基因沉默名词解释

合集下载

基因沉默的研究及应用实例简介

基因沉默的研究及应用实例简介

用 RNaseIII 消化长片断 siRNA表 双链RNA制 siRNA表 达载体 备siRNA 达框架
体外转录
• 以DNA Oligo为模板,通过体外转录合成siRNAs, 成本相对化学合成法而言比较低,而且能够比化 学合成法更快的得到siRNAs。不足之处是实验的 规模受到限制。 • 值得一提的是体外转录得到的siRNAs毒性小,稳 定性好,效率高,只需要化学合成的siRNA量的 1/10就可以达到化学合成siRNA所能达到的效果, 从而使转染效率更高。 • 最适用于:筛选siRNAs,特别是需要制备多种 siRNAs,化学合成的价格成为障碍时。 • 不适用于:实验需要大量的,一个特定的siRNA。 长期研究
负对照
(1)一个完整的siRNA实验应该有负对照。 (2)作为负对照的siRNA应该和选中的siRNA序列有 相同的组成,但是和mRNA没有明显的同源性。 ( 3 )通常的做法是将选中的 siRNA 序列打乱,同样 要检查结果以保证它和其他基因没有同源性。
制备siRNAs的方法
化学 合成 体外 转录
策略
• 利用RNAi降解CYP17mRNA,使CYP17基因所编码蛋白 的合成明显降低,降低CYP17基因蛋白对其下游基 因的调控,在很大程度上阻断了肿瘤细胞的应答, 建立一种基因修饰前列腺癌治疗策略,提高前列腺 癌的治疗效果。
新鲜前列 腺癌标本
组织中总 RNA的提取
反转录
siRNA的 制备
siRNA
目录
1 2
基因沉默的概述 RNA干扰
3
4
基因沉默的应用实例
RNAi的生物学意义
1.基因沉默
• 定义:基因沉默(gene silencing)是指 生物体中特定基因由于种种原因不表达或 者是表达减少的现象。

基因沉默与RNAi技术

基因沉默与RNAi技术

基因沉默与RNAi技术定义:基因沉默双是指链RNA被特异的核酸酶降解,产生干扰小RNA(siRNA),这些siRNA 与同源的靶RNA互补结合,特异性酶降解靶RNA,从而抑制、下调基因表达。

RNA干扰是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特异性降解的现象。

由双链引发的植物RNA沉默,主要有转录水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修饰或染色体异染色质化等原因使基因不能正常转录;PTGS是启动了细胞质靶mRNA序列特异性的降解机制。

有时转基因会同时导致TGS和PTGS。

基因沉默是一种RNA干扰技术。

RNA干扰是由双链RNA 引发的转录后基因静默机制。

其原理是:RNaseIII核酶家族的Dicer,与双链RNA结合,将其剪切成21 - 25nt及3'端突出的小干扰RNA (small interfering RNA,siRNA),随后siRNA与RNA诱导沉默复合物(RNA - induced silencing complex,RISC结合,解旋成单链,活化的RISC受已成单链的siRNA引导,序列特异性地结合在靶mRNA上并将其切断,引发靶mRNA的特异性分解,从而阻断相应基因表达的转录后基因沉默机制.一、基因沉默的分类及其机制(一)转录水平基因沉默转录水平基因沉默是指对基因专一的细胞核RNA合成的失活,它的发生主要是由于基因无法被顺利转录成相应的RNA而导致基因沉默。

转录水平基因沉默可以通过有性世代传递,表现为减数分裂的可遗传性。

引起转录水平基因沉默的机制主要有以下几种:1.基因及其启动子甲基化甲基化是活体细胞中最常见的一种DNA共价修饰形式,通常发生在DNA的CG序列的碱基上,该区碱基甲基化往往导致转录受抑制,该区甲基化的频率在人类及高等植物中分别可达4%和36%。

[4]近来的研究表明,发生在转基因启动子5'端的甲基化是造成转录水平基因沉默的主要原因。

基因沉默

基因沉默

《细胞》:不依赖于RNAi的基因沉默机制被发现来自瑞士日内瓦大学细胞生物学系的研究人员发现了一种不依赖于RNAi(RNA干扰)的基因沉默机制,这为进一步揭示生物体中基因沉默的多样化,以及功能作用提供了重要信息。

这一研究成果公布在最新一期的《细胞》(Cell)杂志上。

RNA沉默存在两种既有联系又有区别的途径:siRNA(small interference RNA)途径和miRNA(microRNA)途径。

siRNA途径是由dsRNA(double-stranded RNA)引发的,dsRNA被一种RNaseⅢ家族的内切核酸酶(RNA- induced silencing complex,Dicer)切割成21-26nt长的siRNA,通过siRNA指导形成RISC蛋白复合物(RNA-induced silencing complex)降解与siRNA序列互补的mRNA而引发RNA沉默。

