沪科版数学七年级第3章_一次方程与方程组单元卷二(含答案)

合集下载

2024-2025学年七年级数学上学期第三次月考卷(沪科版2024七上第1~3章)(考试版A4)

2024-2025学年七年级数学上学期第三次月考卷(沪科版2024七上第1~3章)(考试版A4)

2024-2025学年七年级数学上学期第三次月考卷(沪科版2024)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪科版2024七上(第1章有理数占30%,第2章整式及其加减占40%,第3章一次方程与方程组占30%)。

5.难度系数:0.56。

第一部分(选择题 共40分)一、选择题(本大题共10小题,每小题4分,满分40分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列计算结果为2的是( )A .(2)--B .(2)+-C .(2)-+D .|2|--2.2024年5月3务.6月2号早上嫦娥六号在月球背面的南极-艾特肯盆地成功落月,月球距离地球约384400千米,将384400用科学记数法表示为( )A .438.4410´B .53.84410´C .43.84410´D .50.384410´3.下列各组数中,相等的是( )A .34和43B .24-和2(4)-C .34-和3(4)-D .234和23()44.下列说法正确的是( )A .2x y +是单项式B .单项式232x y -的系数是32-C .33x y 的系数、次数都是3D .44x y -是4次单项式5.已知12x y =ìí=î是方程31x my -=的一个解,则m 的值为( )A .1m =B .1m =-C .2m =D .2m =-6.如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第10个图案中白色正方形比黑色正方形多( )个.A .43B .47C .53D .577.端午节快到了,商店准备推出粽子礼盒,若3个粽子装一盒则装完还多2个礼盒,若2个粽子装一盒还多6个粽子.设有x 个礼盒,y 个粽子,x ,y 所满足的关系式为( )A .3(2)26x y x y -=ìí+=îB .3(2)26x y x y -=ìí-=îC .3629x y x y -=ìí+=îD .3(2)26x y x y+=ìí-=î8.如图所示的运算程序中,若开始输入x 的值为3,则第2024次输出的结果是( )A .1-B .2-C .3-D .6-9.已知二元一次方程组1*x y +=ìíî的解是1x y a =-ìí=î,则*表示的方程可能是( )A .3x y -=-B .4x y +=C .23x y -=-D .234x y +=-10.如图,长为x ,宽为y 的长方形被分割为7块,包括5块形状、大小完全相同的空白长方形和2块阴影长方形Ⅰ,Ⅱ.若每块空白长方形较短的边长为4,则阴影长方形Ⅰ,Ⅱ的周长之和为( )A .24x +B .48x +C .24y +D .48y +第二部分(非选择题 共110分)二、填空题(本大题共4小题,每小题5分,满分20分)11.若3m +与5-互为相反数,则m 的值为 .12.已知x ,y 满足方程组2425x y x y +=ìí+=î,则x y +的值为 .13.如果230a b -+=,那么2(2)4a b b +-的值为 .14.如果一个四位自然数abcd 的各数位上的数字均不为0,满足2ab bc c cd +=+,那么称这个四位数为“天天向上数”.例如:四位数2129,21122229+=´+Q ,2129\是“天天向上数”:又如3465,34462665+¹´+Q ,3465\不是“天天向上数”.若一个“天天向上数”为358a ,则此时a = ;若一个“天天向上数”的前三个数字组成的三位数abc 与后三位数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值与最小值的差为 .三、解答题(本大题共9小题,满分90分.解答应写出文字说明,证明过程或演算步骤)15.(8分)计算:2210.5|24|94-+---+.16.(8分)先化简,再求值:2222214[4(6)]3y x y y yx xy y xy --+-+--,其中12x =-,1y =-.17.(8分)解方程:2331136x x ---=.18.(8分)我国古典数学文献《增删算法统宗×六均输》中有一个“隔沟计算”的问题:“甲乙隔沟牧放,二人暗里参详.甲云得乙九只羊,多乙一倍之上.乙说得甲九只,两家之数相当.”翻译成现代文,其大意如下:甲乙两人隔一条沟放牧,二人心里暗中合计.甲对乙说:“我得到你的九只羊,我的羊就比你多一倍.”乙对甲说:“我得到你的九只羊,咱俩家的羊就一样多.”求甲、乙各有多少只羊?19.(10分)出租车司机小李某天下午的劳动全是在东西走向的裕华路上进行的,他从艺术中心出发如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:10+,15-,2-,5+,1-,3-,2-,12+,4+,5-,6+(1)小李这天下午离开艺术中心的最远距离是 千米,此时他相对于艺术中心的位置是 ;(2)小李下午将最后一名乘客送抵目的地时,他是否回到了艺术中心?请说明理由;(3)若汽车耗油量为0.41升/千米,这天下午小李共耗油多少升?20.(10分)已知代数式2232A x xy y =++,2B x xy x =-+.(1)求2A B -;(2)若2A B -的值与x 的取值无关,求y 的值.21.(12分)你能很快地算出275和295吗?对于一个个位数为5的自然数,我们可以表示为105n +,其中n 为自然数.下面对2(105)n +的值进行探究,请完成下列问题.(1)观察前三个式子,并将第四个式子补充完整:2215100(12)5225=´´+=;2225100(23)5625=´´+=;2235100(34)51225=´´+=;245= .(2)猜想:从(1)的结果归纳,2(105)n += .(3)计算:275和295.22.(12分)综合与实践:如图1是一架自制天平,支点O 固定不变,右侧托盘固定在点B 处,左侧托盘的点P 可以在横梁AC 段滑动.已知15OB OC cm ==,50AO cm =,m ,n 分别表示1个M 物体和1个N 物体的质量,已知平衡时,左盘物体质量OP ´=右盘物体质量OB ´.(不计托盘与横梁质量)(1)若左侧托盘固定在点C 处,如图2所示天平平衡,5m g =,则n = g ;(2)若右侧托盘放置1个100g 的砝码,左侧托盘放9个M 物体和30个N 物体,滑动点P 到5PC cm =时,天平平衡,已知m ,n 为整数,求m n +的值;(3)测量小球的质量:如图1右侧托盘放置2个100g 砝码,左侧托盘放入一个小球和若干个物体N ,滑动点P 至点A 天平恰好平衡,若再次向左侧托盘中加入相同数量的物体N ,发现点P 移动到PC OC =时,天平平衡.求这个小球的质量.23.(14分)平移和翻折是初中数学两种重要的图形变换.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动4个单位长度,再向正方向移动1个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是 .+++=+A.(4)(1)5++-=+B.(4)(1)3--+=-C.(4)(1)5-++=-D.(4)(1)3②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,¼,依此规律跳,当它跳2022次时,落在数轴上的点表示的数是 .(2)翻折变换①若折叠纸条,表示1-的点与表示3的点重合,则表示2022的点与表示 的点重合;②若数轴上A、B两点之间的距离为2022(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示 ,B点表示 .-、8,现以点C为折点,将数轴向右③一条数轴上有点A、B、C,其中点A、B表示的数分别是19对折,若点A对应的点A¢落在点B的右边,并且2A B¢=,求点C表示的数.。

2024年沪科版七年级数学上册 3.6 三元一次方程组及其解法(课件)

2024年沪科版七年级数学上册 3.6 三元一次方程组及其解法(课件)

3x + 2y + z = 39, 2x + 3y + z = 34, x + 2y + 3z = 26.

