全等三角形培优专题训练

合集下载

全等三角形培优(含答案)

全等三角形培优(含答案)

全等三角形培优(含答案)1.已知三角形ABC中,AB=4,AC=2,D为BC中点,AD为整数,求AD。

2.已知四边形BCDE中,BC=DE,∠B=∠E,∠C=∠D,F为CD中点,证明∠1=∠2.3.已知三角形ABC中,∠1=∠2,CD=DE,EF//AB,证明EF=AC。

4.已知三角形ABC中,AD平分∠BAC,AC=AB+BD,证明∠B=2∠C。

6.如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

证明BC=AB+DC。

7.已知AB=CD,∠A=∠D,证明∠B=∠C。

8.P为∠BAC平分线上一点,AC>AB,证明PC-PB<AC-AB。

9.已知在三角形ABC中,E为AB中点,AF=BD,BD=5,AC=7,求DC。

10.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D,证明AD+BC=AB。

11.如图,△ABC中,AD为∠CAB的平分线,且AB=AC+CD,证明∠C=2∠B。

12.如图,AE、BC交于点M,F点在AM上,BE∥CF,BE=CF,证明AM是△ABC的中线。

13.已知三角形ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,证明BE=CD。

14.在直角三角形ABC中,AC=BC,直线MN经过点C,且AD⊥XXX于D,BE⊥XXX于E。

当直线MN绕点C旋转到图1的位置时,证明:①△ADC≌△CEB;②DE=AD+BE。

当直线MN绕点C旋转到图2的位置时,①中的结论不成立。

15.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。

证明:(1)EC=BF;(2)EC⊥BF。

16.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,不能证明AB与AC+BD相等。

17.如图,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作CE垂直于AB交于E,证明AE=BE。

《全等三角形》培优练习题

《全等三角形》培优练习题

A B C D E F O 《全等三角形》培优练习题一、在较复杂图形中寻找所需全等三角形解决问题例1、已知:如图,△ABD 和△BEC 均为等边三角形,M 、N 分别为AE 和DC 的中点,那么 △BMN 是等边三角形吗?说明理由.【对应练习】1、已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,∠BAC=∠DAE ,,连接BE CD M N ,,,分别为BE CD ,的中点.(1)当点B A D ,,在一条直线上,试说明:AM=AN ;(2)将A D E △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请 判断AM=AN 是否成立?并说明你的理由; (3)在旋转的过程中,设直线BE 与CD 相交于点P ,当90°<∠BAC<180°时,请直接 写出∠CPB 与∠MAN 之间的数量关系. 二、通过证两次三角形全等解决问题例2、已知:如图,AB 、CD 交于O 点,且OA=OB ,OC=OD ,过O 作直线,交AC 于E ,交BD 于F 。

求证:OE=OF 。

【对应练习】2、如图,在Rt △AEB 和Rt △AFC 中,∠E =∠F =90°,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠EAC =∠FAB ,AE =AF .求证:MB=NCABC EM F DN C E N D A B M 图①C A EM B D N 图②O B A C DE 三、通过转化命题或添作辅助线减少证明三角形全等的次数,简化解题过程例3、已知AB=AC, ∠ABE=∠ACD, 求证: BD=CE.【对应练习】3、已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。

四、动点问题例4、如图,△ABC 是边长为5cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,沿线段AB ,BC 运动,且它们的速度都为1cm/s .当点P 到达点B 时,P ,Q 两点停止运动,设点P 的运动时间为t (s ).(1)当t 为何值时,△PBQ 是直角三角形?(2)连接AQ 、CP ,相交于点M ,则点P ,Q 在运动的过程中,∠CMQ 会变化吗?若变化,则说明理由;若不变,请求出它的度数.例5、如图,已知△ABC中,AB=AC=12cm,BC=9cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.①若点P的运动速度与点Q的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由?②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动,直接写出经过多长时间点P与点Q第一次相遇.【对应练习】4、如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.点P在线段BC上由B 点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q和点P都以3cm/s的速度运动,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点P的运动速度为2cm/s,经过t秒后,△BPD与△CQP全等,求此时点Q的运动速度和运动时间t.5、如图,△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=.现将△DEF与△ABC按如图所示的方式叠放在一起.现将△ABC保持不动,△DEF运动,且满足:点E在边BC上运动,且边DE始终经过点A,EF与AC交于M点.请问:在△DEF运动过程中,△AEM能否构成等腰三角形?若能,请求出BE的长;若不能,请说明理由.。

全等三角形专题培优(带答案)

全等三角形专题培优(带答案)

全等三角形专题培优考试总分: 110 分考试时间: 120 分钟卷I(选择题)一、选择题(共 10 小题,每小题 2 分,共 20 分)1.如图为个边长相等的正方形的组合图形,则A. B.C. D.2.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等3.已知:如图,,,,则不正确的结论是()A.与互为余角B.C.D.4.如图,是的中位线,延长至使,连接,则的值为()A. B. C. D.5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B.C. D.6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有()A.个B.个C.个D.个7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.如图,是的角平分线,则等于()A. B.C. D.9.已知是的中线,且比的周长大,则与的差为()A. B.C. D.10.若一个三角形的两条边与高重合,那么它的三个内角中()A.都是锐角B.有一个是直角C.有一个是钝角D.不能确定卷II(非选择题)二、填空题(共 10 小题,每小题 2 分,共 20 分)11.问题情境:在中,,,点为边上一点(不与点,重合),交直线于点,连接,将线段绕点顺时针方向旋转得第1页,共7页第2页,共7页………外………○……………………○……………………○※※请※※不※※答※※题※………内………○……………………○……………………○到线段(旋转角为),连接.特例分析:如图.若,则图中与全等的一个三角形是________,的度数为________.类比探究:请从下列,两题中任选一题作答,我选择________题. :如图,当时,求的度数; :如图,当时,①猜想的度数与的关系,用含的式子表示猜想的结果,并证明猜想;②在图中将“点为边上的一点”改为“点在线段的延长线上”,其余条件不变,请直接写出的度数(用含的式子表示,不必证明)12.如图,正方形纸片的边长为,点、分别在边、上,将、分别沿、折叠,点、恰好都落在点处,已知,则的长为________.13.在中,为的平分线,于,于,面积是,,,则的长为________.14.在中,,的垂直平分线与所在的直线相交所得到锐角为,则等于________.15.如图,平分,于,于,,则图中有________对全等三角形.16.如图,在中,,点从点出发沿射线方向,在射线上运动.在点运动的过程中,连结,并以为边在射线上方,作等边,连结. 当________时,;请添加一个条件:________,使得为等边三角形; ①如图,当为等边三角形时,求证:;②如图,当点运动到线段之外时,其它条件不变,①中结论还成立吗?请说明理由.17.如图,从圆外一点引圆的两条切线,,切点分别为,.如果,,那么弦的长是________.18.如图,在中,,,是的平分线,平分交于,则________.19.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图,在中,,平分,, 求的长.小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图). 请回答:是________三角形.的长为________.参考小聪思考问题的方法,解决问题: 如图,已知中,,,平分,,.求的长.20.如图,在和中,,,若要用“斜边直角边..”直接证明,则还需补充条件:________.三、解答题(共 7 小题 ,每小题 10 分 ,共 70 分 )21.如图,已知为等边三角形,为延长线上的一点,平分,,求证:为等边三角形.22.尺规作图(不要求写作法,保留作图痕迹)如图,作①的平分线;②边上的中线;22.一块三角形形状的玻璃破裂成如图所示的三块,请你用尺规作图作一个三角形,使所得的三角形和原来的三角形全等.(不要求写作法,保留作图痕迹.不能在原图上作三角形)22.如图:在正方形网格中有一个,按要求进行下列画图(只能借助于网格):①画出中边上的高(需写出结论).②画出先将向右平移格,再向上平移格后的.23.平行四边形中,,点为边上一点,连结,点在边所在直线上,过点作交于点.如图,若为边中点,交延长线于点,,,,求;如图,若点在边上,为中点,且平分,求证:;如图,若点在延长线上,为中点,且,问中结论还成立吗?若不成立,那么线段、、满足怎样的数量关系,请直接写出结论.24.如图,直线与轴、轴分别交于、两点,直线与直线关于轴对称,已知直线的解析式为,求直线的解析式;过点在的外部作一条直线,过点作于,过点作于,请画出图形并求证:;沿轴向下平移,边交轴于点,过点的直线与边的延长线相交于点,与轴相交于点,且,在平移的过程中,①为定值;②为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.25.如图:,,过点,于,于,.求证:.第3页,共7页第4页,共7页26.如图,点,在上,,,,与交于点.求证:;试判断的形状,并说明理由.27.如图,已知点是平分线上一点,,,垂足为、吗?为什么?是的垂直平分线吗?为什么? 答案 1.B 2.D 3.D 4.A 5.B 6.D 7.D 8.A 9.B 10.B11.[ “”, “” ][ “” ] 12.[ “” ] 13.[ “” ] 14.[ “或” ]15.[ “” ] 16.[ “;” ][ "添加一个条件,可得为等边三角形; 故答案为:;①∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴;②成立,理由如下; ∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴." ] 17.[ “” ] 18.[ “” ]19.[ "解:是等腰三角形, 在与中,, ∴, ∴,, ∵, ∴, ∴,∴是等腰三角形;" ][ "的长为, ∵中,,, ∴, ∵平分, ∴,在边上取点,使,连接, 则,∴, ∴, ∴,在边上取点,使,连接, 则, ∴,, ∵, ∴, ∴, ∵,∴." ]\"go题库\"20.[ “” ]21.证明:∵为等边三角形,∴,,即,∵平分,∴,在和中,,∴,∴,,又,∴,∴为等边三角形.22.解:如图所示:;如图所示:即为所求;;①如图所示:即为所求;②如图所示:即为所求;..23.解:如图,在平行四边形中,,∴,∵在中,为的中点,,∴,又∵,∴,故可设,,则中,,解得,∴,又∵,,∴为的中点,∴;如图,延长交的延长线于点,则,∵,∴,又∵平分,∴,∴是等腰直角三角形,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴;第5页,共7页第6页,共7页…○…………装订…………○…※※请※※不※※内※※答※※题※※…○…………装订…………○…若点在延长线上,为中点,且,则中的结论不成立,正确结论为:. 证明:如图,延长交的延长线于点,则,∵, ∴, ∴, 又∵, ∴, ∴,,又∵为的中点, ∴, ∴, ∴, ∵, ∴.24.解:∵直线与轴、轴分别交于、两点, ∴,,∵直线与直线关于轴对称, ∴∴直线的解析式为:;如图..∵直线与直线关于轴对称, ∴,∵与为象限平分线的平行线, ∴与为等腰直角三角形, ∴, ∵, ∴ ∴ ∴,,∴;①对,过点作轴于,直线与直线关于轴对称∵,, 又∵, ∴, 则, ∴ ∴ ∴ ∴ ∴.25.证明:连接, ∵, ∴, ∵, ∴, ∴, ∵,, ∴, 在和中,∴.26.证明:∵,∴,即.又∵,,∴,∴.解:为等腰三角形理由如下:∵,∴,∴,∴为等腰三角形.27.解:.理由:∵是的平分线,且,,∴,∴;是的垂直平分线.理由:∵,在和中,,∴,∴,由,,可知点、都是线段的垂直平分线上的点,从而是线段的垂直平分线.第7页,共7页。

人教版 八年级数学 第12章 全等三角形 培优训练 (含答案)

人教版 八年级数学 第12章 全等三角形 培优训练 (含答案)