而miRNA途径中miRNA是含量丰富的不编码小RNA(21-24个核苷酸),由Dicer酶切割内源性表达的短发夹结构RNA(hairpin RNA,hpRNA)形成。

miRNA同样可以与蛋白因子形成RISC蛋白复合物,可以结合并切割特异的mRNA而引发RNA沉默。

尽管引发沉默的来源不同,但siRNA 和miRNA都参与构成结构相似的RISC,在作用方式上二者有很大的相似性。

在最近的一项研究中,来自加州大学河畔分校的研究人员发现了一种新的小RNAs分子,而这些小RNAs与近期的研究热点PIWI-interacting RNAs (piRNAs)和repeat-associated siRNAs (rasiRNAs)也不相同,这说明了小RNA家族和小RNA介导的基因调控远比之前预想的复杂。

同样在这篇文章中,研究人员也发现基因沉默机制包含有多种途径,他们最新发现酿酒酵母中,反义RNA稳定(Antisense RNA Stabilization)能通过组蛋白去乙酰化引起转录基因沉默。

植物抗病毒的可能机制-基因沉默

植物抗病毒的可能机制-基因沉默

植物抗病毒的可能机制——基因沉默植物抗病性是植物抵抗病原物侵染的性能。

1986年有人首次将烟草花叶病毒(TMV,下称)的衣壳蛋白(CP,下称)基因导人烟草获得了抗TMV转基因植株后,很多学者开展了转基因抗病毒的研究。

1990年Carylon等人首先报道了转基因沉默(Transgene silencing)现象。

基因沉默是指生物体中特定基因由于种种原因不表达。

它发生在两种水平上,1种是转录水平上的基因沉默,另1种是转录后基因沉默(post transcriptional gene silencing.PTGS.下称)。

转录后水平基因沉默在植物表现型上称为共抑制,是指在外源基因沉默的同时,与其同源的内源基因的表达也受到抑制的现象。

Carylon为加深花色将查尔酮合成酶基因(ehalcone synthase,CHS)转到紫花矮牵牛中,发现42%的转基因植株中不仅花色未加深,反而变为白色或紫白相间,这种转入的外源基因和内源基因共同沉默的现象就是转基因沉默。

目前认为.植物基因沉默是植物长期进化形成的用来防止外来遗传物质干扰自身基因组功能和保持稳定性的重要机制,是生物体中1种不完全的原始的生物免疫系统。

本文将从基因沉默的角度介绍植物抗病毒的可能机制。

1 RNA介导的病毒抗性和PTGS近20年来,植物抗病毒基因工程的研究逐步深入。

在CP基因介导的抗性研究中,对CP基因进行改造,插入翻译终止密码子或去掉翻译起始密码子,使其不能翻译产生CP蛋白,结果也能获得高抗病甚至免疫的转基因植株。

这种病原来源的抗性称之为RNA介导的病毒抗性(RNA mediated virus re— sistance,RMVR.下称)。

RMVR与PTGS机制类似。

两者均发生在胞质中。

PTGS与RMVR两种现象具有许多共同特征,如序列特异性、与转基因的拷贝数有关,减数分裂后沉默保持的不可预见性(George,1998),所以RMVR也是1种PTGS。