由三个一次方程组成,且含三个未知数的方程组, 叫作三元一次方程组.
新知探究 知识点 三元一次方程组
下列方程组是三元一次方程组的是( B )
x + 2y = 1,
A. y + 2z = 2,
z+
下面解由④⑤联立成的二元一次方程组.
④ - ⑤,得
11z = 11. z = 1. ⑥
将⑥代入④,得
y = -2.
将 y,z 的值代入①,得 x = 3. 所以
x = 3, y = -2, z = 1.
新知探究 知识点 三元一次方程组
练一练
解:①×2 + ②,得 5x + 8y = 7. ④
解下列三元一次方程组: ③×8 + ④,得 21x = 63,
2 x
= 3.
x2 - 4 = 0, C. y + 1 = x,
x – z = -3.
a + b + c = 1, B. a - b = 4,
4a – 2b + c = 7.
-x + y + 3z = -1,
D. x – y + z = 3,
2x + m - z = 0.
新知探究 知识点 三元一次方程组
新知探究 知识点 三元一次方程组
解:① + ②,得 3x + 2z = 4. ④
解下列三元一次方程组: ①×4 + ③,得 5x-6z = 2.⑤
(2)
x + y - z = 2, ① 2x - y + 3z = 2, ② x–4y - 2z = -6. ③

3.2+第3课时+去分母解一元一次方程++课件+++2024-2025学年沪科版七年级数学上册

3.2+第3课时+去分母解一元一次方程++课件+++2024-2025学年沪科版七年级数学上册

系数化为 1,得 x = 12.
(2)3x x 1 3 2x 1
2
3
解:去分母(方程两边乘 6),得
18x + 3(x-1) =18-2 (2x -1)
去括号,得 18x + 3x-3 = 18-4x + 2
移项,得 18x + 3x + 4x = 18 + 2 + 3
合并同类项,得 25x = 23 系数化为 1,得 x 23
2. 去分母的依据是 等式性质 2 ,去分母时不能 漏乘 没有分母的项 ;
3. 去分母与去括号这两步分开写,尽量不要 跳步,防止忘记变号.
练一练
1.解下列方程:(1)
x
6
1
2
x 3
1
1;
解:去分母 (方程两边乘 6),得 (x-1)-2(2x + 1) = 6.
去括号,得 x-1-4x-2 = 6. 移项,得 x-4x = 6 + 2 + 1. 合并同类项,得 -3x = 9. 系数化为 1,得 x =-3.
25
3.
3. 解下列方程:
(1) x 3 3x 4; 5 15
(2) 5 y 4 y 1 2 5 y 5 .
3
4
12
答案: (1) x 5 . (2) y 4 .
6
7
4. 小马在解关于 x 的方程 2x 1 x a 1 去分母时,方
32
程右边 -1 忘记乘 6,因而求得的解为 x = 2,试求 a 的 值,并正确解方程. 解:按小马去分母的方法,得 2(2x:通过探究去分母解一元一次方程,归纳解一元
一次方程的步骤.
1. 等式的性质 2:等式两边都乘同一个 数 ,或除以 同一个不为 0 的数, 等式 两边仍然相等.

第3章 一次方程与方程组数学七年级上册-单元测试卷-沪科版(含答案)

第3章 一次方程与方程组数学七年级上册-单元测试卷-沪科版(含答案)

第3章一次方程与方程组数学七年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、下列变形属于移项的是()A.由- x=2,得x=-6B.由5x+6=3,得5-x+6=3-6C. 由9=-6x-1,得6x=-1-9D.由=-3x得-3x=2、如果方程组的解与方程组的解相同,则a、b的值是()A. B. C. D.3、已知关于x的方程,若a为正整数时,方程的解也为正整数,则a 的最大值是( )A.12B.13C.14D.154、方程中有一个数字被墨水盖住了,查后面的答案,知道这个方程的解是那么墨水盖住的数字是()A. B.1 C. D.05、桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4B.5.7C.7.2D.7.56、若x2a-3b+2y5a+b-10=11是二元一次方程,那么的a、b值分别是()A.1,0B.0,-1C.2,1D.2-37、已知3是关于x的方程2x-a=1的解,则a的值是()A.-5B.5C.7D.28、下列命题:①圆周角等于圆心角的一半;②是方程的解;③平行四边形既是中心对称图形又是轴对称图形;④的算术平方根是4。

其中真命题的个数有()A.1B.2C.3D.49、二元一次方程x+2y=9的正整数解有( )A.1个B.2个C.3个D.4个10、适合下列二元一次方程组中的()A. B. C. D.11、如单项式2x3n-5与-3x2(n-1)是同类项,则n为()A.1B.2C.3D.412、下列各方程组中,属于二元一次方程组的是()A. B. C. D.13、二元一次方程组的解是()A. B. C. D.14、如果是方程2x+y=0的一个解(m≠0),那么()A.m≠0,n=0B.m,n 异号C.m,n 同号D.m,n可能同号,也可能异号15、若x=2是关于x的一元一次方程ax-2=b的解,则3b-6a+2的值是().A.-8B.-4C.8D.4二、填空题(共10题,共计30分)16、已知方程2x﹣3=3和方程有相同的解,则m的值为________.17、写出一个一元一次方程,使得它的解为2,你写出的方程是________。

沪科版数学七年级上第三单元测试卷原创

沪科版数学七年级上第三单元测试卷原创

沪科版数学七年级(上)第三章单元测试卷一、选择题(每题3分,共30分)1、若关于x 的方程2x -4=3m 与x+2=m 有相同的根,则m 的值是( )A. 10 B.-8 C.-10 D. 82、代数式 2k-13 与代数式 14k +3 的值相等时,k 的值为( )A. 7 B. 8 C. 9 D. 103、满足方程组⎩⎨⎧=++=+ay x a y x 32253解的x 与y 之与为2,则a 的值为( )A 、一4 B 、4 C 、0 D 、任意数4、某商店有两个进价不同的计数器都卖了64元,其中一个盈利60℅,另一个亏本20℅,在这次买卖中,这家商店( ) A.不赔不赚 B. 赚了8元 C. 赔了8元 D. 赚了32元5、如图1,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一 个小长方形的面积为( )A 、400 cm 2B 、500 cm 2C 、600 cm 2D 、4000 cm 26、.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场 B.4场 C.5场 D.6场 7.方程325x y+=与下面那个方程所组成的方程组的解是22x y =⎧⎨=-⎩ ( ) A.25x y -= B.434x y += C.1y x += D.432x y -=8、小明在解关于x 的方程5a +x=10时,误将“+x ”看作“-x ”,得方程的解为x=3,则原方程的解为( )A 、x=-4 B 、x=-3 C 、x=-2 D 、x=-19、有m 辆客车及n 名乘客,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘45人,则有一辆客车缺少15人,下列四个等式,其中正确的是( ) ①、40m+10=45m-15 ②45154010-=+n n ③40m-10=45m+15 ④45154010+=-n n A 、①② B 、②③ C 、③④ D 、①④10、古代有这样一个寓言故事:驴子与骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A 、5 B 、6 C 、7 D 、8二、 填空题(每题5分,共30分).11、已知关于x 的方程3x + a = 0的解比方程2x – 3 = x + 5的解大2,则a = . 12.若23,x y a x y a +=⎧⎨-=⎩则x y= 。