人教版八年级数学第12章全等三角形培优训练一、选择题1. 下列各组的两个图形属于全等图形的是()2. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE相交于点M,则∠DCE等于()A.∠B B.∠A C.∠EMF D.∠AFB3. 如图所示,P是∠BAC内一点,且点P到AB,AC的距离PE,PF相等,则△PEA≌△PF A的依据是()A.HL B.ASA C.SSS D.SAS4. 根据下列条件,能画出唯一的△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°5. 如图,点A在点O的北偏西30°的方向上,AB⊥OA,垂足为A.根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点O在点A的南偏东60°方向上B.点B在点A的北偏东30°方向上C.点B在点O的北偏东60°方向上D.点B在点O的北偏东30°方向上6. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()7. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误8. 如图,点G在AB的延长线上,∠GBC,∠BAC的平分线相交于点F,BE⊥CF 于点H.若∠AFB=40°,则∠BCF的度数为()A.40°B.50°C.55°D.60°二、填空题9. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,小于AC的长为半径画弧与AB,AC分别交于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=°.10. 如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.11. 如图,若AB=AC,BD=CD,∠A=80°,∠BDC=120°,则∠B=________°.12. 在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.13. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.14. 如图所示,已知AD∥BC,则∠1=∠2,理由是________________;又知AD =CB,AC为公共边,则△ADC≌△CBA,理由是______,则∠DCA=∠BAC,理由是__________________,则AB∥DC,理由是________________________________.15. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.16. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC =2,则S△ABC=.三、解答题17. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.18. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.19. 我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是筝形,其中AB=AD,CB=CD,P是对角线AC上除A,C外的任意一点.求证:∠ABP =∠ADP.20. 如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.21. (1)如图①,在△ABC中,∠BAC=90°,AB=CA,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为D,E.求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=CA,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角,则结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.人教版八年级数学第12章全等三角形培优训练-答案一、选择题1. 【答案】A2. 【答案】A[解析] ∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B.故选A.3. 【答案】A4. 【答案】C[解析] 对于选项A来说,AB+BC<AC,不能画出△ABC;对于选项B来说,可画出△ABC为锐角三角形或者钝角三角形;对于选项C来说,已知两边及其夹角,△ABC是唯一的;对于选项D来说,△ABC的形状可确定,但大小不确定.5. 【答案】D[解析] 如图,由题意知∠AOD=30°,∠COD=90°,∴∠AOC=120°.由作图可知,OB平分∠AOC,∴∠AOB=∠AOC=60°.∴∠DOB=30°.∴点B在点O的北偏东30°方向上.6. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.7. 【答案】A[解析] AB=b,AB是斜边,小惠作的斜边长是b符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.8. 【答案】B[解析] 如图,过点F分别作FZ⊥AE于点Z,FY⊥CB于点Y,FW⊥AB于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB=40°,易得∠ACB=80°.∴∠ZCY=100°.∴∠BCF=50°.二、填空题9. 【答案】125[解析] 由题意可得AD平分∠CAB.∵∠C=90°,∠B=20°,∴∠CAB=70°.∴∠CAD=∠BAD=35°.∴∠ADB=180°-20°-35°=125°.10. 【答案】AB =AC11. 【答案】20[解析] 如图,过点D 作射线AF.在△BAD 和△CAD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,∴△BAD ≌△CAD(SSS). ∴∠BAD =∠CAD ,∠B =∠C.∵∠BDF =∠B +∠BAD ,∠CDF =∠C +∠CAD , ∴∠BDF +∠CDF =∠B +∠BAD +∠C +∠CAD , 即∠BDC =∠B +∠C +∠BAC. ∵∠BAC =80°,∠BDC =120°, ∴∠B =∠C =20°.12. 【答案】4∶3【解析】如解图,过D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,∵AD 是∠BAC 的平分线,∴DE =DF(角平分线上的点到角两边的距离相等),设DE=DF=h,则S△ABDS△ACD =12AB·h12AC·h=43.13. 【答案】70【解析】∵∠ABC=90°,AB=AC,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,AB CBAE CF=⎧⎨=⎩,∴Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.14. 【答案】两直线平行,内错角相等SAS全等三角形的对应角相等内错角相等,两直线平行15. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB =AE+EB=AB.16. 【答案】7[解析] 过点P作PF⊥BC于点F,PG⊥AB于点G ,连接AP.∵△ABC的两条外角平分线BP,CP相交于点P,∴PF=PG=PE=2.∵S△BPC=2,∴BC·2=2,解得BC=2.∵△ABC的周长为11,∴AC+AB=11-2=9.∴S △ABC =S △ACP +S △ABP -S △BPC =AC ·PE+AB ·PG-S △BPC =×9×2-2=7.三、解答题17. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F. ∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m).∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.18. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD.∵AD=16,BC=10,∴AB=CD=(AD-BC )=3.19. 【答案】证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,AC =AC ,CB =CD , ∴△ABC ≌△ADC.∴∠BAP =∠DAP.在△BAP 和△DAP 中,⎩⎨⎧AB =AD ,∠BAP =∠DAP ,AP =AP , ∴△BAP ≌△DAP.∴∠ABP =∠ADP.20. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎨⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.21. 【答案】解:(1)证明:∵BD ⊥直线m ,CE ⊥直线m , ∴∠BDA =∠AEC =90°.∴∠BAD +∠ABD =90°.∵∠BAC =90°,∴∠BAD +∠CAE =90°. ∴∠CAE =∠ABD.在△ADB 和△CEA 中,⎩⎨⎧∠ABD =∠CAE ,∠BDA =∠AEC ,AB =CA ,∴△ADB ≌△CEA(AAS).∴BD =AE ,AD =CE.∴DE =AE +AD =BD +CE.(2)成立.证明:∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠EAC =180°-α. ∴∠DBA =∠EAC.在△ADB 和△CEA 中,⎩⎨⎧∠DBA =∠EAC ,∠BDA =∠AEC ,AB =CA ,∴△ADB ≌△CEA(AAS).∴BD =AE ,AD =CE.∴DE =AE +AD =BD +CE.。

培优专题03 证明三角形全等的基本思路-解析版

培优专题03 证明三角形全等的基本思路-解析版

∴ VACE ≌ VDCE
∴ AE = DE ,
∴S△ACE:S△ACD=1:2,
同理可得,S△ABE:S△ABD=1:2,
∵S△ABC=12 cm2 ,
∴阴影部分的面积为
S△ACE+S△ABE=
1 2
S△ABC=
1 2
×12=6 cm2 .
故答案为 6.
【点睛】本题主要考查了全等三角形的判定与性质及三角形面积的等积变换,解题关键是明确三角形的中


A.DF∥ AC
B.∠A=∠D
C.CF=BE
D.AC=DF
【答案】D
【分析】直接利用三角形全等判定条件逐一进行判断即可.
【详解】A. 由 DF∥AC 可得∠ACB=∠DFE,由 AB∥DE,可得∠ABC=∠DEF,又因 AB=DE,利用 AAS
可得△ABC≌△DEF,故本选项不符合题意;
B. 由 AB∥DE,可得∠ABC=∠DEF,又因∠A=∠D,AB=DE,利用 ASA 可得△ABC≌△DEF,故本选项
B.0.8cm
C.4.2cm
D.1.5cm
【答案】B
【分析】根据 BE ^ CE , AD ^ CE 得 ÐE = ÐADC ,则 ÐCAD + ÐACD = 90° ,再由 ÐACB = 90° ,得
ÐBCE + ÐACD = 90° ,则∠BCE = ∠CAD,从而证出 DBCE≌DCAD ,进而得出 BE 的长.
ìBD = CD ïíÐADB = ÐEDC , ïî AD = DE
\DABD≌DECD(SAS) , \CE = AB = 3 , 在 DACE 中, CE - AC < AE < CE + AC ,

直角三角形全等的判定同步培优题典(原卷版)

直角三角形全等的判定同步培优题典(原卷版)

专题2.4直角三角形全等的判定姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•诸城市期末)如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF2.(2019秋•莫旗期末)如图,AC=BC,AC⊥OA,CB⊥OB,则Rt△AOC≌Rt△BOC的理由是()A.SSS B.ASA C.SAS D.HL3.(2019秋•滦南县期末)如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是()A.HL B.SAS C.ASA D.SSS4.(2019秋•沭阳县期中)如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB =AC,那么图中全等的直角三角形的对数是()A.1B.2C.3D.45.(2019秋•兴化市期中)如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′6.(2018秋•和平区期末)如图Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,再添两个条件不能够全等的是()A.AB=A′B′,BC=B′C′B.AC=AC′,BC=BC′C.∠A=∠A′,BC=B′C′D.∠A=∠A′,∠B=∠B′7.(2019春•岐山县期末)在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.点D是BE的中点8.(2018秋•端州区校级期中)在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件不能判定Rt△ABC ≌Rt△DEF的是()A.AC=DF,∠B=∠E B.∠A=∠D,∠B=∠EC.AB=DE,AC=DF D.AB=DE,∠A=∠D9.(2018秋•句容市月考)下列条件中:①两条直角边分别相等;②两个锐角分别相等;③斜边和一条直角边分别相等;④一条边和一个锐角分别相等;⑤斜边和一锐角分别相等;⑥两条边分别相等.其中能判断两个直角三角形全等的有()A.6个B.5个C.4个D.3个10.(2018春•南郑区期末)如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD =AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020•黑龙江)如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.12.(2020春•汉寿县期中)如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,若利用“HL”证明Rt△ABC≌Rt△DCB,你添加的条件是.(不添加字母和辅助线)13.(2019秋•勃利县期末)如图,AB⊥BC、DC⊥BC,垂足分别为B、C,AB=6,BC=8,CD=2,点P 为BC边上一动点,当BP=时,形成的Rt△ABP与Rt△PCD全等.14.(2019秋•台州期中)如图,在△ABC和△BAD中,已知∠C=∠D=90°,再添加一个条件,就可以用“HL”判定Rt△ABC≌Rt△BAD,你添加的条件是.15.(2018秋•慈溪市期中)如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4.直线l上有一点C在点P右侧,PC=4cm,过点C作射线CD⊥l,点F为射线CD上的一个动点,连结AF.当△AFC与△ABQ全等时,AQ=cm.16.(2017秋•汶上县期末)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.17.(2019春•罗湖区期中)下列语句:①有一边对应相等的两个直角三角形全等;②一般三角形具有的性质,直角三角形都具有;③有两边相等的两直角三角形全等;④两直角三角形的斜边为5cm,一条直角边都为3cm,则这两个直角三角形必全等.其中正确的有个.18.(2019春•来宾期末)如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,∠A =50°,则∠DFE=.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•北流市期末)如图(1),AB⊥AD,ED⊥AD,AB=CD,AC=DE,试说明BC⊥CE的理由;如图(2),若△ABC向右平移,使得点C移到点D,AB⊥AD,ED⊥AD,AB=CD,AD=DE,探索BD⊥CE的结论是否成立,并说明理由.20.(2019春•铜仁市期末)如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.21.(2018秋•宜都市期末)已知:如图1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°求证:Rt△ABC和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)如图2,将△ABC和A′B′C′拼在一起(即:点A与点B′重合,点B与点A′重合),BC和B′C′相交于点O,请用此图证明上述命题.22.(2019秋•扶沟县期中)如图,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q 两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P不与点A,C重合,那么当点P 运动到什么位置时,才能使△ABC与△APQ全等?23.(2017秋•沧州期末)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.24.如图,AC=BC,∠ACB=90°,D为BC的中点,BE⊥BC,CE⊥AD,垂足分别为B、G,那么AD=CE,BD=BE.这个结论对不对?为什么?。

