八年级数学下期末测试卷2
初中数学八年级下期末经典练习题(含答案解析)(2)
一、选择题1.(0分)[ID :10223]下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C .两直线平行,同位角相等 D .如果两个角都是45°,那么这两个角相等2.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5B .24.5,24C .24,24D .23.5,243.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .4.(0分)[ID :10146]为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60B.平均数是21C.抽查了10个同学D.中位数是50 5.(0分)[ID:10144]如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方ab ,形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若8大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.36.(0分)[ID:10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.-67.(0分)[ID:10187]某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵8.(0分)[ID:10181]若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或√3139.(0分)[ID:10177]明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t (单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m210.(0分)[ID:10173]如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.211.(0分)[ID:10169]直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1B.5C.7D.5或712.(0分)[ID:10168]无论m为任何实数,关于x的一次函数y=x+2m与y=-x+4的图象的交点一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限13.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.614.(0分)[ID:10158]下列运算正确的是()A.235+=B.32﹣2=3C.236⨯=D.632÷=15.(0分)[ID:10157]如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米A.0.4B.0.6C.0.7D.0.8二、填空题16.(0分)[ID :10331]如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.17.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.18.(0分)[ID :10320]如图所示,BE AC ⊥于点D ,且AB BC =,BD ED =,若54ABC ∠=,则E ∠=___.19.(0分)[ID :10315]计算:182-=______. 20.(0分)[ID :10308]如图,直线l 1:y =x +n –2与直线l 2:y =mx +n 相交于点P (1,2).则不等式mx +n <x +n –2的解集为______.21.(0分)[ID :10304]若x <222)x -(﹣x|的正确结果是__.22.(0分)[ID :10288]某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。
安徽省合肥市瑶海区等4地2022-2023学年八年级下学期期末考试数学试卷(含答案)
2022-2023学年度第二学期期末教学质量检测八年级数学试题卷一、选择题(本大题共10小题,每小题3分,满分30分)1.下列二次根式为最简二次根式的是().A. B. C. D.2.在下列长度的各组线段中,能组成直角三角形的是().A.4,5,6B.5,6,7C.5,-11,12D.5,12,133.下列方程中,一定为一元二次方程的是().A. B. C. D.4.将一元二次方程配方后得到的结果是().A. B.C. D.5.勾股定理是中国几何的根,中华数学的精髓,诸如开方术、方程术、天元术等技艺的诞生与发展,寻根探,都与勾股定理有着密切关系.如图,中,,若,,则正方形的面积为().A.4B.C.13D.166.已知一组数据:2,1,3,2,2,这组数据的方差是().A.0.4B.0.6C.2D.37.下列说法错误的是().A.平行四边形对角线互相平分B.对角线互相平分的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形8.某商店将进货价格为20元的商品按单价36元售出时,能卖出200个.已知该商品单价每上涨1元,其销售量就减少5个.设这种商品的售价上涨元时,获得的利润为1200元,则下列关系式正确的是().A. B.C. D.9.已知菱形ABCD的对角线AC、BD的长度恰为方程的两个实数根,则菱形ABCD的周长为().A.12B.16C.20D.2410.如图,矩形ABCD中,E为BC边的中点,沿DE对折矩形,使点C落在处,折痕为DE,延长交AB于点F,连接并延长交AD于点G,连接.给出以下结论:①四边形BEDG为平行四边形;②;③;④为BG的中点.其中正确结论的个数是().A.1B.2C.3D.4二、填空题(共5小题,每小题3分,满分15分)11.若二次根式在实数范围内有意义,则x的取值范围是__________.12.若一元二次方程有两个相等的实数根,则a的值为__________13.如图,一个正五边形和一个正方形各有一边在直线上,且只有一个公共顶点A,则的大小为__________度.14.如图,A、B、C分别为数轴上的三点,且,若点B对应的实数为1,点对应的实数为,则点A对应的实数为__________.15.如图,AD为的外角平分线,于点D,M为BC边的中点,若,则的周长为__________.三、解答题(共7小题,满分55分)16.(5分)计算:17.(5分)解方程:.18.(8分)如图,在中,,点D为形外一点,且,,M为AB的中点,请仅用无刻度的直尺分别按下列要求画图.(保留画图痕迹,不需要证明)(1)在图1中,画出的AC边上的中线BE;(2)在图2中,先画出AC边的中点O,再画出的BC边上的高AH.19.(8分)某工厂利用空地新建一个长方形电动车棚,其中一面靠院墙,如图1,这堵墙的长度为10米.已知现有的木板材料(图中细线部分)可新建围墙26米,同时在与院墙平行的一面开一个2米宽的门,设该长方形电动车棚与院墙垂直的一边长为米(1)求与墙平行的一边长为多少米?(用含的代数式表示)(2)当时,为了方便职工通行,施工单位决定在车棚内修建几条等宽的小路(如图2中内部阴影区域),使得停放电动车的空白面积为54平方米,那么小路的宽度是多少米?20.(9分)如图,在中,,CD为AB边上的中线,过C点作,连接AE,且.(1)求证:四边形ADCE为菱形(2)若,,求四边形ABCE的面积21.(10分)为深入学习贯彻习近平法治思想,推动青少年宪法学习宣传教育走深走实,教育部组织开展全国学生“学宪法讲宪法”系列活动.某校积极响应教育部的号召,开展了宪法知识普及测评,现分别从七、八年级中各随机抽取了8名学生的成绩(满分10分)进行整理与分析,信息如下:收集信息:七年级:8,10,7,6,6,7,10,6;八年级:9,10,6,10,10,6,9,8.整理信息:平均数中位数众数七年级7.56八年级9(1)填空:_________,_________,_________.(2)若该校八年级共有1000名学生参加此次测评,请估计该校八年级学生中优秀(大于等于9分)的人数.22.(10分)如图,正方形ABCD中,E为CD边上一点,交AE的延长线于点F,交AE于点G.(1)求证:;(2)若E为CD的中点,,求正方形ABCD的面积,四、附加题(做对加5分,但总分不超过100分)23.若实数a,b满足,则a的最大值与最小值之和为___________.2022-2023学年度第二学期期末教学质量检测八年级数学评分标准及参考答案一、选择题题号12345678910答案C D B A C A D A C B第10题解析:∵E为BC的中点∴∴,即∴四边形BEDG为平行四边形,即①正确,∴,即②正确∵,∴当时∴,∴为等边三角形即③不正确当为BG的中点时,即在AB边的垂直平分线上∴,∴为等边三角形即④不正确故选B.二、填空题11. 12. 13.18 14. 15.18第15题提示:延长CD交BA的延长线于点E,∴为等腰三角形,D为CE的中点∴,即的周长为18.三、解答题16.解:17.解:,,∴,18.(1)如图所示;(2)如图所示.19.(1)解:由题意得即车棚与墙平行的一面长米;(2)解:当时,设小路的宽为x米,根据题意得:,整理得,解得:(舍去),,答:小路的宽为1米.20.解:(1)∵,CD为AB边上的中线∴,∴又,∴∵,∴∴∴∴四边形ADCE为平行四边形又∴四边形ADCE为菱形.(2)∵,∴在中,,,∴,∴,∴即.21.(1),,.(2)人答:该校八年级学生中优秀的人数大约为625人.22.解:(1)正方形ABCD中,,∵,∴∵,∴∵,,∴在和中,,,,∴(2)过D点作于点H∴∵E为DC的中点∴由(1)知,∴,∴,∴即在中,,由勾股定理得即正方形ABCD的面积为20.附加题23.若实数a,b满足,则的最大值与最小值之和为_________.解:关于b的一元二次方程中即∴或解得,即最大值与最小值之和为-8.。
八年级(下)数学期末试卷(2)
八年级(下)数学期末试卷(2)一.选择题(共11小题,满分33分,每小题3分)1.(3分)“漏壶”是一种古代计时器,如图所示.在壶内盛一定量的水,水从壶底的小孔漏出,壶内壁画有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度,不考虑水量变化对压力的影响,下列图象能表示y与x对应关系的是()A.B.C..D.2.(3分)在一篇文章中,“的”、“地”、“得”三个字共出现100次.已知“的”和“地”的频率之和是0.7,那么“得”字出现的频数是()A.28B.30C.32D.343.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位平均成绩较高且状态稳定的同学参加数学比赛,那么应选()甲乙丙丁平均数80858580方差42455459 A.甲B.乙C.丙D.丁4.(3分)下列二次根式中属于最简二次根式的是()A.B.C.D.5.(3分)下列各式中,无意义的是()A.B.C.D.6.(3分)若x+y=6,x2+y2=20,求xy的值是()A.6B.8C.26D.207.(3分)下列命题中,真命题是()A.任何数的零次幂都等于1B.对角线相等且垂直的四边形是正方形C.有一条边相等的两个等腰直角三角形全等D.有两直角边对应相等的两个直角三角形全等8.(3分)如图,将一副直角三角尺重叠摆放,使得60°角的顶点与等腰直角三角形的直角顶点重合,且DE⊥AB于点D,与BC交于点F,则∠DCF的度数为()A.20°B.15°C.30°D.45°9.(3分)如图,点E是Rt△ABC、Rt△ABD的斜边AB的中点,AC=BC,∠DBA=25°,则∠DCE的度数是()A.20°B.30°C.35°D.40°10.(3分)顺次联结四边形ABCD各边中点所形成的四边形是矩形,那么四边形ABCD是()A.平行四边形B.矩形C.菱形D.等腰梯形11.(3分)函数y=2x+3的图象可能是()A .B .C .D .二.填空题(共4小题,满分12分,每小题3分)12.(3分)小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是.13.(3分)在平行四边形ABCD 中,AB=3,BC=4,则平行四边形ABCD的周长等于.14.(3分)有5位教师和一群学生一起去公园,教师的全票票价是每人7元,学生票收半价.如果买门票共花费206.5元,那么学生有多少人?设学生有x人,填写下表:人数/人票价/元总票价/元教师学生根据题意,得方程,所以学生有人.15.(3分)直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x﹣nx>4n﹣m的解集为.三.解答题(共4小题,满分30分)16.(11分)计算:(1);(2).17.(6分)如图,A,B,H是直线上的三个点,AC⊥l于点A,BD⊥l于点B,HC=HD,AB=5,AC=2,BD=3,求AH的长.18.(6分)如图,任意四边形ABCD中,AB=CD,M、N分别为BC、AD的中点.说明∠1与∠2的大小关系.19.(7分)排球垫球是体育中考的项目之一,下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)运动员甲测试成绩的众数为;运动员乙测试成绩的中位数为;运动员丙测试成绩的平均数为;(2)经计算三人成绩的方差分别为S甲2=0.8,S乙2=0.4,S丙2=0.6,如果在他们三人中选择一位垫球成绩较为稳定的接球能手作为自由人,则运动员更合适;(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)四.解答题(共3小题,满分23分)20.(7分)如图,四边形ABCD的对角线AC⊥BD于点E.点F为四边形ABCD外一点,且∠FCA=90°,BC平分∠DBF,∠CBF=∠DCB.(1)求证:四边形DBFC是菱形;(2)若AB=BC,∠F=45°,BD=2,则AC=.21.(8分)计算:(1)(+)÷﹣6;(2)﹣(1+)(2﹣).22.(8分)某城市有一类出租车,在5时到23时的时间段内运营,计费规定如下:行驶里程不超过3千米付费14元,超过3千米且不超过15千米的部分每千米付费2.50元;总里程超过15千米的部分每千米付费3.80元(等候时间管不计费).(1)该类出租车起步价为多少元?在多少千米内只收起步价?(2)某人乘该类出租车行驶了x千米,试写出当x(千米)超过3(千米)但不超过15(千米)时,乘车费用y(元)关于里程数x(千米)的函数解析式,并求当所付费用为26元时出租车行驶的里程数.(3)当乘车费用为82元时,出租车行驶了多少千米?五.解答题(共2小题,满分22分)23.(10分)(1)【探究发现】如图①,已知矩形ABCD的对角线AC的垂直平分线与边AD,BC分别交于点E,F.求证:四边形AFCE是菱形;(2)【类比应用】如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若AB=3,BC=4,求四边形ABFE的周长;(3)【拓展延伸】如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若,BC=4,∠C=45°,求EF的长.24.(12分)已知:在矩形ABCD中,AB=6,AD=2,P是BC边上的一个动点,将矩形ABCD折叠,使点A与点P重合,点D落在点G处,折痕为EF.(1)如图1,当点P与点C重合时,则线段EB=,EF=;(2)如图2,当点P与点B,C均不重合时,取EF的中点O,连接并延长PO与GF的延长线交于点M,连接PF,ME,MA.①求证:四边形MEPF是平行四边形;②当tan∠MAD=时,求四边形MEPF的面积.。
初中数学八年级下期末经典题(含答案解析)(2)
一、选择题1.(0分)[ID :10231]某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差2.(0分)[ID :10229]如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,√3),则点C 的坐标为( )A .(-√3,1)B .(-1,√3)C .(√3,1)D .(-√3,-1)3.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥4.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >6.(0分)[ID :10205]以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形 D .对角线互相垂直平分的四边形是正方形7.(0分)[ID :10199]将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒8.(0分)[ID :10144]如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.(0分)[ID :10141]12751348)的结果是( ) A .6B .3C .3D .1210.(0分)[ID :10138]小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A.B.C.D.11.(0分)[ID:10192]如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD12.(0分)[ID:10166]如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6B.12C.24D.不能确定13.(0分)[ID:10161]如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m14.(0分)[ID:10159]将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤15.(0分)[ID :10150]如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80二、填空题16.(0分)[ID :10332]如图,BD 是△ABC 的角平分线,DE∥BC,交AB 于点E ,DF∥AB,交BC 于点F ,当△ABC 满足_________条件 时,四边形BEDF 是正方形.17.(0分)[ID :10331]如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.18.(0分)[ID :10320]如图所示,BE AC ⊥于点D ,且AB BC =,BD ED =,若54ABC ∠=,则E ∠=___.19.(0分)[ID :10300]如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.20.(0分)[ID :10294]如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.21.(0分)[ID :10290]一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .22.(0分)[ID :10284]如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .23.(0分)[ID :10274]如果一组数据1,3,5,a ,8的方差是0.7,则另一组数据11,13,15,10a +,18的方差是________.24.(0分)[ID :10252]有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .25.(0分)[ID :10240]已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为___.三、解答题26.(0分)[ID :10380]如图,在平面直角坐标系xOy 中,一次函数y 1=−23x+2与x 轴、y轴分别相交于点A 和点B ,直线y 2=kx+b(k≠0)经过点C(1,0)且与线段AB 交于点P ,并把△ABO 分成两部分. (1)求A 、 B 的坐标; (2)求△ABO 的面积;(3)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式.27.(0分)[ID :10379]如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB(1)求证:△BCP ≌△DCP ; (2)求证:∠DPE=∠ABC ;(3)把正方形ABCD 改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.28.