基因沉默

基因沉默

定义:基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达或者是表达减少的现象。

基因沉默现象首先在转基因植物中发现,接着在线虫、真菌、水螅、果蝇以及哺乳动物中陆续发现。

基因沉默机制:外源基因进入细胞核后,会受到多种因素的作用,根据其作用机制和水平不同可分为三种:位置效应(position effect),转录水平的基因沉默(tranional gene silencing, TGS)和转录后水平的基因沉默(post-tranional gene silencing, PTGS).a.位置效应是指基因在基因组中的位置对其表达的影响.外源基因进入细胞核后首先整合到染色质上,其整合位点与表达有密切的关系.如果整合到甲基化程度高、转录活性低的异染色质上,一般不能表达;如果整合到甲基化程度低、转录活性高的常染色质上,其表达受两侧DNA序列的影响.植物基因组常是由具有相似GC含量DNA的片段相互嵌合在一起的,外源基因的插入打乱了它们正常的组合.例如,玉米中AI基因的 GC含量为52.5%,而在转AI基因沉默的矮牵牛中,AI基因两侧DNA序列的GC含量分别为26%和23%,明显低于52.5%,另外,AI基因是超甲基化的,但其两侧序列的甲基化程度则不高.在许多其他转基因沉默的植株中也发现了类似现象.这表明生物体可以通过外源基因与其两侧序列GC含量的差别来识别外源基因,激活甲基化酶,使外源序列甲基化而降低其转录活性.b.转录水平的基因沉默是DNA水平上基因调控的结果,主要是由启动子甲基化或导入基因异染色质化所造成的.二者都和转基因重复序列有密切关系.重复序列可导致自身甲基化.外源基因如果以多拷贝的形式整合到同一位点上,形成首尾相连的正向重复(direct repeat)或头对头、尾对尾的反向重复(inverted repeat),则不能表达.而且拷贝数越多,基因沉默现象越严重.这种重复序列诱导的基因沉默(repeat-induced gene silencing, RIGS)与在真菌中发现的重复序列诱导的点突变(repeat-induced point mutation, RIP)相类似,均可能是重复序列间自发配对,甲基化酶特异性地识别这种配对结构而使其甲基化,从而抑制其表达.此外,重复序列间的相互配对还可以导致自身的异染色质化.其机理可能是异染色质化相关蛋白质识别重复序列间配对形成的拓扑结构,与之结合,并将重复序列牵引到异染色质区,或直接使重复序列局部异染色质化.c.转录后水平的基因沉默是RNA水平基因调控的结果,比转录水平的基因沉默更普遍.特别是共抑制(cosuppression)现象尤是研究的热点.共抑制是指在外源基因沉默的同时,与其同源的内源DNA的表达也受到抑制.转录后水平的基因沉默的特点是外源基因能够转录成mRNA,但正常的mRNA不能积累,也就是说mRNA一经合成就被降解或被相应的反义RNA 或蛋白质封闭,从而失去功能.这可能是由于同源或重复的基因表达了过量mRNA的结果.Dawson提出,细胞内可能存在一种RNA监视机制用以排除过量的RNA. 当mRNA超过一定的域值后,就引发了这一机制.特异性的降解与外源基因同源的所有RNA. 此外,过量的RNA 也可能和同源的DNA相互作用导致重新甲基化(de novo methylation),使基因失活.上述三种机制并不是独立的,而是相互关联的.基因沉默机制在核酸水平上均是DNA-DNA, DNA-RNA,RNA-RNA相互作用的结果,所以人们认为对基因沉默机制的研究开启了认识DNA水平及RNA水平上调节基因表达的新纪元,并提出了基因免疫,即基因组对外源基因入侵有抵抗能力的新观念.防止基因沉默的对策克服基因沉默已经成为基因工程的一个重要课题.目前,针对上述基因沉默的机制,初步提出了如下一些对策:a.由于重复或同源序列是基因沉默的普遍诱因,所以在构建表达载体时,应尽量使得所设计的序列与内源序列的同源性较低,以减少或避免配对.另外,选用外源基因插入基因组中拷贝数低的,最好是单拷贝的转基因植株亦可减少重复序列的存在.b.甲基化是基因沉默的直接原因,转基因甲基化的程度与基因沉默的程度成正相关.目前已知用5-氮胞嘧啶处理植株具有很好的抑制甲基化和脱甲基化作用.人们也正在试图在载体上加上有去甲基化功能的序列以防止甲基化.c.实验表明在转基因的侧翼接上核基质结合序列(matrix attachment regions, MAR)会在一定程度上避免位置效应,提高基因的表达.MAR具有限定DNA环的大小,使之成为相对独立的结构功能单位的作用.可能正是由于这一功能,使其起到类似绝缘子的作用使转基因成为相对独立的结构免受周围基因环境的影响[5].奥地利格雷戈尔·门德尔植物分子生物学研究所日前宣布,一个包括该研究所、中国同济大学、美国加利福尼亚大学等机构科学家在内的国际科研小组发现了一种特殊基因,没有它,植物细胞内其他一些基因就只能保持沉默。

基因沉默与RNAi技术

基因沉默与RNAi技术

基因沉默与RNAi技术定义:基因沉默双是指链RNA被特异的核酸酶降解,产生干扰小RNA(siRNA),这些siRNA与同源的靶RNA互补结合,特异性酶降解靶RNA,从而抑制、下调基因表达。

RNA干扰是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特异性降解的现象。

由双链引发的植物RNA沉默,主要有转录水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修饰或染色体异染色质化等原因使基因不能正常转录;PTGS是启动了细胞质内靶mRNA序列特异性的降解机制。

有时转基因会同时导致TGS和PTGS。

基因沉默是一种RNA干扰技术。

RNA干扰是由双链RNA 引发的转录后基因静默机制。

其原理是:RNaseIII核酶家族的Dicer,与双链RNA结合,将其剪切成21 - 25nt及3'端突出的小干扰RNA (small interfering RNA,siRNA),随后siRNA与RNA诱导沉默复合物(RNA - induced silencing complex,RISC结合,解旋成单链,活化的RISC受已成单链的siRNA引导,序列特异性地结合在靶mRNA上并将其切断,引发靶mRNA的特异性分解,从而阻断相应基因表达的转录后基因沉默机制.一、基因沉默的分类及其机制(一)转录水平基因沉默转录水平基因沉默是指对基因专一的细胞核RNA合成的失活,它的发生主要是由于基因无法被顺利转录成相应的RNA而导致基因沉默。