全等三角形培优专题训练

全等三角形培优专题训练

全等三角形培优专题训练第一篇:全等三角形培优专题训练做最适合你的数学培训八年级数学培优专题训练(二)探索三角形全等的条件1、一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张纸片摆成如下图形式,使点B、F、C、DCA在同一条直线上.EAEP MN⑴求证:AB⊥ED;⑵若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明2、如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足,则结论:①AD=BF;②CF =CD;③AC+CD=AB;④BE=CF;⑤BF=2BE.其中正确的是()3、如图,点C在线段AB上,DA ⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFC的度数.DFFBDBFCDBEDCAEACBF__________________________________________________________ ______________________________________________________周老师·数学培优做最适合你的数学培训4、如图,四边形ABCD中,AB∥CD,AD∥BC,O为对角线AC 的中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F 在直线M、N上,且OE=OF.⑴图中共有几对全等三角形,请把它们都写下来;⑵求证:∠MAE=∠NCFAEBMONCDF5、在△ABC中,高所在直线AD和BE交于H点,且BH=AC,则∠ABC=_____________.6、下列三个判断:⑴有两边及其中一边上的高对应相等的两个三角形全等;⑵有两边及第三边上的高对应相等的两个三角形全等;⑶一边及其它两边上的高对应相等的两个三角形全等.上述判断是否正确?若正确,说明理由;若不正确,请举出反例._________________________________________________________________ _______________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(三)全等三角形的应用全等三角形常用来转移线段和角,用它来证明:①线段和角的等量关系②线段和角的和差倍分关系③直线与直线的平行或垂直等位置关系1、如图,已知BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.试判断AP 与AQ的关系,并证明.2、如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,且BF=AC,FD=CD,求证:BE⊥AC FAADQPEBCE3、(2012〃阜新中考)如图,在△ABC中,AB=AC,AD=AE,∠BAC=∠D AC=90°.⑴当点D在AC上时,如图①,线段BD,CE有怎样的数量和位置关系?证明你猜想的结论.⑵将图①中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图②,线段BD、CE 有怎样的数量关系和位置关系?问明理由.BEABDCDC①AEDBC②__________________________________________ ____________________________________________________________________ __周老师·数学培优做最适合你的数学培训4、在△ABC中,AB=AC,点D是直线 BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.⑴如图①,当点D在线段BC上时,若∠BAC=90°,则∠BCE=_______度.⑵设∠BAC=α,∠BCE=βa、如图②,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.b、当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.BDAEBDC①AEC②______________________________________________ __________________________________________________________________ 周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(四)辅助线作法之连接法在几何证明中,常通过添加辅助线来构造全等三角形.常见的添加辅助线方法有:连接法、截长补短法、倍长中线法、翻折法、旋转法以及利用特殊条件构造全等三角形等等.1、如图,△ABC的两条高BD,CE相交于点P,且PD=PE.证明∶AC=AB2、已知AB=DE,BC=EF,∠B=∠E,AF=CD 求证:AC∥DF3、如图,AB交CD于点O,AD、CB的延长线相交于点E,且OA=OC,EA=EC.∠A=∠C吗?点O在∠AEC的平分线上吗?EBCDOABCDAFEAEBDPC_____________________________________ ____________________________________________________________________ _______周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(五)辅助线作法之倍长中线法在题目条件中含有中线的问题,我们常用的辅助线就是将中线延长一倍,其目的是为了得一对全等三角形,将分散的条件集中到一个三角形中去.1、△ABC中,AB=5,AC=3,求中线AD的取值范围.2、如图,在△ABC中,AD是∠BAC的平分线,又是BC上的中线求证:AB=AC3、(2014〃襄阳初三模拟)在△ABC中,D是边BC上的一点,且CD=AB,∠BAD=∠BDA,AE是△ABD的中线.求证∶AC=2AE BEDCABDCAABDC____________________________________________ ____________________________________________________________________做最适合你的数学培训AFE4、(竞赛014)△ABC中,D为BC的中点,DE⊥DF交AB,AC于点E,F.求证:BE+CF>EF6、(竞赛015)例:已知AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF.求证:AC=BFBDCAEFDBC___________________________________________________ _____________________________________________________________ 周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(六)辅助线作法之截长补短法截长法:在第三条线段上截下一段使其等于两条线段中的一条,再证明剩余部分与另一条相等.补短法:把两条线段中的一条补到另一条线段上去,证明所得新线段与第三条线段相等.1、已知A C∥BD,EA,EB分别平分∠CAB和∠DBA,点E在CD上.求证:AB=AC+BD2、在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE =½(AB+AD).求证∶∠B+∠D=180°3、如图,已知△ABC中,∠A=90°,AB=AC,D为AC的中点,AE⊥BD于E,延长AE交BC于F.求证:∠ADB=∠CDF________________________________________________________________ ________________________________________________BFCAECDABADEBCED周老师·数学培优做最适合你的数学培训4、如图,∠C=90°,AC=BC,AD是∠BAC的角平分线.求证∶AC+CD=AB12、如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积.CBABDCDAE____________________________________________________ ____________________________________________________________做最适合你的数学培训八年级数学培优专题训练(七)辅助线作法之利用特殊条件构造全等三角形2、(2012〃“华罗庚杯”)如图,在△ABC中,AC=½AB,AD平分∠BAC,且AD=BD 求证:CD⊥ACACBD__________________________________________________________ ______________________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(八)全等三角形在动态几何中的运用1、(竞赛〃014〃3)如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC.△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.⑴在图①中,请你通过观察、测量、猜想并写出AB与AP所满足的数量关系和位置关系;⑵将△EFP沿直线l向左平移到图②的位置时,EP 交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;⑶将△EFP沿直线l向左平移到图③的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为⑵中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.A(E)EAEAQllBC(F)PFPBClBFCP Q__________________________________________________________________ ______________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(九)探究角平分线一、知识清单角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线).由定义可知,三角形的角平分线是一条线段.角平分线性质:1、角平分线上的点,到这个角的两边的距离相等.2、角平分线分得的两个角相等,都等于该角的一半.3、三角形的三条角平分线交于一点,且到各边的距离相等,这个点称为内心.二、方法点拨证明角平分线有两种方法:一是运用定义证明两个角相等;二是运用角平分线的判定方法.三、规律清单①遇到角平分线,可从角平分线上的某一点向角的两边作垂线段(图1).②遇到角平分线,常可利用翻折法或截长补短法解题(图2).③有两条角平分线(内角或外角)交于一点,则连接该点与三角形第三个顶点的线段会平分一个内角或外角(图3).④有垂直于角平分线的线段,则延长这条线段以利用三线合一解题(图4).⑤遇到角内的一点到角的两边有垂线段时,就连接这点与角的顶点,看能否平分已知角(图5).⑥遇到有多条角平分线时,可尝试用整体的思想解题(图6).⑦有翻折条件时,除注意全等的结论,还应关注折线就是角平分线、是对称轴(如图7).⑧角平分线、平行线、等腰三角形三个条件中出现任意两个,常可直接得到另一个(如图8).AAACBDAFAEGDBDBC图2B图1CD图3DCBC_____________________________________________________________ ___________________________________________________周老师·数学培优做最适合你的数学培训AACFEBDC图4BFEDECF图5ADBA1D2B3A1APFC'D'DAD2CB图6EF∠1+∠2+∠3=90°∠1+∠2=90°-½∠BCBEC图7B图8CD四、真题训练1、(2011〃鄂州〃竞赛〃018 〃重庆中考)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP=_____________.BCDAP2、(竞赛〃019)如图,∠B=∠C =90°,M是BC的中点,DM平分∠ADC.求证:AM平分∠DAB DCMAB_______________________________________________________ _________________________________________________________ 周老师·数学培优做最适合你的数学培训3、(竞赛〃019)如图,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE.AED1求证:CE= BD 2BCA4、如图,在△ABC中,AD平分∠BAC,BD=CD 求证:∠B=∠C5、如图,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,交BC于D,DE⊥AB于E,若AB=10cm,则△DBE的周长是多少?ABDCAECDB6、(2011,恩施中考)AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为多少?BEFGDC_______________________________________________________ _________________________________________________________ 周老师·数学培优做最适合你的数学培训7、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.求证:BE=CF8、在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°⑴求证:DE=DF ⑵如果把最后一个条件改为AE>AF,且∠AED +∠AFD=180°,那么结论还成立吗?9、如图,已知AB=AC,BE⊥AC于E,CF⊥AB于F,BE与CF 交于点D 求证:点D在∠BAC的平分线上.10、如图,在四边形ABCD 中,对角线AC平分∠BAD,AB>AD,下列结论正确的是()A.AB-AD >CB-CD B.AB-AD=CB-CD C.AB-AD<CB-CD D.AB-CD与CB-CD的大小关系不确定BCAAEBGCFDAFEBDCBFDAECD______________________________ ____________________________________________________________________ ______________周老师·数学培优做最适合你的数学培训11、(竞赛014)如图,已知△ABC中,∠B=60°,∠BAC,∠BCA的平分线AD,CE相交于点O.求证:DC+AE=AC12、(竞赛〃019)如图,已知△ABC,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC于G点。

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

《全等三角形》培优专题训练1 全等三角形的概念两个能够完全重合的三角形叫做全等三角形.把两个全等三角形重合在一起,重合的角叫做对应角,重合的边叫做对应边.全等三角形的对应角相等,对应边相等. 经典例题如图所示,ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =.求DFE ∠的度数与EC 的长.解题策略在ABC ∆中,+180A B ACB ∠∠+∠=︒ (三角形内角和为180°).因为30A ∠=︒,50B ∠=︒(已知),所以1803050100ACB ∠=︒-︒-︒=︒ 因为ABC DEF ∆≅∆ (已知),所以ACB DFE ∠=∠(全等三角形对应角相等) BC EF =(全等三角形对应边相等), 因此100DFE ∠=︒,所以2EC EF FC BC FC BF =-=-== 画龙点睛1. 在解答与全等三角形有关的问题时,要充分利用全等三角形的定义所得到的对应边相等、对应角相等的结论.2. 在本题中求EC 的长时,不能直接求,可将之转化为两条线段的差,这也是将来求线段长的一种常用的转化方法.举一反三1. 如图,若ABC ADE ∆≅∆,则这对全等三角形的对应边是 ;对应角是 .2. 如图,若ABD ACD ∆≅∆,试说明AD 与BC 的位置关系.3. 如图所示,斜折一页书的一角,使点A 落在同一页书内'A 处,DE 为折痕,作DF平分'A DB ∠,试猜想FDE ∠等于多少度,并说明理由.融会贯通4. 如图,ABE ∆和ACD ∆是ABC ∆分别沿着AB 、AC 边翻折180°形成的,若θ∠的度数50°,则BAC ∠的度数是 .2 三角形全等的判定判断两个三角形全等,并非需要证明两个三角形的三条边以及三个角均对应相等,而只需满足全等三角形的判定定理就可以了. 经典例题已知:如图,AO 平分EAD ∠和EOD ∠,求证:(1)AOE AOD ∆≅∆;(2) BOE COD ∆≅∆.解题策略证明:(1)因为AO 平分EAD ∠和EOD ∠,所以OAD OAE ∠=∠,AOE AOD ∠=∠,又因为AO AO =,所以AOE AOD ∆≅∆ ( ASA).(2)由AOE AOD ∆≅∆,得OE OD =,且AEO ADO ∠=∠.又180BEO AEO ∠=︒-∠,180CDO ADO ∠=︒-∠,所以B E O C D O ∠=∠.在AOE ∆和AOD ∆中,因为B E O C D O ∠=∠,OE OD =,BOE COD ∠=∠,所以B O E C O D ∆≅∆(ASA). 画龙点睛1. 判定两个三角形全等,往往需要三个条件,根据题目已知的条件可以得到两个条件(要注意公共角及公共边),这时.设法证明所缺的条件也成立就是证题的关键了. 2. 要证明两条线段或者两个角相等,常用的方法是证明它们是一对全等三角形的对应边或者对应角.举一反三1. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆≅∆的是( ).(A) CB CD = (B)BAC DAC ∠=∠ (C)BCA DCA ∠=∠ (D)90B D ∠=∠=︒2. 如图所示,点D 、C 在BF 上,//AB EF ,A E ∠=∠,BC DF =.求证AB EF =.3. 如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA OC =,EA EC =,你能证明A C ∠=∠吗?点O 在AEC ∠的平分线上吗?融会贯通4. 如图所示,已知BD 、CE 分别是ABC ∆的边AC 和AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =;(2)AP AQ ⊥.3 全等三角形的应用全等三角形的判定和性质被广泛地应用于几何证明题中。

全等三角形经典题型汇集(培优专练)

全等三角形经典题型汇集(培优专练)


(2)如图 2,当点 E,F 分别在 CB,DC 的延长线上,CF=2 时,求△CEF 的周长;
拓展提升:
如图 3,在 Rt△ABC 中,∠ACB=90°,CA=CB,过点 B 作 BD⊥BC,连接 AD,在 BC 的延长线上取一 点 E,使∠EDA=30°,连接 AE,当 BD=2,∠EAD=45°时,请直接写出线段 CE 的长度.
7.阅读下面材料:
小炎遇到这样一个问题:如图 1,点 E、F 分别在正方形 ABCD 的边 BC,CD 上,∠EAF=45°,连结 EF,则 EF=BE+DF, 试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将 这些分散的线段相对集中.她先后尝试了翻折、旋转、平 移的方法,最后发现线段 AB,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着 点 A 逆时针旋转 90°得到△ADG,再利用全等的知识解决了这个问题(如图 2).
2.阅读下面材料:
数学课上,老师给出了如下问题:如图,AD 为△ABC 中线,点 E 在 AC 上,BE 交 AD 于点 F,AE=EF.求 证:AC=BF. 经过讨论,同学们得到以下两种思路:
思路一如图①,添加辅助线后依据 SAS 可证得△ADC≌△GDB,再利用 AE =EF 可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.
3.如图,分别以 ABC 的边向外作正方形 ABFG 和 ACDE,连接 EG,若 O 为 EG 的中点,
求证:(1) AO 1 BC ;(2) AO BC . 2
4.如图所示,已知 ⶠࢼ 中, 平分 ⶠ ࢼ, 、 分别在 ⶠ 、 上.
ࢼ,
ࢼ.求证: ∥ ⶠ.
5.如图所示, ⶠ ࢼ