七年级数学上第3章一次方程与方程组3.2一元一次方程的应用第2课时行程问题习题新版沪科版8

七年级数学上第3章一次方程与方程组3.2一元一次方程的应用第2课时行程问题习题新版沪科版8

素养核心练 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月21日星期一2022/3/212022/3/212022/3/21
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/212022/3/212022/3/213/21/2022 3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/212022/3/21March 21, 2022
起飞,7天后到达北海;大雁从北海起飞,9天后到达
南海,今野鸭和大雁分别从南海和北海同时起飞,几
天后相遇?设x天后相遇,可列方程为( B )
A.(7+9)x=1
B.17+19x=1
C.19-17x=1
D.17-19x=1
9.[2021·阜阳颍州区期末]中国古代数学著作《算法统宗》 中有这样一题:“三百七十八里关,初日健步不为难, 次日脚痛减一半,六朝才得到其关.”其大意是:有 人要去某关口,路程为378里,第一天健步行走,从 第二天起,由于脚痛,每天走的路程都为前一天的一 半,一共走了六天才到达目的地.请你求出此人第六 天走的路程.
解:2.5分钟=150秒,设列车的长度是x米. 根据题意,得7 310500+x=x4,解得 x=200. 列车的行驶速度为200÷4=50(米/秒).
答:列车的长度是200米,行驶速度是50米/秒.
8.我国古代名著《九章算术》中有一个问题,原文:
“今有凫起南海,七日至北海;雁起北海,九日至南
海.今凫雁俱起,问何日相逢?”译文:野鸭从南海
(2)A ,B两地相距多少千米?

完整版沪科版七年级上册数学第3章 一次方程与方程组含答案

完整版沪科版七年级上册数学第3章 一次方程与方程组含答案

沪科版七年级上册数学第3章一次方程与方程组含答案一、单选题(共15题,共计45分)1、一个正整数N的各位数字不全相等,且都不为0,现要将N的各位数字重新排列,可得到一个最大数和一个最小数,此最大数与最小数的和记为N的“和数”;此最大数与最小数的差记为N的“差数”。

例如,245的“和数”为542+245=787;245的“差数”为542-245=297。

一个四位数M,其中千位数字和百位数字均为a,十位数字为1,个位数字为b(且a≥1,b≥1),若它的“和数”是6666,则M的“差数”的值为( )A.3456或3996B.4356或3996C.3456或3699D.4356或36992、下列方程中,是一元一次方程的是()A.x 2﹣4x=3B.3x-1=C.x+2y=1D.xy﹣3=53、以下方程中,是二元一次方程的是()A.8x-y=yB.xy=3C.3x+2yD.y=4、判断下列四组x,y的值,是二元一次方程2x﹣y=﹣4的解的是()A. B. C. D.5、已知实数x,y满足+x2+4y2=4xy,则(y﹣x)2015的值为()A.0B.-1C.1D.20156、已知是二元一次方程组的解,则a-b的值为()A.-1B.1C.2D.37、下列说法正确的是().A.如果,那么B.如果,那么C.如果,那么D.如果,那么8、若a=3x-5,b=x-7,a+b=20,则x的值为()A.22B.12C.32D.89、当1-(3m-5)2取得最大值时,关于x的方程5m-4=3x+2的解是()A. B. C.- D.-10、下列变形中,错误的是()A.由,得B.由,得C.由,得 D.由,得11、解以下两个方程组,较为简便方法的是 ( )①A.①②均用代入法B.①②均用加减法C.用代入法②用加减法 D.①用加减法②用代入法12、如果5x3m-2n-2y n-m+11=0是二元一次方程,则()A.m=1,n=2B.m=2,n=1C.m=-1,n=2D.m=3,n=413、“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形。

2024七年级数学上册第3章一次方程与方程组练素养1.二元一次方程组)的解的常见应用课件新版沪科版

2024七年级数学上册第3章一次方程与方程组练素养1.二元一次方程组)的解的常见应用课件新版沪科版
= .
即 a , b 的值分别为-4,1.
1
2
3
4
5
6
7
8
9
10
应用5
已知二元一次方程组的错解,求字母的值
+ = ,
7. 在解方程组ቊ
时,由于粗心,甲看错了方程
− =

= ,

组中的 a ,得解为ቐ
= − ;
乙看错了方程组中的 b ,得
= ,
解为ቊ
= − .

可化为ቊ
+ = ,
(+)+( − ) =
− = ,
= ,
因为ቊ
的解是ቊ
所以
= ,
+ =
+ = ,①

− = ,②
1

①+②,得2 a =3,所以 a = .

2
3
4
5
6
7
8
9
10




把 a = 代入①,得 b =- .
已知二元一次方程组的解之间的关系,求字母的值
4. [2024·重庆一中月考]已知关于 x , y 的二元一次方程组
− = ,

的解满足 x - y =10,则 a 的值
− = −
11

.

1
2
3
4
5
6
7
8
9
10
【点拨】
− = ,①

− = − ,②
1
2
3
4
5
6
7

9
10
应用2
的值
已知二元一次方程组与二元一次方程共解,求字母

七年级数学上册第3章 一次方程与方程组 单元测试卷(沪科版 2024年秋)

七年级数学上册第3章 一次方程与方程组 单元测试卷(沪科版 2024年秋)