(0分)[ID :10347]先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,形如2a b ±,如果你能找到两个数m 、n ,使22m n a +=,且mn b =,则2a b ±可变形为2222()m n mn m n m n +±=±=±,从而达到化去一层根号的目的.例如:22232212221(2)212(12)-=+-=+-⨯⨯=-1221=-=-仿照上例完成下面各题: 填上适当的数:29.(0分)[ID :10346]011)1235-+⨯--.30.(0分)[ID :10340]设a =b =c =.(1)当x 取什么实数时,a ,b ,c 都有意义;(2)若Rt △ABC 三条边的长分别为a ,b ,c ,求x 的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.A 3.A 4.B 5.B 6.A 7.C 8.D 9.D 10.D 11.B 12.B 13.C 14.C 15.C二、填空题16.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC满足条件∠ABC=90°17.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF 是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD18.27°【解析】【分析】连接AE先证Rt△ABD≌Rt△CBD得出四边形ABCE是菱形根据菱形的性质可推导得到∠E的大小【详解】如下图连接AE∵BE⊥AC∴∠ADB=∠BDC=90°∴△ABD 和△CB19.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE的周长【详解】∵四边形ABCD是矩形∴∵∠21.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD ⊥AB于D∵AC2+B22.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D23.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考24.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差25.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.3.A解析:A【解析】 【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集. 【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤. 故选:A . 【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键. 4.B解析:B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, 故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.5.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.6.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A 、对角线相等的菱形是正方形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D 、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.7.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.D解析:D【解析】【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:-a b每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-= 2()25169a b ∴-=-=3a b ∴-=故选:D【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.9.D解析:D【解析】【分析】【详解】12===. 故选:D. 10.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.11.B解析:B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B12.B解析:B【解析】【分析】由矩形ABCD可得:S△AOD=14S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=12OA•PE+12OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=12AC,OB=OD=12BD,∠ABC=90°,S△AOD=14S矩形ABCD,∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC =22AB BC +=221520+=25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.13.C解析:C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.14.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm ,则在杯外的最大长度是24-8=16cm ;再根据勾股定理求得筷子在杯内的最大长度是(如图)2222158AB BC +=+,则在杯外的最小长度是24-17=7cm ,所以h 的取值范围是7cm ≤h ≤16cm ,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.15.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴22226810AE BE+=+=∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.二、填空题16.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC满足条件∠ABC=90°解析:∠ABC=90°【解析】分析: 由题意知,四边形DEBF是平行四边形,再通过证明一组邻边相等,可知四边形DEBF是菱形, 进而得出∠ABC=90°时,四边形BEDF是正方形.详解: 当△ABC满足条件∠ABC=90°,四边形DEBF是正方形.理由:∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形∵BD是∠ABC的平分线,∴∠EBD=∠FBD,又∵DE∥BC,∴∠FBD=∠EDB,则∠EBD=∠EDB,∴BE=DE.故平行四边形DEBF是菱形,当∠ABC=90°时,菱形DEBF是正方形.故答案为:∠ABC=90°.点睛: 本题主要考查了菱形、正方形的判定,正确掌握菱形以及正方形的判定方法是解题关键.17.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则18.27°【解析】【分析】连接AE先证Rt△ABD≌Rt△CBD得出四边形ABCE是菱形根据菱形的性质可推导得到∠E的大小【详解】如下图连接AE∵BE⊥AC∴∠ADB=∠BDC=90°∴△ABD和△CB解析:27°【解析】【分析】连接AE,先证Rt△ABD≌Rt△CBD,得出四边形ABCE是菱形,根据菱形的性质可推导得到∠E 的大小.【详解】如下图,连接AE∵BE ⊥AC ,∴∠ADB=∠BDC=90°∴△ABD 和△CBD 是直角三角形在Rt △ABD 和Rt △CBD 中AB BC BD BD=⎧⎨=⎩ ∴Rt △ABD ≌Rt △CBD∴AD=DC∵BD=DE∴在四边形ABCE 中,对角线垂直且平分∴四边形ABCE 是菱形∵∠ABC=54°∴∠ABD=∠CED=27°故答案为:27°【点睛】本题考查菱形的证明和性质的运用,解题关键是先连接AE ,然后利用证Rt △ABD ≌Rt △CBD 推导菱形.19.3或6【解析】【分析】先表示出AB 坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b 即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D解析:3或6【解析】【分析】先表示出A 、B 坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b 即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO ,由直线y x b =-+交线段OC 于点B ,交x 轴于点A 可知OB=b ,OA=b ,∵点C (0,6),∴OC=6,∴BC=6-b ,在△DBC 和△BAO 中,DBC BAO DCB AOB BD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△DBC ≌△BAO (AAS ),∴BC=OA ,即6-b=b ,∴b=3;②当∠ADB=90°时,如图2,作AF ⊥CE 于F ,同理证得△BDC ≌△DAF ,∴CD=AF=6,BC=DF ,∵OB=b ,OA=b ,∴BC=DF=b-6,∵BC=6-b ,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF ⊥OA 于F ,同理证得△AOB ≌△DFA ,∴OA=DF ,∴b=6;综上,b 的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形CODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.21.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.22.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长= AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.23.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a,8的平均数是x,另一组数据11,13,15,x+10,18的平均数是x+10,∵22222 (1)(3)(5)()(8)5x x x a x x-+-+-+-+-=0.7,∴222 (1110)(1310)(1810)5x x x--+--+⋯--=22222 (1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.24.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差解析:2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4,再计算方差(一般地设n个数据,x1,x2,…x n的平均数为x,x=1n(12nx x x++⋯+),则方差2 S=1n[222 12nx xx x x x-+-+⋯+-()()()]),2 S=15[222222434445464-+-+-+-+-()()()()()]=2.考点:平均数,方差25.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差解析:2【解析】试题分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案.∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为2考点:方差三、解答题26.(1)A(3,0),B(0,2);(2)3;(3)P (34,32),y=-6x+6 【解析】【分析】(1)已知直线y 1的解析式,分别令x=0和y=0即可求出A 和B 的坐标;(2)根据(1)中求出的A 和B 的坐标,可知OA 和OB 的长,利用三角形的面积公式即可求出S △ABO ;(3)由(2)中的S △ABO ,可推出S △APC 的面积,求出y p ,继而求出点P 的坐标,将点C 和点P 的坐标联立方程组求出k 和b 的值后即可求出函数解析式.【详解】解:(1)∵一次函数的解析式为y 1=-23x+2, 令x=0,得y 1=2,∴B(0,2),令y 1=0,得x=3,∴A(3,0);(2)由(1)知:OA=3,OB=2,∴S △ABO =12OA•OB=12×3×2=3; (3)∵12S △ABO =12×3=32,点P 在第一象限, ∴S △APC =12AC•y p =12×(3-1)×y p =32, 解得:y p =32, 又点P 在直线y 1上, ∴32=-23x+2, 解得:x=34, ∴P 点坐标为(34,32), 将点C(1,0)、P(34,32)代入y=kx+b 中,得 03324k b k b =+⎧⎪⎨=+⎪⎩,解得:66kb=-⎧⎨=⎩.故可得直线CP的函数表达式为y=-6x+6.【点睛】本题是一道一次函数综合题,考查了一次函数的性质、三角形的面积公式、待定系数法求解一次函数的解析式等知识点,解题关键是根据S△APC =12AC•y p求出点P的纵坐标,难度中等.27.(1)详见解析(2)详见解析(3)58【解析】【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可.(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证.(3)根据(2)的结论解答:与(2)同理可得:∠DPE=∠ABC=58°.【详解】解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS).(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP.∵PE=PB,∴∠CBP=∠E.∴∠CDP=∠E.∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE.∵AB ∥CD ,∴∠DCE=∠ABC .∴∠DPE=∠ABC .(3)解:在菱形ABCD 中,BC=DC ,∠BCP=∠DCP ,在△BCP 和△DCP 中,BC DC BCP DCP PC PC =⎧⎪∠=∠⎨⎪=⎩∴△BCP ≌△DCP (SAS ),∴∠CBP=∠CDP ,∵PE=PB ,∴∠CBP=∠E ,∴∠DPE=∠DCE ,∵AB ∥CD ,∴∠DCE=∠ABC ,∴∠DPE=∠ABC=58°,故答案为:58.28.-【解析】【分析】①直接利用完全平方公式将原式变形进而得出答案;②直接利用完全平方公式将原式变形进而得出答案.【详解】先阅读下列材料,再解决问题:①填上适当的数:====②解:原式==325=+=【点睛】本题主要考查了二次根式的性质与化简,正确应用完全平方公式时关键是记住公式形式,把握公式特征. 29.【解析】【分析】原式第一项利用平方根定义计算,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】解:原式=8-1+4-5=6.【点睛】本题考查实数的运算;零指数幂;负整数指数幂.30.(1)483x-≤≤;(2)x=25或2.【解析】【分析】(1)根据二次根式的被开方数为非负数,列不等式组求解;(2)根据a、b、c分别作直角三角形的斜边,由勾股定理分别求解.【详解】解:(1)由二次根式的性质,得80 34020xxx-≥⎧⎪+≥⎨⎪+≥⎩,解得48 3x-≤≤;(2)当c为斜边时,由a2+b2=c2,即8-x+3x+4=x+2,解得x=-10,当b为斜边时,a2+c2=b2,即8-x+x+2=3x+4,解得x=2,当a为斜边时,b2+c2=a2,即3x+4+x+2=8-x,解得x=2 5∵48 3x-≤≤∴x=25或2.【点睛】本题考查二次根式的性质及勾股定理的运用.在没有指定直角三角形的斜边的情况下,注意分类讨论.。
2022人教版初中八年级数学期末综合素质检测卷(二)含答案
八年级数学期末综合素质检测卷(二)含答案一、选择题(每题3分,共30分)1.【教材P104习题T1变式】下列运算正确的是()A.a·a2=a2B.(a5)3=a8C.(ab)3=a3b3D.a6÷a2=a3 2.【教材P4练习T2改编】下列长度的三条线段,不能..构成三角形的是() A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9 3.【教材P147习题T8变式】世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076 g.将数0.000 000 076用科学记数法表示为()A.7.6×10-9B.7.6×10-8C.7.6×109D.7.6×108 4.【教材P60练习T1拓展】在如图所示的4个图案中,属于轴对称图案的有()A.1个B.2个C.3个D.4个5.如果把分式xyx+y中的x和y都扩大为原来的5倍,那么分式的值() A.扩大为原来的10倍B.扩大为原来的5倍C.不变D.缩小为原来的1 56.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠A=60°,则∠BFC等于()A.100°B.110°C.120°D.150°(第6题)(第9题)(第10题)7.下列各式中,计算结果是x2+7x-18的是()A.(x-1)(x+18) B.(x+2)(x+9)C.(x-3)(x+6) D.(x-2)(x+9)8.已知y2+10y+m是完全平方式,则m的值是()A.25 B.±25 C.5 D.±59.如图,沿过点A的直线折叠这个直角三角形纸片的直角,使点C落在AB边上的点E处,折痕为AD.若BC=24,∠B=30°,则DE的长是() A.12 B.10 C.8 D.610.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.若式子(x-4)0有意义,则实数x的取值范围是______________.12.【教材P117练习T2(3)变式】分解因式:xy-xy3=________________.13.【教材P24练习T2改编】一个多边形的每个内角都是150°,这个多边形是________边形.14.如图,在△ABC和△DEF中,已知CB=DF,∠C=∠D,要使△ABC≌△EFD,还需添加一个条件,那么这个条件可以是____________.(第14题)(第15题)(第18题)15.【教材P56复习题T10改编】如图,在△ABC中,DE是AC的垂直平分线,AB=4,△ABD的周长为12,则BC=________.16.已知点P(1-a,a+2)关于y轴的对称点在第二象限,则a的取值范围是____________.17.已知3x+5y-5=0,则8x×32y的值是________.18.如图,在平面直角坐标系中,点A,B分别在x轴和y轴上,∠BAO=60°,在坐标轴上找一点P,使得△P AB是等腰三角形,则符合条件的P点共有________个.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.先化简后求值:(x+3)2-(x-4)(x+4).其中x=-2.20. 解方程:1-xx-2=12-x-2.21.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:∠B=∠D.22.如图,在平面直角坐标系中,每个小正方形的边长都为1个单位长度,△ABC 的顶点都在格点上,点A的坐标为(-3,2).请按要求完成下列问题:(1)把△ABC先向下平移7个单位长度,再向右平移7个单位长度,得到△A1B1C1,画出△A1B1C1;(2)画出△A1B1C1关于x轴对称的△A2B2C2;画出△A1B1C1关于y轴对称的△A3B3C3;(3)求△ABC的面积.23.如图,在△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC 于点F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=12∠ABC.24.某商店老板第一次用1 000元购进了一批口罩,很快销售完;第二次购进时发现每只口罩的进价比第一次上涨了2.5元.老板用2 500元购进了第二批口罩,所购进口罩的数量是第一次购进口罩数量的2倍,同样很快销售完,两批口罩的售价均为每只15元.(1)第二次购进了多少只口罩?(2)商店老板第一次购进的口罩有3%的损耗,第二次购进的口罩有5%的损耗,商店老板销售完这些口罩后是盈利还是亏本?盈利或亏本多少元?25.