初二数学 数学全全等三角形截长补短的专项培优练习题(含答案

初二数学 数学全全等三角形截长补短的专项培优练习题(含答案

初二数学 数学全全等三角形截长补短的专项培优练习题(含答案一、全等三角形截长补短1.已知ABC 是等边三角形,6AB =.(1)如图1,点M 是BC 延长线上一点,60AMN ∠=︒,MN 交ABC 的外角平分线于点N ,求CN CM -的值;(2)如图2,过点A 作AD BC ⊥于点D ,点P 是直线AD 上一点,以CP 为边,在CP 的下方作等边CPQ ,连接DQ ,求DQ 的最小值.2.数学课上,小白遇到这样一个问题:如图1,在等腰Rt ABC ∆中,90BAC ∠=︒,AB AC =,AD AE =,求证ABE ACD ∠=∠;在此问题的基础上,老师补充:过点A 作AF BE ⊥于点G 交BC 于点F ,过F 作FP CD ⊥交BE 于点P ,交CD 于点H ,试探究线段BP ,FP ,AF 之间的数量关系,并说明理由.小白通过研究发现,AFB ∠与HFC ∠有某种数量关系;小明通过研究发现,将三条线段中的两条放到同一条直线上,即“截长补短”,再通过进一步推理,可以得出结论.阅读上面材料,请回答下面问题:(1)求证ABE ACD ∠=∠;(2)猜想AFB ∠与HFC ∠的数量关系,并证明;(3)探究线段BP ,FP ,AF 之间的数量关系,并证明.3.如图①,ABC 和BDC 是等腰三角形,且AB AC =,BD CD =,80BAC ∠=︒,100∠=︒BDC ,以D 为顶点作一个50︒角,角的两边分别交边AB ,AC 于点E 、F ,连接EF .(1)探究BE 、EF 、FC 之间的关系,并说明理由;(2)若点E 、F 分别在AB 、CA 延长线上,其他条件不变,如图②所示,则BE 、EF 、FC 之间存在什么样的关系?并说明理由.4.如图,ABC ∆中,BE ,CD 分别平分ABC ∠和ACB ∠,BE ,CD 相交于点F ,60A ∠=︒.(1)求BFD ∠的度数;(2)判断BC ,BD ,CE 之间的等量关系,并证明你的结论.5.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD ,以D 为顶点作MDN ∠,交边AC ,BC 于点M ,N .(1)如图(1),若30ACD ∠=︒,60MDN ∠=︒,当MDN ∠绕点D 旋转时,AM ,MN ,BN 三条线段之间有何种数量关系?证明你的结论;(2)如图(2),当90ACD MDN ∠+∠=︒时,AM ,MN ,BN 三条线段之间有何数量关系?证明你的结论;(3)如图(3),在(2)的条件下,若将M ,N 分别改在CA ,BC 的延长线上,完成图(3),其余条件不变,则AM ,MN ,BN 之间有何数量关系(直接写出结论,不必证明).6.(1)方法选择如图①,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD ,AB BC AC ==,求证:BD AD CD =+.小颖认为可用截长法证明:在DB 上截取DM AD =,连接AM ……小军认为可用补短法证明:延长CD 至点N ,使得DN AD =……请你选择一种方法证明.(2)类比探究探究1如图②,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD ,若BC 是⊙O 的直径,AB AC =,试用等式表示线段AD ,BD ,CD 之间的数量关系,并证明你的结论. 探究2如图③,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是⊙O 的直径,::::BC AC AB a b c =,则线段AD ,BD ,CD 之间的等量关系式是______.7.如图,在正方形ABCD 中,点F 是CD 的中点,点E 是BC 边上的一点,且AF 平分DAE ∠,求证:AE EC CD =+.8.如图所示,平行四边形ABCD 和平行四边形CDEF 有公共边CD ,边AB 和EF 在同一条直线上,AC ⊥CD 且AC=AF ,过点A 作AH ⊥BC 交CF 于点G ,交BC 于点H ,连接EG .(1)若AE=2,CD=5,则△BCF 的面积为 ;△BCF 的周长为 ;(2)求证:BC=AG+EG .9.已知,在ABCD 中,AB BD AB BD E ⊥=,,为射线BC 上一点,连接AE 交BD 于点F .(1)如图1,若E 点与点C 重合,且25AF =,求AD 的长;(2)如图2,当点E 在BC 边上时,过点D 作DG AE ⊥于G ,延长DG 交BC 于H ,连接FH .求证:AF DH FH =+.(3)如图3,当点E 在射线BC 上运动时,过点D 作DG AE ⊥于G M ,为AG 的中点,点N 在BC 边上且1BN =,已知42AB =,请直接写出MN 的最小值.10.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .(1)求出AFC ∠的度数;(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)6;(2)32【分析】(1)在CN 上截取点H ,使CH=CM ,先证出△CMH 为等边三角形,然后利用ASA 证出△AMC ≌△NMH ,从而得出AC=NH ,从而求出结论;(2)连接BQ ,利用SAS 证出△QCB ≌△PCA ,从而得出∠CBQ=∠CAP ,然后根据三线合一和等量代换即可求出∠CBQ=30°、∠ABQ =90°,从而判断出点Q 的运动轨迹,然后根据垂线段最短即可得出当DQ ⊥BQ 时,DQ 最短,然后利用30°所对的直角边是斜边的一半即可得出结论.【详解】解:(1)在CN 上截取点H ,使CH=CM ,连接MH∵△ABC 为等边三角形∴∠ACB=60°,AC=AB=6∴∠ACM=180°-∠ACB=120°∵CN 平分∠ACM∴∠MCN=12∠ACM=60° ∴△CMH 为等边三角形 ∴CM=HM ,∠CMH=∠CHM=60°∴∠NHM=180°-∠CHM=120°,∠AMC +∠AMH=60°∴∠ACM=∠NHM∵60AMN ∠=︒∴∠NMH +∠AMH=60°∴∠AMC=∠NMH在△AMC 和△NMH 中AMC NMH CM HMACM NHM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AMC ≌△NMH∴AC=NH∴CN CM -=CN -CH=NH=AC=6(2)连接BQ∵△ABC 和△CPQ 都是等边三角形∴BC=AC ,QC=PC ,∠PCQ =∠ACB=∠ABC=∠BAC =60°∴∠PCQ -∠PCB=∠ACB -∠PCB∴∠QCB=∠PCA在△QCB 和△PCA 中BC AC QCB PCA QC PC =⎧⎪∠=∠⎨⎪=⎩∴△QCB ≌△PCA∴∠CBQ=∠CAP∵AD BC ⊥∴∠CAP=12∠BAC=30°,BD=12BC=3 ∴∠CBQ=30°∴∠ABQ=∠ABC +∠CBQ=90°∴点Q 在过点B 作AB 的垂线上运动 根据垂线段最短可得:当DQ ⊥BQ 时,DQ 最短此时在Rt △BDQ 中,∠QBD=30°∴DQ=12BD=32即DQ 的最小值为32.【点睛】此题考查的是全等三角形的判定及性质、等边三角形的判定及性质、直角三角形的性质和垂线段最短的应用,掌握构造全等三角形的方法、全等三角形的判定及性质、等边三角形的判定及性质、30°所对的直角边是斜边的一半和垂线段最短是解决此题的关键. 2.(1)见解析;(2)HFC BFA ∠=∠,证明见解析;(3)BP AF PF =+,证明见解析【分析】(1)利用SAS 证明ABE ACD ≅可得结论;(2)设ABE ACD x ∠=∠=,推出=45BFA x ∠︒+,=45HFC x ∠︒+,即可证明HFC BFA ∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,证明△ABE ≌△CAM ,得出BE AM =和M BEA ∠=∠,从而证明△NFC ≌△MFC ,得到FM FN =和M FNC ∠=∠,可得PN=PE ,从而得出BP=AF+PF.【详解】解:(1)∵在△ABE 和△ACD 中,==AB AC A A AE AD ⎧⎪∠=∠⎨⎪⎩,ABE ACD ∴∆≅∆(SAS ),ABE ACD ∴∠=∠;(2)设ABE ACD x ∠=∠=,AF BE ⊥,90BAF x ∴∠=︒-,()=9045=45BFA x x ∴∠︒-︒-︒+,ACD x ∠=,45HCF x ∴∠=︒-,FP CD ⊥,()9045=45HFC x x ∴∠=︒-︒-︒+,HFC BFA ∴∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,90BAF FAC ∠+∠=︒,90BAF ABG ∠+∠=︒,FAC ABG ∴∠=∠,在△ABE 和△CAM 中,===BAE ACM AB AC ABE CAM ∠∠⎧⎪⎨⎪∠∠⎩, ABE CAM ∴∆≅∆(ASA ),BE AM ∴=,M BEA ∠=∠,BFA MFC NFC ∠=∠=∠,FC FC =,45ACB BCM ∠=∠=︒,NFC MFC ∴∆≅∆(ASA ),FM FN ∴=,M FNC ∠=∠,FNC BEA ∴∠=∠,PN PE ∴=,∴BP BE PE AM PE AF FM PE =-=-=+-AF FN PN AF PF =+-=+.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及等角对等边等知识点,解题的关键是根据截长补短法添加适当的辅助线,构造全等三角形证明结论,有一定难度. 3.(1)EF=BE+FC ;(2)EF=FC-BE .【分析】(1)由等腰三角形的性质,解得50ABC ACB ∠=∠=︒,40DBC DCB ∠=∠=︒,延长AB 至G ,使得BG=CF ,连接DG ,进而证明GBD △()FCD SAS ≅,再根据全等三角形对应边相等的性质解得DG FD =,再结合等腰三角形的性质可证明DEF ()DGE SAS ≅,最后根据全等三角形的性质解题即可;(2)在CA 上截取CG=BE,连接DG ,由等腰三角形的性质,可得50ABC ACB ∠=∠=︒,40DBC DCB ∠=∠=︒,进而证明BED ≅()CGD SAS 得到DG DE =,据此方法再证明EDF ≅()GDF SAS ,最后根据全等三角形的性质解题即可.【详解】 (1)ABC 和BDC 是等腰三角形, ABC ACB ∴∠=∠DBC DCB ∴∠=∠80BAC AB AC ∠=︒=,50ABC ACB ∴∠=∠=︒100BDC BD CD ∠=︒=,40DBC DCB ∴∠=∠=︒90ABD ACD DCF ∴∠=∠=︒=∠延长AB 至G ,使得BG=CF ,连接DG18090GBD ABD ∠=︒-∠=︒在GBD △和FCD 中,BG=CF ,GBD DCF BD FD ∠=∠=,∴GBD △()FCD SAS ≅,DG FD ∴=BDG CDF ∴∠=∠50100EDF BDC ∴∠=︒∠=︒,50BDE CDF ∴∠+∠=︒50GDE BDG BDE CDF BDE ∠=∠+∠=∠+∠=︒在DEF 和DGE △中,DE=DE ,EDF GDE DF GD ∠=∠=,∴DEF ()DGE SAS ≅,EF EG BE GB BE CF ∴==+=+(2)在CA 上截取CG=BE,连接DGABC 是等腰三角形,80BAC ∠=︒50ABC ACB ∴∠=∠=︒100BDC BD CD ∠=︒=,40DBC DCB ∴∠=∠=︒90EBD GCD ∴∠=∠=︒CG BE BD CD ==,在BED 和CGD △中,CG=BE ,EBD GCD BD CD ∠=∠=,BED ∴≅()CGD SASDG DE ∴=在EDF 和GDF 中,FD=FD ,GDF EDF ED GD ∠=∠=,EDF ∴≅()GDF SASEF FG FC CG FC BE ∴==-=-【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.4.(1)∠BFD =60°;(2)BC =BD +CE ;证明见解析【分析】(1)根据角平分线和外角性质求解即可;(2)在BC 上截取BG =BD ,连接FG ,证明△BDF ≌△BGF ,△CGF ≌△CEF ,即可得到结果;【详解】(1)∵BE ,CD 分别平分ABC ∠和ACB ∠,BE ,∴ABE CBE ∠=∠,ACD BCD ∠=∠,∵60A ∠=︒,∴120ABC ACB ∠+∠=︒,∴60FBC FCB ∠+∠=︒,∴60DFB ∠=︒.(2)BC =BD +CE ;证明方法:在BC 上截取BG =BD ,连接FG ,在△BDF 和△BGF 中,BD BG DBF GBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴()△△BDF BGFSAS ≅, ∴60DFB BFG ∠=∠=︒,又∵GCF ECF ∠=∠,∴△CGF ≌△CEF (ASA ),∴CE =CG ,∴BC =BD +CE .【点睛】本题主要考查了三角形内角和定理、外角定理、三角形全等应用,准确分析是解题的关键.5.(1)AM BN MN +=;证明见解析;(2)AM BN MN +=;证明见解析;(3)补图见解析;BN AM MN -=;证明见解析.【分析】(1)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(2)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(3)在CB 截取BE=AM ,连接DE ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可.