七年级数学上册第3章一次方程与方程组单元测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列方程中,是一元一次方程的是()A .3x -6=0B .2x -y =zC .x -2y =1D .x 2+y =12.已知x =y ,下列等式变形不一定成立的是()A .1-x =1-y B.x b =y b C .πx =πyD.x m 2+1=y m 2+13.方程3x -12-2x +13=1去分母正确的是()A .2(3x -1)-3(2x +1)=6B .3(3x -1)-2(2x +1)=1C .9x -3-4x +2=6D .3(3x -1)-2(2x +1)=64.已知有理数x ,y x -y =3,y -x =-4,则2x +y 的值为()A .-1B .0C .1D .25.由x -y2=1可以得到用x 表示y 的式子为()A .y =2x -1B .y =2x -2C .y =12x +1D .y =2x +26.小哲与他的爸爸一起做“投篮球”游戏,两人商定游戏规则为:小哲投中1个得2分,小哲爸爸投中1个得1分,两人共投中了25个.经计算,发现小哲比爸爸多得2分,则小哲投中了()A .7个B .8个C .9个D .10个7.《九章算术》是中国古代的一本重要的数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x 两,燕每只y 两,则可列出方程组为()x +6y =16,x +y =6y +x x +6y =16,x +y =5y +xx +5y =16,x +y =5y +xx +5y =16,x +y =4y +x8.【2024·x -y =7a -5,y -x =5的解x ,y 互为相反数,则a 的值为()A .0B .1C .-1D .29.【2024·合肥蜀山区校级期中】某公司出售A ,B 两种商品,A 商品降价20%,B 商品提价25%,都售得a 万元,在这两笔交易中,该公司总盈亏情况是()A .亏损B .盈利C .不盈不亏D .无法确定盈亏10.已知关于x 的一元一次方程2022x +a2023+2023=x +b 的解是x =2023,则关于y 的一元一次方程y -2024=2022y +a -20222023-b的解为y =()A .2022B .2023C .2024D .2025二、填空题(本大题共4小题,每小题5分,满分20分)11.若方程(m+1)x+3y|m|=5是关于x,y的二元一次方程,则m的值为________.12.【2024·哈尔滨南岗区校级期中】一艘船从甲码头到乙码头顺流而行,用了2h,从乙码头返回甲码头逆流而行,用了2.5h.已知水流速度是3km/h,则船在静水中的平均速度是________km/h.13.按下面的程序计算:若输入的x为正整数,输出结果是133,则满足条件的x的值是________.14.如图是2024年7月的日历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,“H”型框中的7个数的和可能是________.(填写序号)①63;②70;③92;④105.三、(本大题共2小题,每小题8分,满分16分) 15.【2024·合肥蜀山区校级期中】解方程组:-y +23=-1,+2y =14;+y +z =10,x +3y +z =17,x +2y -z =8.16.【2024·六安金安区校级期中】已知关于x 的方程3x -(2a -1)=5x-a +1与x +122+x -43=8的解相同,求a 的值.四、(本大题共2小题,每小题8分,满分16分)17.清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧.意思是:山林中有一座古寺,不知道寺内有多少僧人.已知一共有364只碗,刚好能够用完.每三个僧人一起吃一碗饭,每四个僧人一起吃一碗羹.请问寺内一共有多少僧人?请解答上述问题.18.【2024·包河大地中学月考】若关于x,y的二元一次方程组x-y=5,+by=-1x+y=9,ax-4by=18有公共的解.(1)求x,y的值;(2)求a2+b2-2ab的值.五、(本大题共2小题,每小题10分,满分20分)19.某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有中、小型汽车共30辆,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为,即=10m+n.(1)若=-1,求x的值;(2)若=45,求的值.六、(本题满分12分)21.A,B两地相距480千米.一辆快车从A地出发,每小时行驶80千米,一辆慢车从B地出发,每小时行驶60千米.(1)两车同时出发,相向而行,经过多长时间两车相遇;(2)两车同时出发,相背而行,经过多长时间两车相距620千米.(3)若快车从A地比慢车早出发5小时去追赶慢车,两车同向而行,慢车出发多长时间后能被快车追上?七、(本题满分12分)22.为提高课后延时服务质量,某校根据实际决定开设更多运动项目,让更多学生参加体育锻炼,各班自主选择购买两种体育器材.(1)七(1)班有部分同学准备统一购买新的足球和跳绳.经班长统计,需要购买足球的有15名同学,需要购买跳绳的有12名同学.请你根据图中班长和售货员阿姨的对话信息,分别求出足球和跳绳的单价;(2)由于足球和跳绳的需求量增大,该体育用品商店老板计划再次购进a个足球和b根跳绳(其中a>22,b>0),恰好用了2400元,其中每个足球的进价为80元,每根跳绳的进价为15元,则最多可以购进多少根跳绳?八、(本题满分14分)23.已知(a+2)x2+3x-18=0是关于x的一元一次方程,且方程的解是x=b,若数轴上A,B两点所对应的数分别是a和b.(1)a=________,b=________,A,B两点之间的距离为________.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在此位置第二次运动,向右运动2个单位长度,又在此位置第三次运动,向左运动3个单位长度,…按照此规律不断地左右运动,当运动到2024次时,求点P所对应的有理数.(3)在(2)的条件下,是否存在一点P,使它到点B的距离是到点A的距离的3倍?若存在,请直接写出点P的位置所对应的数;若不存在,请说明理由.答案一、1.A 2.B 3.D4.A 5.B 6.C 7.B8.A【点方法】在求解二元一次方程组问题中,观察未知数前的系数,能否直接将两方程相加或相减得到所求的代数式.9.A10.C 【点拨】因为关于x 的一元一次方程2022x +a 2023+2023=x +b 的解是x =2023,即x -2023=2022x +a 2023-b 的解是x =2023.所以b =2022+a 2023.所以y -2024=2022y +a -20222023-022所以y -2=2022y -20222023,即2023y -4046=2022y -2022,解得y =2024.二、11.1【点易错】容易忽视未知数x 前面的系数m +1≠0,即m ≠-1.12.27【点拨】设船在静水中的平均速度是x km/h ,根据题意,得2(x +3)=2.5(x -3),解得x =27.所以船在静水中的平均速度是27km/h.13.46或17【点拨】由题意得,若只经过一次计算,则3x -5=133,解得x =46;若经过两次计算,则令3x -5=46,得x =17;若经过三次计算,则令3x -5=17,得x =223(不合题意,舍去).综上,满足条件的x 的值是46或17.14.①②④【点拨】设中间的数为x ,则另外的6个数分别是x -8,x -6,x -1,x +1,x +6,x +8,则7个数的和是x -8+x -6+x -1+x +x +1+x +6+x +8=7x .当和是63时,7x =63,解得x =9.由题图可知,这7个数为1,3,8,9,10,15,17.当和是70时,7x =70,解得x =10.由题图可知,这7个数为2,4,9,10,11,16,18.当和是92时,7x =92,解得x =927(不符合题意,舍去).当和是105时,7x =105,解得x =15.由题图可知,这7个数为7,9,14,15,16,21,23.故7个数的和可能是63,70,105.三、15.【解】(1)x -2y =-2,①x +2y =14.②①+②,得6x =12,解得x =2.把x =2代入②,得6+2y =14,解得y =4.=2,=4.+y+z=10,①x+3y+z=17,②x+2y-z=8.③②-①,得x+2y=7,④②+③,得5x+5y=25,即x+y=5,⑤④-⑤,得y=2.把y=2代入⑤,得x=3.把x=3,y=2代入①,得z=5.=3,=2,=5.16.【解】解第一个方程,得x=-a2,解第二个方程,得x=4.所以-a2=4,解得a=-8.四、17.【解】设寺内有x个僧人,由题意得x3+x4=364,解得x=624.答:寺内一共有624个僧人.18.【解】(1)因为关于x,y的二元一次方程组x-y=5,+by=-1与x+y=9,ax-4by=18有公共的解,x-y=5,x+y=9=2,=3.(2)=2,=3,a -12b =18,a +3b =-1,=1,=-1.所以a 2+b 2-2ab =1+1-2×1×(-1)=4.五、19.【解】设中型汽车有x 辆,小型汽车有y 辆,+y =30,x +8y =324,=12,=18.答:中型汽车有12辆,小型汽车有18辆.20.【解】(1)因为=10m +n ,=-1,所以(10×2+x )-(10x +3)=-1.所以x =2.(2)因为=10m +n ,=45,所以10x +2+10y +3=45.所以10x +10y =40.所以x +y =4.所以x =1,y =3或x =2,y =2或x =3,y =1.所以=13或22或31.六、21.【解】(1)设经过x 小时后两车相遇,由题意得60x +80x =480,解得x =247.答:经过247小时后两车相遇.(2)设经过y 小时后两车相距620千米,由题意可得60y +80y +480=620,解得y =1.答:经过1小时后两车相距620千米.(3)设慢车出发t 小时后被快车追上,由题意得80t +80×5=60t +480,解得t =4.答:慢车出发4小时后被快车追上.七、22.【解】(1)设足球的单价为x 元,跳绳的单价为y 元,由题意x +12y =1740,x +15y =1500,=100,=20.答:足球的单价为100元,跳绳的单价为20元.(2)由题意得80a +15b =2400,整理得b =160-163a,所以a 越小,b 越大.因为a ,b 均为正整数,a >22,所以当a =24时,b 取最大值,最大值为160-163×24=32,所以最多可以购进32根跳绳.八、23.【解】(1)-2;6;8【点拨】因为(a +2)x 2+3x -18=0是关于x 的一元一次方程,所以a +2=0,3x -18=0,解得a =-2,x =6.因为方程的解是x =b ,所以b =6.所以A ,B 两点之间的距离=6-(-2)=8.(2)由题意可得-2-1+2-3+4-5+6-7+…+2022-2023+2024=-2+(-1+2)+(-3+4)+(-5+6)+…+(-2021+2022)+(-2023+2024)=-2+1012=1010,所以点P 所对应的有理数为1010.(3)设点P 的位置所对应的数为x ,则AP =|x +2|,BP =|x -6|.当3AP =PB 时,3|x +2|=|x -6|,解得x =0或-6.所以点P的位置所对应的数为-6或0.。