(1)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,点A,B分别是y 轴,x轴上的两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.①如图①,当点C的横坐标为-1时,求点A的坐标;②如图②,当点D恰好为AC中点时,连接DE,求证:∠ADB=∠CDE.(2)如图③,点A在x轴上,且A(-4,0),点B在y轴的正半轴上,分别以OB,AB为直角边在第一、二象限作等腰直角三角形BOD和等腰直角三角形ABC,且∠OBD=90°,∠ABC=90°,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化,请说明理由;若不变化,请求出BP的长.答案一、1.C 2.D 3.B 4.B 5.B 6.C7.D 8.A 9.C 10.C二、11.x ≠4 12.xy (1+y )(1-y )13.十二 14.AC =ED (答案不唯一)15.8 16.-2<a <1 17.32 18.6三、19.解:原式=x 2+6x +9-(x 2-42)=x 2+6x +9-x 2+16=6x +25,当x =-2时,原式=6×(-2)+25=-12+25=13.20.解:方程两边同时乘(x -2),得1-x =-1-2(x -2),解得x =2.检验:当x =2时,x -2=0,故此方程无实数根.21.证明:∵∠BCE =∠DCA ,∴∠BCE +∠ACE =∠DCA +∠ACE ,即∠ACB =∠ECD .在△ACB 和△ECD 中,⎩⎨⎧∠A =∠E ,AC =EC ,∠ACB =∠ECD ,∴△ACB ≌△ECD (ASA).∴∠B =∠D .22.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2,△A 3B 3C 3即为所求.(3)S △ABC =2×3-12×2×1-12×1×2-12×1×3=6-1-1-32=52.23.(1)解:∵∠AFD =155°,∴∠DFC =25°.∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠AED =90°.∴∠C =180°-90°-25°=65°.∵AB =BC ,∴∠A =∠C =65°.∴∠EDF =360°-65°-155°-90°=50°.(2)证明:如图,连接BF .∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC , ∠ABF =∠CBF =12∠ABC .∴∠CFD +∠BFD =90°.∵FD ⊥BC ,∴∠CBF +∠BFD =90°.∴∠CFD =∠CBF .∴∠CFD =12∠ABC .24. 点方法:利润问题的相关公式及其数量关系:1.相关公式.售价=进价×(1+利润率);售价=标价×折扣;利润率=利润进价×100%.2.基本数量关系.利润=售价-进价;利润=进价×利润率;销售额=销售量×销售单价.进价×(1+利润率)=标价×折扣.解:(1)设第一次购进了x只口罩,则第二次购进了2x只口罩,依题意,得1 000x=2 5002x-2.5,解得x=100.经检验,x=100是原方程的解,且符合题意.则2x=2×100=200.答:第二次购进了200只口罩.(2)[100×(1-3%)+200×(1-5%)]×15-1 000-2 500=805(元).答:商店老板销售完这些口罩后盈利,盈利805元.25.(1)①解:如图①,过点C作CF⊥y轴于点F,则∠CAF+∠ACF=90°.∵∠BAC=90°,即∠BAO+∠CAF=90°,∴∠ACF=∠BAO.又∵∠AFC=∠BOA=90°,AC=BA,∴△AFC≌△BOA(AAS).∴AO=CF=1.∴点A的坐标是(0,1).②证明:如图②,过点C作CG⊥AC,交y轴于点G.∵CG⊥AC,∴∠ACG=90°.∴∠CAG+∠AGC=90°.∵∠AOD=90°,∴∠ADO+∠DAO=90°.∴∠AGC=∠ADO.又∵∠ACG=∠BAD=90°,AC=BA,∴△ACG≌△BAD(AAS).∴CG=AD=CD.∵∠BAC=90°,AB=AC,∴∠ACB=45°.又∵∠ACG=90°,∴∠DCE=∠GCE=45°.又∵CD=CG,CE=CE,∴△DCE≌△GCE(SAS).∴∠CDE=∠CGE.∴∠ADB=∠CDE.(2)解:BP的长度不变化.如图③,过点C作CH⊥y轴于点H.∵∠ABC=90°,∴∠CBH+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBH=∠BAO.又∵∠CHB=∠AOB=90°,BC=AB,∴△CBH≌△BAO(AAS).∴CH=BO,BH=AO=4.∵BD=BO,∴CH=BD.又∵∠CHP=∠DBP=90°,∠CPH=∠DPB,∴△CPH≌△DPB(AAS).∴BP=HP=12BH=2.。
八年级数学下册期末考试卷(附带有答案)
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
2022-2023学年度第二学期八年级数学期末考试试题附答案
八年级(下)期末试卷数学注意事项:本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)1.化简4的结果是A.-2 B.2 C.-4 D.42.若分式xx-1有意义,则x的取值范围是A.x>0 B.x≠0 C.x>1 D.x≠1 3.在下列事件中,是必然事件的是A.3天内将下雨B.367人中至少有2人的生日相同C.买一张电影票,座位号是奇数号D.在某妇幼保健医院里,下一个出生的婴儿是女孩4.南京奥林匹克体育中心是亚洲A级体育馆、世界第五代体育建筑的代表.如图是体育馆俯视图的示意图.下列说法正确的是A.这个图形是轴对称图形,但不是中心对称图形B.这个图形是中心对称图形,但不是轴对称图形C .这个图形既是中心对称图形,也是轴对称图形D .这个图形既不是中心对称图形,也不是轴对称图形5.已知点P(x1,y1)、Q(x2,y2)在反比例函数y =-1x 的图像上,若y1<y2<0,则x1与x2的大小关系是 A .x1<x2B .x1>x2C .x1=x2D .无法确定6.如图,在四边形ABCD 中,AD//BC ,AD =6cm ,BC =12cm ,点P 从A 出发以1cm/s 的速度向D 运动,点Q 从C 出发以2cm/s 的速度向B 运动.两点同时出发,当点P 运动到点D 时,点Q 也随之停止运动.若设运动的时间为t 秒,以点A 、B 、C 、D 、P 、Q 任意四个点为顶点的四边形中同时存在两个平行四边形,则t 的值是 A .1B .2C .3D .4(第6题)(第4题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 7.化简:2aa2=▲.8.若式子x -2在实数范围内有意义,则x 的取值范围是▲.9.方程(x -1)-1=2的解是▲.10.某种油菜籽在相同条件下发芽试验的结果如下:这种油菜籽发芽的概率的估计值是▲.(结果精确到0.01) 11.比较大小:4-13▲12.(填“>”、“<”或“=”)12.如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =12cm ,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为E ,点F 是BC 的中点,则EF =▲cm .13.如图,在△ABC 中,∠C =90°,△ABC 绕点A 按顺时针方向旋转26°得到△AED ,若AD//BC ,则∠BAE =(第13题)A BCD E(第14题) ABC D EF(第12题)14.如图,正比例函数y =k1x 与反比例函数y =k2x 的图像交于点A 、B ,若点A 的坐标为(1,2),则关于x 的不等式k1x >k2x 的解集是 ▲ .15.如图,在矩形纸片ABCD 中,AD =3,将矩形纸片折叠,边AD 、边点A 与点C 恰好落在同一点处, ▲ .16.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕点C 顺时针旋转90°得到△A'B'C ,若P 为边AB 上一动点,旋转后点P 的对应点为点P',则线段PP'长度的取值范围是 ▲ . 三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(第15题)(第16题)A C BB'A'(1)18×3÷2;(2)8+313-2+32.18.(5分)先化简,再求值:a2-1a2-2a +1÷a +1a -1-a -1a +1,其中a =-12.19.(8分)解方程:(1)9x =8x -1; (2)x -1x -2-3=1x -2.20.(6分)疫情期间,甲、乙两工厂每小时共做3500个KN95口罩,甲工厂做1600个KN95口罩所用的时间与乙工厂做1200个KN95口罩所用的时间相等.甲、乙两工厂每小时各做多少个KN95口罩?21.(6分)为了调查某校八年级360名学生的身高情况,随机抽取了20名男生与20名女生的身高数据,得到下列图表(图表中身高分组153cm~158cm 表示大于或等于153cm 而小于158cm ,其他类同):身高分组(cm ) 频数 153~158 1 158~163 2 163~168 6 168~173 7 173~178 3 178~183 1(1)写出本次调查的总体与样本;(2)根据调查结果,绘制抽取的40名学生的身高频数分布直方图; 身高/cm频数 014 12 10 8 6 4 2 163 183 153 178 158 173 168 153 cm~158 cm158 cm~163 cm168 cm~173 cm173 cm~178 cm 163 cm~168 cm八年级20名女生身高人数分布扇形统计图 八年级20名男生身高频数分布表(3)估计该校八年级学生身高在163cm~183cm范围内的学生人数.22.(5分)已知∠MAN,按要求完成下列尺规作图(不写作法,保留作图痕迹):(1)如图①,B、C分别在射线AM、AN上,求作□ABDC;(2)如图②,点O是∠MAN内一点,求作线段PQ,使P、Q(第22题图①)(第22题图②)23.(7分)在5×5的方格纸中,每个小正方形的边长为1,我们把三个顶点都是格点的三角形称为格点三角形.按要求完成下列问题:(1)在图①中,以AB为边画一个格点三角形,使其为等腰三角形;(2)在图②中,以AB为边画一个格点三角形,使其为钝角三角形且周长为6+32;(3)如图③,若以AB为边的格点三角形的面积为3,则这个三角形的周长为▲.24.(8分)如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=25,直接写出四边形AFCE的面积.EADO25.(8分)如图,点A 、B 是反比例函数y =8x的图像上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =-2x 的图像于点C 、D ,四边形ACBD 是平行四边形.(1)若点A 的横坐标为-4.①直接写出线段AC 的长度; ②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD26.(9分)已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ▲ ;(第26题图①)C D AB (E 、F )(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时; 情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: ▲ .(第26题图②)FAC D EB(第26题图③)C D ABE F八年级(下)期末试卷 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每题2分,共20分) 7.2a8.x ≥29.x =1.510.0.9511.< 12.413.38 14.-1<x <0或x >115.6+2316.1225≤PP'≤42三、解答题(本大题共10小题,共68分)17.(6分) 解:(1)原式=54÷2…………………………………………………………………1分=27………………………………………………………………………2分=33.……………………………………………………………………3分 (2)原式=22+3-2+32……………………………………………………………5分=2+332.………………………………………………………………………6分18.(5分)解:原式=(a +1)(a -1)(a -1)2×a -1a +1-a -1a +1……………………………………………………2分 =1-a -1a +1=2a +1.…………………………………………………………………………3分当a=-12时,原式=2-12+1=4.………………………………………………………5分19.(8分)解:(1)方程两边同乘x(x-1),得9(x-1)=8x.………………………………………………………2分解这个整式方程,得x=9.………………………………………………………………3分检验:当x=9时,x(x-1)≠0,x=9是原方程的解.…………………………4分(2)方程两边同乘(x-2),得(x-1)-3(x-2)=1.………………………………………………6分解这个整式方程,得x=2.………………………………………………………………7分检验:当x=2时,x-2=0,x=2是增根,原方程无解.………………………8分20.(6分)解:设甲工厂每小时做x个KN95口罩.根据题意,得1600x=12003500-x,……………………………………………………………2分解这个方程,得x=2000.…………………………………………………………………4分经检验,x=2000是所列方程的解.当x=2000时,3500-x=1500.…………………………………………………………5分答:甲、乙两工厂每小时各做2000个、1500个KN95口罩.………………………6分21.(6分)解:(1)某校八年级360名学生的身高情况的全体是总体;抽取的20名男生与20名女生的身高情况是总体的一个样本;……………………………………………2分(2)如图所示:…………………………………………………………………………4分(3)(14+11+5+1)÷40×360=279(人)答:估计该校八年级学生身高在163cm~183cm范围内的学生人数约为279人.………………………………………………………………………………………6分22.(解四所(所求.………………………………………………………5分(第22题图①)(第22题图②)23.(7分)解:(1)如图①所示;(画出一个符合要求的三角形即可)……………………………2分(2)如图②所示;(画出一个符合要求的三角形即可)………………………………4分(3)32+10+2,42+25或32+34+2.……………………………………7分(第23题图①)AB(第23题图②)AB24.(8分)(1)证明∵四边形ABCD 是菱形, ∴AE//CF , ∴∠AEO =∠CFO , ∵点O 是AC 的中点, ∴OA =OC =12AC ,∵∠AOE =∠COF , ∴△AOE≌△COF .………………………………………………………………………3分∴OE =OF =12EF ,∵OA =OC , ∴四边形AFCE是平行四边形,…………………………………………………………4分∵∠OAE =∠AEO , ∴OA =OE , ∴AC =EF , ∴□AFCE是矩DAOE(第24题)形.………………………………………………………………………6分(2)8.……………………………………………………………………………………8分 25.(8分)解:(1)①AC的长度为2.5;……………………………………………………………2分②设点B 的横坐标为a . ∵BD ⊥x 轴, ∴xB =xD =a ,∵点B 、D 分别在反比例函数y =8x 、y =-2x 的图像上,∴yB =8a ,yD =-2a ,∴BD=10a,………………………………………………………………………………4分 ∵四边形ACBD 是平行四边形, ∴AC=BD=2.5,…………………………………………………………………………5分∴10a=2.5, 解这个方程,得a =4,经检验,a=4是原方程的解,∴点B的坐标为(4,2).…………………………………………………………………6分(2)②⑤.…………………………………………………………………………………8分26.(9分)解:(1)DE=2 CF;……………………………………………………………………3分(2)在情况1与情况2下都相同.……………………………………………………4分选择情况1证明:如图①,设BC与DF的交点为O,连接BE,过C作CG⊥CF 交DF于G.∵四边形ABCD是正方形,∴∠DAB=∠BCD=90°,AB=BC=CD=AD=AE,∵BF⊥DF,∴∠BFD=90°,∴∠CBF+∠BOF=∠CDF+∠COD=90°,∵∠BOF=∠COD,∴∠CBF=∠CDF,∵CG⊥CF,∴∠FCG=90°,FA CDEBG(第26题图①)O∴∠BCF +∠GCO =∠DCG +∠GCO =90°, ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°+12∠DAE ,∴∠BEF =180°-∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°, ∴BF=EF ,……………………………………………….………………………………6分∴EF =DG ,∴DE =DG +EG =EF +EG =FG , ∵∠FCG =90°,CF =CG , ∴FG =2CF ,∴DE=2CF .…………………………………………….………………………………7分选择情况2证明:如图②,设BF 与CD 的交点为O ,连接BE ,过C 作CG ⊥CF交DF 延长线于G .∵四边形ABCD 是正方形,∴∠DAB =∠BCD =90°,AB =BC =CD =AD =AE , ∵BF ⊥DF , ∴∠BFD =90°,∴∠CBF +∠BOC =∠CDF +∠DOF =90°, ∵∠BOC =∠DOF , ∴∠CBF =∠CDF , ∵CG ⊥CF , ∴∠FCG =90°,∴∠BCO +∠DCF =∠FCG +∠DCF , ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°-12∠DAE ,∴∠BEF =∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°,O G(第26题图②)CDABEF∴BF=EF,……………………………………………….………………………………6分∴EF=DG,∴DE=EF-DF=DG-DF=FG,∵∠FCG=90°,CF=CG,∴FG=2CF,∴DE=2 CF.…………………………………………….………………………………7分(3)AF+CF=2DF或|AF-CF|=2 DF.………….…………………………………9分。
2022届黑龙江省哈尔滨市八年级第二学期期末教学质量检测数学试题含解析