【详解】(1)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A EBD ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.MDN ADC BDC ∠=∠=∠,ADM NDC BDE ∴∠=∠=∠,MDC NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(2)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A DBE ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=,ADC CDB ∠=∠.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.90MDN ACD ∠+∠=︒,90ACD ADC ∠+∠=︒,ADC CDB ∠=∠,NDM ADC CDB ∴∠=∠=∠,ADM CDN BDE ∴∠=∠=∠,CDM NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(3)补充完成题图,如图所示.BN AM MN -=.证明如下:如上图,在CB 上截取BE=AM ,连接DE .90CDA ACD ∠+∠=︒,90MDN ACD ∠+∠=︒,MDN CDA ∴∠=∠,MDA CDN ∴∠=∠.90B CAD ∠=∠=︒,90B DAM ∴∠=∠=︒.在DAM △和DBE 中,AM BE DAM DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE ADM CDN ∴∠=∠=∠,DM DE =.ADC BDC MDN ∠=∠=∠,ADN CDE ∴∠=∠,MDN EDN ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BN BE BN AM =-=-,BN AM MN ∴-=.【点睛】本题考查了全等三角形的性质和判定的应用,作出辅助线构造全等三角形是解题的关键.6.(1)见解析;(2)①BD CD =+,见解析,②c a BD CD AD b b=+ 【分析】 (1)根据题中所给的截长法或补短法思路解题,利用全等三角形的性质解题即可.(2)探究1 要求AD 、BD 、CD 之间的数量关系,结合(1)中所给方法,在BD 上截取BM CD =,再利用全等三角形及等腰直角三角形的性质进行求解.探究2 要求AD 、BD 、CD 之间的数量关系,以AD 为边构造直角三角形,再利用相似的性质求解.【详解】(1)截长法 证明:如图①-1,在DB 上截取DM AD =,连接AM ,AB BC AC ==,ABC ∴是等边三角形,60ABC ACB BAC ∴∠=∠=∠=︒.60ADB ACB ∴∠=∠=︒,DM AD =,AMD ∴△是等边三角形,60MAD ∴∠=︒,AM AD =.BAM CAD ∴∠=∠,()BAM CAD SAS ∴△≌△,BM CD ∴=,BD DM BM AD CD ∴=+=+;补短法 证明:如图①-2,延长CD 至点N ,使得DN AD =,DAN DNA ∴∠=∠.AB AC BC ==,ABC ∴为等边三角形,60ABC ACB BAC ∠=∠=∠=︒.60ADB ACB ∴∠=∠=︒,60BDC BAC ∠=∠=︒,18060ADN BDC ADB ∴∠=︒-∠-∠=︒,ADN ∴为等边三角形,AD AN =,60DAN ∠=︒.BAD CAN ∴∠=∠.在BAD 和CAN △中,AB AC BAD CAN AD AN =⎧⎪∠=∠⎨⎪=⎩,()BAD CAN SAS ∴△≌△,BD CN ∴=,又CN CD DN CD AD =+=+,BD CD AD ∴=+.(2)探究1 解:2BD AD CD =+; 证明:如图②,在BD 上截取BM CD =,连接AM ,BC 是O 的直径,AB AC =,90BAC ∴∠=︒,45ABC ACB ∠=∠=︒.45ADM ACB ∴∠=∠=︒,在BAM 和CAD 中,,AB AC ABM ACD BM CD =⎧⎪∠=∠⎨⎪=⎩()BAM CAD SAS ∴△≌△,AM AD ∴=,BAM CAD ∠=∠.45AMD ADM ∴∠=∠=︒,90MAD ∠=︒.AMD ∴△是等腰直角三角形,2MD AD ∴=.BD MD BM =+,2BD AD CD ∴=+;探究2 解:c a BD CD AD b b=+. 如图③,过点A 作AM AD ⊥交BD 于点M ,BC 是O 的直径,90BAC ∴∠=︒,BAC MAD ∴∠=∠,BAM CAD ∴∠=∠,ABM DCA ∠=∠,BAM CAD ∴△∽△,BM AB c CD AC b ∴==,c BM CD b ∴=, 又ADM ACB ∠=∠,MAD BAC ∠=∠,ADM ACB ∴△∽△,DM BC a AD AC b ∴==,a DM AD b∴=, BD BM MD =+,c a BD CD AD b b∴=+.【点睛】本题是圆的综合题,考查了圆周角定理,全等三角形的判定和性质,相似三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的判定与性质,正确作出辅助线,熟练运用图形的性质是解题的关键.7.见解析【分析】过F 作FH ⊥AE 于H ,得出FH=FD ,然后证明△FHE ≌△FCE ,再通过等价转换可证得AE=EC+CD .【详解】证明:过F 作FH ⊥AE 于H ,如图,∵AF 平分∠DAE ,∠D=90°,FH ⊥AE ,∴∠DAF=∠EAF ,FH=FD ,又∵DF=FC=FH ,FE 为公共边,∴△FHE ≌△FCE (HL ).∴HE=CE .∵AE=AH+HE ,AH=AD=CD ,HE=CE ,∴AE=EC+CD .【点睛】本题考查角平分线的性质,角平分线上的点到角的两边距离相等,也考查了等量代换的思想,属于比较典型的题目.8.(1)3,23234++;(2)见解析【分析】(1)根据平行和垂直的特点求出BF ,AF ,再根据勾股定理求出CD ,根据FP 与BA 的比值求出面积,再根据勾股定理求CF ,BC 即可得到周长. (2)在AD 上截取AM=AG ,连接CM ,证△FAG ≌△CAM ;证△EFG ≌△DCM .【详解】解:(1)面积为3;周长为23234++∵四边形ABCD 和四边形CDEF 都是平行四边形,∴EF=CD ,AB=CD ,AB ∥CD∴EF=AB=CD=5∴AE=EF-AE=5-2=3 ∴BF=5-3=2过F 作FP ⊥BC则FP :AH=BF :AB=2:5,∴::2:5BCF BCA S S FP AH == , ∵AC ⊥CD ,AB ∥CD,∴AB ⊥AC ,即∠BAC=90°,∵AC=AF=3,∴223332+= ,223534+=,∴2213552BCF BCA S S CD AC ==⨯⨯=∴△BCF 的面积为3,△BCF 周长为23234+(2)在AD 上截取AM=AG ,连接CM ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC∵AH ⊥BC∴AD ⊥AH∴∠DAH=90°∵∠BAC=90°∴∠DAH=∠BAC∴∠DAH-∠CAH =∠BAC-∠CAH∴∠BAH=∠CAD∵AF=AC∴△FAG ≌△CAM∴FG=CM ,∠ACM=∠AFG∵四边形CDEF 是平行四边形,∴EF ∥CD ,EF=CD ,∴∠DCF+∠AFC=180°,∵AF=AC , ∠BAC=90°,∴∠AFC=∠ACF=45°,∴∠DCF=180°-∠AFC=135°,∴∠ACM=∠AFG=45°,∴∠DCM=∠FCD-∠ACF-∠ACM=45°,∴∠AFG=∠DCM ,∴△EFG ≌△DCM ,∴EG=DM ,∵AD=AM+DM ,∴AD=AG+EG ,∵AD=BC ,∴BC=AG+EG .【点睛】此题考查平行四边形的性质,平行线分线段成比例和勾股定理的应用.9.(1)42AD =2)见解析;(3)MN 的最小值为3.【分析】(1)如图1中,利用等腰三角形的性质可得90ABD ∠=︒,利用平行四边形的性质可得F 为BD 中点,在Rt ABF ∆中,由勾股定理可求得BF ,则可求得AB ,在Rt ABD∆中,再利用勾股定理可求得AD ;(2)如图2中,在AF 上截取AK HD =,连接BK ,可先证明ABK DBH ∆≅∆,再证明BFK BFH ∆≅∆,可证得结论;(3)连接AN 并延长到Q ,使NQ AN =,连接GQ ,取AD 的中点O ,连接OG ,得到90AGD ∠=︒,于是得到点G 的轨迹是以O 为圆心,以OG 为半径的弧,且4OG =,求得GQ 最小值为6,根据三角形的中位线定理即可得到结论.【详解】(1)45AB BD BAD =∠=︒,,45BDA BAD ∴∠=∠=︒90 ABD ∴∠=︒,四边形ABCD 是平行四边形,∴当点E 与点C 重合时,1122BF BD AB == 在Rt ABF 中,222AF AB BF =+()()222252BF BF ∴=+ 24BF AB ∴==,Rt ABD ∴中,42AD =.(2)证明:如图2中,在AF 上截取AK HD =,连接BK ,23AFD ABF FGD ∠=∠+∠=∠+∠,90ABF FGD ∠=∠=︒,23∴∠=∠,在ABK 和DBH ∆中,23AB BD AK HD =⎧⎪∠=∠⎨⎪=⎩, ABK DBH ∴∆≅∆,BK BH ∴=,61∠=∠,AK DH =,四边形ABCD 是平行四边形,//AD BC ∴,41645∴∠=∠=∠=︒,5645ABD ∴∠=∠-∠=︒,51∴∠=∠,在FBK ∆和FBH ∆中,51BF BF BK BH =⎧⎪∠=∠⎨⎪=⎩, FBK FBH ∴∆≅∆,KF FH ∴=,AF AK KF =+,AF DH FH ∴=+;()3解:连接AN 并延长到Q ,使NQ AN =,连接GQ ,取AD 的中点O ,连接OG ,作AK ⊥BC ,交BC 延长线于点K ,作QP ⊥AD ,交AD 延长线于点P .90AGD ∠=︒,∴点G 的轨迹是以O 为圆心,以OG 为半径的弧,且4OG =,根据△ABD 为等腰直角三角形,可得AD 228AB BD +=, ∴AO=142AD =, 根据△ABK 为等腰直角三角形,可得AK =BK =4,可得QE =PE =4,∴PQ =8,∵BK=4,BN =1,∴KN =5,∴KE=AP =10,∴OP =6,10OQ ∴=,4OG =,GQ ∴最小值为6, MN 是AGQ ∆的中位线,MN ∴的最小值为3.【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、全等三角形的判定和性质、中位线定理,解题的关键是学会添加常用辅助线,构造全等三角形.10.(1)∠AFC=120°;(2)FE与FD之间的数量关系为:DF=EF.理由见解析;(3)AC=AE+CD.理由见解析.【分析】(1)根据三角形的内角和性质只要求出∠FAC,∠ACF即可解决问题;(2)根据在图2的 AC上截取CG=CD,证得△CFG≌△CFD (SAS),得出DF= GF;再根据ASA 证明△AFG≌△AFE,得EF=FG,故得出EF=FD;(3)根据(2) 的证明方法,在图3的AC上截取AG=AE,证得△EAF≌△GAF (SAS)得出∠EFA=∠GFA;再根据ASA证明△FDC≌△FGC,得CD=CG即可解决问题.【详解】(1)解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°﹣60°=30°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=15°,∠FCA=45°,∴∠AFC=180°﹣(∠FAC+∠ACF)=120°(2)解:FE与FD之间的数量关系为:DF=EF.理由:如图2,在AC上截取CG=CD,∵CE是∠BCA的平分线,∴∠DCF=∠GCF,在△CFG和△CFD中,CG CD DCF GCF CF CF =⎧⎪∠=∠⎨⎪=⎩,∴△CFG ≌△CFD (SAS ),∴DF =GF .∠CFD =∠CFG由(1)∠AFC =120°得,∴∠CFD =∠CFG =∠AFE =60°,∴∠AFG =60°,又∵∠AFE =∠CFD =60°,∴∠AFE =∠AFG ,在△AFG 和△AFE 中,AFE AFG AF AFEAF GAF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFG ≌△AFE (ASA ),∴EF =GF ,∴DF =EF ;(3)结论:AC =AE+CD .理由:如图3,在AC 上截取AG =AE ,同(2)可得,△EAF ≌△GAF (SAS ),∴∠EFA =∠GFA ,AG =AE∵∠BAC+∠BCA=180°-∠B=180°-60°=120°∴∠AFC =180°﹣(∠FAC+∠FCA)=180°-12(∠BAC+∠BCA)=180°-12×120°=120°, ∴∠EFA =∠GFA =180°﹣120°=60°=∠DFC ,∴∠CFG =∠CFD =60°,同(2)可得,△FDC ≌△FGC (ASA ),∴CD =CG ,∴AC =AG+CG =AE+CD .【点睛】本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.。