2024年沪科版七年级数学上册 3.2 第2课时 利用去括号解一元一次方程(课件)

2024年沪科版七年级数学上册 3.2 第2课时 利用去括号解一元一次方程(课件)

化简,得
5x = -1. 应改为 3x = -4
方程两边同除以 5 ,得 应改为 3
x
=
-1 .
5
应改为
x
=
-
4 3
典例精析
例1 解方程:-2(x-1)=4. 解:去括号,得 -2x+2=4.
你能想出不 同的解法吗?
移项,得 -2x=4-2.
化简,得 -2x=2.
方程两边同除以-2,得 x=-1.
2.解方程: (1) 7x-3=3x-(x-2); 解:(1)去括号,得
7x-3=3x-x+2. 移项,得 7x-3x+x=2+3. 合并同类项,得 5x=5.
移项及合并同类项,得 0.5x=13.5.
系数化为 1,得
x=27.
答:船在静水中的平均速度为 27 km/h.
练一练 3. 为鼓励居民节约用电,某地对居民用户用电收费标准 作如下规定:每户每月用电如果不超过 100 度,那么每 度按 0.50 元收费;如果超过 100 度不超过 200 度,那么 超过部分每度按 0.65 元收费;如果超过 200 度,那么超 过部分每度按 0.75 元收费.若某户居民在 9 月份缴纳电 费 310 元,则他这个月用电多少度?
答:他这个月用电 460 度.
方法总结:对于此类阶梯收费的题目,需要弄清楚各阶 段的收费标准,以及各节点的费用,然后根据缴纳费用 的金额,判断其处于哪个阶段,再列方程求解即可.
解一元一次方程
_去__括__号___ 移项
合并同类型 系数化为1
括号前为“-”, 去括号后_符__号__改__变__;
括号前为“+”, 去括号后_符__号__不__变__
提示:若一个月用电 200 度,则这个月应缴纳电费 为 0.50×100 + 0.65×(200 - 100) = 115 元. 故当缴纳 电费为 310 元时,该用户 9 月份用电量超过 200 度.

沪科版七年级数学上册 第3章 一次方程与方程组 3.1 一元一次方程及其解法 同步测试题

沪科版七年级数学上册 第3章 一次方程与方程组 3.1 一元一次方程及其解法 同步测试题

沪科版七年级上册 第3章 一次方程与方程组 3.1 一元一次方程及其解法 同步测试题1.下列方程中是一元一次方程的是( )A .2x +3y =5B .x =1xC .x 2-1=0D .0.2x =12.解为x =1的一元一次方程是( )A .x +1=0B .2x -2=0C .x 2=1D .x +3=03.若关于x 的方程(a -3)x +2=6是一元一次方程,则a 应满足_________.4.把方程12x =1变形为x =2,其依据是( ) A .等式的性质1 B .等式性质2C .分数的基本性质D .以上都不对5.下列等式变形错误的是( )A .由m =n 得m +2=n +2B .由m =n 得m -2=n -2C .由m -3=n -3得m =nD .由-3x =-3y 得x =-y6.等式-3x =15,将等式两边同除以_______,得x =-5,根据是_______________.7.等式-3x +3=2-2x ,将等式两边同减2和加__________得__________,根据是_____________________.8.若x =2a +1,2a +1=y ,则x 与y 的大小关系是________,其根据是_______________.9.用适当的数或式子填空,使所得的结果仍是等式.(1)若m +6=8,则m =8-____;(2)若3x =2x +3,则3x -______=3;(3)若-14y =2,则y =_______. 10.利用等式的性质解下列方程,并检验:(1)2.3x -2=2.6;(2)14=6-4x .11.已知方程(m -1)x |m |-2=3是关于x 的一元一次方程,则m 的值是( )A .1B .-1C .±1D .0或-112.下列结论中错误的是( )A .若a =b ,则ac -3=bc -3B .若a =b ,则a c 2+1=b c 2+1 C .若x =3,则x 2=3xD .若ax =bx ,则a =b13.已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( )A .2B .3C .4D .514.若(|m |-1)x 2-(m -1)x +7=0是一元一次方程,则m 的值是________.15.将等式3a -2b =2a -2b 变形,过程如下:因为3a -2b =2a -2b ,所以3a =2a (第一步),所以3=2(第二步),上述过程中,第一步的根据是_________________,第二步得出了明显错误的结论,其原因是_______________________________.16.在等式5×□+6-2×□=15的两个“□”内填入一个相同的数,使这个等式成立,则这个数是____.17.说出下列各等式变形的根据:(1)由4x -3=0,得x =34;(2)由43-y 2=0,得4=32y ;(3)由12m -2=m ,得m =-4.18利用等式的性质解方程,并检验:(1)-2x +4=2; (2)5x +2=2x +5.19已知关于x 的方程3a -x =x 2+3的解为x =2,求代数式a 2-2a +1的值.20.苏州某旅行社组织甲、乙两旅游团分别到西安、北京旅游,已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,问甲、乙两旅游团各有多少人?答案1. D2. B3. a ≠34. B5. D6. -3 等式基本性质27. 3x x=1 等式基本性质18. x=y 等量代换9. (1) 6 (2) 2x10. (1) -8 (2) 解:x=2 (3) 解:x=-211. B12. D13. D14. -115. 等式基本性质1等式两边不能同除以一个为0的数16. 317. (1) 解:先根据等式的基本性质1,再根据等式的基本性质2(2) 解:先根据等式的性质1,再根据等式的基本性质2(2) 解:先根据等式的基本性质1,再根据等式的基本性质218. (1) 解:x=1(检验略) (2) 解:x=1(检验略)19. 解:a=2,a2-2a+1=120. 解:设乙团有x人,则甲团有2x-5,则有x+2x-5=55,∴x=20,2x-5=35(人),即甲团有35人,乙团有20人初中数学试卷。

HK沪科版 七年级数学 上册 同步课堂练习题作业 第三章 一次方程与方程组(全章 分课时)

HK沪科版 七年级数学 上册 同步课堂练习题作业 第三章 一次方程与方程组(全章 分课时)