2022届黑龙江省哈尔滨市八年级第二学期期末教学质量检测数学试题一、选择题(每题只有一个答案正确)1.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A .1B .2C .3D .42.一条直线y=kx+b ,其中k+b=﹣5、kb=6,那么该直线经过A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限3.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )A .m≠2,n≠2B .m =2,n =2C .m≠2,n =2D .m =2,n =04.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 5.不等式5x ﹣2>3(x+1)的最小整数解为( )A .3B .2C .1D .﹣26.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A 的全程是25千米,但交通比较拥堵,路线B 的全程比路线A 的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B 的全程能比走路线A 少用15分钟.若设走路线A 时的平均速度为x 千米/小时,根据题意,可列分式方程( ) A .25321.6x x -=15 B .3225151.6x x -= C .322511.64x x -= D .253211.64x x -= 7.如图,将长方形纸片ABCD 折叠,使点B 与点D 重合,折痕为EF ,已知AB =6cm ,BC =18cm ,则Rt △CDF 的面积是( )A .27cm 2B .24cm 2C .22cm 2D .20cm 28.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:x 甲=x 乙=80,s =240,s =180,则成绩较为稳定的班级是( ).A .甲班B .两班成绩一样稳定C .乙班D .无法确定)A.20 B.16 C.12 D.810.不等式组43128164xx x+>⎧⎨-≤-⎩的最小整数解是()A.0 B.-1 C.1 D.2二、填空题11.如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)12.在△ABC中,BC=a.作BC边的三等分点C1,使得CC1:BC1=1:2,过点C1作AC的平行线交AB于点A1,过点A1作BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2:BC2=1:2,过点C2作AC 的平行线交AB于点A2,过点A2作BC的平行线交A1C1于点D2;如此进行下去,则线段A n D n的长度为______________.13.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.14.如图,在矩形纸片ABCD 中,AB=12,BC=5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A′处,则AE 的长为 .15.计算:23()6a b b a =_____________. 16.把多项式25x mx ++因式分解成()()51x x ++,则m 的值为________.17.如图,平行四边形ABCO 的顶点O ,A ,C 的坐标分别是(0,0),(a ,0),(b ,c),则顶点坐标B 的坐标为_________.三、解答题18.如图,菱形ABCD 的对角线AC 和BD 交于点O ,10AB =,60ABC ∠=,求AC 和BD 的长.19.(6分)如图,在△ABC 中,∠CAB 的平分线AD 与BC 垂直平分线DE 交于点D ,DM ⊥AB 于点M ,DN ⊥AC ,交AC 的延长线于点N ,求证:BM=CN .20.(6分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度y (千米/分钟)与时间x (分钟)的函数关系如图所示.(1)当05x ≤≤时,求y 关于x 工的函数表达式,(2)求点C 的坐标.(3)求高铁在CD 时间段行驶的路程.21.(6分)对于给定的两个“函数,任取自变量x 的一个值,当x<1时,它们对应的函数值互为相反数;当x≥1时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x-4,它的相关函数为()()4141x x y x x ⎧-+⎪=⎨-≥⎪⎩<. (1)一次函数y= -x+5的相关函数为______________.(2)已知点A(b-1,4),点B 坐标(b+3,4),函数y=3x-2的相关函数与线段AB 有且只有一个交点,求b 的取值范围.(3)当b+1≤x≤b+2时,函数y=-3x+b-2的相关函数的最小值为3,求b 的值.22.(8分)如图,王华在晚上由路灯A 走向路灯B ,当他走到点P 时,发现身后 他影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点O 时 ,发现身前他影子的顶部刚好接触到路灯B 的底部,已知王华的身高是1.6m ,如果两个路灯之间的距离为18m ,且两路灯的高度相同,求路灯的高度.23.(8分)A、B两店分另选5名销售员某月的销售额(单位:万元)进行分析,数据如下图表(不完整):平均数中位数众数A店8.5B店8 10(1)根据图a数据填充表格b所缺的数据;(2)如果A店想让一半以上的销售员达到销售目标,你认为月销售额定为多少合适?说明理由.24.(10分)如图,以△ABC的三边为边在BC同侧分别作等边三角形,即△ABD,△BCE,△ACF.(1)四边形ADEF为__________四边形;(2)当△ABC满足条件____________时,四边形ADEF为矩形;(3)当△ABC满足条件____________时,四边形ADEF为菱形;(4)当△ABC满足条件____________时,四边形ADEF不存在.25.(10分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,求证:∠AEF=90°.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0,∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选:B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.2.D【解析】∵k +b=-5,kb=6,∴kb 是一元二次方程2x 5x 60++=的两个根.解得,x 2=-或x 3=-.∴k <1,b <1.①当k 0>,b 0>时,函数y=kx+b 的图象经过第一、二、三象限;②当k 0>,b 0<时,函数y=kx+b 的图象经过第一、三、四象限;③当k 0<,b 0>时,函数y=kx+b 的图象经过第一、二、四象限;④当k 0<,b 0<时,函数y=kx+b 的图象经过第二、三、四象限.∴直线y=kx+b 经过二、三、四象限.故选D .3.C【解析】【分析】根据y=kx+b (k 、b 是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m ﹣2)x n ﹣1+n 是一次函数,∴m ﹣2≠0,n ﹣1=1,∴m≠2,n=2,故选C .【点睛】本题考查了一次函数,y=kx+b ,k 、b 是常数,k≠0,x 的次数等于1是解题关键.4.D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子. 5.A【解析】【分析】先求出不等式的解集,在取值范围内可以找到最小整数解.【详解】5x ﹣2>3(x+1),移项、合并同类项得:2x>5系数化为1得:x>52,∴不等式5x﹣2>3(x+1)的最小整数解是3;故选:A.【点睛】本题考查了一元一次不等式的整数解.解答此题要先求出不等式的解集,再确定最小整数解.解不等式要用到不等式的性质.6.D【解析】解:设走路线A时的平均速度为x千米/小时,根据题意得:25x﹣321.6x=14.故选D.7.B【解析】【分析】求Rt△CDF的面积,CD边是直角边,有CD=AB=6cm,只要求出边FC即可.由于点B与点D重合,所以有FD=BF=BC-FC=18-FC,利用勾股定理可求出FC了.【详解】解:设FC=x,Rt△CDF中,CD=6cm,FC=x,又折痕为EF,∴FD=BF=BC-FC=18-FC=18-x,Rt△CDF中,DF2=FC2+CD2,即(18-x)2=x2+62,解得x=8,∴面积为118624 22FC CD⨯⨯=⨯⨯=故选:B.【点睛】解决本题的关键是根据折叠及矩形的性质利用勾股定理求得CF的长度;易错点是得到DF与CF的长度和为18的关系.8.C【解析】【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【详解】∴成绩较为稳定的班级是乙班.故答案选C.【点睛】本题考查的知识点是方差,解题的关键是熟练的掌握方差. 9.B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.10.A【解析】【详解】解:解不等式组43128164xx x+>⎧⎨-≤-⎩可得142x-<≤,在这个范围内的最小整数为0,所以不等式组43128164xx x+>⎧⎨-≤-⎩的最小整数解是0,故选A 二、填空题【解析】【分析】利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.【详解】解:由折线统计图得乙运动员的成绩波动较大,所以S甲2<S乙2故选<【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.12.123nna-【解析】【分析】根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.【详解】∵A1C1∥AC,A1D1∥BC,∴四边形A1C1CD1为平行四边形,∴A1D1=C1C=13a=11123a-,同理,四边形A2C2C1D2为平行四边形,∴A2D2=C1C2=29a=21223a-,……∴线段A n D n=123nna-,故答案为:123nna-.【点睛】本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.【解析】【详解】试题分析:∵把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.14.103【解析】试题分析:∵AB=12,BC=1,∴AD=1.∴BD 13=.根据折叠可得:AD=A′D=1,∴A′B=13-1=2.设AE=x ,则A′E=x ,BE=12-x ,在Rt △A′EB 中:()22212x x 8-=+,解得:10x 3=. 15.32b a【解析】【分析】根据积的乘方和整式的运算法则,先算乘方再算乘法即可得出答案【详解】222393662a b a b b b a b a a⎛⎫⋅=⋅= ⎪⎝⎭ 【点睛】本题考查的是积的乘方和整式的运算法则,能够准确计算是解题的关键。
人教版八年级数学下册期末测试卷含答案
人教版八年级数学下册期末测试卷含答案人教版八年级数学下册期末测试卷02一、选择题(每小题3分,共30分)1.在函数y=(x+2)/(x-1)中,自变量x的取值范围是()A。
x≥-2且x≠1B。
x≤2且x≠1C。
x≠1D。
x≤-22.下列各组二次根式中,可以进行合并的一组是()A。
12与72B。
63与78C。
8√3与22√xD。
18与63.下列命题中,正确的是()A。
梯形的对角线相等B。
菱形的对角线不相等C。
矩形的对角线不能互相垂直D。
平行四边形的对角线可以互相垂直4.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长为()A。
20B。
24C。
28D。
405.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是()A。
AE=CFB。
BE=FDC。
BF=DED。
∠1=∠26.已知一次函数y=kx+b(k≠0)的图象经过两点,则它不经过(2,-1)的象限是()A。
第一象限B。
第二象限C。
第三象限D。
第四象限7.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据。
若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和可能是()A。
20B。
28C。
30D。
318.园林队在某公园进行绿化,中间休息了一段时间已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A。
40平方米B。
50平方米C。
80平方米D。
100平方米9.如图,在△ABC中,AC=BC,D、E分别是边AB、AC 的中点,△ADE≌△CFE,则四边形ADCF一定是()A。
矩形B。
菱形C。
正方形D。
梯形10.XXX骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合XXX行驶情况的大致图象是()无法提供图象)二、填空题(每小题3分,共30分)11.计算:(48-327)÷3=_________.12.一次函数y = (m+2)x + 1,若y随x的增大而增大,则m的取值范围为什么?答案:m。
初中数学北师大版八年级下册期末-章节测试习题(2)
章节测试题1.【题文】(1)计算(2)解不等式组,并写出不等式组的非负整数解。
(3)解分式方程:【答案】①+2;②0、1;③原方程无解【分析】(1)首先计算负指数次幂,0次幂,二次根式的混合运算,去掉绝对值符号,化简二次根式,然后合并同类二次根式即可求解;(2)首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.(3)中因为x2-4=(x+2)(x-2),所以最简公分母为(x+2)(x-2),确定方程的最简公分母后,方程两边乘最简公分母,把分式方程转化为整式方程求解..【解答】解(1)原式=3-1-(1-)+-1=3-1-1++2-1=+2(2)解不等式①得,x≤1,解不等式②得,x<4,所以不等式组的解集是x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.(3)方程两边同乘(x+2)(x-2),得:(x-2)2=(x+2)2+16,整理解得x=-2.经检验x=-2是增根,故原方程无解.2.【题文】已知,求的值. 【答案】-【分析】将分式通分、化简,再将已知条件变形,整体代入.【解答】解:=-÷=-=-∵∴1-即1-=1-∴-=-∴原式=-3.【题文】对x,y定义一种新运算T,规定:T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,1)=2.5,T(4,-2)=4.(1)求a,b的值;(2)若关于m的不等式组恰好有2个整数解,求实数P的取值范围.【答案】(1)a,b的值分别为3和2;(2)实数P的取值范围是≤p<2【分析】(1)根据题意把T(1,1)=2.5,T(4,-2)=4代入T(x,y)=即可求出ab的值;(2)根据题意列出关于m的不等式,分别解出来再根据m有两个整数解来确定p的取值.【解答】(1)根据题意得:,①+②得:3a=9,即a=3,把a=3代入①得:b=2,故a,b的值分别为3和2;(2)根据题意得:,由①得:m≤,由②得:m>p-3,∴不等式组的解集为p-3<m≤,∵不等式组恰好有2个整数解,即m=0,1,∴-1≤p-3<0,解得≤p<2,即实数P的取值范围是≤p<2.4.【题文】如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0),(1)请直接写出点A关于原点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,求出A′点的坐标。
2022-2023学年华师大版数学八年级第二学期期末达标测试卷(含答案)
第二学期期末达标测试卷一、选择题(本题共10小题,每小题4分,共40分)1.下列计算正确的是( )A.(2a2)3=6a6B.-a2b2·3ab3=-3a2b5C.ba-b+ab-a=-1 D.a2-1a·1a+1=-12.某市中小学开展了红色经典故事演讲比赛,某参赛小组6名同学的成绩分别为85,82,86,82,83,92,关于这组数据,下列说法错误的是( )A.众数是82 B.中位数是84 C.方差是84 D.平均数是85 3.下列不正确的是( )A.某种细胞的直径是0.000 067 cm,将0.000 067用科学记数法可表示为6.7×10-5B.若函数y=x+13-|x|有意义,则x≠±3C.分式ax2-25ay2bx-5by化为最简分式为ax+5aybD.(2 023-1)0-(12 024)-1=2 0254.已知一次函数y1=ax+b与反比例函数y2=kx的图象如图所示,当y1<y2时,x的取值范围是( )A.x<2 B.x>5 C.2<x<5 D.0<x<2或x>5(第4题) (第7题)5.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A .k >1,b <0B .k >1,b >0C .k >0,b >0D .k >0,b <06.甲、乙两人同时分别从A 、B 两地沿同一条公路骑自行车到C 地.已知A 、C两地间的距离为110 km ,B 、C 两地间的距离为100 km ,甲骑自行车的平均速度比乙快2 km/h ,结果两人同时到达C 地.求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x km/h.由题意列出方程,其中正确的是( )A.110x +2=100x B.110x =100x +2 C.110x -2=100x D.110x =100x -27.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 的最小值是( )A .2B .3C .4D .58.如图,点O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y =k x(x <0)的图象经过顶点B ,则k 的值为( )A .-12 B .-27 C .-32 D .-36(第8题) (第9题) (第10题)9.如图,在正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE沿AE 对折至△AFE 处,延长EF 交BC 于点G ,连结AG ,CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③S △EGC =S △AFE ;④∠AGB +∠AED =145°,其中正确的个数是( )A .1B .2C .3D .410.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的函数关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .①②C .①③D .②③二、填空题(本题共6小题,每小题4分,共24分)11.函数y =12x -4中,自变量x 的取值范围是________.12.9+(-1)2 021+(6-π)0-(-12)-2 =________.13.已知点(3,5)在直线y =ax +b (a ,b 为常数,且a ≠0)上,则ab -5的值为________.14.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们成绩的平均数及方差如下表:甲乙平均数(环)9.59.5方差0.0350.015请你根据上表中的数据选一人参加比赛,较适合的人选是________.15.如图,在矩形ABCD 中,AB =9,AD =12,对角线AC ,BD 相交于点O ,过点O 作OE ⊥AC 交AD 于点E ,则ED 的长为________.(第15题)16.如图,点A ,B 是反比例函数y =12x的图象上的两个动点,过点A ,B 分别作AC ⊥x 轴,BD ⊥x 轴,分别交反比例函数y =-3x 的图象于点C ,D ,得四边形ACBD 是平行四边形.当点A ,B 不断运动时,现有以下结论:①▱ACBD 可能是菱形;②▱ACBD 不可能是矩形;③▱ACBD 可能是正方形;④▱ACBD 不可能是正方形.其中正确的是________.(写出所有正确结论的序号)(第16题)三、解答题(本题共9小题,共86分)17.(8分)解方程:x 3x -3-1x -1=1.18.(8分)化简2x x +1-2x +4x 2-1÷x +2x 2-2x +1,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值.19.(8分)如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,MA =MC ,连结AN ,CD .(1)求证:CD =AN ;(2)若AC ⊥DN ,∠CAN =30°,MN =1,求AM 的长.(第19题)20.(8分)饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温y (℃)与开机后用时x (分)满足一次函数关系,当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y (℃)与开机后用时x (分)成反比例关系,当水温降至20℃时,饮水机又自动开始加热……重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当0≤x <8时,求水温y (℃)与开机后用时x (分)的函数关系式;(2)求图中t 的值;(3)若在通电开机后立即外出散步,请你预测散步42分回到家时,饮水机内水的温度约为多少摄氏度?(第20题)21.(8分)如图,AC是平行四边形ABCD的对角线,满足AC⊥AB.(1)尺规作图:按要求完成下列作图,不写作法,保留作图痕迹,并标明字母.①作线段AC的垂直平分线l,分别交AD,BC于点E,F,②连结CE;(2)在(1)的条件下,已知∠ABC=64°,求∠DCE的度数.(第21题)22.(10分)2022年春季,安溪县初中数学学科教学联盟组编写“县本小单元分层作业”测试卷,现将某试点学校八年级甲、乙两位选做“强基”层次的同学的10次测试成绩,绘制统计图如图.(第22题)(1)根据图中提供的数据列出如下统计表:平均成绩(分)众数(分)甲80b乙a90则a=________,b=________.