2.1.1 合情推理(优秀经典公开课比赛教案).
2.1.1合情推理教案
合情推理一、教材剖析[根源:Z|X|X|K]数学概括法是人教A版一般高中课程标准实验教科书选修2-2第2章第三小节的内1容,此前学生刚学习了合情推理,合情推理用的是不完整概括法,结论的正确性有待证明。
经过本节课的学习,对培育学生的抽象思想能力和创新能力,深入不等式、数列等知识,提升学生的数学修养,有重要作用。
依据课程标准,本节分为两课时,此为第一课时。
23二、教课目的4,知识目标:理解合情推理的原理和本质,并能初步运用。
[根源:学#科#网Z#X#X#K],能力目标:学生经历发现问题、提出问题、剖析问题、解决问题的过程,提升创新能力。
,感情、态度与价值观目标:在欢乐的学习气氛中,经过理解数学概括法的原理和本质,感受数学内在美,激发学习热情。
三、教课要点难点教课要点:能利用归纳进行简单的推理.教课难点:用概括进行推理,作出猜想.四、教课方法研究法五、课时安排:1课时六、教课过程例1、在同一个平面内,两条直线订交,有1个焦点;3条直线订交,最多有3个交点;;从中概括一般结论,n条直线订交,最多有几个交点?例2、有菱形纹和无菱形纹的正六边形地板砖,按图所示的规律拼成若干个图案,则第n个图案中的正六边形地板砖有多少块?来[源:学&科&网Z&X&X&K]小结概括推理的特色:例3、试将平面上的圆与空间的球进行类比。
练习:类比平面内直角三角形的勾股定理,试给出空间四周体性质的猜想。
小结类比推理的特色:当堂检测:1、已知数对以下:(1,1),(1,2),(2,1),(1,3)(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)(1,5),(2,4),,则第60个数对是_______2、在等差数列a n中,cn a1a2n an 也成等差数列,在等比数列b n中,dn=____________________也成等比数列七、板书设计八、教课反省第1 页。
教学设计3:2.1.1 合情推理
《合情推理》教学设计●教学目标:通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问题的发现中去。
●教学重点:了解合情推理的含义,能利用类比进行简单的推理。
●教学难点:用类比进行推理,做出猜想。
●教具准备:与教材内容相关的资料。
●教学设想:类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
●教学过程:学生探究过程:从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路是这样的:茅草是齿形的;茅草能割破手.我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?A对象具有属性a、b、c、d;B对象具有属性a、b、c;所以,B对象具有属性d。
为了提高类比推理结论的可靠性,逻辑学提出了一些要求:应当尽可能多地列举出对象间相似属性和选择较为本质的属性进行类比。
数学活动我们再看几个类似的推理实例。
例1、试根据等式的性质猜想不等式的性质。
等式的性质:猜想不等式的性质:(1) a=b⇒a+c=b+c; (1) a>b⇒a+c>b+c;(2) a=b ⇒ ac=bc; (2) a >b ⇒ ac >bc;(3) a =b ⇒a 2=b 2;等等。
(3) a >b ⇒a 2>b 2;等等。
问:这样猜想出的结论是否一定正确?例2、试根据等差数列的性质猜想等比数列的性质。
等差数列 等比数列a n -a n -1=d(n ≥2,n ∈N) ),2(1N n n q a a n n ∈≥=-a n =a 1+(n -1)d a n =a 1⋅q n -1a n =211+-+n n a a (n ≥2,n ∈N) a n 2=11-+⋅n n a a (n ≥2,n ∈N) 设问1:观察上述公式,等差数列、等比数列相关公式的对应运算法则规律是什么? 设问2:如何分析表达式结构特征?)2()2(5)4(g f f -设问3:类比对象是什么?三角形与三棱柱。
课件11:2.1.1 合情推理
题型三 类比推理及其应用 例 3 类比平面内直角三角形的勾股定理,试写出空间中四面 体性质的猜想.
解:如图(1),在 Rt△ABC 中,由勾股定理得:c2=a2+b2;
类比直角三角形的勾股定理,在四面体 P-DEF 中,如图(2), 猜想:S2=S21+S22+S23(S、S1、S2、S3 分别是四面体 PDEF 的 面△PEF、△DEF、△PFD、△PDE 的面积).