第3章 一次方程与方程组3.1 一元一次方程及其解法第1课时 一元一次方程和等式的基本性质一、选择题:1、下列结论正确的是( )A .若x+3=y-7,则x+7=y-11;B .若7y-6=5-2y,则7y+6=17-2y;C .若0.25x=-4,则x=-1;D .若7x=-7x,则7=-7.2、下列说法错误的是( ).A .若ay a x =,则x=y; B .若x 2=y 2,则-4x 2=-4y 2; C .若-41x=6,则x=-23; D .若6=-x,则x=-6. 3、知等式ax=ay,下列变形不正确的是( ). A .x=yB .ax+1= ay+1C .ay=axD .3-ax=3-ay4、列说法正确的是( )A .等式两边都加上一个数或一个整式,所得结果仍是等式;B .等式两边都乘以一个数,所得结果仍是等式;C .等式两边都除以同一个数,所以结果仍是等式;D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式;5、等式2-31-x =1变形,应得( ) A .6-x+1=3B .6-x-1=3C .2-x+1=3D .2-x-1=3 6、在梯形面积公式S=21(a+b )h 中,如果a=5cm,b=3cm,S=16cm 2,那么h=( ) A .2cm B .5cmC .4cmD .1cm 7、若关于x 的方程3(x-1)+a=b(x+1)是一元一次方程,则( ).A .a,b 为任意有理数B .a ≠0C .b ≠0D .b ≠38、方程12-x =4x+5的解是( ).A .x=-3或x=-32 B .x=3或x=32 C .x=-32 D .x=-39、下列方程①313262-=+x x ②4532x x =+ ③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个. A.1 B.2C.3D.4 10.若ax +b=0为一元一次方程,则__________.11.当=m 时,关于字母x 的方程0112=--m x是一元一次方程. 12. 6.已知08)1()1(22=++--x m x m 是关于x 的一元一次方程,则m= .13.用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的.(1)如果________;-8x 3,853==+那么x(2)如果-1_x _________3,123=--=那么x x ;(3)如果;__________x ,521==那么x (4)如果________.3x ,32==那么y x 14.解下列简易方程1.5223-=+x x 2.4.7-3x=113.x x +-=-32.0 4.)3(4)12(3-=+x x第2课时 利用移项解一元一次方程一、填空题1.如果,那么 .2.若代数式3(x-1)与(x-2)是互为相反数,则x=____________.3.已知方程①3x -1=2x +1 ②x x =-123 ③23231-=+xx ④413743127+-=++x x 中,解为x=2的是方程 . 4.若342=x 与x a a x 5)(3-=+有相同的解,那么_____. 5.已知2(a-b)=7,则5b-5a=__________.二、选择题6.下列各题的“移项”正确的是( )A. 由2x=3y-1得-1=3y+2xB. 由6x+4=3-x 得6x+x=3+4C. 由8-x+4x=7得-x+4x=-7-8D. 由x+9=3x-7得x-3x=-7-9.7.要是方程ax=b 的解为x=1,必须满足( )A. a=bB. a ≠0C.b ≠0 D a=b ≠0.三、解答题8.哥哥有存款300元,弟弟有存款120元,若从下月起哥哥每月存款100元,弟弟每月存款120元,那么几个月后两人的存款数相等?9.为了改善某边防中队的生活质量,我解放军后勤机关调拨一批水果,若每名军人3个水 果,则剩余20个水果;若每名军人4个水果,则还少25个水果,问有多少名军人? 多少 个水果?10.解方程:(1)2x+5=25-8x; (2)8x-2=7x-2; (3)2x+3=11-6x;(4)3x-4+2x=4x-3; (5)10y+7=12y-5-3y;(6)12x-1.5=3.5-13x; (7)20x·20%-3=50×30%+40x.3.1 一元一次方程及其解法第3课时 去括号解一元一次方程(一)选择题1.方程4(2-x )-4(x+1)=60的解是( )(A)7. (B) 76. (C) -76. (D)-7.` 2.下列方程的解法中,去括号正确的是( )(A) ,则. (B),则. (C),则. (D),则. (二)填空题3.当a=______时,方程的解等于.(三)解方程11. (x+1)-2(x-1)=1-3x12.2(x-2)-6(x-1)=3(1-x)第4课时 去分母解一元一次方程A 组(1)2x =3x-1 1512 (2)=-+x x(3)310.40.342x x -=+ (4)112[(1)](1)223x x x --=-((5)35.012.02=+--x x (6)43(1)323322x x ⎡⎤---=⎢⎥⎣⎦B 组(1)1111248x x x x -=++ (2) 12542.13-=-x x(3) x x -=+38 (4) 2x -13 =x+22 +1(5)3142125x x -+=- (6)31257243y y +-=-(7) 124362x x x -+--= (8) 301.032.01=+-+x xx x 23231423 =⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛- x x 3221221413223=-⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+3.2一元一次方程的应用第1课时 等积变形和行程问题1、用直径为4厘米的圆钢,铸造三个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圆钢?2、某机器加工厂要锻造一个毛胚,上面是一个直径为20毫米,高为40毫米的圆柱,下面也是一个圆柱,直径为60毫米,高为20毫米,问需要直径为40毫米的圆钢多长?3、某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。

沪科版七年级数学上册(HK)-第3章 一次方程与方程组 第2课时 利率与销售问题

沪科版七年级数学上册(HK)-第3章 一次方程与方程组 第2课时 利率与销售问题
12 789.90,y≈12 836.30, ∵12 789.90<12 836.30,∴按照储蓄方案①开始存入的本金比较少.
核心素养
•18.根据图中情景,解答下列问题:
•(1)购买8根跳绳需 280 元;购
买11根跳绳3需08
元;
•(2)小红比小明多买2根,付款时小红 反而比小明少7元,你认为有这种可能 吗?请结合方程知识说明理由.
解:(2)若小红比小明多买2根,付款时小红反而比小明少7元有这种可 能.唯一的可能性就是小红买的跳绳超过10根打折了,而小明的不足 10根没打折.设小明买了x根跳绳,小红买了(x+2)根跳绳. 根据题意,得35x-35×0.8(x+2)=7,解得x=9.x+2=11≥10(符合 题意).所以有这种可能.
不超过200元不享受优惠;一次性购物超过200元但不超过500元,超过 200元的部分九折优惠;一次性购物超过500元一律八折.在活动期间, 张三两次购物分别付款195元、452元,若张三选择这两次购物合并成
•一次性付款可以节省107或39
元.
•13.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价

( B)
A.(1+40%)x×90%=x-38
B.(1+40%)x×90%=x+38
Байду номын сангаас
C.(1+40%x)×90%=x-38
D.(1+40%x)×90%=x+38
5.某微信平台将一件商品按进价提高40%后标价,又以八折优惠卖出,
结果每件仍获利48元,这件商品的进价是多少元?若设这种商品每件的
进价是x元,那么所列方程为
•19.某校七年级社会实践小组去商场调查商品销售情况,了解到该商 场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格 销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你 帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到 盈利45%的预期目标?(请用两种方法列方程求解)