(2)现在要从这两位同学中选派一位参加数学素养竞赛,根据以上信息你认为应该选派谁?请简要说明理由.23.(10分)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元,今年该型号自行车每辆售价预计比去年降低200元,若该型号自行车的销售数量与去年相同,则今年的销售总额将比去年减少10%.(1)A型自行车去年每辆售价为多少元?(2)该车行今年计划新进一批A型自行车和新款B型自行车共60辆,且B型自行车的进货数量不超过A型自行车数量的2倍.已知A型自行车和B型自行车的进货价格分别为1 500元和1 800元,计划B型自行车销售价格为2 400元,应如何组织进货才能使这批自行车获利最多?24.(12分)如图,四边形ABCD 为正方形.点A 的坐标为(0,2),点B 的坐标为(0,-3),反比例函数y =k x的图象经过点C ,一次函数y =ax +b 的图象经过点A 、C .(1)求反比例函数与一次函数的表达式;(2)若点P 是反比例函数图象上的一点,△OAP 的面积恰好等于正方形ABCD 的面积,求点P 的坐标.(第24题)25.(14分)如图①,在正方形ABCD 和正方形BEFG 中,点A ,B ,E 在同一条直线上,P 是线段DF 的中点,连结PG ,PC .(1)探究PG 与PC 的位置关系(写出结论,不需要证明);(2)如图②,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且∠ABC =∠BEF =60°.探究PG 与PC 的位置关系,写出你的猜想并加以证明;(3)如图③,将图②中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的边BG 恰好与菱形ABCD 的边AB 在同一条直线上,问题(2)中的其他条件不变.你在(2)中得到的结论是否发生变化?写出你的猜想并加以证明.(第25题)答案一、1.C 2.C 3.D 4.D 5.A 6.A 7.B 8.C 9.C10.A二、11.x ≠2 12.-1 13.-13 14.乙 15.21816.①②④ 点拨:设A (a ,12a ),B (b ,12b),则C (a ,-3a ),D (b ,-3b),易知AC =BD ,∴-15a =15b.∴a =-b .∴-3a =3b ≠12b.∴BC 不与x 轴平行.∴AC 与BC 不可能垂直.∴▱ACBD 不可能是矩形,▱ACBD 不可能是正方形.故③错误,②④正确.∵随着|a |不断变小,AC 越来越大,BC 越来越小,∴AC 有可能与BC 相等,故①正确.故答案为①②④.三、17.解:去分母,得x -3=3x -3,解得x =0.检验:当x =0时,3x -3=-3≠0,所以x =0是原方程的解.18.解:原式=2x x +1-2(x +2)(x +1)(x -1)·(x -1)2x +2=2xx +1-2(x -1)x +1=2x -2x +2x +1=2x +1.因为不等式x ≤2的非负整数解有0,1,2,且当x =1时原式无意义,所以x 可取0或2.所以当x =0时,原式=20+1=2(或当x =2时,原式=22+1=23).19.(1)证明:∵CN ∥AB ,∴∠DAC =∠NCA .在△AMD 和△CMN 中,{∠DAM =∠NCM ,MA =MC ,∠AMD =∠CMN ,∴△AMD ≌△CMN .∴AD =CN .又∵AD ∥CN ,∴四边形ADCN 是平行四边形.∴CD =AN .(2)解:∵AC ⊥DN ,四边形ADCN 是平行四边形,∴四边形ADCN 是菱形,∴AD =AN ,∠CAD =∠CAN =30°.∴∠DAN =60°.∴△DAN 是等边三角形.∴AN =DN .又∵DN =2MN ,MN =1,∴AN =DN =2.∴AM =AN 2-MN 2= 3.20.解:(1)当0≤x <8时,设水温y (℃)与开机后用时x (分)的函数关系式为y =kx+b (k ≠0),将(0,20),(8,100)代入y =kx +b (k ≠0),得{b =20,8k +b =100,解得{k =10,b =20.∴当0≤x <8时,水温y (℃)与开机后用时x (分)的函数关系式为y =10x +20.(2)当8≤x ≤t 时,设水温y (℃)与开机后用时x(分)的函数关系式为y =m x (m ≠0),将(8,100)代入y =m x (m ≠0),得100=m 8,解得m =800,∴当8≤x ≤t 时,水温y (℃)与开机后用时x (分)的函数关系式为y =800x .当800x =20时,x =40,∴图中t 的值为40.(3)∵42-40=2(分)<8分,∴当x=2时,y=2×10+20=40.答:散步42分回到家时,饮水机内水的温度约为40℃.21.解:(1)如图.(第21题)(2)∵四边形ABCD是平行四边形,∴∠ABC+∠BAD=180°,AB∥CD.又∵∠ABC=64°,∴∠BAD=180°-∠ABC=180°-64°=116°.∵AC⊥AB,∴∠BAC=90°.∴∠DAC=∠BAD-∠BAC=116°-90°=26°.∵AB∥CD,∴∠ACD=∠BAC=90°.∵EF是AC的垂直平分线,∴AE=CE.∴∠EAC=∠ACE=26°.∴∠DCE=∠DCA-∠ECA=90°-26°=64°.22.解:(1)80;80(2)应该选派乙,理由如下:甲和乙的平均成绩一样,而甲成绩的众数是80分,乙成绩的众数是90分,即乙成绩的众数比甲大,所以应该选派乙.23.解:(1)设A型自行车去年每辆售价为x元,则今年每辆售价为(x-200)元,由题意,得80 000x=80 000×(1-10%)x-200,解得x=2 000.经检验,x=2 000是原方程的解.答:A型自行车去年每辆售价为2 000元.(2)设今年新进A 型自行车a 辆,获利y 元.由题意,得y =(2 000-200-1 500)a +(2 400-1 800)·(60-a )=-300a +36 000.因为B 型自行车的进货数量不超过A 型自行车数量的2倍,所以60-a ≤2a .所以a ≥20.因为y =-300a +36 000,-300<0,所以y 随a 的增大而减小,所以当a =20时,y 最大.此时B 型自行车的进货数量为60-20=40(辆).答:当新进A 型自行车20辆,B 型自行车40辆时,才能使这批自行车获利最多.24.解:(1)∵点A 的坐标为(0,2),点B 的坐标为(0,-3),∴AB =5.∵四边形ABCD 为正方形,∴点C 的坐标为(5,-3).∵反比例函数y =k x的图象经过点C ,∴-3=k 5,解得k =-15.∴反比例函数的表达式为y =-15x.∵一次函数y =ax +b 的图象经过点A 、C ,∴{b =2,5a +b =-3,解得{a =-1,b =2.∴一次函数的表达式为y =-x +2.(2)设点P 的坐标为(x ,y ).∵△OAP 的面积恰好等于正方形ABCD 的面积,∴12×OA ·|x |=52.∴12×2·|x |=25.解得x =±25.当x =25时,y =-1525=-35;当x =-25时,y =-15-25=35.∴点P 的坐标为(25,-35)或(-25,35).25.解:(1)PG 与PC 的位置关系是PG ⊥PC .(2)猜想:PG 与PC 的位置关系是PG ⊥PC .证明:如图①,延长GP 交DC 于点H .∵P 是线段DF 的中点,∴FP =DP .由题意可知DC ∥GF ,∴∠GFP =∠HDP .又∵∠GPF =∠HPD ,∴△GFP ≌△HDP .∴GP =HP ,GF =HD .∵四边形ABCD 是菱形,∴CD =CB .∵四边形BEFG 是菱形,∴GB =GF .∴GB =HD .∴CG =CH .又∵GP =HP ,∴PG ⊥PC .(3)猜想:在(2)中得到的结论仍成立.证明:如图②,延长GP 到点H ,使PH =PG ,连结CH ,CG ,DH .∵P 是线段DF 的中点,∴FP =DP .又∵∠GPF =∠HPD ,∴△GFP ≌△HDP .∴GF =HD ,∠GFP =∠HDP .由题意易知CD ∥EF ,∴∠PFE =∠PDC .又易知∠GFP +∠PFE =180°-60°=120°,∴∠CDH =∠HDP +∠PDC =∠GFP +∠PFE =120°.∵四边形ABCD 是菱形,∴CD =CB .∵点A ,B ,G 在一条直线上,∠ABC =60°,∴∠GBC =120°.∴∠CDH =∠GBC .∵四边形BEFG 是菱形,∴GF =GB ,∴HD =GB ,∴△HDC ≌△GBC ,∴CH =CG .又∵PH =PG ,∴PG ⊥PC .(第25题)。
贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)
黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。
人教版八年级数学下册期末测试卷(二)(原卷+解析)
人教版八年级数学下册期末测试卷(二)一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12 2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.23.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B 4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5 7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=度.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为分.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是.(填序号)16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在组;(2)4月份生产的该产品抽样检测的合格率是;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.2021年人教版八年级数学下册期末测试卷(二)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【分析】首先分别根据绝对值的和算术平方根的定义可求出a,b的值,然后把a,b的值代入|a+b|=a+b中,最终确定a,b的值,然后求解.【解答】解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.【点评】此题主要考查了绝对值的意义:即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.也利用了算术平方根的定义.2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.2【分析】先求出这组数据的平均数,然后代入方差公式求出即可.【解答】解:这组数据的平均数为:(3+2+1+2)÷4=2;则方差为:S2==,故选:B.【点评】此题主要考查了方差的有关知识,正确的求出平均数,并正确代入方差公式是解决问题的关键.3.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B【分析】利用平行线的判定与性质结合平行四边形的判定得出即可.【解答】解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.【点评】此题主要考查了平行线的判定与性质以及平行四边形的判定,得出AD∥BC是解题关键.4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n【分析】由偶次方非负可得出k2+1>0,利用一次函数的性质可得出y值随x值的增大而增大,再结合3>﹣1可得出m>n,此题得解.【解答】解:∵k2≥0,∴k2+1>0,∴y值随x值的增大而增大.又∵3>﹣1,∴m>n.故选:B.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x 的增大而减小”是解题的关键.5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【分析】根据抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.【解答】解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.【点评】本题考查了函数图象,利用抽水时间确定剩下的水量是解题关键,注意两台抽水机同时工作的剩余水量迅速减少.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:依题意有x﹣3>0且x﹣5≠0,解得:x>3且x≠5.故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分【分析】利用众数和中位数的定义求解.【解答】解:98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13数,是96,所以数据的中位数为96分.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=()2,故能构成直角三角形;B、()2+()2=()2,故能构成直角三角形;C、22+()2≠()2,故不能构成直角三角形;D、12+()2=22,故能构成直角三角形.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长【分析】证明EF为三角形AMC的中位线,那么EF长恒等于定值AC的一半.【解答】解:连接AC,如图所示:∵E,F分别是AM,MC的中点,∴EF=AC,∵C是定点,∴AC是定长,∴无论M运动到哪个位置EF的长不变,故选:A.【点评】此题考查的是进行的性质、三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【解答】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.【点评】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于7+4.【分析】根据完全平方公式可以解答本题.【解答】解:(+2)2=3+4+4=7+4,故答案为:7+4.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式的混合运算的计算方法.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=150度.【分析】由折叠易得∠OCB=∠DBC=15°,由平行四边形对边平行易得∠ACB=∠DBC =15°,利用三角形内角和即可求得所求的角的度数.【解答】解:∵△BEC是△BDC翻折变换的三角形,∴△BEC≌△BDC,∠EBC=∠DBC=15°,∵AC∥BD,∴∠OCB=∠DBC=15°,∴∠BOC=180°﹣∠OCB﹣∠EBC=180°﹣15°﹣15°=150°.故答案为150.【点评】本题考查的是经过翻折变换后的图形与原图形全等的性质,及平行四边形的性质.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为94.2分.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:李刚参加这次招聘考试的最终成绩为=94.2(分).故答案为:94.2.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为y=x+3.【分析】根据“在y轴上的截距为3”计算求出b值,然后代入点(1,4)即可得解.【解答】解:∵直线y=kx+b在y轴上的截距为3,∴b=3,∴y=kx+3,∵经过点(1,4),∴4=k+3,∴k=1,∴这条直线的解析式是y=x+3.故答案是:y=x+3.【点评】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是①②③.(填序号)【分析】①通过证明四边形AMCE是平行四边形,可得AM∥CE;②由“SAS”可证△DCF≌△CBE,可得∠BCE=∠CDF,由直角三角形的性质可求∠CND=90°;③由直角三角形的性质可得DM=MN,由等腰三角形的性质可得AM垂直平分DN,可得AN=AD=BC;④由等腰三角形的性质和余角的性质可得∠ADN=∠DCN=∠AND=∠CNM,即可求解.【解答】解:∵E,F,M分别是正方形ABCD三边的中点,∴AE=BE=BF=CF=DM=CM,CD∥AB,∴四边形AMCE是平行四边形,∴AM∥CE,故①正确;在△DCF和△CBE中,,∴△DCF≌△CBE(SAS),∴∠BCE=∠CDF,∵∠DCE+∠BCE=90°,∴∠CDF+∠DCN=90°,∴∠CND=90°,∴DF⊥CE,故②正确;∵DF⊥CE,DM=CM,∴DM=MN=CM,∵AM∥CE,∴AM⊥DN,∴AM垂直平分DN,∴AD=AN,∴AN=BC,故③正确;∵AN=BC,∴∠ADN=∠AND,∵DM=MN=CM,∴∠DNM=∠NDM,∠MCN=∠MNC,∵∠ADN+∠CDN=90°,∠CDN+∠DCN=90°,∴∠ADN=∠DCN=∠AND=∠CNM,故④错误,故答案为:①②③.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【解答】解:如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF=2,∴BF=4,∴BD===2,∵△CPQ是等边三角形,∴S△CPQ=CP2,∴当CP⊥BD时,△CPQ面积最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ﹣AE=.【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.【分析】(1)先化简二次根式,再合并同类二次根式;(2)按二次根式的乘除法法则计算求值即可;(3)先算括号里面的,再除法运算.【解答】解:(1)原式=3﹣×3﹣2=﹣;(2)原式===;(3)原式=(4﹣9)÷2==﹣.【点评】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解决本题的关键.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?【分析】(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=1.5代入AB段图象的函数表达式,求出对应的y值,再用156减去y即可求解.【解答】解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.【点评】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1)直接利用待定系数法可先确定n的值,然后再把C的坐标代入一次函数y =﹣x+m可得m的值;(2)首先确定A点坐标,进而可得AO的长,再集合C点坐标可得△OAC的面积;(3)根据题意可得S△BCP=PB•|x C|=S△OAC=6,解出PB的值,进而可得P点的坐标.【解答】解:(1)∵点C(﹣2,n)在正比例函数y2=﹣x图象上,∴n=﹣×(﹣2)=3,∴点C的坐标为(﹣2,3).∵点C(﹣2,3)在一次函数y=﹣x+m的图象上,∴3=﹣(﹣2)+m,解得:m=2,∴一次函数解析式为y=﹣x+2.∴m的值为2,n的值为3.(2)当y=0时,0=﹣x+2,解得x=4,∴点a的坐标为(4,0),∴S△OAC=OA•y C=×4×3=6.(3)存在.当x=0时,y=﹣x+2=2,∴B(0,2),∵S△BCP=PB•|x C|=S△OAC=6,∴PB•2=6,∴PB=6,∴点P的坐标为(0,8)或(0,﹣4).【点评】此题主要考查了两直线相交问题,关键是掌握待定系数法求函数解析式,掌握凡是函数图象经过的点必能满足解析式.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.【分析】(1)根据平行四边形的性质和平行线的性质得到∠BAD+∠ADC=180°;然后根据角平分线的性质推知∠DAE+∠ADF=∠BAD+∠ADC=90°,即∠AGD=90°.证得∠BAF=∠AFB,由等腰三角形的判定可得出AB=BF,同理可得CD=CE,则可得出结论;(2)过点C作CK∥AF交AD于K,交DE于点I,证明四边形AFCK是平行四边形,∠AGD=∠KID=90°,得出AF=CK=8,由勾股定理求出DI,则可得出答案.