2.已知△ABC 的边长分别为 a,b,c,内切圆半径为 r,用 S△ABC 表示△ABC 的面积,则 S△ABC=12r(a+b+c).类比这一结论 有:若三棱锥 A-BCD 的内切球半径为 R,求三棱锥 A-BCD 的体积. 解:内切圆半径 r―类―比→内切球半径 R, 三角形的周长:a+b+c―类―比→三棱锥各面的面积和: S△ABC+S△ACD+S△BCD+S△ABD, 三角形面积公式系数12 ―类―比→三棱锥体积公式系数13. 所以类比得三棱锥体积 VABCD=13R(S△ABC+S△ACD+S△BCD+S△ABD).
象具有某种性质,推出这 些__类__似__ (或__一__致__)性,推测其
定义 类事物的_所__有___对象都具 中一类事物具有与另一类事物类
有这种性质的推理,叫做 似(或相同)的性质的推理,叫做类
归纳推理
比推理
归纳是从特殊到一般的过 特征
程
类比是从特殊到特殊的过程
初试身手
1.判断(正确的打“√”,错误的打“×”) (1)归纳推理是由一般到一般的推理过程.( × ) (2)归纳推理得出的结论具有或然性,不一定正确.( √ ) (3)类比推理得到的结论可以作为定理应用.( × )
2.数列 5,9,17,33,x,…中的 x 等于( )
2.1.1合情推理
2.1合情推理与演绎推理2.1.1 归纳推理和类比推理一.教学目标:1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用,掌握归纳推理的技巧,并能运用解决实际问题。
2.通过“自主、合作与探究”实现“一切以学生为中心”的理念。
3.感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
二.教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用三.教学难点:归纳推理的含义及其具体应用。
四、教学过程:考察以下事例中的推理:(1)1856 年,法国微生物学家巴斯德发现乳酸杆菌是使啤酒变酸的原因,接着,通过对蚕病飞研究,他发现细菌是引起蚕病的原因,据此,巴斯德推断人身上的一些传染病也是有细菌引起的;(2)我国地质学家李四光发现中国松辽地区和中亚西亚的地质结构类似,而中亚西亚有丰富的石油,由此,他推断松辽平原也蕴藏着丰富的石油;(3)因为三角形的内角和是180°×(3-2),四边形的内角和是180°×(4-2),五边形的内角和是180°×(5-2),……,所以n 边形的内角和是180°×(n-2)。
提问分三步进行一问:哪些是推理?学生发言,教师点评.二问:上述推理所得结论是否一定正确?总结:这种前提为真时,结论可能为真的推理,叫做合情推理.三问:对比(1)、(3)这两个推理,你能发现它们的相同点和不同点吗?从上述事例中可以发现,其中的推理得到的结论都是可能为真的判断,像这种前提为真时,结论可能为真的推理,叫做合情推理。
第一课时(一)归纳推理教学方式:本节课采用的是启发式教学,综合使用了讲授、问答、活动等多种教学方式.教学工具:多媒体、圆纸片、硬币.教学过程:1.归纳推理的概念形成在学习等差数列时,我们是这样推导首项为a1,公差为d 的等差数列{a n}的通项公式的:a1=a1+0d;a2=a1+1×d;a3=a1+2×d;a4=a1+3×d;…………等差数列{a n}的通项公式是a n=a1+(n-1)d.看下面的例子,试写出一般性结论.1+3=4;1+3+5=9;1+3+5+7=16.一元一次方程有一个实数根;一元二次方程最多有两个实数根;一元三次方程最多有三个实数根.提问:什么是归纳推理?学生发言,教师点评.总结:根据一类事物的部分对象具有某种性质,推出该类事物的所有对象都具有这种性质的推理,称为归纳推理(简称归纳).这种根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。
《2.1.1合情推理》教学案3
《2.1.1合情推理》教学案【教学目标】(1)结合已学过的数学实例,了解归纳推理、合情推理的含义,通过生活中的实例和已学过的教学的案例,体会演绎推理的重要性;(2)能利用归纳、类比进行简单的推理,体会并认识合情推理、演绎推理在数学发现中的作用.掌握推理的基本方法,并能运用它们进行一些简单推理.【教学重点】能利用归纳、类比、演绎的方法进行简单的推理.【教学难点】用归纳和类比进行推理,作出猜想;分析证明过程中包含的“三段论”形式.【教学过程】问题一:归纳推理一、创设情境1.哥德巴赫猜想:哥德巴赫观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 1000=29+971,, ……猜测:任一不小于6的偶数都等于两个奇质数之和.2. 