转录水平基因沉默可以通过有性世代传递,表现为减数分裂的可遗传性。

引起转录水平基因沉默的机制主要有以下几种:1.基因及其启动子甲基化甲基化是活体细胞中最常见的一种DNA共价修饰形式,通常发生在DNA的CG序列的碱基上,该区碱基甲基化往往导致转录受抑制,该区甲基化的频率在人类及高等植物中分别可达4%和36%。

[4]近来的研究表明,发生在转基因启动子5’端的甲基化是造成转录水平基因沉默的主要原因。

基因沉默研究进展

基因沉默研究进展

基因沉默研究进展摘要:基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达或者表达减少的现象。

基因沉默是基因表达调控的一种重要方式 ,是生物体在基因调控水平上的一种自我保护机制 ,在外源 DNA 侵入、病毒侵染和DNA 转座、重排中有普遍性。

对基因沉默进行深入研究 ,可帮助人们进一步揭示生物体基因遗传表达调控的本质 ,在基因工程中克服基因沉默现象 ,从而使外源基因能更好的按照人们的需要进行有效表达;利用基因沉默在基因治疗中有效抑制有害基因的表达 ,达到治疗疾病的目的 ,所以研究基因沉默具有极其重要的理论和实践意义[1]。

关键词:基因沉默,转录水平基因沉默,转录后水平基因沉默,病毒介导的基因沉默.基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。

一方面,基因沉默是遗传修饰生物(genetically modified organisms )实用化和商品化的巨大障碍 ,另一方面 ,基因沉默是植物抗病毒的一个本能反应 ,为用抗病毒基因植物工程育种提供了具有较大潜在实用价值的策略—RNA介导的病毒抗性(RNA-mediated virus resistance ,RMVR)[2~4]。

基因沉默现象首先在转基因植物中发现,接着在线虫、真菌、水螅、果蝇以及哺乳动物中陆续发现。

基因沉默主要发生在两种情况,一种是转录水平上的基因沉默(transcriptional gene silencing, TGS) ,另一种是转录后基因沉默(post- transcriptional gene silencing, PTGS)。

RNA干扰(RNA interference, RNAi)是近几年发展起来的转录后基因阻断技术,RNAi在2002年被Science评为全球十大科技突破之一,作为一种在细胞水平的基因敲除工具,RNAi 正在功能基因组学领域掀起一场革命[5]。

基因沉默

基因沉默

基因沉默摘要随着基因技术的迅速发展和广泛应用,在转基因技术实践中首先暴露出来的外源基因不能按照预期设想进行表达的问题越来越显得普遍,而人们对基因沉默现象的不断深入研究和探索,不仅揭示出了基因沉默的发生机制,也在一定程度上推动了新技术的产生和应用,这不仅推动了基因研究领域的发展,更在遗传群体构建、疾病治疗等方面建立了新方法、新体系,为生物学技术的发展做出了贡献。

关键字基因沉默分类机理应用1.引言基因沉默(Gene Silencing),又称为基因沉寂,是真核生物细胞基因表达调节过程中的一种特殊生理现象,是指细胞基因在表达过程中受到各种因素的综合作用而导致基因部分区段发生“沉寂”现象,从而失去转录活性并不予表达或表达减少。

该现象最先于1986年Peerbolte在转基因植物研究中所发现,随后科学家在线虫、真菌、水螅、果蝇以及哺乳动物中陆续发现了基因沉默现象的存在。

转基因沉默是基因沉默现象最为频发和常见的,这也是转基因为何在受体难以百分之百全部表达的因素之一,其基本特征是导入并整合到受体基因组的外源基因在当代或后代中表达活性受到抑制。

研究发现,其主要原因是由于转基因之间或转基因与内源基因之间存在着序列同源性,因此转基因沉默又被称为同源性依赖的基因沉默(homology-dependent gene silencing)。

根据沃森-克里克的核酸碱基互补配对模型,基因沉默可能涉及到DNA-DNA、DNA-RNA以及RNA-RNA三种不同形式的核酸分子之间的互作,简单地说就是插入的外源DNA或自身基因区段在核内高浓度的RNA作用下,能够与内源反向DNA 或者RNA进行碱基互补配对,并且在核内被重新甲基化,进而导致基因沉默;而另一种可能则是内源基因与转基因转录生成的RNA之间互补配对生成可被RNases酶性降解的双链RNA(dsRNA),其水解直接导致基因的不表达,即基因沉默效果。

从染色体水平上看,基因沉默现象的实质是形成异染色质(Heterochromation)的过程,检查发现被沉寂的基因区段往往呈现出高浓缩状态,显然,这在一定程度上也决定了被沉寂基因的难表达性。

【生命科学知识讲解】RNA干涉(RNAInterference,RNAi)

【生命科学知识讲解】RNA干涉(RNAInterference,RNAi)