【解答】(1)证明:在平行四边形ABCD中,AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAF=∠AFB,又∵∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF,同理可得CD=CE,∴BF=CE;(2)解:过点C作CK∥AF交AD于K,交DE于点I,∵AK∥FC,AF∥CK,∴四边形AFCK是平行四边形,∠AGD=∠KID=90°,∴AF=CK=8,∵∠KDI+∠DKI=90°,∠DIC+∠DCI=90°,∠IDK=∠IDC,∴∠DKI=∠DCI,∴DK=DC=6,∴KI=CI=4,∵AD∥BC,∴∠ADE=∠DEC=∠CDE,∴CE=CD,∵CI⊥DE,∴EI=DI,∵DI===2,∴DE=2DI=4.【点评】本题考查了平行四边形的判定与性质,平行线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握平行四边形的判定与性质是解题的关键.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在80<x≤90组;(2)4月份生产的该产品抽样检测的合格率是98.4%;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?【分析】(1)根据频数分布直方图中的数据,可以得到4月份随机抽取的若干件产品中位数在哪一组;(2)根据频数分布直方图中的数据,可以得到4月份生产的该产品抽样检测的合格率;(3)根据统计图中的数据,可以分别计算出3月和4月不合格的件数,然后比较大小即可解答本题.【解答】解:(1)4月份随机抽取的产品数为:8+132+160+200=500,则4月份随机抽取的若干件产品中位数在80<x≤90这一组,故答案为:80<x≤90;(2)4月份生产的该产品抽样检测的合格率为:×100%=98.4%,故答案为:98.4%;(3)4月的不合格件数多,理由:由题意可得,3月的不合格件数为:6000×2%=120,4月的不合格件数为:9000×(1﹣98.4%)=144,∵144>120,∴4月的不合格件数多.【点评】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;(2)根据AAS先证明△ABD≌△AEF,根据全等三角形的对应边相等得出BD=EF,再根据等式的基本性质证出BF=DE.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=50°,∴∠ABC=(180°﹣∠BAC)=65°,∵BD平分∠ABC,∴∠CBD=∠ABC=32.5°,∵AE∥BC,∴∠E=∠CBD=32.5°.(2)∵BD平分∠ABC,∴∠ABD=∠CBD,∵AE∥BC,∴∠AEF=∠CBD,∴∠ABD=∠AEF,∵AD=AF,∴∠ADF=∠AFD,∵∠ADB=180°﹣∠ADF,∠AFE=180°﹣∠AFD,∴∠ADB=∠AFE,在△ABD与△AEF中,,∴△ABD≌△AEF(AAS),∴BD=EF,∴BD+DF=EF+DF,∴BF=DE.【点评】本题考查了等腰三角形的性质,平行线的性质,角平分线的定义,三角形全等,考核学生的推理能力,证明三角形全等是解题的关键.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.【分析】(1)先判断出△ABD为等腰直角三角形,进而得出AB=AD,即可得出结论;(2)先利用三角函数得出,证明夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图3,先利用勾股定理求出EF=CF =CD=,BF=,即可得出BE的长,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.【解答】解:(1)=,理由是:在Rt△ABC中,AB=AC,根据勾股定理得,BC=AB,又∵点D为BC的中点,∴AD⊥BC,∴AB=AD,∵四边形CDEF是正方形,∴AF=EF=AD,∴AB=AF,即=,故答案为:;(2)(1)中的结论成立.证明:∵tan B=1,∴∠ABC=45°,∵AB=AC=3,∴∠ABC=∠ACB=45°,∴∠BAC=90°,∴sin45°=,∴,∵四边形CDEF是正方形,∴∠FEC=45°,∴sin45°==,∴,∵∠FCA=∠ECB,∴△ACF∽△BCE,∴;(3)或.如图2,当点E在线段BF上时,由(1)知CF=EF=CD=,∵在Rt△BCF中,CF=,CB=3,∴BF==,∴BE=BF﹣EF==.由(2)知,∴BE=AF,∴=AF,∴AF=,如图3,当点E在线段BF的延长线上时,同理可得BE=BF+EF=,∴,∴AF=,综上所述,当正方形CDEF旋转到B,E,F三点共线时,线段AF的长为或.【点评】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,熟练掌握正方形的性质及相似三角形的性质是解题的关键.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.【分析】(1)连接BP,先求出点A(4,0),点B(0,3),可得AO=4,OB=3,由勾股定理可求AB的长,由面积法可求PC的长,由勾股定理可求AC的长,即可求解;(2)由“AAS”可证△BOP≌△BCP,可得BO=BC=3,OP=CP,由勾股定理可求OP 的值,即可求点P坐标;(3)分OB为边和OB为对角线两种情况讨论,利用菱形的性质两点距离公式先求出点C坐标,再求出CP解析式,即可求解.【解答】解:(1)如图,连接BP,∵直线y=﹣x+3交x轴于点A,交y轴于点B,∴点A(4,0),点B(0,3),∴AO=4,OB=3,∴AB===5,∵点P是OA中点,∴AP=OP=2,∵S△ABP=×AP×OB=×AB×CP,∴CP=,∴AC===,∴S△APC=×AC×PC=;(2)∵BP平分∠ABO,∴∠OBP=∠CBP,又∵BP=BP,∠BOP=∠BCP=90°,∴△BOP≌△BCP(AAS),∴BO=BC=3,OP=CP,∴AC=AB﹣BC=5﹣3=2,∵AP2=PC2+AC2,∴(4﹣OP)2=OP2+4,∴OP=,∴点P(,0);(3)若OB为边,如图2,设点C(a,﹣a+3),连接OD,∵四边形OCDB是菱形,∴OC=CD=BD=OB=3,BO∥CD,OD⊥BC,∴(a﹣0)2+(﹣a+3﹣0)2=9,∴a1=0(不合题意舍去),a2=,∴点C(,),∵BO∥CD,OB=CD=3,∴点D(,),∴直线OD解析式为:y=x,∵PC∥OD,∴设直线PC解析式为y=x+b,∴=×+b,∴b=﹣3,∴直线PC解析式为y=x﹣3,∴当y=0时,x=,∴点P(,0),∴OP=;若OB为对角线,如图3,设点C(a,﹣a+3),连接CD,∵四边形OCBD是菱形,∴OB与CD互相垂直平分,∴点C在OB的垂直平分线上,∴=﹣a+3,∴a=2,∴点C(2,),∵BO垂直CD,∴点D(﹣2,),设直线PC解析式为y=x+b,∴=×2+b,∴b=﹣,∴设直线PC解析式为y=x﹣,当y=0时,x=,∴点P(,0),∴OP=;综上所述:当OP=时,点D(﹣2,)或当OP=时,点D(,).【点评】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,勾股定理,菱形的性质等知识,利用分类讨论思想解决问题是本题的关键.。
2022-2023学年浙江省宁波市海曙区八年级(下)期末数学试卷(含解析)
2022-2023学年浙江省宁波市海曙区八年级(下)期末数学试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图所示运动品牌商标中,是中心对称图形的是( )A. B. C. D.2. 下列选项中,化简正确的是( )A. (−2)2=4B. (−2)2=−2C. (−3)2=3D. (−3)2=±33. 若反比例函数y=k的图象经过点(2,3),则该反比例函数的图象位于( )xA. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限4. 一元二次方程3x2+4x−1=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法确定5. 某校举行心理剧大赛,将剧情编排、表演技巧、思想意义三个方面分别按30%,50%,20%的比例计入总分,八年级1班的各项得分如表所示,则该班的最终得分为( )评分内容剧情编排表演技巧思想意义得分90分85分95分A. 90分B. 89.5分C. 89分D. 88.5分6. 在四边形ABCD中,AB//CD,AB=CD,若∠B=55°,则∠D的度数是( )A. 145°B. 125°C. 55°D. 35°7. 用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设直角三角形中( )A. 两锐角都大于45°B. 有一个锐角小于45°C. 有一个锐角大于45°D. 两锐角都小于45°8.如图是等腰三角形ABC纸片,点D,E分别是腰AB,AC的中点,沿线段DE将纸片剪成两部分,恰好拼成一个菱形,则AB:BC的值为( )A. 1B. 2C. 3D. 49. 若点A(−3,y1),B(−2,y2),C(4,y3)都在反比例函数y=m2+1x的图象上,则y1,y2,y3的大小关系是( )A. y3<y1<y2B. y3<y2<y1C. y1<y2<y3D. y2<y1<y310.如图,在矩形ABCD中,对角线AC,BD交于点O,点P为边AD上一点,过P分别作PE⊥AC,PF⊥BD,垂足为点E,F,过A作AH⊥BD,垂足为点H,若知道△APE与△DPF的周长和,则一定能求出( )A. △BOC的周长B. △ADH的周长C. △ABC的周长D. 四边形APFH的周长第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)11. 五边形的内角和为______.12. 二次根式x−5中,x的取值范围是______.13. 现有甲、乙两个合唱队队员的平均身高都是165cm,方差分别为S2甲=1.45,S2乙=0.85,则这两个合唱队的队员身高比较整齐的是______ 队.(填写“甲”或“乙”)14. 若关于x的一元二次方程ax2+bx−1=0有一个根为−2,则2a−b=______ .15.如图,在平行四边形ABCD中,对角线AC,BD交于点O,点E,F分别为线段OD和CD的中点,连结EF,若AC=6,则EF的长为______ .16.如图,在菱形ABCD中,E为对角线AC上一点,AE=AD,连结BE,若∠AEB=70°,则∠BAD的度数为______ .17. 如图,在正方形ABCD中,点E在边BC上,且BE=6,CE=1,在边AD上取一点P,连结BP和PE,过B作BF⊥PE交CD于F,当∠PBF=45°时,AP的长为______ .18. 如图,点A,B在反比例函数y=ax (a>0,x>0的图象上,点C,D在反比例函数y=bx(b<0,x<0)的图象上,且AC//BD//x轴,过A,C分别作x轴的垂线,垂足为E,F,AE交BD于点H,连结AF交BD于点P.若BH=EF,则S△APHS△DFP=______ .三、解答题(本大题共6小题,共46.0分。
2022-2023学年江苏盐城八年级数学下学期期末热身测试卷(二)参考答案
2022-2023学年江苏盐城八年级数学下学期期末热身测试卷(二)参考答案一、选择题(本大题共8小题,每小题3分,共24分.)1. 下列防控疫情的图标中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】A2.下列根式中,是最简二次根式的是( )A. B. C. D. 【答案】3. 下列分式中,最简分式是( ) A. 1510x B. 243ab a C. 133x x −− D. 121x x ++ 【答案】D4. 是同类二次根式的是( )A. B. C. D.【答案】A5. 四边形ABCD 的对角线AC 和BD 相交于点O .有下列条件:①OA =OC ,OB =OD ;②AC =BD ;③AC ⊥BD ;④矩形ABCD ;⑤菱形ABCD ;⑥正方形ABC D .则下列推理正确的是( )A. ②③⇒⑥B. ①②⇒⑤C. ①③⇒⑥D. ②⑤⇒⑥【答案】D6. 已知点()3,4A −在反比例函数k y x =的图象上,则下列说法正确的是( ) A. 图象位于第一、三象限B. 点(2,6)在该函数图象上C. 当0x <时,y 随x 的增大而增大D. 当4y ≥−时,3x ≥【答案】C7. 如图,在矩形ABCD 中,3AB =,4BC =,若点P 是AD 边上的一个动点,则点P 到矩形的对角线AC 、BD 的距离之和是( )A. 2.4B. 2.5C. 3D. 3.6【答案】A 【详解】连接OP ,过点P 分别作PE AC ⊥,PF BD ⊥,∵四边形ABCD 是矩形,∴AB CD =,AD BC =,90ABC BCD CDA DAB ∠=∠=∠=∠=°,OA OC =,OB OD =, ∵3AB =,4BC =,∴AC =,∴=12ABCD S AB BC = 矩形,=5AC BD =,2.5==OA OD , ∴1=62ACD ABCD S S =矩形△, ∴1=32AOD ACD S S =△△, ∵+AOD AOP DOP S S S =△△△ =11+22OA PE OD PF =112.5+ 2.522PE PF ×× =5()4PE PF + =3解得, 2.4PE PF +=,故选:A .8. 如图,点A 是函数2y x =图像上的任意一点,点B 、C 在反比例函数k y x=的图像上.若AB x ∥轴,AC y ∥轴,阴影部分的面积为4,则k 的值是( )A. 2B. 3C. 4D. 6【答案】D 【详解】延长CA 交x 轴于点F ,延长BA 交y 轴于点E ,过点B 作BG x ⊥轴于点G ,过点C 作CD y ⊥轴于点D ,设(),A m n∵AB x ∥轴,AC y ∥轴,又∵在平面直角坐标系中,x 轴和y 轴互相垂直,∴CF x ⊥轴,BE y ⊥轴,CA AB ⊥,∴四边形AEOF 、AEDC 、AFGB 都是矩形,∴AE CD FO ==,OE AF BG ==,∵点A 是函数2y x =图像上的任意一点, ∴2n m=, ∴2,A m m, ∵点B 、C 在反比例函数k y x=的图像上,∴,k C m m,2,2km B m, ∴2km FG OG OF m =−=−, ∴OCD OGB OFCD AFGB S S S S S =+−−△△阴影矩形矩形, 即2114222km k m k k m +−−−=, 解得:6k =.故选:D .二、填空题(本大题共8小题,每小题3分,共24分.)9. x 的取值范围是_______.【答案】1x ≥10. 在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子中摸出1个球,是白球或者是红球这属于______事件.(填“必然”、“随机”、“不可能”)【答案】必然11. 如图,任意转动转盘1次,当转盘停止运动时,有下列事件:①指针落在标有5的区域内;②指针落在标有10的区域内;③指针落在标有奇数的区域内.请将这些事件的序号按事件发生的可能性从小到大的顺序依次排列为_________ .【答案】②①③12. 已知x 、y ()220y +−=,则y x 的值是______.【答案】913. 若分式方程1x a x −+=a 无解,则a 的值为________. 【答案】1或-114 如图,反比例函数()10k y x x=>与正比例函数2y mx =和3y nx =的图像分别交于点A (2,2)和B (b ,3),则关于x 的不等式组k mx x k nx x < >的解集为___________.【答案】423x << 15.如图,正方形的顶点A ,C 分别在y 轴和x 轴上,边BC 的中点F 在y 轴上,若反比例函数y =的图象恰好经过CD 的中点E ,则OA 的长为 .【答案】6.【详解】过E 作EH ⊥x 轴于H ,连接OE ,设:CO =a ,CH =b ,过点B 作y 轴的平行线交x 轴于点N ,作AM ⊥MN 于点M ,∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,∵∠EHC =∠FCO =90°,∴∠OFC =∠ECH ,∵点F 与点E 分别是BC ,CD 的中点,∴CF =CE ,∴△CFO ≌△CEH (AAS ),点F 是BC 的中点,则ON =OC =a ,NB =2OF =2b ,同理△CNB ≌△BMA (AAS ),则MA =BN =2b ,MB =CN =2a ,AM =2b =ON =a ,故a =2b ,点E (a +b ,a ),则a (a +b )=18,而a =2b ,解得:b =,a =2,OA =MN =BM +BN =2a +2b =6,故答案为:6.16. 正方形ABCD 的边长为a ,将正方形ABCD 绕点A 旋转得到正方形AB 'C ′D ',在旋转的过程中,当点C ′落在直线BD 上时,则线段BC ′的长为_____.(用含a 的式子表示)a 【详解】当C ′在如下图甲所示的位置时,由题意得,90AOB °∠=,C A A C ′==,12AO AC ==,∴C O ′=,∴BC C O BO ′=′−==, 如图乙所示,当C ′在靠近D 一侧时,BC C O BO ′=′+=+=,.三、解答题(共72分,请将解答过程写在试卷答题纸相应的位置上)17. (1)计算:32226a b ab c c÷; (2)解方程:11222x x x−+=−−.【解】(1)原式=3222263a b c a c c ab b⋅= (2)去分母得:1-x +2(x -2)=-1,解得:x =2,经检验x =2是原分式方程的增根∴原分式方程的无解.18.计算:;. 【解】:;.19. 先化简,再求值:221339x x x x −÷ +−−,其中6x =. 【解】221339x x x x −÷ +−− ()()()()()223333339x x x x x x x x −+=−÷ +−+−−()()()()33933x x x x x x +−−⋅+− 9x x−= 当6x =时,原式69162−==−. 20. 甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?【解】设乙每小时做x 面彩旗,则甲每小时做(x +5)面彩旗,根据题意,得60505x x=+,解这个方程,得x=25,经检验,x="25" 是所列方程的解,∴x+5=30,答:甲每小时做30 面彩旗,乙每小时做25 面彩.21. 为有效控制新型冠状病毒的传染,目前,国家正全面推进新冠疫苗的免费接种工作.某社区为了解其辖区内居民的接种情况,随机抽查了一部分居民进行问卷调查,把调查的结果分为A(已经接种)、B(准备接种)、C(观望中)、D(不接种)四种类别,并绘制了两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)此次抽查的居民人数为人;(2)请补全条形统计图,同时求出C类别所在扇形的圆心角度数;(3)若该社区共有居民5000人,请你估计该社区已接种新冠疫苗的居民约有多少人?【解】(1)由题意可知: 类别A的人数为60人,占总数的30%,则此次抽查的居民人数为:60÷30%=200人,故答案为:200;(2)类别C的人数为:20060164480−−−=,补全条形统计图如图:类别C所占的比例为:80200=0.4,则C类别所在扇形的圆心角度数360°×0.4=144°,故答案为:144°;(3)5000×30%=1500(人),答:该社区已接种新冠疫苗的居民约有1500.22. 如图,在平行四边形ABCD中,AD>AB,点E、F分别在边AD、BC上,且AE=CF,连接BE、DF.(1)求证:四边形BEDF是平行四边形;(2)若平行四边形ABCD的周长为26,面积为A=60°,当BE平分∠ABC时,则四边形BEDF的周长为____.【解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD-AE=BC-CF,∴DE=BF,∴四边形BEDF是平行四边形;(2)过点B作BM⊥AD,垂足为M,∵平行四边形ABCD的周长为26,面积为,∴()226AD ABAD BM+⋅==,在Rt△ABM中,∠A=60°,30ABM∴∠=°2AM AB∴=MB ∴==∴13AD ABAD AB+=,化简得:1336AD AB AD AB + ⋅==, 解得:49AD AB = =或94AD AB = = , ∵AD >AB ,∴AD =9,AB =4,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∵AD ∥BC ,∴∠AEB =∠EBC ,∴∠ABE =∠AEB ,∴AE =AB =4,∴DE =AD -AE =9-4=5,∵∠A =60°,∴△ABE 是等边三角形,∴BE =AB =4,∴四边形BEDF 的周长=2(BE +DE )=18,故答案为:18.23. 如图,反比例函数y =m x的图象与一次函数y =kx +b 的图象交于A ,B 两点,点A 的坐标为(2,4),点B 的坐标为(n ,1).