费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对020213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,于是提出猜想:任何形如122+=nF (*∈N n )的数都是素数. 后来瑞士数学家欧拉,发现5252142949672976416700417F =+==⨯不是素数,从而推翻费马猜想. 3. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的计算机上,用1200个小时,作了100亿逻辑判断,完成证明.4. 哥尼斯堡城七桥问题:18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如图1所示.城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点.这就是七桥问题,一个著名的图论问题.这个问题看起来似乎不难,但人们始终没有能找到答案,最后问题提到了大数学家欧拉那里.欧拉以深邃的洞察力很快证明了这样的走法不存在.欧拉是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成A 、B 、0(1,2,,)i a i n >= C 、D 4个点,7座桥表示成7条连接这4个点的线,如图2所示.图1 图2 图3于是“七桥问题”就等价于图3中所画图形的一笔画问题了.欧拉注意到,每个点如果有进去的边就必须有出来的边,从而每个点连接的边数必须有偶数个才能完成一笔画.图3的每个点都连接着奇数条边,因此不可能一笔画出,这就说明不存在一次走遍7座桥,而每座桥只许通过一次的走法.二、合作探究:1、归纳推理的概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理.讨论: (i ) 归纳推理有何作用?(ii )归纳推理的结果是否正确?2. 练习:(1)由铜、铁、铝、金、银能导电,能归纳出什么结论?(2)已知 ,考察下列式子: 111()1i a a ⋅≥;121211()()()4ii a a a a ++≥;123123111()()()9iii a a a a a a ++++≥. 可以归纳出,对12,,,n a a a 也成立的类似不等式为 .(3). 观察等式:2221342,13593,13579164+==++==++++==,能得出怎样的结论?三、例题讲解例1.已知数列{}n a 的第1项a 1=1,且 ),3,2,1(11 =+=+n a a a nn n ,试归纳出这个数列的通项公式.例2:汉诺塔问题有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.1.每次只能移动一个金属片;2.较大的金属片不能放在较小的金属片上面.试推测:把n 个金属片从1号针移到3号针,最少需要移动多少次?巩固练习:(1) 对于任意正整数n ,猜想(2n -1)与(n +1)2的大小关系? (2)已知数列}{n a 满足11=a ,)12111--+=n n n a a a (,()2≥n 求}{n a 的通项公式.问题二:类比推理一、 创设情境(1)鲁班由带齿的草叶和蝗虫的齿牙发明锯;(2)人类仿照鱼类外形及沉浮原理,发明潜水艇;(3)地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、绕轴自转的行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在.二、合作探究:1、类比概念:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理. 简言之,类比推理是由特殊到特殊的推理.123练习:(1)圆与球的特征的类比(2)在平面内,若,a c b c ⊥⊥,则//a b . 类比到空间,你会得到什么结论?三、例题讲解例1、类比实数的加法和乘法,列出它们相似的运算性质.例2:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.。
教学设计5:2.1.1合情推理
2.1.1 合情推理【教学目标】:1、结合已经学过的教学实例和生活实例,了解推理的含义;2、了解归纳推理的含义,并能用归纳的方法进行简单的推理【教学过程】一、案例引入:在日常生活中,我们常常遇到这样一些问题:1、看到天空乌云密布,燕子低飞,蚂蚁搬家,你能得出什么判断?2、张三今天没来上学,我们会有什么判断?3、八月十五云遮月,来年正月十五雪打灯;4、朝霞不出门,晚霞行千里;5、瑞雪兆丰年。