八年级数学《全等三角形》能力培优

八年级数学《全等三角形》能力培优

八年级数学《全等三角形》能力培优一•解答题(共8小题)1 •如图所示,一个四边形纸片ABCD / B=Z D=90°,把纸片按如图所示折叠, 使点B 落在AD边上的B'点,AE是折痕.(1)试判断B'与DC的位置关系;(2)如果/ C=130,求/ AEB的度数.2•已知:点A (4, 0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.(1)当点B坐标为(0, 1)时,求点C的坐标;(2)如图2,以OB为直角边作等腰直角△ OBD,点D在第一象限,连接CD交y轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.3. 如图,在△ ABC中,/ ACB=90, AC=BC E为AC边的一点,F为AB边上- 点,连接CF,交BE于点D且/ ACF W CBE CG平分/ ACB交BD于点G,(1)求证:CF=BG(2)延长CG交AB于H,连接AG,过点C作CP// AG交BE的延长线于点P, 求证:PB=CF+CF;4. 如图(1), AB=CD AD=BC O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么/ 1与/2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的Z 1与/2的关系成立吗?请说明理由.5•如图,把△ ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设/ AED的度数为x, / ADE的度数为y,那么/ 1,/ 2的度数分别是多少? (用含有x或y的代数式表示)(3)Z A与/ 1 + Z 2之间有一种数量关系始终保持不变,请找出这个规律.6. 在△ ABC中,AD是厶ABC的角平分线.(1)如图1,过C作CE// AD交BA延长线于点E,若F为CE的中点,连接AF,求证:AF丄AD;(2)如图2, M为BC的中点,过M作MN // AD交AC于点N,若AB=4, AC=7 求NC的长.7. 如图,在Rt A ABC中,/ ABC=90, CD平分/ ACB交AB于点D, 点E,BF// DE交CD于点F.8 .已知:△ ABC内部一点O到两边AB AC所在直线的距离相等,且DE X AC 于OB= OC八年级数学《全等三角形》能力培优参考答案与试题解析一•解答题(共8小题)1 •如图所示,一个四边形纸片ABCD / B=Z D=90°,把纸片按如图所示折叠, 使点B 落在AD边上的B'点,AE是折痕.(1)试判断B'与DC的位置关系;S' D(2)如果/ C=130,求/ AEB的度数.B【分析】(1)由于AB'是AB的折叠后形成的,所以/ AB Ea=B=Z D=90 , A B Z E// DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB'是AB的折叠后形成的,/ AB E=B=/ D=90,A B' E DC;(2)v折叠,•••△ABE^A AB,A/ AEB =AEB 即/ AEB= / BEB,2••• B' E DC,A/ BEB =C=130,A/ AEB=- / BEB =65°【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B点,则△ ABE^A AB,利用全等三角形的性质和平行线的性质及判定求解.2. 已知:点A (4, 0),点B是y轴正半轴上一点,如图1,以AB 为直角边作等腰直角三角形ABC.(1)当点B坐标为(0, 1)时,求点C的坐标;(2)如图2,以0B为直角边作等腰直角△ OBD,点D在第一象限,连接CD交y轴于点E在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.【分析】(1)过C作CM丄y轴于M,通过判定△ BCM MA AB( AAS),得出CM=BO=1, BM=AO=4,进而得到OM=3,据此可得C (- 13);(2)过C 作CM丄y 轴于M,根据△ BCM^A ABO,可得CM=BO, BM=OA=4, 再判定△ DBE^A CME (AAS,可得BE=EM,进而得到BE=-BM=2.【解答】解:(1)如图1,过C作CM丄y轴于M.•••CM 丄y 轴,•••/ BMC=Z AOB=90 ,•••/ ABC+Z BAO=90•Z ABC=90,•••Z CBM+Z ABO=90 ,•••Z CBM=Z BAO,在厶BCM与厶ABO中,'ZBIC=ZACBu ZCBJI=ZBAO,BC-ABL•••△BCM^A ABO (AAS),•CM=BO=1 BM=AO=4,•OM=3 ,• C (- 1 , - 3);(2)在B点运动过程中,BE长保持不变,BE的长为2,理由:如图2,过C作CM丄y轴于M ,由(1)可知:△ BCM^A ABO,••• CM=BO, BM=OA=4.•••△ BDO是等腰直角三角形,••• BO=BD / DBO=90 ,••• CM=BD, / DBE=Z CME=9°,在△DBE与△ CME中,'ZDBE=ZCME* ZDEB=ZCEM,L BD=IC•••△ DBE^A CME (AAS),••• BE=EM••• BE= BM=2.【点评】本题考查了全等三角形的判定以及全等三角形对应边、对应角相等的性质,熟练掌握三角形全等的判定方法,判定△ DBE^A CME是解第(2)题的关键.3. 如图,在厶ABC中,/ ACB=90 , AC=BC E为AC边的一点,F为AB边上点,连接CF,交BE于点D且/ ACF W CBE CG平分/ ACB交BD于点G,(1)求证:CF=BG(2)延长CG交AB于H,连接AG,过点C作CP// AG交BE的延长线于点P, 求证:PB=CF+CF;(3)在(2)问的条件下,当/ GAC=2/ FCH时,若&AEG=3「, BG=6,求AC的长.【分析】(1)根据ASA证明△ BCG^A CAF贝U CF=BG(2)先证明△ ACG^A BCG 得/ CAG=/ CBE再证明/ PCG/ PGC即可得出结论;(3)作厶AEG的高线EM,根据角的大小关系得出/ CAG=30,根据面积求出EM 的长,利用30°角的三角函数值依次求AE、EG BE的长,所以CE=+「,根据线段的和得出AC的长.【解答】证明:(1)如图1,v/ ACB=90, AC=BC•••/ A=45 ,v CG平分/ ACB•••/ ACG/ BCG=45 ,•••/ A=/ BCG在厶BCG^n^ CAF中,'ZA=ZBCG•v QBC ,2 AC F二Z CBE•••△ BCG^A CAF( ASA),••• CF=BG(2)如图2, v PC// AG ,•••/ PCA=/ CAQv AC=BC / ACG=/ BCG CG=CG•••△ ACG^A BCQ•••/ CAGK CBEvZ PCG= PCA+Z ACGK CAG45°/ CBE+45°,/ PGC Z GCBV CBE=Z CB^45°,•••Z PCG=Z PGC••• PC二PGv PB二BGPG BG=CF•PB=C+CP(3)如图3,过E作EM丄AG,交AG于M , V SAE(= -AG?EM=V3,2由(2)得:△ ACG^A BCG•BG=AG=6•-X 6X EM=3「,2EM=「,设Z FCH=x ,则Z GAC=2x ,•Z ACF=Z EBC=Z GAC=2x ,vZ ACH=45 ,•2x+x=45 ,x=15 ,•Z ACF=Z GAC=30 ,在Rt A AEM 中,AE=2EM=2「,AM=T::*W J■:V T>-=3 ,•M是AG的中点,•AE二EG=2「,•BE二BGEG=62V5 ,在Rt A ECB中, Z EBC=30 ,•CE= BE=3F「,•AC二AHEC=2「+3+「=3「+3.【点评】本题考查了全等三角形的性质和判定及等腰直角三角形的性质,证明两线段相等时,一般都是证明两线段所在的三角形全等,因此第一问只需要证明厶BC3A CAF即可;第3问,如何得出30°角和作辅助线,禾用到&AEG=3匚列式是突破口.4•如图(1),AB=CD AD=BC O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么/ 1与/2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的Z 1与/2的关系成立吗?请说明理由.【分析】(1)证明三角形ACD和CAB全等•根据全等三角形判定中的SSS可得出两三角形全等,那么就能证出AD// BC,也就得出/ 1二/ 2 了.(2)(3)和(1)的证法完全一样.【解答】解:/ 1与/2相等.证明:在厶ADC与厶CBA中,'AD=BC“ CD-AB ,L AC=CA•••△ADC^A CBA (SSS•••/ DAC=/ BCA ••• DA/ BC.•••/ 1=Z 2.②③图形同理可证,△ ADW A CBA得到/ DACN BCA贝U DA// BC, /仁/2.【点评】本题主要考查了全等三角形的判定和平行线的判定,根据全等三角形得出角相等是解题的关键.5. 如图,把△ ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设/ AED的度数为x, / ADE的度数为y,那么/ 1,/ 2的度数分别是多少? (用含有x或y的代数式表示)(3)Z A与/ 1 + Z 2之间有一种数量关系始终保持不变,请找出这个规律.【分析】(1)根据折叠就可写出一对全等三角形,根据折叠,则重合的顶点是对应点,重合的角是对应角;(2)根据全等三角形的对应角相等,以及平角的定义进行表示;(3)根据(2)中的表示方法,可以求得/ 1+Z 2,再找到/ A和x、y之间的关系,就可建立它们之间的联系.【解答】解:(EAD^A EA'D,其中/ EADN EA'D, / AED=/ A'ED, / ADE= / A'D E;(2)Z 1= 180°- 2x,Z 2=180°- 2y;(3)vZ 1 + Z2=360°-2 (x+y) =360°-2 (180°-/ A) =2/ A. 规律为:/ 1+Z 2=2Z A.【点评】在研究折叠问题时,有全等形出现,要充分利用全等的性质.6. 在△ ABC中,AD是厶ABC的角平分线.(1)如图1,过C作CE// AD交BA延长线于点E,若F为CE的中点,连接AF, 求证:AF丄AD;(2)如图2, M为BC的中点,过M作MN // AD交AC于点N,若AB=4, AC=7 求NC 的长.【分析】(1)推出/ 3=Z E,推出AC=AE根据等腰三角形性质得出AF丄CE根据平行线性质推出即可;(2)延长BA与MN延长线于点E,过B作BF/ AC交NM延长线于点F,求出BF=CN AE=AN, BE=BF 设CN=x 贝U BF=x AE=AN=A G CN=7- x , BE=AB F AE=¥7-x.得出方程4+7 - x=x.求出即可.【解答】(1证明::AD ABC的角平分线,•••/ 仁/ 2.••• CE// AD ,•••/ 仁/ E, / 2二/ 3.•••/ E=Z 3.••• AC=AE••• F为EC的中点,••• AF丄EC,••• AD// EC,•••/ AFE=/ FAD=90.••• AF丄AD.(2)解:延长BA与MN延长线于点E,过B作BF/ AC交NM延长线于点F , •••/ 3=/ C, / F=/ 4••• M为BC的中点••• BM=CM.NF二厶在厶BFM和厶CNM中,・Z3二ZCBH=CML•••△BFM^A CNM (AAS ,••• BF=CN••• MN // AD,•••/ 仁/ E,Z 2=Z 4=Z 5.•••/ E=Z 5=Z F.••• AE=AN BE=BF设CN=x 贝U BF=x AE=AN=AC- CN=7- x, BE=ABAE=¥7 —x.••• 4+7 - x=x.解得x=5.5.平行【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质和判定, 线的性质等知识点的综合运用.7. 如图,在Rt A ABC 中,/ ABC=90 , CD 平分/ ACB 交AB 于点D , DE X AC 于点E, BF// DE交CD于点F.【分析】根据角平分线的定义得到/ 仁/2,根据角平分线的性质得到DE=BD / 3=Z 4,由平行线的性质得到3=Z 5,于是得到结论.【解答】证明::CD平分/ ACB•••/ 仁/ 2,T DE 丄AC,/ ABC=90••• DE=BD / 3=/4,••• BF/ DE,•••/ 4=/ 5,•••/ 3=/ 5,• BD=BF【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定和性质, 熟练掌握角平分线的性质是解题的关键.8 .已知:△ ABC内部一点0到两边AB AC所在直线的距离相等,且OB=OC求证:AB=AC【分析】证明Rt A BOF^ Rt A COE根据全等三角形的性质得到/ FBON ECQ 根据等腰三角形的性质得到/ CBO=/ BCO得到/ ABC=/ ACB,根据等腰三角形的判定定理证明结论.【解答】证明:在Rt A BOF和Rt A COE中,fOF=OE(OB=OC••• Rt A BOF^ Rt A COE•••/ FBO=/ ECO••• OB=OC•••/ CBO=/ BCQ•••/ ABC=/ ACB••• AB=AC【点评】本题考查的是角平分线的性质、全等三角形的判定,掌握全等三角形的判定定理、等腰三角形的判定定理是解题的关键.。

全等三角形经典培优题型(含标准答案)

全等三角形经典培优题型(含标准答案)

三角形培优练习题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

已知:AB=CD ,∠A=∠D ,求证:∠B=∠C78.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-ABCDBA BC DEF 2 1ADBCA B CD ABACDF2 1 E9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12如图:AE 、BC 交于点M ,F点在AM 上,BE∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

13已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F 。

求证:BE =CD .14在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

全等三角形大题专练(培优强化40题)

全等三角形大题专练(培优强化40题)

专题-2022-2023学年八年级数学上学期复习备考高分秘籍【苏科版】专题2.1全等三角形大题专练(培优强化40题)一.解答题(共40小题)1.(2021秋•六合区期中)如图,在△ABC和△DEF中,∠C、∠F都是锐角且∠C>∠B,∠F>∠E,AB=DE,AC=DF,∠C=∠F,△ABC≌△DEF吗?说明理由.2.(2021秋•高淳区期中)如图,AB=CD,∠B=∠C,点F、E在BC上,BF=CE.求证:AE=DF.3.(2021秋•溧水区期中)如图,已知AB=AD,∠B=∠D,∠BAD=∠CAE,点E在BC 上.(1)求证:AE=AC;(2)若∠B=20°,∠C=65°,求∠DFA的度数.4.(2021秋•江宁区期中)如图,AB=AC,点D在AB上,点E在AC上,∠B=∠C.求证:BE=CD.5.(2021秋•江宁区期中)如图,点B、C、E、F在同一条直线上,AF、DE相交于点G,∠B=∠C=∠AGD=90°,BF=CD.求证:AF=DE.6.(2021秋•玄武区期中)如图,点C、E在BF上,AC=DF,∠A=∠D,AB∥DE.求证:BE=CF.7.(2020秋•鼓楼区校级期中)如图,点B、D、C在一条直线上,AB=AD,AC=AE,∠BAD=∠EAC.(1)求证:BC=DE;(2)若∠B=70°,求∠EDC.8.(2021秋•鼓楼区期中)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线,求证:AB=DC.9.(2021秋•南京期中)已知:如图,AB∥ED,AB=DE,点F,点C在AD上,AF=DC.(1)求证:△ABC≌△DEF;(2)求证:BC∥EF.10.(2021秋•镇江期中)已知:如图,C是AE的中点,AB∥CD,且AB=CD.求证:△ABC≌△CDE.11.(2021秋•徐州期中)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠CAD=50°,求∠B的度数;(2)如图,若点E在边AC上,过点E作EF∥AB交AD的延长线于点F,求证:AE=EF.12.(2022春•清江浦区校级期中)工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M、N重合,过角尺顶点C的射线OC便是∠AOB的平分线.(1)求证:OC平分∠AOB;(2)继续测量得∠AMC=50°,∠MCN=30°,求∠AOB的度数.13.(2020春•江阴市期中)如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.14.(2021秋•盐都区期中)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.15.(2018秋•锡山区校级期中)如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.16.(2021秋•海安市期中)如图,AC⊥CB,DB⊥CB,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.17.(2022•姑苏区校级二模)已知:如图,AC=BD,AD=BC,AD,BC相交于点O,过点O作OE⊥AB,垂足为E.求证:(1)△ABC≌△BAD.(2)AE=BE.18.(2022春•泗阳县期末)如图,AB=AE,AC=DE,AB∥DE.(1)求证:AD=BC;(2)若∠DAB=70°,AE平分∠DAB,求∠B的度数.19.(2022春•泰兴市期末)已知,如图,点A、B、C、D在同一直线上,AC=DB,BE∥CF.从①BE=CF;②AE∥DF;③AE=DF中选择一个作为条件,使得△ABE≌△DCF 成立.请写出你选择的条件,并证明.你选择的条件是 (填序号).20.(2022春•海陵区期末)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,BC、DE交于O,BC=ED.(1)求证:∠B=∠E;(2)求证:OE=OB.21.(2022春•建邺区校级期末)已知:如图,AD、BF相交于O点,OA=OD,AB∥DF,点E、C在BF上,BE=CF.(1)求证:△ABO≌△DFO;(2)判断线段AC、DE的关系,并说明理由.22.(2022春•相城区期末)如图,在四边形ABCD中,AB∥CD,AD∥BC,E,F是对角线AC上两点,且AE=CF,连接BE,DF.(1)求证:△ABC≌△CDA;(2)若∠AEB=85°,求∠AFD的度数.23.(2022•丰县二模)如图,点F是△ABC的边AC的中点,点D在AB上,连接DF并延长至点E,DF=EF,连接CE.(1)求证:△ADF≌△CEF;(2)若DE∥BC,DE=4,求BC的长.24.(2022•工业园区模拟)已知:如图,AB=AC,AD=AE,∠BAE=∠CAD.求证:∠D =∠E.25.(2022•江阴市模拟)如图,在△ABC中,O为BC中点,BD∥AC,直线OD交AC于点E.(1)求证:△BDO≌△CEO;(2)若AC=6,BD=4,求AE的长.26.(2022•宜兴市校级二模)已知:如图,在△ABC中,D是BC边中点,CE⊥AD于点E,BF⊥AD于点F.(1)求证:△BDF≌△CDE;(2)若AD=5,CE=2,求△ABC的面积.27.(2022春•亭湖区校级期末)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.(1)求证:∠ABE=∠ACG;(2)试判:AG与AD的关系?并说明理由.28.(2022•南通模拟)如图,在△ABC中,AB=AC,AD⊥BD,AE⊥EC,垂足分别为D,E,BD,CE相交于点O,且∠BAE=∠CAD.(1)求证:△ABD≌△ACE;(2)若∠BOC=140°,求∠OBC的度数.29.(2021秋•鼓楼区校级期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAD =∠CAE.求证:∠ABD=∠ACE.30.(2021秋•溧阳市期末)如图,点A、D、B、E在一条直线上,AC=DF,BC=EF,∠C =∠F.求证:(1)△ABC≌△DEF;(2)AD=BE,BC∥EF.31.(2021秋•如皋市期末)如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证CD=EC;(2)连接DE,若∠DCE=60°,DC=4,求DE的长.32.(2022•宿城区校级开学)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ABD≌△BAC;(2)若∠ABC=35°,求∠CAO的度数.33.(2021秋•盱眙县期末)如图,已知AD∥BC,AD=CB,AE=FC.(1)求证:∠D=∠B;(2)若∠A=20°,∠D=110°,求∠BEC的度数.34.(2021秋•大丰区期末)如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=68°,求∠EBC的度数.35.(2021秋•句容市期末)如图,点D在△ABC的BC边上,AC∥BE,BC=BE,∠ABC=∠E.(1)求证:△ABC≌△DEB;(2)若BE=9,AC=4,则CD= .36.(2021秋•江阴市期末)如图,点A、D、B、E在一条直线上AC=EF,AD=BE,BC=DF,BC与DF交于点O.(1)求证:△ABC≌△EDF;(2)若∠A=60°,∠F=65°,求∠ABC的度数.37.(2021秋•新吴区期末)如图,在△ABD和△ACD中,AB=AC,BD=CD.(1)求证:△ABD≌△ACD;(2)过点D作DE∥AC交AB于点E,求证:AE=DE.38.(2021秋•崇川区期末)如图,点A,F,C,D在同一条直线上,AF=DC,AB=DE,∠A=∠D,BC与EF交于点H.求证:(1)△ABC≌△DEF;(2)FH=CH.39.(2021秋•江都区期末)如图,已知点A、E、F、C在同一直线上,AD∥BC,AE=CF,AD=CB.(1)求证:△ADF≌△CBE;(2)判断BE与DF的位置关系,并说明理由.40.(2021秋•滨湖区期末)已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AE∥BF,且AE=BF.求证:(1)△ADE≌△BCF;(2)AC=BD.。