RNA干涉(RNA Interference,RNAi)基因沉默(gene silencing)是生物体内特定基因由于种种原因不表达的遗传现象。

一方面,基因沉默是生物遗传操作创造新的遗传修饰生物(genetically modified organisms)的障碍,另一方面,它又是植物抵抗外来核酸入侵(如病毒)的一种反应,为植物抗病毒的遗传育种提供了具有实用价值的策略:RNA 介导的病毒抗性(RNA mediated virus resistance, RMVR)。

近年来,在不同的研究领域和生物中发现了许多新的使基因关闭或沉默的类型,并赋予其不同的名称:在植物中称为RNA 共抑制(co-suppression),在真菌中叫RNA 压制(quelling),动物中则叫RNA干涉(interference)。

RNA干涉是指短的dsRNA 可以降解内源的同源RNA,,而使相应基因沉默的现象,简称RNAi。

1995年,康乃尔大学 Su Guo博士,于试图阻断线虫(C. elegans)中 par-1基因时,发现了一个意想不到的现象:她们本来利用anti-sense RNA 技术,可达到特异性阻断 par-1基因的表达,同时亦在其对照组实验中,注射sense RNA 到线虫体内,预期可能观察到此基因表现的增强。

但得到的结果竟是二者都切断了par-1基因的表达途径。

这与传统上对 anti-sense RNA 技术的解释竟是正好相反。

研究小组一直没能把这个意外结果予以合理的解释。

直到1998年2月,华盛顿卡耐基研究院的 Andrew Fire 和马萨诸塞大学医学院的 Craig Mello才首次揭开这个悬疑之谜。

通过大量艰苦的工作,他们证实,Su Guo 博士遇到的sense RNA 抑制基因表达的现象,以及过去的 anti sense RNA 技术对基因表达的阻断,都是由于体外转录所得 RNA 中污染了微量双链RNA而引起。

基因沉默

基因沉默

RNA干扰基因沉默基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。

一方面,基因沉默是遗传修饰生物(genetically modified organisms)实用化和商品化的巨大障碍,另一方面,基因沉默是植物抗病毒的一个本能反应,为用抗病毒基因植物工程育种提供了具有较大潜在实用价值的策略——RNA介导的病毒抗性(RNA-mediated virus resistance,RMVR)。

转基因植物和转基因动物中往往会遇到这样的情况,外源基因存在于生物体内,并未丢失或损伤,但该基因不表达或表达量极低,这种现象称为基因沉默。

转基因沉默分为转录水平的沉默(TGS)和转录后水平的沉默(PTGS)。

TGS是指转基因在细胞核内RNA合成受到了阻止导致基因沉默,PTGS是指RNAi——基因沉默指南基因沉寂(Gene Silencing) 也可以被称为“基因沉默”。

基因沉寂是真核生物细胞基因表达调节的一种重要手段。

在染色体水平,基因沉寂实际上是形成以染色质(Heterochromatin)的过程,被沉寂的基因区段呈高浓缩状态。

基因沉寂需要经历不同的反应过程才能实现,包括组蛋白N端结构域的赖氨酸残基的去乙酰基化加工、甲基化修饰(由甲基转移酶催化,修饰可以是一价、二价和三价甲基化修饰,后者又被称为'过度’甲基化修饰(Hypermethylation) ) 、以及和甲基化修饰的组蛋白结合的蛋白质(MBP)形成“异染色质”,在上述过程中,除了部分组蛋白的N端尾部结构域需要去乙酰化、甲基化修饰之外,有时也许要在其他的组蛋白N端尾部结构域的赖氨酸或精氨酸残基上相应地进行乙酰化修饰,尽管各种修饰的最终结果会导致相应区段的基因“沉寂”失去转录活性。

这个“原则”就是目前尚没有真正完全清楚的“组蛋白密码”(Histone Code)。

能够与甲基化组蛋白结合的蛋白质有sir1/2/3/4,这是一组被称为"Silencing Informative Repressor"的蛋白,其中,Sir2就是上文中的“去乙酰化”酶,而Sir1/3/4则负责与甲基化修饰的组蛋白结合"沉寂”相应的染色质为异染色质。