问:这些实例具有什么样的共同特征?二、新授:I、推理:(1)定义:从一个或几个已知命题得出另一个新命题的思维过程称为推理(2)结构:推理的前提:所依据的命题,它告诉我们已知的知识是什么;推理的结论:根据前提推得的命题,它告诉我们推出的知识是什么(3)一般形式:注:推理也可看作是用连接词将前提和结论连结起来的一个逻辑连接常用的连接有:“因为…所以…”、“如果…那么…”、“根据…可知…”等等形式(4)分类:推理一般可分为“合情推理”和“演绎推理”两种类型。
问题引入:分析下列几个推理,寻找它们的共同特征:2.直角三角形、等腰三角形、等边三角形的内角和都是180°,你能猜想出什么结论?【提示】所有三角形内角和都是180°.3.已知三角形的如下性质:(1)三角形的两边之和大于第三边;(2)三角形的面积等于高与底乘积的.1.试根据上述三角形的性质推测空间四面体的性质.【提示】(1)四面体任意三个面的面积之和大于第四个面的面积.(2)四面体的体积等于底面积与高乘积的.2.以上两个推理有什么共同特点?【提示】都是根据三角形的特征,类比四面体相关元素得出结论的.II、归纳推理:(1)定义:上述几个例子均是从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理(2)特点:1、归纳推理是“由部分到整体,由个体到一般”的推理;2、归纳推理的前提是几个已知的特殊现象,结论是尚属未知的一般现象;3、归纳推理具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验因此,归纳推理不能作为数学证明的工具;4、归纳推理是一种具有创造性的推理。
教学设计6:2.1.1合情推理
2.1.1 合情推理教学目标 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用. 教学导入 知识点一 推理 1.推理的概念与分类(1)根据一个或几个已知事实(或假设)得出一个判断,这种思维方式就是推理.(2)推理一般由两部分组成,一部分是已知的事实(或假设),叫做前提;一部分是由已知推出的判断,叫做结论.(3)推理一般分为合情推理与演绎推理. 2.合情推理前提为真时,结论可能为真的推理,叫做合情推理.常用的合情推理有归纳推理和类比推理. 知识点二 归纳推理思考 (1)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电. (2)统计学中,从总体中抽取样本,然后用样本估计总体. 以上属于什么推理?【答案】属于归纳推理.符合归纳推理的定义特征. 梳理 归纳推理(1)定义:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳),归纳是从特殊到一般的过程. (2)归纳推理的一般步骤①通过观察个别情况发现某些相同性质.②从已知的相同性质中推出一个明确表述的一般性命题(猜想). 知识点三 类比推理思考 由三角形的性质:①三角形的两边之和大于第三边,②三角形面积等于高与底乘积的12. 可推测出四面体具有如下性质:(1)四面体任意三个面的面积之和大于第四个面的面积, (2)四面体的体积等于底面积与高乘积的13.该推理属于什么推理? 【答案】类比推理. 梳理 类比推理(1)定义:根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推理(简称类比). (2)类比推理的一般步骤①找出两类事物之间的相似性或一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).教学案例类型一 归纳推理命题角度1 数、式中的归纳推理 例1 (1)观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …,据此规律,第n 个等式可为_____________________________________.(2)已知f (x )=x1-x ,设f 1(x )=f (x ),f n (x )=f n -1(f n -1(x ))(n >1,且n ∈N +),则f 3(x )的表达式为________,猜想f n (x )(n ∈N +)的表达式为________.【答案】(1)1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n(2)f 3(x )=x 1-4x f n (x )=x 1-2n -1x【解析】(1)等式左边的特征:第1个有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个等式右边有n 项,且由前几个等式的规律不难发现,第n 个等式右边应为1n +1+1n +2+…+12n .