以二进制ASK为例,以EDA为平台,采用VHDL语言进行ASK信号的调制与解调设计。

一.设计目的加强学生对通信专业知识的理解和掌握,锻炼学生的动手实践能力、运用MuxplusⅡ软件,分析并解决通信系统中实际问题的能力。

二.设计内容和要求1.掌握ASK的调制解调原理;2.对ASK调制解调电路进行建模,画原理框图;3.根据原理框图利用VHDL语言进行设计,并对程序的每一部分能够解释说明;4.设置合理参数,利用波形仿真进行分析,得出结论。

三.系统设计原理1 系统原理简介(1)数字带通传输系统数字信号的传输方式分为基带传输和带通传输两种方式。

其中,数字信号的基带传输系统是指不经载波调制而直接传输数字基带信号的系统。

未经调制的数字信号所占据的频谱是从零频或低频开始,称为数字基带信号。

对于ASK 调制,它是通过数字信号对载波进行调制,其中包括调制和解调的过程,这种传输方式称为数字频带传输系统。

在实际中,大多数信道因具有带通特性而不能直接传送基带信号,这是因为数字基带信号往往具有丰富的低频分量。

为了使数字信号在带通信道中传输,必须采用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。

2ASK调制解调电路的设计

2ASK调制解调电路的设计

2ASK调制解调电路的设计设计一个ASK调制解调电路是非常复杂和详细的过程,需要考虑到多个因素,如输入信号的频率和幅度、噪声干扰的影响等。

下面是一个基本的ASK调制解调电路设计,其中包括了主要的组件和功能。

1.基本原理:ASK调制解调电路的基本原理是将数字信号转换为模拟信号进行调制,然后通过解调将模拟信号恢复为数字信号。

调制过程是通过改变载波信号的幅度来表示数字信号的0和1,解调过程是通过检测载波信号的幅度来恢复数字信号。

2.设计组件:a.信号源:用于提供发送的数字信号。

b.载波发生器:产生用于调制和解调的载波信号。

c.调制器:将数字信号和载波信号相乘,产生调制信号。

d.解调器:检测调制信号的幅度,并恢复为数字信号。

e.滤波器:用于去除调制信号或解调信号中的噪声干扰。

f.放大器:用于放大调制信号或解调信号的幅度。

3.设计步骤:a.确定调制频率和解调频率:根据实际需求和应用场景确定合适的调制频率和解调频率。

b.设计载波发生器:使用合适的电路设计载波发生器,产生所需的载波信号频率和幅度。

c.设计调制器:使用适当的电路将信号源和载波信号相乘,得到调制信号。

常用的电路包括集成电路、开关电路等。

d.设计解调器:使用适当的电路将调制信号进行解调,恢复为数字信号。

常用的电路包括包络检测电路、解调放大器等。

e.添加滤波器:使用合适的滤波器去除调制信号或解调信号中的噪声干扰。

常用的滤波器包括低通滤波器、带通滤波器等。

f.添加放大器:根据需要,可以添加放大器来增强调制信号或解调信号的幅度。

4.性能评估:a.灵敏度:检测信号的灵敏度,即能否准确检测到调制信号的幅度变化。

b.噪声抑制:通过滤波器和放大器的设计来降低噪声对信号的影响。

c.带宽效率:通过调制方式、载波频率选择等方式,实现较高的带宽效率,即在给定带宽内传输更多的信息。

5.优化和改进:根据设计设备和要求的实际情况,可以进一步优化和改进设计。

如使用数字信号处理等更高级的技术。

实验四 ASK调制和解调

实验四    ASK调制和解调

实验四ASK调制和解调
一.实验目的:
了解幅度键控调制与解调的基本组成和原则
二实验器材:
直流电源、数字示波器、Tms系统的相关部件…
三、实验步骤:
★调制部分
1、将tims系统中主振荡器、音频振荡器、序列码产生器和双模拟开光按下图方式连接
2、将主振荡器模块2khz正弦信号加至序列码产生器的clk输入端并将其输出的ttlx加至模拟
开光control 1,作为数字信号序列。

3、将主振荡器模块8.33khz输出加至音频振荡模块的同步信号输入端,并将其输出接到双模
拟开光模块的in1
4、用示波器观察ask信号
★解调部分
1、将ask调制信号加到由下图组成的ask非同步解调器的输入端
2、将音频振荡器的输出信号调为4khz,并将ask信号加至共享模块中整流器的输入端
3、整流器的输出加到科调低通滤波的输入端,从低通滤波的输出端可以得到ask解调信号
4、将可调直流电压加至共享模块的比较器,决定比较电平,比较其输出为原数字信号
四、实验结果:
1、调制波形
2、解调波形
五、实验分析与讨论
在M进制制振幅键控调制中,M进制振幅键控信号的载波振幅是M个可能的离散电平之一其中每个电平对应于K个儿进制符号。