真菌基因(簇)的沉默及其激活机理

真菌基因(簇)的沉默及其激活机理

方式就是通过酶促反应直接移除5mC上的甲基基团,
而这需要有强烈的催化活性才能使牢同的C-C键断裂。 MBD2是第1个被报道能实现该过程的酶
NER方式
针对由紫外线和致癌物质诱导产生的DNA螺旋扭
曲损伤,NER核酸酶XPF和XPG酶切损伤附近的DNA 片段,接着在DNA聚合酶的作用下C取代5mC,导致
DNA甲基基团的丢失,从而实现DNA去甲基化。
被动甲基化
DNA被动去甲基化的潜在机制
其他去甲基化方式
转录后基因沉默与转录基因沉默不同,它具有逆
转性,即受抑基因通过减数分裂可以恢复表达活性, 表现为减数分裂的不可遗传性,可以通过基因克隆、
诱变处理、菌株或种间自然接合、原生质体融合等方
法可以激活沉默基因。
直接作用
CPG岛
DNA 甲基化 染色质结构 改变 间接作用
重复序列诱导的点突变 (repeat-induced point mutation, RIP),RIP是真菌特有的一个有效检查重 复序列并使之发生突变的过程,与动植物中的重复 序列诱导的基因沉默(repeat-induced gene silencing, RIGS) 相类似,外源基因如果以多拷贝 的形式整合到同一位点上,形成首尾相连的正向重 复 (direct repeat ) 或头对头、尾对尾的反向重复 ( inverted repeat ),则不能表达。而且拷贝数越多, 基因沉默现象越严重。这种基因沉默可能是重复序 列间自发配对,甲基化酶特异性地识别这种配对结 构而使其甲基化,从而抑制其表达。
5mC先经过TET羟化酶氧化转化为5 hmC,然后
继续在TET作用下氧化成5-氟胞嘧啶 (5fC),进一步又 氧化成5-胞嘧啶羧基 (5caC),生成的5caC可被TDG识

5.基因沉默siRNA、miRNA

5.基因沉默siRNA、miRNA

• 1、表观遗传现象:基因和基因组印记。 • 2、表观遗传现象:春化现象的分子机制。 • 3、基因沉默现象:反义RNA指导的基因沉
默。
• 4、基因的转录后调控:siRNA • 5、基因的转录后调控:miRNA
真核生物中的基因组/基因印迹
一定组织和细胞中,某些基因在DNA水平上 的表达程度及表达时空受到一种“后成修饰, 表观修饰”(epigenetic modification 相同的 DNA结构,不同的表型)机制控制。使仅来 自双亲中某一亲本的基因得以表达 。这一 现象也称为“基因组印记”
Craig C. Mello 马萨诸塞州医学院
"for their discovery of RNA interference - gene silencing by double-stranded RNA".
NP 2006
RNA interference (RNAi )的发现与证实
• 1990年,Rich Jorgensen等人发现 苯基苯乙烯酮合成酶基因
(-) 5
(-) 5 (+) 3
3 mRNA 3 5 cDNA
pCaMV35s-
ACC-mRቤተ መጻሕፍቲ ባይዱA
anti-sense ACC gene
pCaMV35s-
anti-sense ACC-mRNA
乙烯合成被抑制
5.3. RNA interference (RNAi )的发现与证实
Andrew Z. Fire, 斯坦福大学医学院
分离得到与甲基化DNA结合 抑制转录的MeCP2
complex
组蛋白去乙酰化酶A (dHAT-A)
dHAT-A的催化因子(SIN3) MeCP2(m5C结合蛋白)

基因沉默课件ppt

基因沉默课件ppt

基因沉默技术的发展前景与展望
拓展应用领域
提高效率和特异性
随着技术的不断进步,基因沉默技术的应 用领域将不断拓展,包括治疗遗传性疾病 、抗肿瘤、抗病毒感染等领域。
未来基因沉默技术将朝着提高效率和特异 性的方向发展,以更好地靶向特定的基因 。
联合其他技术
法规和监管
基因沉默技术可以与其他技术如基因编辑 、基因激活等技术联合应用,以实现更广 泛和深入的基因调控。
03
基因沉默的应用
疾病治疗
癌症治疗
基因沉默技术可用于沉默癌症细 胞中的致癌基因,抑制肿瘤生长
和扩散。
遗传性疾病治疗
通过基因沉默技术,可以治疗一些 由基因突变引起的遗传性疾病,如 囊性纤维化、镰状细胞贫血等。
病毒感染治疗
针对某些病毒,如丙型肝炎病毒和 艾滋病病毒,基因沉默技术可用于 抑制病毒复制,控制疾病进展。
沉默状态的维持需要DNA甲基化和组蛋白修饰的持续存在, 以确保基因表达的长期抑制。
基因沉默的遗传与进化
遗传性基因沉默
某些基因沉默可以遗传给后代,影响 基因表达模式和表型。
进化中的基因沉默
基因沉默在生物进化过程中发挥重要 作用,影响物种适应性和进化。
基因沉默与其他生物学过程的关系
胚胎发育与基因沉默
随着基因沉默技术的发展和应用,相关的 法规和监管框架也将不断完善,以保障技 术的安全和合理应用。
感谢您的观看
THANKS
基因沉默不持久
目前的基因沉默技术只能在一定时间内抑制基因的表达,而不能永 久性地沉默基因。
基因沉默技术的安全性与伦理问题
潜在的副作用
基因沉默技术可能对其他非目标基因产生不期望的影响,导致潜 在的副作用。
伦理考量