(2)∵f (x )=x 1-x ,∴f 1(x )=x1-x .又∵f n (x )=f n -1(f n -1(x )),∴f 2(x )=f 1(f 1(x ))=x1-x 1-x 1-x=x1-2x ,f 3(x )=f 2(f 2(x ))=x 1-2x 1-2×x 1-2x =x1-4x,f 4(x )=f 3(f 3(x ))=x 1-4x 1-4×x 1-4x =x1-8x,f 5(x )=f 4(f 4(x ))=x 1-8x 1-8×x 1-8x =x1-16x,∴根据前几项可以猜想f n (x )=x1-2n -1x. 反思与感悟 (1)已知等式或不等式进行归纳推理的方法①要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律;②要特别注意所给几个等式(或不等式)中结构形成的特征;③提炼出等式(或不等式)的综合特点;④运用归纳推理得出一般结论.(2)数列中的归纳推理:在数列问题中,常常用到归纳推理猜测数列的通项公式或前n 项和. ①通过已知条件求出数列的前几项或前n 项和;②根据数列中的前几项或前n 项和与对应序号之间的关系求解;③运用归纳推理写出数列的通项公式或前n 项和公式.跟踪训练1 (1)已知x >1,由不等式x +1x >2;x 2+2x >3;x 3+3x >4;…,可以推广为( )A .x n +nx >nB .x n +nx >n +1C .x n +n +1x >n +1D .x n +n +1x>n(2)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …,照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________.【答案】(1)B (2)43×n ×(n +1)【解析】(1)不等式左边是两项的和,第一项是x ,x 2,x 3,…,右边的数是2,3,4,…,利用此规律观察所给不等式,都是写成x n +n x >n +1的形式,从而归纳出一般性结论:x n +nx >n +1,故选B.(2)观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.命题角度2 几何中的归纳推理例2 如图,第n 个图形是由正n +2边形“扩展”而来(n =1,2,3,…),则第n 个图形中顶点的个数为( )A .(n +1)(n +2)B .(n +2)(n +3)C .n 2D .n【答案】B【解析】由已知图形我们可以得到: 当n =1时,顶点共有12=3×4(个), 当n =2时,顶点共有20=4×5(个), 当n =3时,顶点共有30=5×6(个), 当n =4时,顶点共有42=6×7(个), …,则第n 个图形共有顶点(n +2)(n +3)个, 故选B.反思与感悟 图形中归纳推理的特点及思路(1)从图形的数量规律入手,找到数值变化与数量的关系.(2)从图形结构变化规律入手,找到图形的结构每发生一次变化后,与上一次比较,数值发生了怎样的变化.跟踪训练2 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有黑色地面砖的块数是________.【答案】5n +1【解析】观察图案知,从第一个图案起,每个图案中黑色地面砖的个数组成首项为6,公差为5的等差数列,从而第n 个图案中黑色地面砖的块数为6+(n -1)×5=5n +1.类型二 类比推理例3 如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2Sk,类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为H i (i =1,2,3,4),若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4等于多少?解 对平面凸四边形: S =12a 1h 1+12a 2h 2+12a 3h 3+12a 4h 4 =12(kh 1+2kh 2+3kh 3+4kh 4) =k2(h 1+2h 2+3h 3+4h 4), 所以h 1+2h 2+3h 3+4h 4=2Sk ;类比在三棱锥中,V =13S 1H 1+13S 2H 2+13S 3H 3+13S 4H 4=13(KH 1+2KH 2+3KH 3+4KH 4) =K3(H 1+2H 2+3H 3+4H 4). 故H 1+2H 2+3H 3+4H 4=3VK.