沪科版七年级上数学《第3章一次方程与方程组》单元测试含答案

沪科版七年级上数学《第3章一次方程与方程组》单元测试含答案

《一次方程与方程组》单元测试一.选择题(共12小题)1.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.2.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm23.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元4.方程|2x﹣1|﹣a=0恰有两个正数解,则a的取值范围是()A.﹣1<a<0 B.﹣1<a<1 C.0<a<1 D.<a<15.已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解等于()A.﹣1 B.1 C.D.﹣6.将方程变形正确的是()A.9+B.0.9+C.9+D.0.9+=3﹣10x7.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.738.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有()A.4种 B.3种 C.2种 D.1种9.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x 天完成,则符合题意的方程是()A.=1 B.=1C.=1 D.=110.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0 B.1 C.2 D.不能求出11.如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度的可能性有()A.2种 B.3种 C.4种 D.5种12.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于S,又填在图中三格中的数字如图,若要能填成,则()A.S=24 B.S=30 C.S=31 D.S=39二.填空题(共4小题)13.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知2套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需元.14.如果是方程6x+by=32的解,则b=.15.某学校要新购置一批课桌椅,现有甲、乙两种规格的课桌椅可供选择.已知购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元.求甲、乙两种规格的课桌椅每套价格分别是多少元?若设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据题意,可列方程组为.16.按照一定规律排列的n个数﹣2,4,﹣8,16,﹣32,64,…,若最后三个数的和为768,则n=.三.解答题(共7小题)17.一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h,普通公路和高速公路各是多少km?18.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?19.列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.20.解下列方程:(1)2(x+3)=5(x﹣3)(2)=﹣x21.党的十九大提出,建设生态文明是中华民族永续发展的千年大计,某同学参加“加强生态环境保护,建设美丽中国”手工大赛,他用一种环保材料制作A、B 两种手工艺品,制作1件A种手工艺品和3件B种手工艺品需要环保材料5米,制作4件A种手工艺品和5件B种手工艺品需要环保材料13米,求制作一件A 种手工艺品和1件B种手工艺品各需多少米环保材料?22.下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?23.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是.(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(4)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?参考答案与试题解析一.选择题(共12小题)1.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.【解答】解:根据总天数是60天,可得x+y=60;根据乙种零件应是甲种零件的2倍,可列方程为2×24x=12y.则可列方程组为.故选:C.2.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm2【解答】解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x﹣4c m,宽是5cm,则4x=5(x﹣4),去括号,可得:4x=5x﹣20,移项,可得:5x﹣4x=20,解得x=2020×4=80(cm2)答:每一个长条面积为80cm2.故选:C.3.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元【解答】解:设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,根据题意得,②﹣①得x+y+z=1.05(元).故选:B.4.方程|2x﹣1|﹣a=0恰有两个正数解,则a的取值范围是()A.﹣1<a<0 B.﹣1<a<1 C.0<a<1 D.<a<1【解答】解:∵方程|2x﹣1|﹣a=0恰有两个正数解,∴,解得:0<a<1.故选:C.5.已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解等于()A.﹣1 B.1 C.D.﹣【解答】解:由一元一次方程的特点得,2k﹣1=1,解得:k=1,∴一元一次方程是:x+1=0解得:x=﹣1.故选:A.6.将方程变形正确的是()A.9+B.0.9+C.9+D.0.9+=3﹣10x【解答】解:方程变形得:0.9+=3﹣10x,所以选D.7.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.73【解答】解:设这个两位数的十位数字为x,个位数字为y.则,解得.故选:D.8.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有()A.4种 B.3种 C.2种 D.1种【解答】解:设二人间x间,三人间y间,四人间(5﹣x﹣y)间,根据题意得:2x+3y+4(5﹣x﹣y)=15,2x+y=5,当y=1时,x=2,5﹣x﹣y=5﹣2﹣1=2,当y=3时,x=1,5﹣x﹣y=5﹣1﹣3=1,当y=5时,x=0,5﹣x﹣y=5﹣0﹣5=0,因为同时租用这三种客房共5间,则x>0,y>0,所以有二种租房方案:①租二人间2间、三人间1间、四人间2间;②租二人间1间,三人间3间,四人间1间;故选:C.9.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x天完成,则符合题意的方程是()A.=1 B.=1C.=1 D.=1【解答】解:设甲、乙共用x天完成,则甲单独干了(x﹣22)天,本题中把总的工作量看成整体1,则甲每天完成全部工作的,乙每天完成全部工作的.根据等量关系列方程得:=1,故选:A.10.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0 B.1 C.2 D.不能求出【解答】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选:A.11.如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度的可能性有()A.2种 B.3种 C.4种 D.5种【解答】解:设折痕对应的刻度为xcm,依题意有①x+x+x=60,解得x=20;②x+x+0.4x=60,解得x=25;③x+x﹣x=60,解得x=35;④x+x﹣x=60,解得x=40.综上所述,折痕对应的刻度有4种可能.故选:C.12.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于S,又填在图中三格中的数字如图,若要能填成,则()A.S=24 B.S=30 C.S=31 D.S=39【解答】解:如图,∵每行每列及对角线上三个方格中的数字和都等于S.∴x+10+y=8+y+13,∴x=11,∵b+11+a=8+10+a,∴b=7,∴S=b+10+13=30.故选:B.二.填空题(共4小题)13.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知2套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需44元.【解答】解:设1套文具x元,1套图书y元,根据题意得:,①+②,得:5x+5y=220,∴x+y=44.故答案为:44.14.如果是方程6x+by=32的解,则b=7.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.15.某学校要新购置一批课桌椅,现有甲、乙两种规格的课桌椅可供选择.已知购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元.求甲、乙两种规格的课桌椅每套价格分别是多少元?若设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据题意,可列方程组为.【解答】解:设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据题意可得:,故答案为:,16.按照一定规律排列的n个数﹣2,4,﹣8,16,﹣32,64,…,若最后三个数的和为768,则n=10.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数.故答案是:10.三.解答题(共7小题)17.一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h,普通公路和高速公路各是多少km?【解答】解:设普通公路长为x(km),高速公路长为y(km).根据题意,得,解得,答:普通公路长为60km,高速公路长为120km.18.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?【解答】解:(1)根据题意得:,解得:.(2)11×1+14×=18(元).答:小华的打车总费用是18元.19.列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.【解答】解:设中国内地去年有x个城市参加了此项活动,今年有y个城市参加了此项活动.依题意,得,解得:,答:去年有33个城市参加了此项活动,今年有86个城市参加了此项活动.20.解下列方程:(1)2(x+3)=5(x﹣3)(2)=﹣x【解答】解:(1)2x+6=5x﹣1﹣3x=﹣21x=7(2)10x﹣5=12﹣9x﹣15x34x=17x=21.党的十九大提出,建设生态文明是中华民族永续发展的千年大计,某同学参加“加强生态环境保护,建设美丽中国”手工大赛,他用一种环保材料制作A、B两种手工艺品,制作1件A种手工艺品和3件B种手工艺品需要环保材料5米,制作4件A种手工艺品和5件B种手工艺品需要环保材料13米,求制作一件A 种手工艺品和1件B种手工艺品各需多少米环保材料?【解答】解:设制作一件A种手工艺品需x米环保材料,制作1件B种手工艺品需y米环保材料.根据题意,得,解得.答:制作一件A种手工艺品需2米环保材料,制作1件B种手工艺品需1米环保材料.22.下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?【解答】解:(1)设每月主叫时间为x分钟.①当0≤x≤200时,方式一收费58元,方式二收费88元,故不存在两种方式收费相同;②当200<x≤400时,计费方式一收费58+0.2(x﹣200)=0.2x+18,计费方式二收费88元,∴0.2x+18=88,解得:x=350,∴当主叫时间为350min时,两种方式收费相同.(2)当x>400时,计费方式二收费88+0.25(x﹣400)=0.25x﹣12.根据题意得:0.2x+18=0.25x﹣12,解得:x=600,又∵0.25>0.2,∴当400<x<600时,选择计费方式二省钱;当x=600时,两种计费方式收费相同;当x>600时,选择计费方式一省钱.23.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数﹣14;点P表示的数8﹣5t(用含t的代数式表示)(2)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是11.(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(4)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?【解答】解:(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t.(2)①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=×22=11,②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=11,∴线段MN的长度不发生变化,其值为11.(3)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(4)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q.故答案为:﹣14,8﹣5t;11.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.某公园门票价格规定如下表:
购票数量 每张票的价格
张 1 ~ 5 0 元 1 3
张 5 1 ~ 1 0 0 元 1 1
100张以上 9元
某校七年级(1)班、(2)班共104人去该公园游玩,其中(1)班人数较少,不足50人.经计算,如果两个班都 以班为单位购票,那么一共应付1240元.问:
(1)两班各有多少学生?
而 (元8人买51张门票才最省钱.
1
1
x
(
+
)×2+
=1
8
10
8
解得
22
x=
5
答:还需 22 小时才能注满水.
5
21.甲、乙两人在400米环形跑道上同向练习跑步,乙的速度是每秒7米,甲的速度是乙的1.2倍.现在甲在乙的前 面120米,多少秒后两人第一次相遇?
【参考答案】
解:设x秒后两人第一次相遇, 则 , 7 × 1 . 2 x - 7 x = 4 0 0 - 1 2 0 解得x=200, 答:200秒后两人第一次相遇.
【参考答案】
答案: 1
3
x-
.
4
2
解:移项得:-4y=6-x,
两边同时除以-4得:y= 1 x- 3 .
4
2
当 13. x= 时,代数式 5+x 比 x−1 的值小2.
2
3
【参考答案】
答案:-29. 解:根据题意可得
x−1
5+x
-
=2
3
2
2(x-1)-3(5+x)=12
2x-2-15-3x=12
-x-17=12
1
1
1
(4×[-
)-10]=
(-2-10)=-4
2
3
3
2
3
故代数式
1
的值为 ( 4 a - 1 0 )
-4.
3
20.一个水池有甲、乙两个进水管,单独开放甲管8小时可注满水池,单独开放乙管10小时可注满水池.现甲、乙 两管同时开放2小时后,由甲管单独进水,还需几小时才能注满水池?
【参考答案】
解:设还需x小时注满水池,根据题意得:
)=
2
3
2
2
1
3
x
x-
-2x-
=
2
2
2
x
x-2x-
-2=0
2
2x-4x-x-4=0
-3x=4
4
x=-
3
18.请你选用恰当的方法解下面的方程.
0.2x−0.5
0.1x−2
-
=0
0.3
0.2
【参考答案】
解:原方程去分母,得
20(0.2x-0.5)-30(0.1x-2)=0
去括号,得
4x-10-3x+60=0
n= .
【参考答案】
答案:4. 解:根据同类项的定义,得n-1=2n-5, 解得:n=4.
16.轮船在A、B两个码头间航行,顺水航行的速度为a千米/时,逆水航行的速度为b千米/时,则水流速度 为 千米/时.
【参考答案】
答案: a−b . 2
解:水流速度为 a−b 千米/时.
2
三、解答题
17.解方程.
并且由 ,知 ,故 a+c=b
2c+c=b
b=3c.
所以 1个“△”的质量和3个“□”的质量相同. 所以“?”处应该放5个“□”. 故选A.
二、填空题
11.如果3xn-3-8=0是一元一次方程,那么n= .
【参考答案】
答案:4. 解:根据一元一次方程的定义,可得
n-3=1
解得n=4.
12.已知x-4y=6,用含x的式子表示y,则y= .
9.甲厂仓库存有钢材100吨,每月用去15吨;乙厂仓库存有钢材82吨,每月用去9吨.经过x个月之后,两厂剩下 的钢材吨数相同,则x等于().
A.2
B.3
C.4
D.5
【参考答案】
答案:B. 解:根据题意列方程得100-15x=82-9x, 解得:x=3. 故选B.
10.设○□△分别表示三种不同的物体,如图,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处 应该放□的个数为().
【参考答案】
答案:B. 解:设原价为x元,由题意得:x-0.8x=5 解得x=25, (元) 2 5 - 5 = 2 0 故选B.
7.一个两位数的个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,那么 原来的两位数为()
A.54
B.27
C.72
D.45
【参考答案】
答案:D. 解:设原来的个位数字是x,则十位数字是(9-x), 由“交换数字的位置后,得到的新数比原数大9”得 , 1 0 x + ( 9 - x ) = 1 0 ( 9 - x ) + x + 9 解得x=5, 所以9-x=4, 所以原来的两位数为45. 故选D.
个 A . 5
个 B . 4
个 C . 3
个 D . 2
【参考答案】
答案:A. 解:设“○”的质量为a,“△”的质量为b,“□”的质量为c, 由图②可知,a+c=b,
等式两边都加c,则a+2c=b+c, 由图①可知,2a=b+c, 故a+2c=2a.
等式两边都减去a,得2c=a.
故1个“○”的质量和2个“□”的质量相同,
x−1
-
x
=1,化简,得3x=6,所以D变形正确.
0.2
0.5
故选D.
3.x=3是方程()的解.
A.2x=3
B.(x-3)(x+3)=0
C.x(x-2)=6
D.x+3=0
【参考答案】
答案:B. 解:对于A,当x=3时,左边=2×3=6,右边=3,左边≠右边,故本选项不符合题意; 对于B,当x=3时,左边=0×(3+3)=0,右边=0,左边=右边,故本选项符合题意; 对于C,当x=3时,左边=3×(3-2)=3,右边=6,左边≠右边,故本选项不符合题意; 对于D,当x=3时,左边=3+3=6,右边=0,左边≠右边,故本选项不符合题意. 故选B.
3
x
D.x=4是一元一次方程,不符合题意.
故选C.
2.下列方程变形正确的是()
方程 ,移项,得 A.
3x-2=2x+1
3x-2x=-1+2
方程 ( ),去括号,得 B.
3-x=2-5 x-1
3-x=2-5x-1
C.方程 2 x= 3 ,未知数的系数化为1,得x=1
3
2
方程 可以化成 D.
x−1
x
-
=1
4.解方程 x -6= 2x−1 时,去分母正确的是()
2
3
A.3x-6=2x-2
B.3x-6=4x-2
C.3x-36=4x-2
【参考答案】
答案:C.
解:方程两边同时乘以6可得
x
2x−1