(1)求反比例函数的关系式与n 的值;(2)求不等式kx +b ﹣m x<0的解集(直接写出答案); (3)线段AB 绕点A 顺时针旋转90°,得到线段AB 1,求出点B 1的坐标.【解】(1)把点A 的坐标为(2,4),代入反比例函数y =m x 得:m =2×4=8, ∴反比例函数的关系式为8y x =, 把B (n ,1)代入8y x=得,n =8,即反比例函数的关系式为8y x=,n =8; (2)根据(1)的结果可知B (8,1), 将不等式0m kx b x +−<变形为:m kx b x+<, 则该不等式的意义为:当一次函数图象在反比例函数图象下方时,自变量的取值范围, 根据两个函数的图象,结合A (2,4)、B (8,1), 可得不等式0m kx b x+−<的解集为:0<x <2或x >8; (3)如图,过点A 、B 分别作y 轴、x 轴的平行线,两条平行线相交于点C ,得到△ABC ,AC y ∥轴,BC x ∥轴,∵A (2,4)、B (8,1),AC y ∥轴,BC x ∥轴,∴C 点的横坐标与A 点相等,纵坐标与B 点相等,∴C 点坐标为(2,1),则413A B AC y y =−=−=,826B A BC x x =−=−=,将△ABC 绕着点A 顺时针旋转90°后,得到11AB C △,11B C 交x 轴于点D ,根据旋转的性质有:190CAC ∠=,1AC AC =,11B C BC =, ∴13AC =,116B C =,∵AC y ∥轴,BC x ∥轴,190CAC ∠=, ∴1AC x ∥轴,11B C y ∥轴,则1321A x OD AC −=−==,1116420A y B D B C =−==−>, 则点1B 在第三象限,∴1B (-1,-2). 故答案为:1B (-1,-2).24.A、是的边上两定点,是边上一动点,分别以、为边在上方同侧作正方形、正方形.如图,,,,连接、.求证;当点在边上运动时,线段的长度是否存在最小值,若存在,请直接写出答案;若不存在,请说明理由;如图,,连接,当点在边上运动时,线段的长度是否存在最小值,若存在,请用直尺与圆规作出此时点的位置;若不存在,请说明理由.【解】证明:如图中,四边形,四边形都是正方形,,,,,在和中,,≌,.解:存在.理由:如图中,设交于点,交于点,过点作于点.,,,,,,,,,,,,,,,根据垂线段最短可知,当点与重合时,的值最小,最小值为,,的最小值为; 如图中,在上取一点,使得.,,,,≌, ,点在射线上运动, 作于,当点与重合时,的值最小,连接,以为圆心,以为半径作弧,交于点,当点与重合时,的值最小. 故点即为所求.25. 如图,在平面直角坐标系中,四边形ABCD 为正方形,已知点()6,0A −,()7,3D −,点B 、C 在第二象限内.(1)点B 的坐标_________;(2)将正方形ABCD 以每秒1个单位的速度沿x 轴向右平移t 秒,若存在某一时刻t ,使在第一象限内点B 、D 两点的对应点B ′、D '正好落在某反比例函数的图象上,请求出此时t 的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x 轴上的点P 和反比例函数图象上的点Q ,使得以P 、Q 、B ′、D '四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P 、Q 的坐标;若不存在,请说明理由.【解】(1)过点D 作DE x ⊥轴于点E ,过点B 作BF x ⊥轴于点F ,如图1所示.∵四边形ABCD 为正方形,∴AD AB =,90BAD ∠=°,∵90EAD ADE ∠+∠=°,90EAD BAF ∠+∠=°,∴ADE BAF ∠=∠.在ADE 和BAF △中,AED BFA 90ADE BAF AD BA ∠=∠=° ∠= =, ∴()AAS ADE BAF △≌△,∴DE AF =,AE BF =.∵点()6,0A −,()7,3D −,∴3DE =,1AE =,∴点B 的坐标为()63,01−++,即()3,1−.故答案为:()3,1−.(2)设反比例函数为k y x=, 由题意得:点B ′坐标为()3,1t −+,点D '坐标为()7,3t −+,∵点B ′和D '在该比例函数图象上,∴()()3173k t t =−+×=−+×,解得:9t =,6k =, ∴反比例函数解析式为6y x=. (3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ). 以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形分两种情况:①B ′D ′为对角线时,∵四边形B ′PD ′Q 为平行四边形, ∴63162n m n−= −=− , 解得:13232m n = =, ∴P (132,0),Q (32,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴62 6031m nn−=−−=−,解得:73mn==,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴626031n mn−=−−=−,解得:73mn=−=−.∴P(-7,0)、Q(-3,-2).综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(132,0)、Q(32,4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).。
湖北省武汉市江岸区2023-2024学年下学期八年级期末数学试题卷(含答案)
2023-2024学年下学期期末八年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.有意义的条件是( )A. B. C. D.2.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )A.1,2,3B.2,3,4C.3,4,5D.4,5,63.下列图象中不能表示y 是x 的函数关系的是()A. B.C. D.4.下列计算正确的是( )B.5.将直线向上平移4个单位长度后所得的直线的解析式为( )A.B. C. D.6.对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,方差如下表所示,则四名选手中成绩最稳定的是()选手甲乙丙丁方差1.340.16 2.560.21A.甲B.乙C.丙D.丁7.如图,函数的图象与函数的图象交于点,其中k ,b ,m ,n 为常数,.则关于x 的不等式的解集是( )A. B. C. D.7题图8题图8.《九章算术》记载:今有坦高九尺,瓜生其上,蔓日长七寸;瓠生其下﹐蔓日长一尺.问几何日相逢?意思是有一道墙,高9尺,在墙头种一株瓜,瓜蔓沿墙向下每天长7寸(1尺=10寸);同时地上种着瓠沿墙向上每天长1尺,问瓜蔓、瓠蔓要多少天才相遇?小李绘制如图的函数模型解决了此问题.图中h (单位:尺)表示瓜蔓与瓠蔓离地面的高度,x (单位:天)表示生长时间.根据小李的模型,点P 的横坐标为( )A.B.C.D.3x ≤3x ≥3x <3x >=2===22y x =-2y x=24y x =-22y x =+26y x =-y kx b =+y mx n =+()2,3P -0k m >>kx b mx n +≤+2x >-2x ≥-2x <-2x ≤-9890179171739.如图,将四根木条用钉子钉成一个矩形框架,,.然后向左扭动框架,得到新的四边形(点E 在的上方).若在扭动后四边形面积减少了8,点P 和Q 分别为四边形和四边形对角线的交点,则的长为()D.29题图 10题图10.1765年数学家欧拉在其著作《三角形几何学》中首次提出定理:三角形三边的垂直平分线的交点,三条中线的交点以及三条高线的交点在一条直线上,这条线也被称为欧拉线.如图,已知的三个顶点分别为,,,则的欧拉线的解析式为( )A. B. C. D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡的指定位置.11._______.12.一次函数的图象不经过第_______象限.13.小明在课间活动中进行了8次一分钟跳绳练习,所跳个数分别为160,163,160,157,160,161,162,165.则160,163,160,157,160,161,162,165这8个数的众数为_______.14.如图,点E 为正方形对角线上一点,,点F 在边上,,则_______15.已知一次函数(k 为常数),其图象为直线l.下列四个结论:①无论k 取何值,直线l 都过点;②一次函数的图象与直线l 没有公共点,则;③直线l 不经过第三象限,则;④点和在直线l 上,若,则;其中正确的是_______.(填序号)16.如图,点O 为等边边的中点.以为斜边作(点A 与点D 在同侧且点D 在外),点F 为线段上一点,延长到点E 使,,若,,则ABCD 5AB =8AD =BCEF BC ABCD BCEF PQ OAB △()0,0O ()2,4A ()6,0B OAB △22y x =-3xy =4y x =-+2023y x =-+=32y x =-ABCD AC 20ADE ∠=︒AB ED BF =FED ∠=4y kx k =++()1,4A -2y x =2k =40k -≤<()11,B x y ()22,C x y ()()12120x x y y --<1k >-ABC △CB BC Rt DBC △BC ABC △OD AF EF AF =ABD DBE ∠=∠2OF =5CE =_______。
八年级下学期数学期末测试卷 试题试卷 含答案解析(2)
八年级下期数学期末测试一.选择题1.9的平方根为()A.3B.﹣3C.±3D.2.下列式子中,为最简二次根式的是()A.B.C.D.3.直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x﹣2C.y=3x+2D.y=3x﹣14.若式子在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2B.x≤1C.x>1且x≠2D.x<15.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元6.下表是我市6个县(市)区今年某日最高气温(℃)的统计结果:地区孟州温县沁阳博爱武陟修武平均气温温度(℃)■302729283029则6个县(市)区该日最高气温(℃)的众数和中位数分别是()A.29,31B.30,29.5C.30,29D.30,37.如图,直线y=﹣x+b经过点(0,3),则关于x的不等式﹣x+b>0的解集是()A.x>2B.x<2C.x≥2D.x≤28.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A.5B.6C.7D.259.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5C.a:b:c=::D.a=6,b=10,c=1210.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是()A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD11.如图,正方形ABCD的边长为2,动点P从点B出发,在正方形的边上沿B→C→D的方向运动到点D停止,设点P的运动路程为x,在下列图象中,能表示△P AD的面积y 关于x的函数关系的图象是()A.B.C.D.二.填空题12.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.14,乙的方差是0.06,这5次短跑训练成绩较稳定的是.(填“甲”或“乙”)13.化简:=.14.如图,菱形ABCD的对角线AC、BD相交于点O,OE⊥AD,垂足为E,AC=8,BD=6,则OE的长为.15.如图,菱形ABCD的两条对角线AC、BD相交于点O,若AB=cm,BD=6cm,则菱形ABCD的面积是.16.若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是.17.一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于.18.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE =30°,DF=3,则AF的长为.19.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=°.三.解答题20.计算:.21.计算:(﹣2)2+﹣÷.22.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.23.在平面直角坐标系xOy中,已知一次函数y=kx+4与y=﹣x+b的图象都经过A(﹣2,0),且分别与y轴交于点B和点C.(1)填空:k=,b=;(2)设点D在直线y=﹣x+b上,且在y轴右侧,当△ABD的面积为15时,求点D 的坐标.24.小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售,并分别以每箱35元与60元的价格售出,设购进A水果x箱,B水果y箱.(1)若小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?25.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB的延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)当∠BOD=°时,四边形BECD是菱形;(3)当∠A=50°,则当∠BOD=°时,四边形BECD是矩形.26.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.27.某校七、八年级各有400名学生,为了了解疫情期间线上教学学生的学习情况,复学后,某校组织了一次数学测试,刘老师分别从七、八两个年级随机抽取各50名同学的成绩(百分制),并对数据(成绩)进行了整理、描述和分析,部分信息如下:a.七、八年级的频数分布直方图如下(数据分为5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.七年级学生成绩在80≤x<90的这一组是:808081818182828283858586868888899090c.七、八年级学生成绩的平均数、中位数如下:年级平均数中位数七年级80.3m八年级78.276根据以上信息,回答下列问题:(1)表中m的值为;(2)在这次测试中,八年级80分以上(含80分)有人;(3)小江说:“这次考试没考好,只得了79分,但年级排名仍属于前50%”,请判断小江所在年级,并说明理由;(4)若85分及以上为“优秀”,请估计七年级达到“优秀”的人数.28.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点.F是线段BC延长线上一点,且CF=AE,连接BE.(1)发现问题如图①,若E是线段AC的中点,连接EF,其他条件不变,填空:线段BE与EF的数量关系是;(2)探究问题如图②,若E是线段AC上任意一点,连接EF,其他条件不变,猜想线段BE与EF的数量关系是什么?请证明你的猜想;(3)解决问题如图③,若E是线段AC延长线上任意一点,其他条件不变,且∠EBC=30°,AB=1,请直接写出AF的长度.参考答案一.选择题1.C.2.B.3.D.4.A.5.C.6.B.7.B.8.A.9.D.10.B.11.D.二.填空题12.乙.13..14..15.12cm2.16.4.17..18.3.19.57.5.三.解答题20.解:原式=﹣﹣2=4﹣﹣2=4﹣3.21.解:原式=3﹣4+2+2﹣3=7﹣5.22.解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.23.解:(1)将A(﹣2,0)代入y=kx+4得﹣2k+4=0,解得k=2,将A(﹣2,0)代入y=﹣x+b得1+b=0,解得b=﹣1;故答案为2,﹣1;(2)如图,过D作DE⊥BC于E,在y=2x+4中,令x=0,则y=4,∴B(0,4),在y=﹣x﹣1中,令x=0,则y=﹣1,∴C(0,﹣1),∴BC=5,+S△BCD=15,当△ABD的面积为15时,S△ABC即AO×BC+DE×BC=15,∴×2×5+×DE×5=15,∴DE=4,在y=﹣x﹣1中,令x=4,则y=﹣3,∴D(4,﹣3).24.解:(1)由题意可得,,解得,答:小王共购进A种水果25箱,B种水果9箱.(2)设利润为W元,W=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A水果的数量不得少于B水果的数量,∴x≥,解得:x≥15.∵﹣1<0,∴W随x的增大而减小,∴当x=15时,W取最大值,最大值为225,此时y=(1200﹣30×15)÷50=15.答:购进水果A、B的数量均为15箱并全部售出才能获得最大利润,此时最大利润为225元.25.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:当∠BOD=90°时,四边形BECD是菱形;理由:∵四边形BECD是平行四边形,∴当∠BOD=90°时,四边形BECD是菱形;(3)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案是:(2)90°;(3)100°.26.证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=127.解:(1)由直方图中的数据可知,中位数是80≤x<90这一组第一个和第二个数的平均数,故m=(80+80)÷2=80,故答案为:80;(2)由频数分布直方图可得,在这次测试中,八年级80分以上(含80分)有400×=160(人),故答案为:160;(3)小江属于八年级,因为小江的成绩大于八年级成绩的中位数,而小于七年级成绩的中位数,故小江属于八年级;(4)400×=136(人),即七年级达到“优秀”的有136人.28.解:(1)猜想线段BE与EF的数量关系为:BE=EF;理由如下:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∴∠F=∠CEF=∠BCA=30°,∴∠CBE=∠F=30°,∴BE=EF.故答案为BE=EF.(2)猜想线段BE与EF的数量关系为:BE=EF;理由如下:过点E作EG∥BC交AB于点G,如图②所示:∵四边形ABCD为菱形,∠ABC=60°,∴AB=BC,∠BCD=120°,AB∥CD,△ABC与△ACD都是等边三角形,∴∠ACD=60°,∠DCF=∠ABC=60°,AB=AC,∴∠ECF=120°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∴BG=CE,∠BGE=120°=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.(3)连接EF,过点E作EG∥BC交AB延长线于点G,如图③所示:∵四边形ABCD为菱形,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠ECF=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF,∵∠ABC=60°,∠EBC=30°,∴∠ABE=∠ABC+∠EBC=60°+30°=90°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠BEA=180°﹣∠ABE﹣∠BAC=180°﹣90°﹣60°=30°,在Rt△ABE中,∠BEA=30°,∴AE=2AB=2×1=2,BE=,∴EF=,∵BE=EF,∴∠EBC=∠EFB=30°,∴∠BEF=180°﹣30°﹣30°=120°,∴∠AEF=∠BEF﹣∠BEA=120°﹣30°=90°,由勾股定理得:AF===.。
2020-2021学年八年级数学北师大版下册期末综合复习模拟测试卷2(附答案)