反思与感悟 (1)类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手.由平面中相关结论可以类比得到空间中的相关结论.(2)平面图形与空间图形的类比如下:平面图形 点 线 边长 面积 线线角 三角形 空间图形线面面积体积二面角四面体跟踪训练3 (1)若数列{a n }(n ∈N +)是等差数列,则有数列b n =12nn(n ∈N +)也是等差数列;类比上述性质,相应地:若数列{c n}是等比数列,且c n>0,则有数列d n=________(n ∈N+)也是等比数列.【答案】n c1c2c3…c n【解析】数列{a n}(n∈N+)是等差数列,则有数列b n=a1+a2+…+a nn(n∈N+)也是等差数列.类比猜想:若数列{c n}是各项均为正数的等比数列,则当d n=n c1c2c3…c n时,数列{d n}也是等比数列.(2)如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边.类比上述定理,写出对空间四面体性质的猜想.解如图所示,在四面体P-ABC中,设S1,S2,S3,S分别表示△P AB,△PBC,△PCA,△ABC 的面积,α,β,γ依次表示面P AB,面PBC,面PCA与底面ABC所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.当堂检测1.有一串彩旗,代表蓝色,代表黄色.两种彩旗排成一行:…,那么在前200个彩旗中黄旗的个数为()A.111 B.89 C.133 D.67【答案】D【解析】观察彩旗排列规律可知,颜色的交替成周期性变化,周期为9,每9个旗子中有3个黄旗.则200÷9=22余2,则200个旗子中黄旗的个数为22×3+1=67.故选D.2.下列平面图形中,与空间的平行六面体作为类比对象较合适的是()A.三角形B.梯形C.平行四边形D.矩形【答案】C【解析】因为平行六面体相对的两个面互相平行,类比平面图形,则相对的两条边互相平行,故选C.3.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得到的一般结论是()A .n +(n +1)+(n +2)+…+(3n -2)=n 2B .n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2C .n +(n +1)+(n +2)+…+(3n -1)=n 2D .n +(n +1)+(n +2)+…+(3n -1)=(2n -1)2 【答案】B4.已知a 1=1,a 2=13,a 3=16,a 4=110,则数列{a n }的一个通项公式a n 等于( )A.2(n +1)2B.2n (n +1)C.22n -1D.22n -1 【答案】B【解析】a 1=21×2,a 2=22×3,a 3=23×4,a 4=24×5,则a n =2n (n +1).5.在长方形ABCD 中,对角线AC 与两邻边所成的角分别为α,β,cos 2α+cos 2β=1,则在立体几何中,给出类比猜想并证明.解 在长方形ABCD 中, cos 2α+cos 2β=⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2=a 2+b 2c 2=c 2c 2=1. 于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.证明如下:cos 2α+cos 2β+cos 2γ=⎝⎛⎭⎫m l 2+⎝⎛⎭⎫n l 2+⎝⎛⎭⎫g l 2=m 2+n 2+g 2l 2=l 2l 2=1.。
原创3:2.1.1合情推理
?
但是当摸出来一个木球时,这个猜想又失败了, 那时我们可能又会
出现第三个猜想:
?
这个猜想对不对,还必须继续加以检验……
(一)创设情境,导入新课
第一个是白乒乓球
第二个是白乒乓球
第三个是白乒乓球
第四个是白乒乓球
口袋里面都是白乒乓球
口袋里面都是乒乓球
口袋里面都是球
某一次摸出来的是黄乒乓球
2.1.1合情推理
第
二
章
:
推
理
与
证
明
归
纳
推
理
1 创设情境,导入新课
2合作探究,收获新知
3 课本案例赏析
4初步应用,巩固概念
5 课堂回眸,感悟提高
教学重点、难点
重点
难点
掌握归纳推理的特点和推理过程
培养学生发现问题、解决问题的能力
教学目标
知识与技能
过程与方法
情感态度价值观
了解归纳推理的概念和归
纳推理的作用,掌握归纳
问题三、归纳推理具有什么作用?
归纳推理是一种具有创造性的推理。通过归纳法得到的猜想,可以作为进
一步研究的起点,帮助人们发现问题和提出问题.