在实际通信中并不采用MASK调制方式,但由于MASK信号可派生出MPSK及QAM信号,
因此对于MASKde分析同样适用于MPSK及QAM。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用模拟乘法器实现幅度调制的原理框图如下图:
带通滤波器
音频信号
/ \ / 单边带信
载波信号
以调幅广播信号为例,将音频信UsJ2USC0SWst与高频载波信 号Uc=\'2UcC0SWct分别接入模拟乘法器的两个输入端,则输出电压为
Uol =2KUcUsC0S WctC0S wst
=KUcUs[C0S(Wc +Ws)t+C0S(Wc-Ws)t]
1.掌握电力系统远动信息传输的基本过程。
2.掌握电力系统远动信息过程中ASK数字调幅与解调的基本原理。
3.学习使用ORCAD进行仿真的基本方法。
4.设计ASK调制解调的仿真电路,并在PSPICE环境进行仿真验证,观 察各环节的波形,并能做出正确分析。
起止时间
2008年12月21日 至2008年12月26日
5.撰写设计报告,报告要求有以下内容:
1)画出所设计电路的原理图。
2)对电路中各功能环节的工作原理进行分析。
3)针对所设计的电路,说明各种器件参数选择的理由。
4)画岀各个环节的波形图,并对仿真结果进行分析,验证设计的正确
性。
5)总结电路调试过程所遇到的问题及解决方法。
6)课程设计的结论。
二、设计要求
Cl=0.002uF,即可满足此时间常数要求。
4•比较电路环节设计
其中LM324与R2、R3构成一个反向器,LM324工作的正端
电压设置为5VdCo其电路如下图所示
5•电压判决电路环节设计
该处电压抽样判决器中负端工作电压由V6处的5Vdc经R4、
R5构成的电压取样电路取得lVdc与LM324的正端输入电压信号 比较,当输入信号大于lVdc时,LM324输出为高电平,否则为低 电平。从而将原低频调制信号解调还原出来。电路如下图所示
由于被调制的低频信号并非单一频率Ws而是某一频段的信号,如 音频信号的频率为20Hz~20KHz。所以乘法器的输出电压是以调制频 率叫为中心的两段频段,简称便带。(Wc+ Ws)为上边带;(Wc-Ws)为下边带。在乘法器的输出端接一个带通滤波器可滤除其中的一个边 帀,FTIJ
保留另一个边带发送。
U0=KUcUsCOS(Wc-Ws)t
2.ASK信号解调电路设计
木次设计中采用相干解调法,由常规双 边带调幅(AM)信号的频谱可知,如果 将已调信号的频谱搬回到原点位置,即可 得到原始的调制信号频谱,从而恢复出原 始信号。解调中的频谱搬移同样可用调制 时的相乘运算来实现。因此VI、V2相乘 后所得2ASK信号再与V3方波信号相 乘即可实现ASK信号的解调。电路如左 图所示:
二•设计内容:
1.对电力系统远动信息传输系统的主要环节进行理论分析和研 究。
2.熟悉数字调幅技术的有关原理和实现方法。
3.设计ASK调制解调电路。
4.熟悉ORCAD软件的应用,学习元件库使用、原理图的建立以 及应用原理图进行仿真的基本方法。
三.工作原理:
1.数字调幅技术的原理和实现方法
(1)数字调制的概念
U01=KUcUs[COS Wst+C0S(2Wc-Ws)t]
通过低通滤波器滤除其中的高频分量,则可以得到输出电压幅值 与原信号(Us=<2UsC0SWst)略有不同,但频率都为Ws的低频信号。
3•滤波电路环节设计
本设计采用一阶滤波电路,由于采用了脉冲周期:PER=10us
(f=l/10us=100kHz)的高频方波载波信号,故此处所用滤波器的时 间常数^=l/f=10us,因此先选定电阻Rl=5k,与之对应选择电容
6.ASK调制解调仿真电路综合设计
综合上述各个电路环节,最后得ASK调制解调的仿真电路如下
当0、1等概出现时,单极性基带信号功率谱密度为:
则2ASK信号的功率谱密度为:
ASK信号谱,形状为0(/),双边带加载频谱线pg)
ASK信号传输带宽(取主瓣宽度)
带宽利用率
(4)ASK信号的解调方式
解调也可以分成相干解调与非相干解调两类。其中相干解调要求 接收端提供相干载波。非相干解调,就是在接收端不需要相干载波, 而根据己调信号木身的特点来解调