基因沉默名词解释

基因沉默名词解释

基因沉默名词解释基因沉默是指在细胞中通过各种内外因素的调控,使某些基因在特定条件下不表达或抑制表达的现象。

基因沉默是维持基因组的稳定性和正常发育的重要机制之一,它在细胞分化、胚胎发育、免疫应答等生理过程中发挥着重要作用。

基因沉默主要通过两种机制实现:转录后基因沉默(TGS)和转录前基因沉默(TSS)。

转录后基因沉默是指在基因转录为mRNA后,通过特定机制使得mRNA无法转译为蛋白质。

这种机制主要包括DNA甲基化、组蛋白修饰和非编码RNA等。

转录前基因沉默是指通过转录抑制机制,使得DNA无法转录为mRNA。

这种机制主要包括DNA甲基化、RNA干扰和RNA编辑等。

基因沉默在许多生物过程中发挥着重要作用。

在细胞分化过程中,基因沉默能够控制细胞特异性基因的表达,在胚胎发育过程中起到调控基因表达的作用,保证胚胎正常发育。

在免疫应答中,基因沉默能够调控免疫相关基因的表达,影响免疫细胞的功能和免疫应答的结果。

在疾病发生中,基因沉默也起到重要作用,例如,某些癌细胞中的肿瘤抑制基因被沉默,从而导致细胞的无限增殖和癌症的发生。

基因沉默不仅在自然界中普遍存在,还在科学研究和基因治疗中有重要应用。

通过基因沉默技术可以针对特定基因进行研究和调控。

例如,通过RNA干扰技术可以选择性地降低或抑制某个基因的表达,从而研究该基因的功能和作用机制。

此外,基因沉默技术还可以用于基因治疗,通过抑制或恢复特定基因的表达,来治疗一些遗传性疾病和其他疾病。

总之,基因沉默是一种重要的基因调控机制,能够在细胞分化、胚胎发育、免疫应答和疾病发生中起到重要作用。

研究基因沉默的机制和应用基因沉默技术在科学研究和医学上具有重要意义。

基因沉默研究进展

基因沉默研究进展

基因沉默研究进展基因沉默研究进展摘要:基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达或者表达减少的现象。

基因沉默是基因表达调控的一种重要方式 ,是生物体在基因调控水平上的一种自我保护机制 ,在外源 DNA 侵入、病毒侵染和DNA 转座、重排中有普遍性。

对基因沉默进行深入研究,可帮助人们进一步揭示生物体基因遗传表达调控的本质,在基因工程中克服基因沉默现象,从而使外源基因能更好的按照人们的需要进行有效表达;利用基因沉默在基因治疗中有效抑制有害基因的表达 ,达到治疗疾病的目的 ,所以研究基因沉默具有极其重要的理论和实践意义[1]。

关键词:基因沉默,转录水平基因沉默,转录后水平基因沉默,病毒介导的基因沉默.基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。

一方面,基因沉默是遗传修饰生物(genetically modified organisms )实用化和商品化的巨大障碍 ,另一方面 ,基因沉默是植物抗病毒的一个本能反应,为用抗病毒基因植物工程育种提供了具有较大潜在实用价值的策略—RNA介导的病毒抗性(RNA-mediated virus resistance ,RMVR)[2~4]。

基因沉默现象首先在转基因植物中发现,接着在线虫、真菌、水螅、果蝇以及哺乳动物中陆续发现。

基因沉默主要发生在两种情况,一种是转录水平上的基因沉默(transcriptional gene silencing, TGS),另一种是转录后基因沉默(post- transcriptional gene silencing, PTGS)。

RNA干扰(RNA interference, RNAi)是近几年发展起来的转录后基因阻断技术,RNAi在2002年被Science评为全球十大科技突破之一,作为一种在细胞水平的基因敲除工具,RNAi 正在功能基因组学领域掀起一场革命[5]。

6基因沉默和基因组编辑

6基因沉默和基因组编辑

Andrew Fire 出生:1959年 美国斯坦福大学
4
2016/12/12
RNAi广泛存在于自然界
随后,RNAi现象被广泛地发现于真菌、拟南芥 、水螅、涡虫、锥虫、斑马鱼等大多数真核生物中 。这种存在揭示了RNAi很可能是出现于生命进化的 早期阶段。
二.RNAi的分子机制
1. 小干扰RNA的形成 dsRNA被Dicer酶切割成21~23 nt的小干扰RNA(small
许多肝病是由于病毒、免疫系统失常或慢性酒精中毒 激活了凋亡相关蛋白质(FAs)基因所导致的。
肝炎病毒
82.5% 17.5%
肝炎病毒
60% 40%
③ 遗传性疾病的治疗
美国西北大学的Carthew R W和日本基因研究所的 Ishizuka A等人发现RNAi与脆性X染色体综合征之间的 关系密切,揭示了与RNAi相关机制的缺陷可能导致人类 疾病的病理机制。
种类:反义RNA、反义DNA及核酶(Ribozyme)。
1.反义RNA
1978年,在原核生物细胞中第一次发现一种通 过与mRNA互补形成双链结构而调节基因表达的 RNA分子,称为反义RNA(anti-sensense RNA, asRNA) 。
asRNA是生物基因表达调控的一种方式。
2. 反义DNt protein siRNA
RISC
3. siRNA引导RISC对与其同源的目标RNA进行降解
mRNA
RISC
mRNA
5
RNAi与T-DNA
① 传统T-DNA随机插入研究基因功能的方法周期长,工作量 大。RNAi沉默基因构建简易、周期短、成本低。
② 一般T-DNA插入后导致基因功能完全丧失,功能必需的基 因完全丧失功能后导致胚胎死亡,不能得到纯合生物。 而RNAi可以根据RNAi的强度筛选沉默程度不同的转基因 生物,可以对胚发育致死基因进行研究。