-6×6=6×
2
3
即3x-36=4x-2
故选C.
D.3x-36=4x-1
5.已知x=-2是方程a(x+1)=2a(x-1)+5的解,那么a等于().
3x=6
0.2
0.5
【参考答案】
答案:D.
解:A.对方程3x-2=2x+1,移项,得3x-2x=1+2,所以A变形错误;
B.对于方程3-x=2-5(x-1),去括号,得3-x=2-5x+5,所以B变形错误;
C.对于方程 2 x= 3 ,系数化为1,得x= 9 ,所以C变形错误;
3
2
4
对 于 方 程 D .
( ) ; 1 3(x-2)-2(2x-1)=6(1-x)
() 1
2
1
x
2
(2x-1)-3(
x+
)=
.
2
3
2
2
【参考答案】
解:( ) 1 3 ( x - 2 ) - 2 ( 2 x - 1 ) = 6 ( 1 - x )
3x-6-4x+2=6-6x
5x=10
x=2
() 1
2
1
x
2
(2x-1)-3(
x+
A.1
B.2
C.0
D.5
【参考答案】
答案:A.
解:将 代入方程 中,得 , x=-2
a(x+1)=2a(x-1)+5
a(-2+1)=2a(-2-1)+5
解得a=1.
故选A.
6.小东在某书店以八折的价格买了一本书,节省了5元,则他买这本书用了()
元 A . 1 0
元 B . 2 0
元 C . 2 5
元 D . 4 0
移项并合并同类项,得
x=-50.
19.已知x=2是方程3ax-4=4ax-3的解,求代数式
1
的 值 ( 4 a - 1 0 )
.
3
【参考答案】
解:因为x=2是方程3ax-4=4ax-3的解,
所以将x=2代入方程中,得6a-4=8a-3,
解得 1
a=-
.
2
将 代入 中,可得 , 1 a=-
1
(4a-10)
(2)如果两班联合起来,作为一个团体购票,那么可省多少钱?
(3)如果七年级(1)班单独组织去游该公园,那么作为组织者的你如何购票才最省钱?
【参考答案】
解:(1)设七年级(1)班有x名学生(x<50),则七年级(2)班有(104-x)名学生.
相关文档
最新文档