a.非相干解调的原理框图和波形图(包络检波法)
b.相干解调的原理框图和波形图(同步检测法)
四.ASK调制解调的仿真电路的设计及参数设置1.ASK信号产生电路设计
本次设计中采用模拟法,其 中VI,V2都采用方波作为数字基 带信号.
VI设置其低电平V2二0V,高
电平V1=2V,延迟时间TD二Oms,上 升时间TR二0. 0001ms,下降时间TF二0. 0001ms,脉冲宽度PW=lms,脉冲周期PER二2ms .
用二进制(多进制)数字信号作为调制信号,去控制载波某些 参量的变化,这种把基带数字信号变换成频带数字信号的过程称为数 字调制,反之,称为数字解调。
(2)数字调制的分类
在二进制时分为:振幅键控(ASK)、频移键控(FSK)、相移键控(PSK)o其中,ASK属于线性调制,FSK、PSK属于非线性调制。
(3)数字调制系统的基本结构
(4)ASK调制波形与方框图:
2.二进制幅移键控(ASK)
(1)ASK信号的产生
图为ASK信号的产生原理
一个二进制的ASK信号可视为一个单极性脉冲序列与一个高频 载波的乘积,即ASK的时域表达式为:
也可写成:
(2)ASK信号的功率谱特性
ASK信号的自相关函数为:
(3)ASK信号的功率谱密度为:
式中,卩$(广)为基带信号S(t)的功率谱密度
作者:PanHongliang
封面
仅供个人学习
《电力系统自动化》
课程设计任务书
题目
ASK调制与解调电路设计及仿真
学生姓名
凸导专业班
子号级
设计内容与要求
一、设计内容
1.对电力系统远动信息传输系统的主要环节进行理论分析和研究。
2.熟悉数字调幅技术的有关原理和实现方法。
3.设计ASK调制解调电路。
4.熟悉ORCAD软件的应用,学习元件库使用、原理图的建立以及应用 原理图进行仿真的基本方法。
其中V3采用方波信号,设置其低电平V2=0V,高电平VI二IV,延迟时间TD=Ous,上升时间TR二0. OOOOlus,下降时间TF二0. OOOOlus,脉冲宽度PW=5us,脉冲周期PER二10us .
此过程为信号的解调过程,解调是调制的逆变换,即从调制过 程的高频信号中提取原低频信号的过程。本设计采用模拟乘法器实现 对信号的解调。
用模拟乘法器实现幅度解调的原理框图如下图:
2
低通滤波器
载波信号
/ \ / 音频信号
调幅信号
解调是调制的逆过程,同样是利用乘法器来实现将音频信号从调
幅波中分离出来。乘法器的两个输入端分别接入调幅波(下边带)
Uj= “UjCOS(Wc-Ws)及与调制时的载波信号同频同相的载波信号 叫“os%则可以得到输出信号为
V2设置其低电平V2=0V,高 电平VI二IV,延迟时间TD二Ous,上升 时间TR二0. OOOOlus,下降时间TF二0. OOOOlus,脉冲宽度PW二5us,脉冲 周期PER=10us .
此过程为信号的调制过程,调制是将某种低频信号(如音频信号)
“加载”到为了便于传输的高频信号的过程。木设计采用模拟乘法器 实现对信号的调制。
指导教师签名
年 月 日
系(教研室)主任签名
年 月 日
学生签名
年 月 日
•背景描述
பைடு நூலகம்.设计内容
•工作原理
•电路设计及参数设置
.仿真及波形分析……
.设计总结
•参考文献一•背景描述: 电力系统远动技术是为电力系统调度服务的远距离监测、控制技术。
由于电能生产的特点,能源中心和负荷中心一般相距甚远,电力系统 分布在很广的地域,其中发电厂、变电所、电力调度中心和用户之间 的距离近则几十公里,远则几百公里甚至数千公里。要管理和监控分 布甚广的众多厂、所、站和设备、元器件的运行工况,己不能用通常 的机械联系或电联系来传递控制信息或反馈的数据,必须借助于一种 技术手段,这就是远动技术。它将各个厂、所、站的运行工况(包括 开关状态、设备的运行参数等)转换成便于传输的信号形式,加上保 护措施以防止传输过程中的外界干扰,经过调制后,由专门的信息通 道传送到调度所。在调度所的中心站经过反调制,还原为原来对应于 厂、所、站工况的一些信号再显示岀来,供给调度人员监控之用。调 度人员的一些控制命令也可以通过类似过程传送到远方厂、所、站, 驱动被控对象。这一过程实际上涉及遥测、遥信、遥调、遥控,所以, 远动技术是四遥的结合。
相关文档
最新文档