《RNAi与基因沉默》PPT课件

《RNAi与基因沉默》PPT课件
model):
指转录物间的碱基配对以及转录物内的碱基配对造成同源转录物的降解。
7.RdRP模型:
在线虫中,小量的dsRNA 能够使大量的靶RNA沉默,这种现象至少有 三种机制:A、Dicer酶将长dsRNA分子切成短的“初级”siRNA, 因为每 一个siRNA具有结合一个同源mRNA的能力,效应的放大水平取决于dsRNA 的长度 。B、siRNA在酶作用中,可多次应用,能提供进一步放大。 C、 短RNAs可作为靶mRNA的引物启动一个RNA诱导的RNA聚合反应,产 生次级siRNAs
5.异常RNA模型(aberrant RNA model):
转基因DNA和RNA相互作用或内源和外源基因DNA间的相互作用导 致基因转录区域的甲基化,产生异常RNA,异常RNA触发所有相关转录物 的特异性降解
6.分子间(内)碱基配对模型(inter-or intra-molecular base pairing
C、找出起始密码子下游的AA二连序列 ,将连同其后19个bp一起作为siRNA的
1.植物体内基因沉默
植物
位置效应
(拟南介)
转基因沉默
2. 线虫 dsRNA
基因沉默
3.果蝇 RNaseIII siRNA 基因沉默
4. 鼠胚胎细胞
siRNA
基因沉默
( dsRNA能够引起正常细胞的非程序性凋亡)
4. RNA阈值模型(RNA threshold model) :
Lindbo 等认为RNA 干涉是细胞质中mRNA 的监控系统,当某种mRNA 超量表达时,监控系统就将这种超量表达的mRNA 降解。
1. 干扰RNA(siRNA)及合成原则:
A、一般选择的区域是以靶基因转录物的AUG起始密码子下游50-100bp
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因沉默名词解释
基因沉默,指的是抑制或抑制正常的基因功能。

基因沉默可以在多种水平上发生,从分子层次到细胞层次,从细胞层次到组织层次,再到整个机体组织水平。

基因沉默可分为三类,即转录抑制、调节抑制和调节转录抑制(TGS)。

转录抑制是指基因转录过程中的抑制,它是由转移因子介导的,通常是由抑制基因的非编码RNA、DNA复合物或其他蛋白质抑制有效的HTR导致的。

当转录因子在基因上聚集时,它们可以抑制此基因上的有效拷贝数量及其表达,从而降低或抑制基因的功能。

调节抑制是指在基因转录后的调控过程中,由抑制蛋白质通过影响mRNA或蛋白质的稳定性来抑制基因表达。

调节抑制可以在不同水平上发挥作用,例如在细胞中可以抑制mRNA和蛋白质的形成,在组织水平上可以抑制蛋白质的稳定性和细胞分化,从而抑制基因表达。

这种抑制机制可以使基因表达更加精细,可以更好地调节基因功能,从而调节机体的新陈代谢。

调节转录抑制也叫TGS,它是一种可以在基因组织水平上实现基因沉默的技术,它可以实现非编码RNA涉及的基因表达调控。

在基因水平上,TGS可以改变mRNA和蛋白质的形成方式和稳定性,从而抑制基因表达,在组织水平上,TGS可以影响细胞分化,从而抑制机体的器官及组织的新陈代谢。

此外,TGS还可以通过调控细胞的基因表达,影响细胞的生长、分化和功能,从而抑制疾病发病。

基因沉默在生物的发育过程中具有重要作用,它可以控制基因的
表达,从而调节细胞的发育和机体的新陈代谢。

目前,基因沉默技术被用于各种疾病治疗,如癌症、心脏疾病和神经系统损伤等,这些技术可以改变基因表达水平,从而抑制疾病发病。

未来,基因沉默技术可能在生物医学领域展开广泛的应用,例如可以用于器官的再生、药物的研发等。

同时,基因沉默技术在生物安全性、社会安全性和科学道德上也可能引起讨论,因此,在基因沉默技术的应用时,还需要综合考虑法律、人文、社会等因素。

基因沉默是一种重要的基因调控技术,它可以影响基因表达、影响细胞发育和机体新陈代谢,还可以用于疾病治疗,因此,基因沉默技术将在未来发挥更多重要的作用。

相关文档
最新文档