2022-2023学年八年级上册《全等三角形》培优练习题 含答案

2022-2023学年八年级上册《全等三角形》培优练习题   含答案

独家原创《全等三角形》培优练习题一.选择题1.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F 2.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED=90°,AE=DE,则BE=()A.13 B.8 C.6 D.53.平面内,到三角形三边距离相等的点有()个.A.4 B.3 C.2 D.14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠DAC交CD于点F,点E为AB上一点,AE=AC,连接EF,若∠B=56°,则∠AEF=()A.34°B.46°C.56°D.60°5.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处6.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°7.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.48.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.609.如图,已知点E、F在线段BC上,BE=CF,DE=DF,AD⊥BC,垂足为点D,则图中共有全等三角形()对.A.2 B.3 C.4 D.510.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则下列结论:①DF+AE>AD;②DE=DF;③AD⊥EF;④S△ABD:S△ACD=AB:AC,其中正确结论的个数是()A.1个B.2个C.3 个D.4个二.填空题11.如图,∠1=∠2,BC=EC,请补充一个条件:能使用“AAS”方法判定△ABC≌△DEC.12.如图,OP平分∠MON,PA⊥ON,垂足为A,Q是射线OM 上的一个动点,若P、Q两点距离最小为8,则PA=.13.如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3=.14.如图,AB=AC,AD=AE,点B、D、E在一条直线上,∠BAC =∠DAE,∠1=35°,∠2=30°,则∠3=度.15.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和26,求△EDF的面积.16.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM ⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ 运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三.解答题17.已知:如图,∠BAC=∠DAC.请添加一个条件,使得△ABC≌△ADC,然后再加以证明.18.小明家门前有一条小河,村里准备在河面上架上一座桥,但河宽AB无法直接测量,爱动脑的小明想到了如下方法:在与AB垂直的岸边BF上取两点C、D使CD=,再引出BF的垂线DG,在DG上取一点E,并使A、C、E在一条直线上,这时测出线段的长度就是AB的长.(1)按小明的想法填写题目中的空格;(2)请完成推理过程.19.在△ABC中,D是AB的中点,E是CD的中点.过点C作CF ∥AB交AE的延长线于点F,连接BF.求证:DB=CF.20.如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD ⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若BF=3,求CE的长度.21.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.22.如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当AF+FD=AE时,求证:∠AFD=2∠AED.23.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC =16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动.同时,点Q在线段CA上由C点以a厘米/秒的速度向A点运动.设运动的时间为t秒.(1)直接写出:①BD=厘米;②BP=厘米;③CP=厘米;④CQ=厘米;(可用含t、a的代数式表示)(2)若以D,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,试求a、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动.设运动的时间为t秒;直接写出t=秒时点P与点Q第一次相遇.24.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).参考答案一.选择题1.解:A、添加AC=DF,满足SAS,可以判定两三角形全等;B、添加∠B=∠E,满足ASA,可以判定两三角形全等;C、添加BC=EF,不能判定这两个三角形全等;D、添加∠C=∠F,满足AAS,可以判定两三角形全等;故选:C.2.解:在△ABE和△ECD中∴△ABE≌△ECD(AAS).∴CE=AB=5.∴BE=BC﹣CE=13﹣5=8.故选:B.3.解:如图,△ABC外角平分线的交点共有3个,内角平分线的交点有1个,所以,到三边距离相等的点共有3+1=4个.故选A.4.解:∵AF平分∠DAC,∴∠CAF=∠EAF,又∵AC=AE,AF=AF,∴△ACF≌△AEF,∴∠AEF=∠ACF,又∵CD⊥AB,∠ACB=90°,∴∠B+∠BAC=90°=∠ACD+∠DAC,∴∠B=∠ACD,∴∠AEF=∠B=56°,故选:C.5.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.故选:A.6.解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.7.解:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选:D.8.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故选:B.9.解:∵BE=CF,DE=DF,AD⊥BC,∴AD垂直平分BC,AD垂直平分EF,∴AB=AC,AE=AF,又∵AD=AD,∴△ABD≌△ACD(SSS),△AED≌△AFD(SSS),∵BE=CF,DE=DF,∴BF=CE,又∵AB=AC,AE=AF,∴△ABF≌△ACE(SSS),∵AB=AC,AE=AF,BE=CF,∴△ABE≌△ACF(SSS),∴图形中共有全等三角形4对,故选:C.10.解:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴∠AED=∠AFD=90°,DE=DF,故②正确;在Rt△AED和Rt△AFD中,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,故③正确;∵在△AFD中,AF+DF>AD,又∵AE=AF,∴AE+DF>AD,故①正确;∵S△ABD=,S△ACD=,DE=DF,∴S△ABD:S△ACD=AB:AC,故④正确;即正确的个数是4个,故选:D.二.填空题11.解:可以添加∠A=∠D,理由是:∵∠1=∠2,∴∠ACB=∠DCE,∴在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).故答案是:∠A=∠D.12.解:过点P作PQ⊥OM,垂足为Q,则PQ长为P、Q两点最短距离,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PA=PQ=8,故答案为:8.13.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1﹣∠2+∠3=90°﹣45°=45°.故答案为:45°.14.解:如图所示:∵∠BAC=∠DAE,∠BAC=∠1+∠DAC,∠DAE=∠DAC+∠4,∴∠1=∠4,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ADB=∠AEC,又∵∠2+∠4+∠AEC=180°,∴∠AEC=115°,∴∠ADB=115°,又∠ADB+∠3=180°,∴∠3=65°,故答案为65.15.解:如图,作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,∴DF=DH,在Rt△FDE和Rt△HDG中,,∴Rt△FDE≌Rt△HDG(HL),同理,Rt△FDA≌Rt△HDA(HL),设△EDF的面积为x,由题意得,48﹣x=26+x,解得x=11,即△EDF的面积为11,故答案为:11.16.解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.三.解答题17.解:若添加的条件为:AB=AD,则在△ABC与△ADC中,,∴△ABC≌△ADC(SAS).若添加的条件为:∠B=∠D,则在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).若添加的条件为:∠ACB=∠ACD,则,∴△ABC≌△ADC(ASA).故答案为:AB=AD(或∠B=∠D或∠ACB=∠ACD)(答案不唯一).18.解:(1)在与AB垂直的岸边BF上取两点C、D使CD=CB,再引出BF的垂线DG,在DG上取一点E,并使A、C、E在一条直线上,这时测出线段DE的长度就是AB的长.故答案为:CB,DE;(2)由题意得DG⊥BF,∴∠CDE=∠CBA=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴DE=AB(全等三角形的对应边相等).19.证明:∵E为CD的中点,∴CE=DE,∵∠AED和∠CEF是对顶角,∴∠AED=∠CEF.∵CF∥AB,∴∠EDA=∠ECF.在△EDA和△ECF中,,∴△ADE≌△FCE(ASA),∴AD=FC,∵D为AB的中点,∴AD=BD.∴DB=CF.20.解:如图所示:(1)∵AD⊥BC,BE⊥AC,∴∠FDB=∠FEA=∠ADC=90°,又∵∠FDB+∠1+∠BFD=180°,∠FEA+∠2+AFE=180°,∠BFD=∠AFE,∴∠1=∠2,又∠ABC=45°,∴BD=AD,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA)∴BF=AC;(2)∵BF=3,∴AC=3,又∵BE⊥AC,∴CE=AE==.21.证明:(1)∵BE⊥CD,∴∠BEC=∠DEA=90°,又∵BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.22.证明:(1)过点D作DM⊥AB于M,DN⊥AC于N,如图1所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB和△DNF中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在AB上截取AG=AF,连接DG.如图2所示,∵AD平分∠BAC,∴∠DAF=∠DAG,在△ADF和△ADG中.,∴△ADF≌△ADG(SAS).∴∠AFD=∠AGD,FD=GD又∵AF+FD=AE,∴AG+GD=AE,又∵AE=AG+GE,∴FD=GD=GE,∴∠GDE=∠GED又∵∠AGD=∠GED+∠GDE=2∠GED.∴∠AFD=2∠AED23.解(1)由题意得:①BD=12,②BP=4t;③CP=16﹣4t,④CQ=at,故答案为:①12,②4t,③(16﹣4t),④at;(2)∵BP=4t,BD=12,CP=16﹣4t,CQ=at,∵∠B=∠C,∴分两种情况:①若△DBP≌△QCP,则,∴,∴,②若△DBP≌△PCQ,则,∴,∴;(3)①若a=4 时,P,Q不能相遇,②若a=6 时,由题意得:6t﹣4t=48,t=24,答:t=24秒时点P与点Q第一次相遇.故答案为:24.24.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.。

全等三角形-培优整理

全等三角形-培优整理

全等三角形-培优整理H E B D A C 题图第3B'C B A D 题图第1题图第2全等三角形1.将直角三角形(∠ACB 为直角)沿线段CD 折叠使B 落在B ’处,若∠ACB ’=60°,则∠ACD 度数为______.2.如图,△ABE 和△ACD 是△ABC 分别沿着AB 、AC 边翻折180°形成的,若∠BAC=150°,则∠EFC 的度数为_________.3.△ABC 中,∠ABC=45°,AC=4,H 是高AD 和BE 的交点,则BH 的长度为______.4.如图,△ABC 是等边三角形,点D 、E 、F 分别是线段AB 、BC 、CA 上的点,A F DB C 21P F M D B A C E (1)若AD BE CF ==,问△DEF 是等边三角形吗?试证明你的结论;(2)若△DEF 是等边三角形,问AD BE CF ==成立吗?试证明你的结论.5.如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )6.△ABC 中,∠A=90°,AB=AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由. F DCA7.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF AC =;(2)求证:12CE BF =;DAE F C H GB 8. 如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将BOC △绕点C 按顺时针方向旋转60得ADC △,连接OD .(1)求证:COD △是等边三角形; (2)当150α=时,试判断AOD △的形状,并说明理由; (3)探究:当α为多少度时,AOD △是等腰三角形?AB C DO110 α9.如图,△ABC 中,E 、F 分别是AB 、AC 上的点.①AD 平分∠BAC ;②DE ⊥AB ,DF⊥AC;③AD⊥EF.以此三个中的两个为条件,另一个为结论,可构成三个命题,即①②⇒③,①③⇒②,②③⇒①.试判断上述三个命题是否正确,并证明你认为正确的命题.AEGFDB C10 .已知:如图,ABC△是等边三角形,过AB边上的点D作DG BC∥,交AC于点G,在GD的延长线上取点E,使DE DB,.,连接AE CD(1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.C G A ED B F1.如图在锐角三角形ABC 中,CD ⊥AB ,BE ⊥AC ,且CD ,BE 交于点P ,∠A=50°,求∠BPC 的度数。

三角形全等培优证明题100题(有答案)

三角形全等培优证明题100题(有答案)

全等三角形证明题专项练习(100题)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC=_________.2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE 的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所增加的条件证明:△ABC≌△FDE.12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△EBC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出两个条件:①DF∥BC;②BF=DF.请你从中选择一个作为条件,证明:△AFD≌△AFB.31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________,∴∠1+∠2=90°_________.∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________.在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,请说明:∠A=∠C的道理,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,你能帮助他说明这个道理吗?试试看.45.如图,AD是△ABC的中线,CE⊥AD于E,BF⊥AD,交AD的延长线于F.求证:CE=BF.46.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM交DA的延长线上于E.交BC于N,试说明:AE=CN.47.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB 交BC于E,求证:CT=BE.48.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.∠B与∠D相等吗?请你说明理由.49.D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.50.如图,M是△ABC的边BC上一点,BE∥CF,且BE=CF,求证:AM是△ABC的中线.51.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.52.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.53.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.54.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.55.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.56.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.57.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.58.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.59.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.60.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.61.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.62.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.63.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.64.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.65.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.66.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.67.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.68.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.69.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.70.如图,AB=AC,AD=AE.求证:∠B=∠C.71.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.72.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.73.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:74.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)75.如图,已知AB=DC,AC=DB.求证:∠1=∠2.76.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和(均填序号);(2)证明你写出的命题.77.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.78.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.79.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.80.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.81.如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交于CD的延长线于点F,BE⊥CD于点E,求证:EF=CF﹣AF.82.如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,EC⊥MN于E.(1)求证:BD=AE;(2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系?83.已知:如图,△ABC中,AB=AC,BD和CE为△ABC的高,BD和CE相交于点O.求证:OB=OC.84.在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等.试说明AE=DF的理由.85.如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm,求线段BC的长.86.如图:已知∠B=∠C,AD=AE,则AB=AC,请说明理由.87.如图△ABC中,点D在AC上,E在AB上,且AB=AC,BC=CD,AD=DE=BE.(1)求证△BCE≌△DCE;(2)求∠EDC的度数.88.已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.89.如图,已知:AB=CD,AD=BC,过BD上一点O的直线分别交DA、BC的延长线于E、F.(1)求证:∠E=∠F;(2)OE与OF相等吗?若相等请证明,若不相等,需添加什么条件就能证得它们相等?请写出并证明你的想法.90.如下图,AD是∠BAC的平分线,DE垂直AB于点E,DF垂直AC于点F,且BD=DC.求证:BE=CF.91.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B 落在点F处,连接FC,(1)求CF的长。