(六)课堂回眸,感悟提高
课堂小结
知识内容
推
理
的
概
念
归
纳
推
理
的
概
念
归
纳
推
理
的
特
点
引
入
课
题
推
理
的
概
念
思想与方法
归
纳
推
理
特
点
高中数学《2.1.1 合情推理》教学设计
高中数学《2.1.1 合情推理》教学设计一.教学背景分析1.教材的地位和作用“推理与证明”是数学的基本思维过程,也是人们日常学习和生活中常用的思维方式.“推理与证明”思想贯穿于高中数学的整个知识体系,但是作为一章内容出现在高中数学教材中尚属首次。
《推理与证明》是新课标教材的亮点之一,本章内容将归纳与推理的一般方法进行了必要的总结和归纳,同时也对后继知识的学习起到引领的作用.教材的设计还原了数学的本质,是对“观察发现、归纳类比、抽象概括、演绎证明”等数学思维方法的总结与归纳,使已学过的数学知识和思想方法系统化、明晰化,操作化.紧密地结合了已学过的数学实例和生活实例,避免空泛地讲数学思想方法,以变分散为集中,变隐性为显性的方式学习了推理和证明,是知识、方法、思维和情感的融合与促进,能让学生充分体会数学的发生、发展.2.本章的数学思想美籍匈牙利数学家波利亚指出:数学的合情推理(猜想、归纳、和类比)是数学学习和数学发现的根源。
波利亚认为合情推理对于数学的研究和发现来说,显得比逻辑推理更为重要,为此他向全世界的教师发出呼吁:只要我们能承认数学创造过程中需要合情推理、需要猜想的话,数学教学中就必须有猜想的地位,必须为发明做准备,或至少给一点发明的尝试。
“让我们教猜想吧”。
世界著名数学家拉普拉斯也曾谈到:在数学里,发现真理的工具也就是归纳与类比。
富克斯也曾说到:“伟大发现都不是按逻辑的法则发现的,而都是由猜测而得来的,换句话说,大都是凭创造性的直觉得到的”。
所以本章的内容不仅让学生学会一些数学知识,关键是让学生学会用归纳、类比的思想,为他们应用数学、创造数学做一些偿试。
3课时划分《合情推理》的教学分两个课时完成:第一课时内容为合情推理的基本实例,让学生初步体合情推理的思想;第二课时内容通过实例进一步理解和掌握合情推理的基本思想.4 学生情况所教学生是大峪中学的普通班学生,相对来说学生基础较弱,虽然在前面的教学中涉及到过有关推理的问题,尤其是数列一章中用到的合情推理的思想更为普遍,但在理性思维的方法、习惯和深度方面还有待提高.二、教学目标1.知识技能目标理解合情推理的概念,了解合情推理的作用,掌握合情推理的一般步骤,会利用归纳与类比进行一些简单的推理.2.过程方法目标学生通过积极主动地参与课堂活动,经历合情推理概念的获得过程,了解合情推理的含义;通过欣赏一些猜想的产生过程,体会并认识利用合情推理能猜测和发现一些新事实、得出新结论的作用,并明确合情推理的一般步骤;通过具体解题,感受合情推理探索和提供解决问题的思路和方向的作用;通过自主学习合情推理的一般方法,建构合情推理的思维方式.3.情感态度,价值观目标学生通过主动探究、合作学习、相互交流,培养不怕困难、勇于探索的优良作风,增强了数学应用意识;通过体会成功,形成学习数学知识、了解数学文化的积极态度.三、教学重点、难点重点:通过具体实例理解合情推理,能利用合情推理进行简单的推理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:2.1.1合情推理
学科:数学年级:高二班级:
一、教材分析:
本节课是《推理与证明》的起始内容。
《推理与证明》是数学的一种基本思维过程,也是人们在学习和生活中经常使用的一种思维方式。
贯穿于高中数学的整个知识体系,同时也对后续知识的学习起到引领作用。
合情推理有助于发现新的规律和事实,是重要的数学思想方法之一。
二、教学目标:
1.知识与技能
(1)结合已学过的数学实例,了解归纳推理与类比推理的含义.
(2)能利用归纳和类比的方法进行简单的推理.
(3)体会并认识归纳推理、类比推理在数学发现中的作用.
2.过程与方法
让学生感受数学知识与实际生活的普遍联系,通过让学生积极参与,亲身经历归纳、类比推理定义的获得过程,培养学生归纳推理、类比推理的思想.
3.情感、态度与价值观
通过本节学习正确认识合情推理在数学中的重要作用,养成认真观察事物、分析事物、发现事物之间的质的联系的良好品质,善于发现问题,探求新知识.
三、教学重点
重点:归纳推理与类比推理概念的理解,归纳推理与类比推理思想方法的掌握.
四、教学难点
难点:归纳推理、类比推理的应用.
五、教学准备
1、课时安排:1课时
2、教具选择:电子白板
六、教学方法:
要从具体的事例出发,让学生参与猜测,引导学生归纳,激发学生学习的兴趣,总结归纳推理的过程,让学生自己去发现归纳推理的应用方法与技巧.通过适量的练习使学生掌握观察、猜测、归纳、论证各环节的规律方法,并能灵活应用.通过举例分析归纳推理与类比推理的异同,让学生对两个概念有较深刻的理解,突出本节重点,通过例题讲解总结归纳推理与类比推理的应用方法及解题规律,强化训练有关题型,化解难点.