2020-2021学年北师大版八年级数学下册期末综合复习模拟测试卷2(附答案)一.选择题(共10小题,每小题3分,共计30分)1.下列分解因式正确的是()A.xy2﹣4y=y(x+2y)(x﹣2y)B.4x2﹣y2=y2(2x+1)(2x﹣1)C.x3﹣4x2+x=x(x﹣2)2D.4x3﹣4x2+x=x(2x﹣1)22.下列各式中,能用平方差公式分解因式的是()A.x2+4y2B.﹣x2+4y2C.x2﹣2y+1D.﹣x2﹣4y23.假设每个人的工作效率一样,若m个人完成某项工程需要a天,则(m+n)个人完成此项工程需要的天数为()A.B.C.a+m D.4.若关于x的分式方程的解为非负数,则m的取值范围是()A.m≤5B.m<5且m≠3C.m≠3D.m≤5且m≠3 5.已知一元一次不等式组的解集为x<3,那么a的取值范围是()A.a≥2B.a>2C.a≤2D.a<26.某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.6折B.7折C.8折D.9折7.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()cmA.3B.4C.7D.118.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则CE的长为()A.B.C.D.19.已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B10.如图,在平行四边形ABCD中,AD=6,点E在边AD上,点F在BC的延长线上,且满足BF=BE=8,过点C作CE的垂线交BE于点G,若CE恰好平分∠BEF,则BG的长为()A.2B.3C.4D.2二.填空题(共10小题,每小题3分,共计30分)11.计算:20203﹣2019×2020×2021=.12.已知,则的值等于.13.已知可以写成3+,根据这一做法解决:当整数x的值为时,分式的值为整数.14.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程+=2有正整数解,则所有整数a的乘积为.15.已知关于x的不等式(3a﹣2b)x<a﹣4b的解集是,则关于x的不等式bx﹣a >0的解集为.16.若关于x的不等式2(x﹣1)≤x+m恰好有3个正整数解,则m的取值范围为.17.在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=4.若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则CP的长为.18.定义:有一组对角互余的四边形叫做对余四边形,如图,在对余四边形ABCD中,AB =BC,AD=2,CD=5,∠ABC=60°,则线段BD=.19.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s 的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.20.如图,在▱ABCD中,∠ABC=45°,AB=6,CB=14.点M,N分别是边AB,AD 的中点,连接CM,BN,并取CM,BN的中点,分别记为点E,F,连接EF,则EF的长为.三.解答题(共8小题,21、22、23、24每小题6分,25、26、27、28每小题9分,共计60分)21.分解因式:(1)x3﹣25x;(2)m(a﹣3)+2(3﹣a).22.已知方程组的解满足x为非负数,y为正数.(1)求m的取值范围.(2)若不等式(m+1)x<m+1的解集为x>1,求满足条件的整数m的值.23.先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.24.某种型号油电混合动力汽车,从A地到B地,只用燃油行驶,需用燃油76元;从A地到B地,只用电行驶,需用电26元,已知每行驶1千米,只用燃油的费用比只用电的费用多0.5元.(1)若只用电行驶,每行驶1千米的费用是多少元?(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?25.如图,△ABC是等边三角形,D、E分别是BC、AC边上的点,连接AD、BE,且AD、BE相交于点P,∠AEB=∠CDA.(1)求∠BPD的度数.(2)过点B作BQ⊥AD于Q,若PQ=3,PE=1,求BE的长.26.图1是由一副三角板拼成的图案,其中∠ACB=∠DBE=90°,∠A=30°,∠ABC=60°,∠BDE=∠E=45°.(1)求图1中∠EBC的度数.(2)若将图1中的三角板BDE不动,将另一三角板ABC绕点B顺时针或逆时针旋转α度(0°<α<90°).当∠ABE=2∠DBC时,求∠ABD的度数(图2,图3,图4仅供参考).27.如图,在平行四边形ABCD中,AC是对角线,且AB=AC,CF是∠ACB的角平分线交AB于点F,在AD上取一点E,使AB=AE,连接BE交CF于点P.(1)求证:BP=CP;(2)若BC=4,∠ABC=45°,求平行四边形ABCD的面积.28.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,点B 的对应点为E,点A的对应点D落在线段AB上,DE与BC相交于点F,连接BE.(Ⅰ)求证:DC平分∠ADE;(Ⅱ)试判断BE与AB的位置关系,并说明理由;(Ⅲ)若BE=BD,求∠ABC的大小.(直接写出结果即可)参考答案一.选择题(共10小题,每小题3分,共计30分)1.解:A、原式=y(xy﹣4),不符合题意;B、原式=(2x+y)(2x﹣y),不符合题意;C、原式=x(x2﹣4x+1),不符合题意;D、原式=x(4x2﹣4x+1)=x(2x﹣1)2,符合题意.故选:D.2.解:A.x2+4y2两项的符号相同,不能用平方差公式分解因式;B.﹣x2+4y2是2y与x的平方的差,能用平方差公式分解因式;C.x2﹣2y+1是三项不能用平方差公式分解因式;D.﹣x2﹣4y2两项的符号相同,不能用平方差公式分解因式.故选:B.3.解:设该项工程总量为1,由m个人完成某项工程需要a天,则m个人的工作效率为,∴每个人的工作效率为;则(m+n)个人完成这项工程的工作效率是(m+n)×;∴(m+n)个人完成这项工程所需的天数是1÷[(m+n)×]=(天).故选:A.4.解:去分母得,3=x﹣2+m,解得,x=5﹣m,∵分式方程的解为非负数,∴5﹣m≥0,∴m≤5,又∵x≠2,∴5﹣m≠2,m≠3,∴m的取值范围是m≤5且m≠3,故选:D.5.解:∵一元一次不等式组的解集为x<3,∴a+1≥3,解得:a≥2.故选:A.6.解:设打x折,根据题意可得:1100×﹣700≥700×10%,解得:x≥7,故至多可以打7折.故选:B.7.解:∵MN是线段AB的垂直平分线,∴NA=NB,∵△BCN的周长是7cm,∴BC+CN+BN=7(cm),∴BC+CN+NA=7(cm),即BC+AC=7(cm),∵AC=4cm,∴BC=3(cm),故选:A.8.解:因为AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,所以△ADE是等腰直角三角形,所以AB=,AE=2,∠A=45°,若作BH⊥AC于H,则AH=2,所以E和H重合,所以BE⊥AC,在Rt△BCE中,CE=,故选:D.9.解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.10.解:如图,延长EF,GC两条线相交于点H,过点G作GP∥EF交BC于点P,∵四边形ABCD是平行四边形,∴BC=AD=6,∵BF=BE=8,∴CF=BF﹣BC=2,∵CE平分∠BEF,∴∠GEC=∠HEC,∵CE⊥GC,∴∠ECG=∠ECH=90°,在△ECG和△ECH中,,∴△ECG≌△ECH(ASA),∴CG=CH,∵GP∥EF,∴∠PGC=∠FHC,在△PCG和△FCH中,,∴△PCG≌△FCH(ASA),∴CP=CF=2,∴BP=BF﹣PF=8﹣4=4,∵BF=BE,∴∠BEF=∠BFE,∵GP∥EF,∴∠BGP=∠BEF,∠BPG=∠BFE,∴∠BGP=∠BPG,∴BG=BP=4.故选:C.二.填空题(共10小题,每小题3分,共计30分)11.解:原式=2020×[20202﹣(2020﹣1)×(2020+1)]=2020×(20202﹣20202+1)=2020×1=2020.故答案为:2020.12.解:已知等式整理得:=2,即a﹣b=﹣2ab,则原式===﹣5,故对答案为:﹣513.解:把==2+,∵是整数,∴应是整数,∵5=1×5=﹣1×(﹣5),∴x﹣2=1,x﹣2=﹣1,x﹣2=5,x﹣2=﹣5,解得:x=3或1或7或﹣3,故答案为:3或1或7或﹣3.14.解:关于x的不等式组,整理得,,由不等式组至少有三个整数解,可得a>﹣2,关于x的分式方程+=2,整理得x=,∵分式方程有正整数解,且x≠2,∴a=﹣1或a=5,∴﹣1×5=﹣5,故答案为:﹣5.15.解:不等式(3a﹣2b)x<a﹣4b,解得:x>,3a﹣2b<0,即3a<2b,∴=,即9a=16b,,∵3a﹣2b<0,9a=16b,∴b<0,a<0,∴bx﹣a>0的解集为x<,故答案为:.16.解:解不等式2(x﹣1)≤x+m,得x≤m+2.∵不等式恰好有3个正整数解,∴正整数解为1、2、3.∴3≤m+2<4,解得1≤m<2.故答案为1≤m<2.17.解:(1)当∠ABC=60°时,则BC=AB=2,当点P在线段AB上时,∵∠PCB=30°,故CP⊥AB,则PC=BC cos30°=2×=;当点P(P′)在AB的延长线上时,∵∠P′CB=30°,∠ABC=60°,则△P′BC为的等腰三角形则BP′=BC=2,(2)当∠ABC=30°时,同理可得,PC=2;故答案为2或.18.解:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图所示,∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BF A,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BF A+∠ADB=30°,∵∠FBD+∠BF A+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠F AD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2,∴BD2=(2)2+52=45,∵BD>0,∴BD=3,故答案为:3.19.解:根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.①∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t,解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm,∵AD=12cm,BC=15cm,∴PD=AD﹣AP=12﹣t,∵AD∥BC,∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t,解得t=4s,∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.20.解:如图,连接BE交CD于点G,连接GN,过点G作GH⊥DN于点H,∵四边形ABCD是平行四边形,∴AD=CB=14,CD=AB=6,∵点M,N分别是边AB,AD的中点,∴AN=DN=AD=7,BM=AB=3,∵AB∥CD,∴∠BME=∠GCE,∠MBE=∠CGE,∵点E是CM的中点,∴ME=CE,在△MEB和△CEG中,,∴△MEB≌△CEG(AAS),∴BE=GE,BM=GC=3,∴DG=CD﹣GC=3,∵∠D=∠ABC=45°,GH⊥DN,∴DH=GH=DG=3,∴NH=DN﹣DH=7﹣3=4,∴GN==5,∵BF=FN,BE=EG,∴EF是△BGN的中位线,∴EF=GN=.故答案为:.三.解答题(共8小题,21、22、23、24每小题6分,25、26、27、28每小题9分,共计60分)21.解:(1)原式=x(x2﹣25)=x(x+5)(x﹣5);(2)原式=m(a﹣3)﹣2(a﹣3)=(a﹣3)(m﹣2).22.解:(1)解方程组得,根据题意,得:,解得﹣3≤m<;(2)∵不等式(m+1)x<m+1的解集为x>1,∴m+1<0,解得m<﹣1,又﹣3≤m<,∴﹣3≤m<﹣1,则整数m的值为﹣3、﹣2.23.解:(﹣x+1)÷=[﹣(x﹣1)]÷=•=•=,∵分式的分母x+1≠0,x2﹣1≠0,x2+2x+1≠0,解得:x≠±1,∴取x=0,当x=0时,原式==﹣1.24.解:(1)设只用电行驶,每行驶1千米的费用是x元,则只用燃油行驶,每行驶1千米的费用是(x+0.5)元,依题意得:=,解得:x=0.26,经检验,x=0.26是原方程的解,且符合题意.答:只用电行驶,每行驶1千米的费用是0.26元.(2)A,B两地间的路程为26÷0.26=100(千米).设用电行驶m千米,则用油行驶(100﹣m)千米,依题意得:0.26m+(0.26+0.5)(100﹣m)≤39,解得:m≥74.答:至少需用电行驶74千米.25.解:(1)由△ABC是等边三角形可得,∠ABC=∠C=60°,∵∠ADC=∠ABC+∠BAD,∠AEB=∠C+∠EBC,∠AEB=∠CDA,∴∠BAD=∠EBC,∵∠BPD=∠ABE+∠BAD,∴∠BPD=∠ABE+∠EBC=∠ABC=60°;(2)∵BQ⊥AD于Q,∴∠BQP=90°,∵∠BPD=60°,∴∠PBQ=90°﹣∠BPD=30°,在Rt△BPQ中,∵PQ=3,∠PBQ=30°,∴BP=2PQ=6,又∵PE=1,∴BE=BP+PE=6+1=7.26.解:(1)∠EBC=∠ABC+∠EBD=60°+90°=150°;(2)第一种情况:若逆时针旋转α度(0<α<60°),如图2:据题意得90°﹣α=2(60°﹣α),解得α=30°,∴∠EBC=90°+(60°﹣30°)=120°,∴∠DBC=120°﹣90°=30°,∴∠ABD=60°﹣30°=30°;第二种情况,若逆时针旋转α度(60°≤α<90°),如图3,据题意得90°﹣α=2(α﹣60°),解得α=70°,∴∠EBC=90°﹣(70°﹣60°)=80°,∴∠DBC=90°﹣80°=10°,∵∠ABD=60°+10°=70°;第三种情况:若顺时针旋转α度,如图4,据题意得90°+α=2(60°+α),得α=﹣30°,∵0<α<90°,α=﹣30°不合题意,舍去,故α=30°或70°时,∠ABD的度数是30°或70°.27.解:(1)设AP与BC交于H,∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE=∠CBE,∴BE平分∠ABC,∵CF是∠ACB的角平分线,BE交CF于点P,∴AP平分∠BAC,∵AB=AC,∴AH垂直平分BC,∴PB=PC;(2)∵AH垂直平分BC,∴AH⊥BC,BH=CH=BC=2,∵∠ABH=45°,∴AH=BH=2,∴平行四边形ABCD的面积=4×2=8.28.(Ⅰ)证明:∵△DCE是由△ACB旋转得到,∴CA=CD,∠A=∠CDE,∴∠A=∠CDA,∴∠CDA=∠CDE,∴CD平分∠ADE.(Ⅱ)解:结论:BE⊥AB.由旋转的性质可知,∠ACD=∠BCE,∵CA=CD,CB=CE,∴∠CAD=∠CDA=∠CBE=∠CEB,∵∠ABC+∠CAB+∠ACD+∠DCB=180°,∴∠ABC+∠CBE+∠DCB+∠BCE=180°,∴∠DCE+∠DBE=180°,∵∠DCE=90°,∴∠DBE=90°,∴BE⊥AB.(Ⅲ)如图,设BC交DE于O.连接AO,过点B作BH⊥CD交CD的延长线于H,作BT⊥CE于T,∵∠H=∠BTC=∠HCT=90°,∴∠HBT=∠DBE=90°,∴∠DBH=∠EBT,∵BD=BE,∠H=∠BTE=90°∴△BHD≌△BTE(AAS),∴BH=BT,∵BH⊥CH,BT⊥CE,∴∠DCO=∠DEB=45°,∵∠ACB=90°,∴∠ACD=∠OCD,∵CD=CD,∠ADC=∠ODC,∴△ACD≌△OCD(ASA),∴AC=OC,∴∠AOC=∠CAO=45°,∵∠ADO=135°,∴∠CAD=∠ADC=67.5°,∴∠ABC=22.5°,∵∠AOC=∠OAB+∠ABO,∴∠OAB=∠ABO=22.5°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(下)数学期末测试卷
一、选择题(每小题3分,共30分)
1、若2y -7x =0,则x ∶y 等于( )
A.2∶7
B. 4∶7
C. 7∶2
D. 7∶4
2、下列多项式能因式分解的是( )
A.x 2-y
B.x 2+1
C.x 2+xy +y 2
D.x 2-4x +4
3、化简y
x y x --2
2的结果( ) A.x+y B.x - y C.y - x D.- x - y
4、已知:如图,下列条件中不能判断直线l 1∥l 2的是( )
A.∠1=∠3
B.∠2=∠3
C.∠4=∠5
D.∠2+∠4=180°
5、为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有( )
A.1个
B.2个
C.3个
D.4个
6、如图,在△ABC 中,若∠AED =∠B ,DE =6,AB =10,AE =8,则BC 的长为( )
A .
415 B .7 C .215 D .5
24
(第4题图) (第6题图) 7、下列各命题中,属于假命题的是( )
A .若a -b =0,则a =b =0
B .若a -b >0,则a >b
C .若a -b <0,则a <b
D .若a -b ≠0,则a ≠b
8、如果关于x 的不等式(a +1)x >a +1的解集为x <1,则a 的取值范围是( )
A.a <0
B.a <-1
C.a >1
D.a >-1
9、在梯形ABCD 中,ADBC ,AC ,BD 相交于O ,如果ADBC=13,那么下列结论正确的是( )
A.S △COD =9S △AOD
B.S △ABC =9S △ACD
C.S △BOC =9S △AOD
D.S △DBC =9S △AOD
10、某班学生在颁奖大会上得知该班获得奖励的情况如下表:
已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )
A .3项
B .4项
C .5项
D .6项
二、填空题(每小题3分,共24分)
11、不等式组⎩⎨
⎧<->-0102x x 的解集是 ; 12、若代数式2
2+-x x 的值等于零,则x = 13、分解因式:2244b ab a ++=
14、如图,A 、B 两点被池塘隔开,在 AB 外选一点 C ,连结 AC 和 BC ,并分别找出它们的中点 M 、N .若测得MN =15m ,则A 、B 两点的距离为
(第14题图) (第15题图) (第17题图) (第18题图)
15、如图,在□ABCD 中,E 为CD 中点,AE 与BD 相交于点O ,S △DOE =12cm 2,则S △AOB 等于 cm 2.
16、一次数学测试,满分为100分.测试分数出来后,同桌的李华和吴珊同学把他俩的分数进行计算,李华说:我俩分数的和是160分,吴珊说:我俩分数的差是60分.那么对于下列两个命题:①俩人的说法都是正确的,②至少有一人说错了.真命题是 (填写序号).
17、如图,下列结论:①∠A >∠ACD ;②∠B+∠ACB=180°-∠A ;③∠B+∠ACB<180°; ④∠HEC>∠B 。
其中正确的是 (填上你认为正确的所有序号).
18、如图,在四个正方形拼接成的图形中,以1A 、2A 、3A 、…、10A 这十个点中任意三点为顶点,共能组成________个等腰直角三角形.你愿意把得到上述结论的探究方法与他人交流吗?若愿意,请在下方简要写出你的探究过程(结论正确且所写的过程敏捷合理可另加2分,但全卷总分不超过100分):______________________________________________
_______________________________________________________________________________ ______________________________________________________________________________.
三、(每小题6分,共12分)
19、解不等式组⎪⎩⎪⎨⎧.3)4(2
1,012<+>-x x
20、已知x =13+,y =13-,求222
2xy
y x y x +-的值.
四、(每小题6分,共18分)
21、为了了解中学生的体能情况,抽取了某中学八年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频率分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5。
(1)第四小组的频率是__________
(2)参加这次测试的学生是_________人
(3)成绩落在哪组数据范围内的人数最多?是多少?
(4)求成绩在100次以上(包括100次)的学生占测试 人数的百分率.
22、在争创全国卫生城市的活动中,我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成任务,问“青年突击队”原计划每小时清运多少吨垃圾?
23、某校餐厅计划购买12张餐桌和一批餐椅,现从甲、乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元.中商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售.那么,什么情况下到甲商场购买更优惠?
五、(本题10分)
24、已知:如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′
的位置上.若∠1=60°,AE=1.
(1)求∠2、∠3的度数;
(2)求长方形纸片ABCD的面积S.。