专题1.5全等三角形的性质与判定(重难点培优)(原卷版)【苏科版】

专题1.5全等三角形的性质与判定(重难点培优)(原卷版)【苏科版】

专题1.5全等三角形的性质与判定(重难点培优)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•南京期中)如图,在Rt△ABC中,∠ABC=90°,D是CB延长线上的点,BD=BA,DE⊥AC 于E,交AB于点F,若DC=2.6,BF=1,则AF的长为()A.0.6B.0.8C.1D.1.62.(2020秋•宝应县期中)如图,∠C=∠D=90°,∠CAB=∠DBA,若AC=3,AD=4,则AB是()A.3B.4C.5D.63.(2020秋•铜官区期末)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;⑤S△ABD:S△ACD=AB:AC,其中正确的有()A.5个B.4个C.3个D.2个4.(2020秋•射阳县期末)工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线.这种作法的道理是()A.HL B.SSS C.SAS D.ASA5.(2019秋•田家庵区期末)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.3B.4C.5D.66.(2020春•崇川区期末)如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定7.(2019秋•锡山区校级月考)如图,在△ABC中,AB=AC,BD=CD,且AD⊥BD,点E、F是AD上的任意两点,若BC=8,AD=6,则图中阴影部分的面积为()A.24B.18C.12D.98.(2019春•雨花区校级期末)如图,在△ABC中,∠A=50°,∠B=∠C,点D,E,F分别在边BC,CA,AB上,且满足BF=CD,BD=CE,∠BFD=30°,则∠FDE的度数为()A.75°B.80°C.65°D.95°9.(2019春•峄城区期中)如图,点C是△ABE的BE边上一点,点F在AE上,D是BC的中点,且AB =AC=CE,给出下列结论:①AD⊥BC;②CF⊥AE;③∠1=∠2;④AB+BD=DE.其中正确的结论有()A.1个B.2个C.3个D.4个10.(2018秋•襄州区期末)如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF.其中正确的结论个数有()A.4个B.3个C.2个D.1个二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•泰州月考)如图,AB∥FC,E是DF的中点,若AB=30,CF=17,则BD=.12.(2020秋•宜兴市月考)已知:如图,AB=DE,AC=DF,BE=CF,∠A=60°,则∠D=.13.(2020秋•泗阳县期中)如图,在△ABC中,AC=12,BC=5,∠ACB=90°,D是AC的中点,直线l 经过点D,BE⊥l,CF⊥l,垂足分别为E,F,则BE+CF的最大值=.14.(2020秋•梁园区期末)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.15.(2021春•沭阳县期中)如图,若∠AOB=∠ACB=90°,OC平分∠AOB,OC=4,则四边形AOBC的面积是.16.(2020秋•常熟市期中)如图,△ABC中,∠A=90°,AB=8,BD∥AC,且BD=BC,过点D作DE ⊥BC,垂足为E.若CE=2,则BD的长为.17.(2020秋•鼓楼区校级月考)如图,在△ABC与△A′B′C′中,AC=A′C′,BC=B′C′,∠B=∠B′,且∠B和∠B′都是钝角,那么能否证明△ABC与△A′B′C′全等?.(填“能”或“否”)18.(2020秋•天宁区校级期中)如图,△ABC中,AB=AC,点D、E、F分别在AB、BC、CA边上,且BE=CF,BD=CE,如果∠A=44°,则∠EDF的度数为.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2021•梁溪区模拟)如图,△ABC≌△DEF,AM、DN分别是△ABC和△DEF的中线.求证:AM=DN.20.(2021春•姑苏区校级月考)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.21.(2020秋•江都区期末)已知,在四边形ABCD中,AB=AD,CB=CD,连接AC,BD,判断AC,BD 的位置关系,并加以证明.22.(2020秋•苏州期末)如图,AD,BF相交于点O,AB∥DF,AB=DF,点E与点C在BF上,且BE=CF.(1)求证:△ABC≌△DFE;(2)求证:点O为BF的中点.23.(2020秋•苏州期末)如图,△ABC中,AB=AC,且2∠BAC=∠ABC.已知BD=CE,∠DBC=∠ECB =162°.(1)求证:△ADB≌△ACE.(2)设∠DAC=63°,AD=4,连接DE,求DE的值.24.(2021•天宁区校级模拟)如图,点C、F、E、B在同一直线上,点A、D分别在BC两侧,AB∥CD,BE=CF,∠A=∠D.(1)求证:AB=DC;(2)若AB=CE,∠B=30°,求∠D的度数.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学培优专题训练(二)探索三角形全等的条件1、一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张纸片摆成如下图形式,使点B 、F 、C 、D在同一条直线上.⑴求证:AB ⊥ED ;⑵若PB =BC ,请找出图中与此条件有关的一对全等三角形,并给予证明2、如图,在△ABC 中,AC =BC ,∠ACB =90°,AD 平分∠BAC ,BE ⊥AD 交AC 的延长线于F ,E 为垂足,则结论:①AD =BF ;②CF =CD ;③AC +CD =AB ;④BE =CF ;⑤BF =2BE.其中正确的是( )3、如图,点C 在线段AB 上,DA ⊥AB ,EB ⊥AB ,FC ⊥AB ,且DA =BC ,EBA=AC,FC=AB,∠AFB=51°,求∠DFC的度数.4、如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,O 为对角线AC 的中点,过点O作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线M 、N 上,且OE =OF.⑴图中共有几对全等三角形,请把它们都写下来; ⑵求证:∠MAE =∠NCF5、在△ABC 中,高所在直线AD 和BE 交于H 点,且BH =AC ,则∠ABC =_____________.6、下列三个判断:⑴有两边及其中一边上的高对应相等的两个三角形全等; ⑵有两边及第三边上的高对应相等的两个三角形全等; ⑶一边及其它两边上的高对应相等的两个三角形全等.上述判断是否正确?若正确,说明理由;若不正确,请举出反例.E八年级数学培优专题训练(三)全等三角形的应用全等三角形常用来转移线段和角,用它来证明:①线段和角的等量关系 ②线段和角的和差倍分关系③直线与直线的平行或垂直等位置关系1、如图,已知BD 、CE 分别是△ABC 的边AC 和AB 上的高,点P 在BD 的延长线上,BP =AC ,点Q 在CE 上,CQ =AB.试判断AP 与AQ 的关系,并证明.2、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且BF =AC ,FD =CD ,求证:BE ⊥AC3、(2012·阜新中考)如图,在△ABC 中,AB =AC,AD =AE,∠BAC =∠DAC =90°.⑴当点D 在AC 上时,如图①,线段BD,CE 有怎样的数量和位置关系?证明你猜想的结论.⑵将图①中的△ADE 绕点A 顺时针旋转α角(0°<α<90°) ,如图②,线段BD 、CE 有怎样的数量关系和位置关系?问明理由.B①4、在△ABC中,AB=AC,点D是直线 BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.⑴如图①,当点D在线段BC上时,若∠BAC=90°,则∠BCE=_______度.⑵设∠BAC=α,∠BCE=βa、如图②,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.b、当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.①②八年级数学培优专题训练(四)辅助线作法之连接法在几何证明中,常通过添加辅助线来构造全等三角形.常见的添加辅助线方法有:连接法、截长补短法、倍长中线法、翻折法、旋转法以及利用特殊条件构造全等三角形等等.1、如图,△ABC的两条高BD,CE相交于点P,且PD=PE.证明∶AC=AB2、已知AB=DE,BC=EF,∠B=∠E,AF=CD 求证:AC∥DFAB3、如图,AB交CD于点O,AD、CB的延长线相交于点E,且OA=OC,EA=EC.∠A=∠C吗?点O在∠AEC的平分线上吗?E八年级数学培优专题训练(五)辅助线作法之倍长中线法在题目条件中含有中线的问题,我们常用的辅助线就是将中线延长一倍,其目的是为了得一对全等三角形,将分散的条件集中到一个三角形中去.1、△ABC中,AB=5,AC=3,求中线AD的取值范围.2、如图,在△ABC中,AD是∠BAC的平分线,又是BC上的中线求证:AB=ACBB3、(2014·襄阳初三模拟)在△ABC中,D是边BC上的一点,且CD=AB,∠BAD=∠BDA,AE是△ABD的中线.求证∶AC=2AEB4、(竞赛014)△ABC 中,D 为BC 的中点,DE ⊥DF 交AB ,AC 于点E ,F.求证:BE +CF >EF6、(竞赛015)例:已知AD 是△ABC 的中线,BE 交AC 于点E ,交AD 于点F ,且AE =EF.求证:AC =BFB八年级数学培优专题训练(六)辅助线作法之截长补短法截长法:在第三条线段上截下一段使其等于两条线段中的一条,再证明剩余部分与另一条相等. 补短法:把两条线段中的一条补到另一条线段上去,证明所得新线段与第三条线段相等. 1、已知AC ∥BD ,EA ,EB 分别平分∠CAB 和∠DBA ,点E 在CD 上.求证:AB =AC +BD2、在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =½(AB +AD ). 求证∶∠B +∠D =180°ABD3、如图,已知△ABC中,∠A=90°,AB=AC,D为AC的中点,AE⊥BD于E,延长AE交BC 于F.求证:∠ADB=∠CDF4、如图,∠C=90°,AC=BC,AD是∠BAC的角平分线.求证∶AC+CD=AB12、如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积.B八年级数学培优专题训练(七)辅助线作法之利用特殊条件构造全等三角形2、(2012·“华罗庚杯”)如图,在△ABC中,AC=½AB,AD求证:CD⊥ACB八年级数学培优专题训练(八)全等三角形在动态几何中的运用1、(竞赛·014·3)如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC.△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.⑴在图①中,请你通过观察、测量、猜想并写出AB与AP所满足的数量关系和位置关系;⑵将△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;⑶将△EFP沿直线l向左平移到图③的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为⑵中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.八年级数学培优专题训练(九)探究角平分线一、知识清单角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线). 由定义可知,三角形的角平分线是一条线段.角平分线性质:1、角平分线上的点,到这个角的两边的距离相等.2、角平分线分得的两个角相等,都等于该角的一半.3、三角形的三条角平分线交于一点,且到各边的距离相等,这个点称为内心. 二、方法点拨证明角平分线有两种方法:一是运用定义证明两个角相等;二是运用角平分线的判定方法. 三、规律清单①遇到角平分线,可从角平分线上的某一点向角的两边作垂线段(图1). ②遇到角平分线,常可利用翻折法或截长补短法解题(图2).③有两条角平分线(内角或外角)交于一点,则连接该点与三角形第三个顶点的线段会平分一个内角或外角(图3).④有垂直于角平分线的线段,则延长这条线段以利用三线合一解题(图4).⑤遇到角内的一点到角的两边有垂线段时,就连接这点与角的顶点,看能否平分已知角(图5). ⑥遇到有多条角平分线时,可尝试用整体的思想解题(图6).⑦有翻折条件时,除注意全等的结论,还应关注折线就是角平分线、是对称轴(如图7). ⑧角平分线、平行线、等腰三角形三个条件中出现任意两个,常可直接得到另一个(如图8).图3B图1B图2四、真题训练1、(2011·鄂州·竞赛·018 ·重庆中考)如图,△ABC 的外角∠ACD的平分线CP 与内角∠ABC 的平分线BP 相交于点P ,若∠BPC =40°,则∠CAP =-_____________.2、(竞赛·019)如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC. 求证:AM 平分∠DABBBB3、(竞赛·019)如图,在△ABC 中,∠BAC =90°,AB =AC,BE 平分∠ABC,CE ⊥BE.求证:CE =12 BD4、如图,在△ABC 中,AD 平分∠BAC ,BD =CD 求证:∠B =∠C5、如图,在Rt △ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,交BC 于D ,DE ⊥AB 于E ,若AB =10cm ,则△DBE 的周长是多少?6、(2011,恩施中考)AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为多少?B7、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:BE =CF8、在△ABC 中,AD 是∠BAC 的平分线,E 、F 分别为AB 、AC 上的点,且∠EDF +∠BAF =180°⑴求证:DE =DF⑵如果把最后一个条件改为AE >AF ,且∠AED +∠AFD =180°,那么结论还成立吗?9、如图,已知AB =AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 与CF 交于点D求证:点D 在∠BAC 的平分线上.10、如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AD ,下列结论正确的是( )A.AB -AD >CB -CDBB.AB-AD=CB-CDC.AB-AD<CB-CDD.AB-CD与CB-CD的大小关系不确定11、(竞赛014)如图,已知△ABC中,∠B=60°,∠BAC,∠BCA的平分线AD,CE相交于点O.求证:DC+AE=AC12、(竞赛·019)如图,已知△ABC,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC于G点。

试说明∠BPD与∠CPG的大小关系,并说明理由。

B八年级数学培优专题训练(十)应用线段垂直平分线的性质和判定解题一、知识清单定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

相关文档
最新文档