七、教学过程:
1、自主导学:阅读课本22—29页回答下列问题:(学生课前预习后提出疑惑,老师解答)
(1).数列{a n}中,a1=1
2
,a2=
3
4
,a3=
7
8
,a4=
15
16
.你能猜出a5的值吗?
【提示】a5=31 32 .
(2).直角三角形、等腰三角形、等边三角形的内角和都是180°,你能猜想出什么结论?
【提示】所有三角形内角和都是180°.
(3).已知三角形的如下性质:
(1)三角形的两边之和大于第三边;
(2)三角形的面积等于高与底乘积的1 2 .
1.试根据上述三角形的性质推测空间四面体的性质.
【提示】(1)四面体任意三个面的面积之和大于第四个面的面积.
(2)四面体的体积等于底面积与高乘积的1 3 .
2.以上两个推理有什么共同特点?
【提示】都是根据三角形的特征,类比四面体相关元素得出结论的.3.归纳推理与类比推理有没有共同点?
【提示】二者都是从具体事实出发,推断猜想新的结论.
4.归纳推理与类比推理得出的结论一定正确吗?
【提示】不一定正确.
2、合作探究
(1)分组探究
探究点1 归纳推理和探究点2 类比推理
归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.
(2)教师点拨
1.类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手,由平面中相关结论可以类比得到空间中的相关结论.
2.平面图形与空间图形类比如下:
3、巩固训练
(1)、有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第6个图案中有菱形纹的正六边形的个数是( )
图2-1-1
A .26
B .31
C .32
D .36
【思路探究】 本题中图形的变化比较简单,可有两种思路:第一种,直接查个数,找到变化规律后再猜想;第二种,看图形的排列规律,每相邻的两块无纹正六边形之间有一块“公共”的有菱形纹正六边形.
【自主解答】 法一 有菱形纹的正六边形个数如下表:
6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.故选B.
法二 由图案的排列规律可知,除第一块无纹正六边形需6个有菱形纹的正六边形围绕(第一个图案)外,每增加一块无纹正六边形,只需增加5块有菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的有菱形纹正六边形),第六个图案中有菱形纹的正六边形的个数为6+5×(6-1)=31,故选B.
(2)、在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有
T 20T 10,T 30T 20,T 40
T 30
也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.
(1)写出相应的结论,判断该结论是否正确,并加以证明; (2)写出该结论一个更为一般的情形(不必证明).
【思路探究】 结合已知等比数列的特征可类比等差数列每隔10项和的有关性质. 【自主解答】 (1)数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.
证明如下:
∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)
=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20) =10d +10d +…+10d 10个=100d =300, 同理可得:
(S 40-S 30)-(S 30-S 20)=300, 所以数列S 20-S 10,S 30-S 20,S 40-S 30 是等差数列,且公差为300. (2)对于∀k ∈N *,都有
数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2
d . 4、拓展延伸
三角形与四面体有下列相似性质:
(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形.
(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形三个顶点的连线所围成的图形.
通过类比推理,根据三角形的性质推测空间四面体的性质填写下表:
的面,即平面的线类比到空间为面.三角形的中位线对应四面体的中位面,三角形的内角对应四面体的二面角,三角形的内切圆对应四面体的内切球.
【自主解答】
5、师生合作总结
1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发展结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.
2.合情推理的过程概括为:
从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想
八、课外作业
已知椭圆具有以下性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,若直线PM、PN的斜率都存在,并记为k PM、k PN,那么k PM与k PN之积是与点P
的位置无关的定值.试对双曲线x2
a2-
y2
b2=1写出具有类似的性质,并加以证明.
九、板书:
1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发展结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.
2.合情推理的过程概括为:
从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想
十、教学反思:
本节课要在于观察、分析及在此基础上的猜想能力。
有些习题规律明显,而有些则不明显,另外学生的观察能力也因人而异。
对于几何习题,一般情况下,既可以从数字角度寻找规律,也可以从几何图形角度出发,当然应该侧重于后者。